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Parkinson’s disease (PD) is the most common neurodegenerative movement
disorder. The pathophysiology is defined by a loss of dopaminergic neurons
in the substantia nigra pars compacta, however recent studies suggest that
the peripheral immune system may participate in PD development. Herein,
we analyzed molecular insights examining RNA-seq data obtained from the
peripheral blood of both Parkinson’s disease patients and healthy control.
Although all age and gender groups were analyzed, emphasis is given on
individuals aged 50-70, the most prevalent group for Parkinson’'s diagnosis.
The computational workflow comprises both bioinformatics analyses and
machine learning processes and the yield of the pipeline includes transcripts
ranked by their level of significance, which could serve as reliable genetic
signatures. Classification outcomes are also examined with a focus on the
significance of selected features, ultimately facilitating the development of gene
networks implicated in the disease. The thorough functional analysis of the
most prominent genes, regarding their biological relevance to PD, indicates
that the proposed framework has strong potential for identifying blood-based
biomarkers of the disease. Moreover, this approach facilitates the application of
machine learning techniques to RNA-seq data from complex disorders, enabling
deeper insights into critical biological processes at the molecular level.

KEYWORDS

Parkinson’s disease, machine learning, transcriptomics, functional networks,
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1 Introduction

Parkinson’s disease (PD), a neurological movement disorder most prominently
characterized by tremors, was first formally described in 1817 by the British physician
James Parkinson (Goetz, 2011; Balestrino and Schapira, 2020). Advancing age is
recognized as the most significant risk factor, although genetic mutations have
also been implicated. Furthermore, exposure to environmental toxins is considered
a potential epigenetic contributor to the disease’s pathogenesis (Tsalenchuk et al,
2023). The hallmark motor symptoms include tremors, muscular rigidity, bradykinesia

01 frontiersin.org


https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1690229
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1690229&domain=pdf&date_stamp=2025-11-18
mailto:mkrokidis@ionio.gr
mailto:mkrokidis@ionio.gr
https://doi.org/10.3389/fbinf.2025.1690229
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1690229/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1690229/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1690229/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1690229/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Perperidis et al.

or akinesia, and postural instability. Diagnosis is primarily based on
clinical evaluation, although additional tests may be utilized to aid
in differential diagnosis (Shin et al., 2022). From an epidemiological
perspective, PD is known to affect 1 to 2 individuals per 1,000 at any
time, with a rising frequency proportionally to age and a prevalence
of 1% for ages above 60 years. The prevalence for genetically
linked cases of Parkinson’s disease is as low as 5%-15% of the
total cases. Apart from progressed age, which may be considered a
consensus risk factor across several studies, gender statistically plays
a role in PD, affecting men more than women (Baldereschi et al.,
2000; Van Den Eeden et al., 2003). Genetic predisposition is also
considered a significant risk factor, as familial cases of Parkinson’s
disease have been reported, suggesting a possible autosomal-
dominant pattern of inheritance (Tanner and Goldman, 2005).

Several genes were identified to be crucially involved in the
manifestation of PD phenotype. Among the most commonly known
are SNCA, LRRK2, PRKN, PINK1, VPS35 and GBA1. The SNCA
gene accounts for the translation of the protein alpha-synuclein,
which, among other processes, is also involved in the release of
neurotransmitters (Jankovic and Tan, 2020; Trevisan et al., 2024).
Pathogenic mutations are uncommon but clearly cause hereditary
and early-onset forms of the disease. Such mutations translate to a
misfolded form of the protein which burdens its proper degradation
and the accumulation within cells. The LRRK2 gene codes for a
kinase which functions as an arbiter of neuronal processes. Despite
its many variants, there are only a few known to be pathological.
Pathologic variants are inherited in an autosomal dominant pattern
with chances of disease manifestation of 30% at 50% and 70% at
80 years of age (Healy et al., 2008). The mutation is thought to play a
role in mediating neuroinflammation, and studies have also explored
potential interactions between LRRK2 and SNCA (Bieri et al., 2019).
PRKN encodes the protein Parkin, an ingredient of a ubiquitin
complex (Trevisan et al., 2024). Together with other proteins, like
PINKI1, it promotes the deconstruction of defected mitochondria
(Yoshino etal., 2022)and is regarded as the most common autosomal
recessive gene to account for up to 40% to disease onset at ages
as young as 40 years (Wasner et al., 2022). Mutations cause Parkin
protein misfolding, impairing its function and resulting in increased
ubiquitination and compromised proteasome degradation.

Neurological specialists typically diagnose PD based on clinical
symptoms; however, a definitive diagnosis distinguishing it from
other neurodegenerative parkinsonian disorders requires post-
mortem confirmation of Lewy bodies in the substantia nigra
pars compacta (Miller and O’Callaghan, 2015). Only a limited
number of established biomarkers are currently available to support
the diagnosis of the disease. Cerebrospinal fluid is considered
reliable due to the proximity to the central nervous system. Imaging
approached such as PET, SPECT and MRI can provide valuable
information not only about the structural composition of the brain
but also its functional state.

The present study presents an analysis sequence that was
employed on PPMT’s project 133 RNA Sequencing data of whole
blood samples. From the wide range of groups available in the
dataset, only the Parkinson’s disease (PD) and control cohorts
were selected for analysis. The analysis sequence is structured as
a pipeline incorporating a variety of computational techniques,
including principal component analysis for exploratory data analysis
and stratified differential gene expression, with each stratum
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representing distinct gender and age groups based on study
participants. Additionally, sets of differentially expressed genes are
utilized as features for selecting widely adopted machine learning
algorithms. Moreover, an overview of the classification outcomes
with respect to feature importance is provided, and ultimately,
the development of gene networks hypothesized to influence
Parkinson’s disease is addressed. This includes a gene set enrichment
analysis (GSEA) conducted to assess the biological relevance of the
findings. While analyses were conducted across all strata, this study
concentrates on the most represented subgroup—males and females
aged 50 to 70 years—as this demographic corresponds to the highest
incidence of PD.

2 Methodology
2.1 Data

RNA sequencing data were used, originating from the
Parkinson’s Progression Markers Initiative (PPMI) project 133
IR3 with the latest version of 4 February 2021. Transcriptome
sequencing was conducted by the PPMI based on whole-blood
samples, collected from Parkinson’s disease patients and healthy
controls. The set of samples and the CSV metadata file were derived
after registration on the PPMI’s study data dissemination provided
by the Imaging and Data Archive, IDA, University of Southern
California. The downloaded archive contains individual sample files
as feature counts (Liao et al.,, 2014) and with TPM normalization
(Zhao etal., 2021). A download in the FASTQ format is not possible
online; instead, a hard drive can be requested to be shipped by the
IDA from the USA after submission of a special request to the IDA.
The size of the FASTQ file is about 184 Tera Bytes according to the
project’s manual. Statistical analyses and machine learning modeling
were implemented in Python and R. All scripts and relevant code
are provided in Supplementary Table S5.

2.2 Data preparation and consolidation

The analysis conducted and presented in the present paper used
feature counts as the only format available that can be considered
close to raw counts, whereas TPM is not suitable for cross-sample
analysis but rather within-sample. The downloaded archive contains
individual files per sample. Based on the feature count set of
files and the metadata CSV, a consolidated form of all the data
available was created with an AnnData (Virshup et al., 2024) object.
Since the metadata also includes the results of a quality check,
annotating samples with either 'failed' or 'passed’ columns, only
the 'passed’ ones were retained for downstream analysis. Since
the samples are annotated by the participants’ gender and age as
well (information that makes biologically sense), this information
was used to stratify samples for downstream analysis, where each
stratum is dedicated to a gender and the age groups of participants
from PD’s and control cohorts. Age groups were set for 30-50, 50-70,
70-80 and >80 years of age. Supplementary Figure S25 presents the
demographic composition (sex and age) of the dataset. Sample
quality control was based exclusively on the PPMI ‘passed” quality
flag, with no additional exclusions required.
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2.3 Data analysis

Principal component analysis was used in exploratory data
analysis to check for technical bias that could affect downstream
results. Several aspects that could induce perturbations were
analyzed, with a focus on whether the variance of expressions is
influenced by the fact that samples were gathered in two distinct
phases and over several visits.

The dataset was split into several strata, with each stratum
containing samples for a particular gender and age group, and
differential expression analysis was conducted via the R program
DESeq2 (Love et al., 2016) for all genders’ age groups. The visits
were set as a covariate to the analysis. The thresholds were set
at |log2FoldChange| >0.5 and padj <0.05. The fold change was
set at 0.5 to increase the amount of potentially differentially
expressed genes. The findings were validated by comparing them
with the search feature of the Gene4PD website (Li et al., 2021) to
evaluate their established biological relevance related to Parkinson’s
disease. The results of statistically significant differentially expressed
genes were exported into CSV files for further downstream
analysis.

The statistically significant genes per stratum were used
as features to train and assess machine learning models. In
particular, the algorithms Logistic Regression, Support Vector
Machine, Random Forest, and XGBoost were used. Each model
was constructed by using 80% of the total samples of the respective
stratum. The class imbalance ratio for each stratum is about 2:1,
in favor of the case class; thus, the data can be considered as
moderately imbalanced. Class weights were set to balanced in
the classification models to address training imbalance. Due to
the moderate degree of imbalance and to avoid overoptimistic
predictions, no further actions were performed about that. Since
samples were taken from the same individuals, the test and training
subsets were divided by using group shuffle split, as provided by the
Python library scikit (Buitinck et al., 2013). Hyperparameters were
set for each model while the best set of parameters was decided via
ten-fold cross-validation. Ten-fold cross-validation was also used to
compare all algorithms across all strata. Predictions were run on
the designated 20% part of the split-up dataset and the respective
results exported for assessment. For all machine learning actions, the
metrics ROC-AUC and PR-AUC were gathered, as well as sensitivity
and recall scores, particularly to assess and compare prediction
performance for all trained and tested models. The extraction and
comparison of feature importances per ML model was achieved
by employing SHAP analysis and plotting the respective beeswarm
plots.

Functional networks were identified based on differentially
expressed genes per stratum via the software package Cytoscape
(Shannon et al., 2003). Furthermore, functional and publication
enrichment was performed by using the STRING database
(Szklarczyk et al., 2023) which API is used by respective interfaces
within the Cytoscape software. Additionally, to the enrichment
results from STRING, gene ontology databases as well as phenotype
and transcription factor resources were consulted by using
the GSEApy (Fang et al., 2023) library in Python. The following
list provides an overview of the sources (gene sets) used to retrieve
enrichment information from.
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3 Results and discussion
3.1 Exploratory data analysis

The central subject of the exploratory data analysis was to ensure
that the dataset does not include significant technical noise. This
step was of particular importance, since the study conducted by
the PPMI includes samples gathered from the same individuals
(from both, control and case cohorts) over several visits over
the course of 8 months, with each visit occurring 2 months from
the previous one. Also, sequencing took place in two phases.
Depictions of the percentual distribution of visits and age groups of
individuals the samples of which were sequenced at distinct phases
are presented within the image panel S1. Supplementary Figure S1
presents the distribution of age groups within each sequencing
phase. Supplementary Figure S2 shows the distribution of samples
grouped by visit across the sequencing phases where it is made
apparent, that all samples taken on the second visit were sequenced
during the second phase. The notion of separate sequencing phases
as well as having samples from visits at different points in time,
could potentially introduce artificial bias in the resulting expression
values. Based on these variables Principal Component Analysis
(PCA) was conducted as a measure to visualize the variance behavior
and whether clusters based on the identified technical factors form.
Figure 1A shows PCA results by gender, with PC5 (under 2%
variance) indicating distinct clusters. Figure 1B shows the PCA
results by sequencing phase, where no separate clusters form, thus
the variance introduced by the sequencing phase may be deemed
practically non-existent.

3.2 Differential gene expression analysis

Differentially expressed genes were found to follow distinct
expression patterns between males and females, where males
displayed a more prominent trend to downregulation (Figure 2A)
compared to females (Figure 2B), where most age groups had
upregulated genes. Males between 30 and 50 years of age had about
50 downregulated genes and slightly over 20 upregulated. Age
groups 70-80 and over 80 years of age displayed between 70 and
100 downregulated genes and 20 to 40 upregulated, respectively.
The only difference in the overall expression pattern is displayed
by the age group 50-70 years, where a vast amount of over 1,200
upregulated genes appears and only a few downregulated. We
assessed whether the heterogeneity in expression patterns could
be attributed to technical confounders by performing ANOVA
on key metadata variables. The absence of statistically significant
associations leads us to interpret this heterogeneity as an unbiased
biological signal rather than a technical artifact.

Common genes across genders and among the same age groups
were found to mostly have different expression patterns rather
than similar ones. Downregulated genes for males and females
aged 30-50 years are ENSG00000251652, LOC105374344, FOLR3
and CNTNAP3P2. Downregulation was similar for all except
CNTNAP3P2, which showed a marked decrease compared to female
expression. Age group 50-70 contained only 1 similar expression
pattern for both, males and females, for gene RAP1IGAP as a
common downregulated one with a similar degree of expression
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Principal Component Analysis results. (A) Depiction of variance with possible drivers like gender and (B) sequencing phase. No significant technical bias
is detected, biologically based on gender, yet this driver accounts for a very small percentage of the overall variance.

and RNU1-4 as a common upregulated gene with almost identical
expression. A comparatively significantly upregulated gene for
females aged 70-80 was C4BPA. In the same age group, both
males and females presented a downregulation of the gene
NECTIN2, with the males having a higher degree of downregulation
compared to females, whereas SFRP1 and OLFMI1 were slightly
more downregulated in females compared to males. Individuals
older than 80 years of age appeared with a severely downregulated
RNF182. NECTIN2 appeared again downregulated in males but
significantly upregulated in females. Also, genes CLEC12A and
CLECI12B presented distinct expression patterns for males and
females with upregulation and severe downregulation, respectively.

3.3 Machine learning classification

Machine learning was applied by employing the classifiers
Logistic Regression, Support Vector Machine, Random Forest, and
XGBoost. Training was performed on 80% of each stratum dataset
while scikit’s (Buitinck et al., 2013) GroupShuffleSplit was applied to
avoid overly optimistic prediction results because of feature leakage
(Oosterhuis et al., 2024). The differentially expressed genes for each
stratum were used as the feature set for training and testing the
models. The goal of applying machine learning categorization was
to find genes that mattered the most for telling apart health from
disease and ultimately which genes might be potentially involved
in the disease. Because of the moderate class imbalance (with a
ratio of 2:1) presented across all strata, class weights were set to
be balanced across all employed classifiers. For each stratum, the
data were split into a training set (80%) and a hold-out test set
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(20%). Hyperparameter tuning was performed using 10-fold cross-
validation on the training set to identify the optimal model. The
performance of this selected model was then evaluated in two ways:
first, via a 10-fold cross-validation on the entire stratum’s dataset,
and second, via a final evaluation on the stratum’s hold-out test set.
ROC-AUC and PR-AUC curves were generated for both the cross-
validation (Supplementary Figures S3-S10) on the full dataset and
the final test set evaluation (Supplementary Figures S11-S18). An
exemplary depiction of the conducted 10-fold cross validation is
presented for the XGBoost classifier in Figures 3A,B.

The metrics ROC-AUC as a function of the true positive
predictions over the false positive ones and PR-AUC as a function
of the precision over the sensitivity were calculated for each fold
during ten-fold cross-validation. The means for ROC-AUC across
all classifiers for predictions on the female stratum lie between
the lowest value of 0.72 and the highest of 0.77, with the lowest
value being accounted by XGBoost and the highest by Logistic
Regression. PR-AUC lies between 0.81, returned by Random Forest
and XGBoost, and the highest mean value of 0.83 returned by
Logistic Regression and SVM. The best predictions for the male
stratum were returned by XGBoost with 0.73 and 0.84 for ROC-AUC
and PR-AUC respectively, while the lowest values were observed for
Logistic Regression with scores for ROC-AUC as low as 0.55 and
0.7 for PR-AUC. The low performance of Logistic Regression on the
male stratum is very close to a random guessing model, because of
the proximity of the curve to the baseline of 0.5. XGBoost performs
better on males than females due to the larger sample size, even
though both groups have a 2:1 class imbalance ratio.

Table 1 summarizes precision and recall for each prediction class
(HC = Healthy Control; PD = Parkinson’s Disease) as well as the
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FIGURE 2

Differential Gene Expression. (A) Males. Overall trend across age groups towards downregulation with the exception of the age 50-70 group, which
exhibits an extensive number of upregulated genes and relatively few downregulated ones. (B) Females. Expression motifs tend to upregulation.
Significantly less downregulated genes compared to upregulated are observed for age groups 30-50 and over 80 years of age.

ROC-AUC and PR-AUC scores for each classification model and
gender stratum for ages 50-70 years. The scores captured for the
Random Forest and SVM classifiers are high for both, males and
females. XGBoost displays a high recall score for males and a lower
one for females. Logistic Regression also provides a satisfactory
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recall with a recall score of 70%. In general, the metrics suggest
a relatively modest performance regarding classification of true
positives. Logistic Regression presents with a precision of over
70% for all genders. XGBoost and Random Forest deliver precision
values of 74% and 70% correspondingly. Interestingly, the Random
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(A) XGBoost 10-fold cross validation ROC-AUC and PR-AUC display promising results across all folds for male stratum. (B) XGBoost 10-fold cross
validation for female stratum presents likewise satisfactory results as ROC-AUC and PR-AUC suggest. (C) Predictions made by the Random Forest
classifier for the male stratum present a ROC-AUC score of 0.71 and PR-AUC of 0.83, reflecting a moreover satisfactory result in favor of the case class.
(D) Random Forest classification for the female stratum yields less satisfactory results compared to the performance on the male stratum in regards to
the Precision-Recall, and a slightly better ROC-AUC score.
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TABLE 1 Detailed classification metrics - Values for precision and recall and ROC-AUC, PR-AUC for each classifier and gender (M = Male; F =Female)
during prediction for age stratum 50-70 years of age.

Precision
PD 0.70 0.72 0.75 0.69 0.70 0.65 0.74 0.68
HC 0.38 0.71 0.45 0.54 0.13 0.36 0.33 0.57
Recall
PD 0.70 0.58 0.80 0.81 0.94 0.93 0.89 0.70
ROC-AUC 0.582 0.707 0.641 0.689 0.714 0.732 0.694 0.707
PR-AUC 0.739 0.747 0.790 0.703 0.828 0.737 0.790 0.743

Scores above 70% appear in bold.

Forest model achieves its highest precision of 80% specifically for
samples originating from female participants. The ROC-AUC and
PR-AUC curves alongside with an appropriate confusion matrix
were plotted and included in Supplementary Figures S11-S18.
Despite the promising performance reflected during the validation
phase of the XGBoost classifier, the categorization via Random
Forest delivered a slightly better performance during prediction
(Figures 3C,D).

As a means to extract information about which genes were
deemed important by the classification models and thus influenced
the prediction, as well as the extent, SHAP analysis was performed
for each classification model (Lundberg and Lee, 2017). SHAP
analysis offers a clear and straightforward method for illustrating
feature importances by capturing both, the influence of specific
features on decision making and whether a feature has an impact
on negative or positive categorization based on its expression
values (Supplementary Figures S19-522). Generally, the features
that influenced classification the most for males and females
are different. This could support a hypothesis of a distinct
transcription motif for Parkinsons disease in males and females
and consequently the involvement of different mediating pathways
in disease pathogenesis. Accordingly, the expression patterns for
the same gender stratum, as derived from SHAP analysis, align
across the models. For the classification models Logistic Regression
and SVM the common genes LFALS2 and LRRC37A17P present
with a high score in regard to classification importance which
also align by having a similar expression motif. Similar motifs
are further presented by the Random Forest classifier for the
same gender stratum (Figure 4A). In the male stratum, the genes
ENSG00000283537, STK19B and KRT79 display importance with
downregulated motif in favor of the case cohort while, on the other
hand, genes IL9RP1, ENSG00000281741 and BTNL3 present as
classification drivers for the case cohort with an upregulated motif.
The XGBoost classifier presents LGALS2 again as an important
feature for females, yet the gene LRRC37A17P is not included
within the three top-most ranked features. Instead, the higher
ranks are occupied by the genes ENSG00000239265, C4BPA and
GPRC5D-AS1 which were deemed as low-importance features
by the other classification models (Figure 4B). For males, the
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Random Forest and XGBoost classifiers display similarities among
the higher ranked features, in particular, ENSG00000281741,
BTNL3 and STK19B. Conclusively, SHAP analysis showed similar
results among the gender strata within the same age group, while
the similarity is not merely justified by the placement of the
genes among the ranks but also by the similarity in expression
motifs.

3.4 Functional enrichment analysis

The set of differentially expressed genes was imported into
Cytoscape and the respective networks were constructed. Functional
enrichment analysis and publication enrichment were performed
by leveraging Cytoscape’s built-in connectivity with the STRING
database (Szklarczyk et al., 2023). The results retrieved for females
were dominated by the genes IFITM3, SIGLEC1 and MYOM2 which
formed a network as presented in Supplementary Figure S23. Darker
colored nodes represent higher absolute expression values whereas
lighter ones represent lower. The main characteristic in this network
is the presence of interferons, which signify immune response
to inflammation or even cellular damage (Kopitar-Jerala, 2017).
Publication enrichment via the STRING database delivered results
for a subnetwork composed of genes RSAD2, IFIT1, SIGLEC1
and IFI44L (Supplementary Figure S23) which are linked to the
Janus kinase (Yamaoka et al., 2004) and involved in the Jak/Stat
pathway, which has been linked to Parkinson’s disease as a potential
therapeutic target (Lashgari et al., 2021) and neuronal degeneration
(Cooray et al.,, 2023). The summarized results as delivered from
the STRING database are presented in Supplementary Table S1
for the functional enrichment and in Table 2 for publication
enrichment.

The enrichment results retrieved for the differentially expressed
genes via the Enrichr API do not deviate much from the STRING
results, as the enrichment terms with the highest statistical
significance concern interferon transcription and indicate ties
to the immune system. Additionally, to gene ontology terms,
transcription factor databases were consulted as well, which also
yield immune-related enrichment results. Interesting is the finding
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TABLE 2 Publication enrichment excerpt from the STRING database: Results for females 50-70 years of age contain pathways related to janus kinase

and neuroinflammation.

Description FDR ‘ PMID
Janus Kinase Inhibitors in the Treatment of Type I 1.75%107° PMID:35418997
Interferonopathies: A Case Series From a Single Center in China
JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology 7.98 x 107 PMID:34563217
Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4 12x107* PMID:37744344

of the transcription factor HESX1, for which a search on the
Gene4PD database (Li et al., 2021) returned results from the Humap
Phenotype Ontology (Gargano et al., 2024) referring to motor
issues, tremors, hyposmia and anosmia (Jankovic and Tan, 2020;
Mitchell et al., 2025) and pathological levels of prolactin. The latter
has been a subject of research, yet an involvement in Parkinson’s
disease pathology could not be conclusively confirmed (Al-
Kuraishy et al., 2023).

The results for the male stratum are dominated by the presence
of keratin. According to the results from differential gene expression
analysis, the gene KRT77 is downregulated and was also involved
as one of the 30 topmost important features in machine learning
classification, according to the results from SHAP analysis. The
results from the analysis conducted via Cytoscape on the other hand
do not align with this finding, since there are several keratin-like
proteins presenting as upregulated in the respective network as
depicted in Supplementary Figure S24. Nevertheless, the impact
of keratin in Parkinson’s disease is discussed in publications
(Wang et al., 2022; Liu et al., 2025). In the absence of compelling and
conclusive evidence supporting a biological role for keratin in PD
pathogenesis, we interpret this finding as a potential artifact. Given
the lack of an established mechanistic link, we consider it more
likely to stem from an unidentified technical bias or confounding
factor than to represent a genuine biomarker. Unlike with the
results for the female stratum, there were not enrichment terms
returned related to the immune system. Enrichment for publications
did not yield any results for the male stratum, while functional
enrichment was unsurprisingly dominated by enrichment terms
related to biological processes related to keratin while genes
like LCE1A, LC5AA repeatedly appear in the respective process
(Supplementary Table S2). The dominance of keratin, as provided
by the results from network analysis, could be related to the fact
that keratin degradation is regulated by the ubiquitin-proteasome
pathway, which is also linked to PD pathogenesis (Lim and Tan,
2007). While the reported fold changes are statistically significant,
their magnitude could partially be attributed to covariate-
driven overamplification and/or low-level sample contamination.
For instance, ambiguously expressed transcripts near detection
thresholds might appear artificially inflated. Future studies
with stratified sampling and RNA-seq verification could clarify
whether these signals reflect biological variation or methodological
artifacts.

Functional enrichment was conducted for the emerged DEGs
via the Enrichr API, which did not yield any statistically significant
results, with the adjusted p-value being either very close or equal
1. Despite the low statistical score for the enrichment results,
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the enrichment terms bear in parts a proximity to processes
and pathways involved in Parkinson’s disease (The results are
summarized in Supplementary Table S3). The first four entries
reflect cellular components and biological processes of the nervous
system. The relationship of the entry IL-2/STAT5 signaling concerns
processes of the immune system. The entry Xenobiotic Metabolism
corresponds to the metabolism of foreign chemicals that may
impact metabolic processes and, as a general term, may refer to
chemicals like pesticides as well as other drugs (Croom, 2012). The
relationships between pesticides and Parkinson’s disease in respect
to influences to xenobiotic metabolism have been analyzed in the
past (Le Couteur et al., 1999). A potential association of pathways
related to lipid metabolism and Parkinson’s disease is analyzed
by Alecu and Bennett, 2019. The possible manifold influence of
heme metabolism on neurodegenerative diseases is described by
Chiabrando et al., 2018. The entries that follow are linked to immune
responses to viral pathogens like SARS CoV2 as well as post-COVID
neuroinflammation and chronic oxidative stress. Enrichment for
gene TUBBS is related to Parkin and Ubiquitin pathways, with
a potential role in protein degradation disorders that are linked
to SYNCA accumulation and thus to neuronal degeneration in
Parkinson’s disease (Zhao et al., 2024). Copper homeostasis and its
involvement in cell signaling is also in alliance with Gaggelli et al.,
2006, where links to neurodegenerative disorders are explored and
biochemical correlations between copper ions and SYNCA are
analyzed. In the last three entries, Alzheimer’s disease is mentioned
and finally, the enrichment term that sets a link between TUBBS and
Parkinson’s disease. Genetic variants implicated in PD pathogenesis
have also been documented, based on analyses of neurons derived
from the substantia nigra of individuals with Parkinsons disease
(Simunovic et al., 2010).

4 Conclusion

The present work reveals significant differences in gene
expression between male and female pathological samples
within the same age group (50-70 years). Functional network
analysis, based on differentially expressed genes identified through
stratified analysis, revealed immune-related signatures, while
male samples exhibited a significant enrichment of keratin
proteins. The enrichment analysis indicates that whole blood
may harbor transcriptomic signatures associated with PD.
Despite substantial existing evidence, the assumption lacks a
definitive and distinguishable connection to established biological
processes in PD—such as those implicated in protein degradation
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pathways. The strong difference in expression patterns among
male and female as well as the differential expression and
sequence of important features, which emerged from the SHAP
analysis, allows us to understand that the disease exhibits sex-
specific biological expression. There is also evidence suggesting
shared biological pathways that contribute to the disease’s
pathogenesis.

The limitations of this work primarily focus on the lack of
further datasets for validating the performance of the established
models. The reason behind this omission is the scarcity of
immediately available and suitable datasets, that were created
using the same sequencing platform. The authors consciously
abstained from using microarray-based datasets or high-throughput
ones that originate from a different platform and the demanding
and error-prone pre-processing involved by choosing a different
validation set. Also, the performance of the employed models
presumably leaves room for improvement. A possible and direct
optimization would affect the hyperparameter tuning, considering
a more strategic approach. Apart from an immediate change
on model parametrization, different normalization or variance
stabilizing actions would probably yield improvement but also
a different stratification strategy. Furthermore, the results for
the male stratum require rigorous validation, since there is a
serious lack of undisputable evidence that would reliably link
Parkinson’s disease pathogenesis with Keratin related pathways.
Nevertheless, the present study positions itself among a plethora
of publications, that implement efforts to aid the discovery of
biomarker detection and the mapping of functional networks
in Parkinson’s disease. Yet, there are few that use blood-based
samples, as, for example, the work of Shamir et al., 2017, where
an SVM model was created with classification performance
similar to the one established in this paper. Tabashum et al.,
2024 systematically analyzed the landscape of machine learning
models for Parkinson’s disease, by assessing a considerable number
of publications by several parameters, like parametrization,
validation strategy, sampling strategy and sample sources. Given
the information conveyed by the work of Tabashum etal.,
we consider the major strength of the present work lies in
the demographic stratification, the employment of multiple
classification models, the use of an easily accessible source of sample
biospecimen and the respective assessment of SHAP analysis to
elucidate model decision and potential revelation of candidate
biomarkers.
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