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Parkinson’s disease (PD) is the most common neurodegenerative movement 
disorder. The pathophysiology is defined by a loss of dopaminergic neurons 
in the substantia nigra pars compacta, however recent studies suggest that 
the peripheral immune system may participate in PD development. Herein, 
we analyzed molecular insights examining RNA-seq data obtained from the 
peripheral blood of both Parkinson’s disease patients and healthy control. 
Although all age and gender groups were analyzed, emphasis is given on 
individuals aged 50–70, the most prevalent group for Parkinson’s diagnosis. 
The computational workflow comprises both bioinformatics analyses and 
machine learning processes and the yield of the pipeline includes transcripts 
ranked by their level of significance, which could serve as reliable genetic 
signatures. Classification outcomes are also examined with a focus on the 
significance of selected features, ultimately facilitating the development of gene 
networks implicated in the disease. The thorough functional analysis of the 
most prominent genes, regarding their biological relevance to PD, indicates 
that the proposed framework has strong potential for identifying blood-based 
biomarkers of the disease. Moreover, this approach facilitates the application of 
machine learning techniques to RNA-seq data from complex disorders, enabling 
deeper insights into critical biological processes at the molecular level.
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 1 Introduction

Parkinson’s disease (PD), a neurological movement disorder most prominently 
characterized by tremors, was first formally described in 1817 by the British physician 
James Parkinson (Goetz, 2011; Balestrino and Schapira, 2020). Advancing age is 
recognized as the most significant risk factor, although genetic mutations have 
also been implicated. Furthermore, exposure to environmental toxins is considered 
a potential epigenetic contributor to the disease’s pathogenesis (Tsalenchuk et al., 
2023). The hallmark motor symptoms include tremors, muscular rigidity, bradykinesia
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or akinesia, and postural instability. Diagnosis is primarily based on 
clinical evaluation, although additional tests may be utilized to aid 
in differential diagnosis (Shin et al., 2022). From an epidemiological 
perspective, PD is known to affect 1 to 2 individuals per 1,000 at any 
time, with a rising frequency proportionally to age and a prevalence 
of 1% for ages above 60 years. The prevalence for genetically 
linked cases of Parkinson’s disease is as low as 5%–15% of the 
total cases. Apart from progressed age, which may be considered a 
consensus risk factor across several studies, gender statistically plays 
a role in PD, affecting men more than women (Baldereschi et al., 
2000; Van Den Eeden et al., 2003). Genetic predisposition is also 
considered a significant risk factor, as familial cases of Parkinson’s 
disease have been reported, suggesting a possible autosomal-
dominant pattern of inheritance (Tanner and Goldman, 2005).

Several genes were identified to be crucially involved in the 
manifestation of PD phenotype. Among the most commonly known 
are SNCA, LRRK2, PRKN, PINK1, VPS35 and GBA1. The SNCA 
gene accounts for the translation of the protein alpha-synuclein, 
which, among other processes, is also involved in the release of 
neurotransmitters (Jankovic and Tan, 2020; Trevisan et al., 2024). 
Pathogenic mutations are uncommon but clearly cause hereditary 
and early-onset forms of the disease. Such mutations translate to a 
misfolded form of the protein which burdens its proper degradation 
and the accumulation within cells. The LRRK2 gene codes for a 
kinase which functions as an arbiter of neuronal processes. Despite 
its many variants, there are only a few known to be pathological. 
Pathologic variants are inherited in an autosomal dominant pattern 
with chances of disease manifestation of 30% at 50% and 70% at 
80 years of age (Healy et al., 2008). The mutation is thought to play a 
role in mediating neuroinflammation, and studies have also explored 
potential interactions between LRRK2 and SNCA (Bieri et al., 2019). 
PRKN encodes the protein Parkin, an ingredient of a ubiquitin 
complex (Trevisan et al., 2024). Together with other proteins, like 
PINK1, it promotes the deconstruction of defected mitochondria 
(Yoshino et al., 2022)and is regarded as the most common autosomal 
recessive gene to account for up to 40% to disease onset at ages 
as young as 40 years (Wasner et al., 2022). Mutations cause Parkin 
protein misfolding, impairing its function and resulting in increased 
ubiquitination and compromised proteasome degradation.

Neurological specialists typically diagnose PD based on clinical 
symptoms; however, a definitive diagnosis distinguishing it from 
other neurodegenerative parkinsonian disorders requires post-
mortem confirmation of Lewy bodies in the substantia nigra 
pars compacta (Miller and O’Callaghan, 2015). Only a limited 
number of established biomarkers are currently available to support 
the diagnosis of the disease. Cerebrospinal fluid is considered 
reliable due to the proximity to the central nervous system. Imaging 
approached such as PET, SPECT and MRI can provide valuable 
information not only about the structural composition of the brain 
but also its functional state.

The present study presents an analysis sequence that was 
employed on PPMI’s project 133 RNA Sequencing data of whole 
blood samples. From the wide range of groups available in the 
dataset, only the Parkinson’s disease (PD) and control cohorts 
were selected for analysis. The analysis sequence is structured as 
a pipeline incorporating a variety of computational techniques, 
including principal component analysis for exploratory data analysis 
and stratified differential gene expression, with each stratum 

representing distinct gender and age groups based on study 
participants. Additionally, sets of differentially expressed genes are 
utilized as features for selecting widely adopted machine learning 
algorithms. Moreover, an overview of the classification outcomes 
with respect to feature importance is provided, and ultimately, 
the development of gene networks hypothesized to influence 
Parkinson’s disease is addressed. This includes a gene set enrichment 
analysis (GSEA) conducted to assess the biological relevance of the 
findings. While analyses were conducted across all strata, this study 
concentrates on the most represented subgroup—males and females 
aged 50 to 70 years—as this demographic corresponds to the highest 
incidence of PD. 

2 Methodology

2.1 Data

RNA sequencing data were used, originating from the 
Parkinson’s Progression Markers Initiative (PPMI) project 133 
IR3 with the latest version of 4 February 2021. Transcriptome 
sequencing was conducted by the PPMI based on whole-blood 
samples, collected from Parkinson’s disease patients and healthy 
controls. The set of samples and the CSV metadata file were derived 
after registration on the PPMI’s study data dissemination provided 
by the Imaging and Data Archive, IDA, University of Southern 
California. The downloaded archive contains individual sample files 
as feature counts (Liao et al., 2014) and with TPM normalization 
(Zhao et al., 2021). A download in the FASTQ format is not possible 
online; instead, a hard drive can be requested to be shipped by the 
IDA from the USA after submission of a special request to the IDA. 
The size of the FASTQ file is about 184 Tera Bytes according to the 
project’s manual. Statistical analyses and machine learning modeling 
were implemented in Python and R. All scripts and relevant code 
are provided in Supplementary Table S5. 

2.2 Data preparation and consolidation

The analysis conducted and presented in the present paper used 
feature counts as the only format available that can be considered 
close to raw counts, whereas TPM is not suitable for cross-sample 
analysis but rather within-sample. The downloaded archive contains 
individual files per sample. Based on the feature count set of 
files and the metadata CSV, a consolidated form of all the data 
available was created with an AnnData (Virshup et al., 2024) object. 
Since the metadata also includes the results of a quality check, 
annotating samples with either 'failed' or 'passed' columns, only 
the 'passed' ones were retained for downstream analysis. Since 
the samples are annotated by the participants’ gender and age as 
well (information that makes biologically sense), this information 
was used to stratify samples for downstream analysis, where each 
stratum is dedicated to a gender and the age groups of participants 
from PD’s and control cohorts. Age groups were set for 30–50, 50–70, 
70–80 and >80 years of age. Supplementary Figure S25 presents the 
demographic composition (sex and age) of the dataset. Sample 
quality control was based exclusively on the PPMI ‘passed’ quality 
flag, with no additional exclusions required. 
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2.3 Data analysis

Principal component analysis was used in exploratory data 
analysis to check for technical bias that could affect downstream 
results. Several aspects that could induce perturbations were 
analyzed, with a focus on whether the variance of expressions is 
influenced by the fact that samples were gathered in two distinct 
phases and over several visits.

The dataset was split into several strata, with each stratum 
containing samples for a particular gender and age group, and 
differential expression analysis was conducted via the R program 
DESeq2 (Love et al., 2016) for all genders’ age groups. The visits 
were set as a covariate to the analysis. The thresholds were set 
at |log2FoldChange| >0.5 and padj <0.05. The fold change was 
set at 0.5 to increase the amount of potentially differentially 
expressed genes. The findings were validated by comparing them 
with the search feature of the Gene4PD website (Li et al., 2021) to 
evaluate their established biological relevance related to Parkinson’s 
disease. The results of statistically significant differentially expressed 
genes were exported into CSV files for further downstream
analysis.

The statistically significant genes per stratum were used 
as features to train and assess machine learning models. In 
particular, the algorithms Logistic Regression, Support Vector 
Machine, Random Forest, and XGBoost were used. Each model 
was constructed by using 80% of the total samples of the respective 
stratum. The class imbalance ratio for each stratum is about 2:1, 
in favor of the case class; thus, the data can be considered as 
moderately imbalanced. Class weights were set to balanced in 
the classification models to address training imbalance. Due to 
the moderate degree of imbalance and to avoid overoptimistic 
predictions, no further actions were performed about that. Since 
samples were taken from the same individuals, the test and training 
subsets were divided by using group shuffle split, as provided by the 
Python library scikit (Buitinck et al., 2013). Hyperparameters were 
set for each model while the best set of parameters was decided via 
ten-fold cross-validation. Ten-fold cross-validation was also used to 
compare all algorithms across all strata. Predictions were run on 
the designated 20% part of the split-up dataset and the respective 
results exported for assessment. For all machine learning actions, the 
metrics ROC-AUC and PR-AUC were gathered, as well as sensitivity 
and recall scores, particularly to assess and compare prediction 
performance for all trained and tested models. The extraction and 
comparison of feature importances per ML model was achieved 
by employing SHAP analysis and plotting the respective beeswarm
plots.

Functional networks were identified based on differentially 
expressed genes per stratum via the software package Cytoscape 
(Shannon et al., 2003). Furthermore, functional and publication 
enrichment was performed by using the STRING database 
(Szklarczyk et al., 2023) which API is used by respective interfaces 
within the Cytoscape software. Additionally, to the enrichment 
results from STRING, gene ontology databases as well as phenotype 
and transcription factor resources were consulted by using 
the GSEApy (Fang et al., 2023) library in Python. The following 
list provides an overview of the sources (gene sets) used to retrieve 
enrichment information from. 

3 Results and discussion

3.1 Exploratory data analysis

The central subject of the exploratory data analysis was to ensure 
that the dataset does not include significant technical noise. This 
step was of particular importance, since the study conducted by 
the PPMI includes samples gathered from the same individuals 
(from both, control and case cohorts) over several visits over 
the course of 8 months, with each visit occurring 2 months from 
the previous one. Also, sequencing took place in two phases. 
Depictions of the percentual distribution of visits and age groups of 
individuals the samples of which were sequenced at distinct phases 
are presented within the image panel S1. Supplementary Figure S1 
presents the distribution of age groups within each sequencing 
phase. Supplementary Figure S2 shows the distribution of samples 
grouped by visit across the sequencing phases where it is made 
apparent, that all samples taken on the second visit were sequenced 
during the second phase. The notion of separate sequencing phases 
as well as having samples from visits at different points in time, 
could potentially introduce artificial bias in the resulting expression 
values. Based on these variables Principal Component Analysis 
(PCA) was conducted as a measure to visualize the variance behavior 
and whether clusters based on the identified technical factors form. 
Figure 1A shows PCA results by gender, with PC5 (under 2% 
variance) indicating distinct clusters. Figure 1B shows the PCA 
results by sequencing phase, where no separate clusters form, thus 
the variance introduced by the sequencing phase may be deemed 
practically non-existent.

3.2 Differential gene expression analysis

Differentially expressed genes were found to follow distinct 
expression patterns between males and females, where males 
displayed a more prominent trend to downregulation (Figure 2A) 
compared to females (Figure 2B), where most age groups had 
upregulated genes. Males between 30 and 50 years of age had about 
50 downregulated genes and slightly over 20 upregulated. Age 
groups 70–80 and over 80 years of age displayed between 70 and 
100 downregulated genes and 20 to 40 upregulated, respectively. 
The only difference in the overall expression pattern is displayed 
by the age group 50–70 years, where a vast amount of over 1,200 
upregulated genes appears and only a few downregulated. We 
assessed whether the heterogeneity in expression patterns could 
be attributed to technical confounders by performing ANOVA 
on key metadata variables. The absence of statistically significant 
associations leads us to interpret this heterogeneity as an unbiased 
biological signal rather than a technical artifact.

Common genes across genders and among the same age groups 
were found to mostly have different expression patterns rather 
than similar ones. Downregulated genes for males and females 
aged 30–50 years are ENSG00000251652, LOC105374344, FOLR3 
and CNTNAP3P2. Downregulation was similar for all except 
CNTNAP3P2, which showed a marked decrease compared to female 
expression. Age group 50–70 contained only 1 similar expression 
pattern for both, males and females, for gene RAP1GAP as a 
common downregulated one with a similar degree of expression 
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FIGURE 1
Principal Component Analysis results. (A) Depiction of variance with possible drivers like gender and (B) sequencing phase. No significant technical bias 
is detected, biologically based on gender, yet this driver accounts for a very small percentage of the overall variance.

and RNU1-4 as a common upregulated gene with almost identical 
expression. A comparatively significantly upregulated gene for 
females aged 70–80 was C4BPA. In the same age group, both 
males and females presented a downregulation of the gene 
NECTIN2, with the males having a higher degree of downregulation 
compared to females, whereas SFRP1 and OLFM1 were slightly 
more downregulated in females compared to males. Individuals 
older than 80 years of age appeared with a severely downregulated 
RNF182. NECTIN2 appeared again downregulated in males but 
significantly upregulated in females. Also, genes CLEC12A and 
CLEC12B presented distinct expression patterns for males and 
females with upregulation and severe downregulation, respectively. 

3.3 Machine learning classification

Machine learning was applied by employing the classifiers 
Logistic Regression, Support Vector Machine, Random Forest, and 
XGBoost. Training was performed on 80% of each stratum dataset 
while scikit’s (Buitinck et al., 2013) GroupShuffleSplit was applied to 
avoid overly optimistic prediction results because of feature leakage 
(Oosterhuis et al., 2024). The differentially expressed genes for each 
stratum were used as the feature set for training and testing the 
models. The goal of applying machine learning categorization was 
to find genes that mattered the most for telling apart health from 
disease and ultimately which genes might be potentially involved 
in the disease. Because of the moderate class imbalance (with a 
ratio of 2:1) presented across all strata, class weights were set to 
be balanced across all employed classifiers. For each stratum, the 
data were split into a training set (80%) and a hold-out test set 

(20%). Hyperparameter tuning was performed using 10-fold cross-
validation on the training set to identify the optimal model. The 
performance of this selected model was then evaluated in two ways: 
first, via a 10-fold cross-validation on the entire stratum’s dataset, 
and second, via a final evaluation on the stratum’s hold-out test set. 
ROC-AUC and PR-AUC curves were generated for both the cross-
validation (Supplementary Figures S3–S10) on the full dataset and 
the final test set evaluation (Supplementary Figures S11–S18). An 
exemplary depiction of the conducted 10-fold cross validation is 
presented for the XGBoost classifier in Figures 3A,B.

The metrics ROC-AUC as a function of the true positive 
predictions over the false positive ones and PR-AUC as a function 
of the precision over the sensitivity were calculated for each fold 
during ten-fold cross-validation. The means for ROC-AUC across 
all classifiers for predictions on the female stratum lie between 
the lowest value of 0.72 and the highest of 0.77, with the lowest 
value being accounted by XGBoost and the highest by Logistic 
Regression. PR-AUC lies between 0.81, returned by Random Forest 
and XGBoost, and the highest mean value of 0.83 returned by 
Logistic Regression and SVM. The best predictions for the male 
stratum were returned by XGBoost with 0.73 and 0.84 for ROC-AUC 
and PR-AUC respectively, while the lowest values were observed for 
Logistic Regression with scores for ROC-AUC as low as 0.55 and 
0.7 for PR-AUC. The low performance of Logistic Regression on the 
male stratum is very close to a random guessing model, because of 
the proximity of the curve to the baseline of 0.5. XGBoost performs 
better on males than females due to the larger sample size, even 
though both groups have a 2:1 class imbalance ratio.

Table 1 summarizes precision and recall for each prediction class 
(HC = Healthy Control; PD = Parkinson’s Disease) as well as the 
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FIGURE 2
Differential Gene Expression. (A) Males. Overall trend across age groups towards downregulation with the exception of the age 50–70 group, which 
exhibits an extensive number of upregulated genes and relatively few downregulated ones. (B) Females. Expression motifs tend to upregulation. 
Significantly less downregulated genes compared to upregulated are observed for age groups 30–50 and over 80 years of age.

ROC-AUC and PR-AUC scores for each classification model and 
gender stratum for ages 50–70 years. The scores captured for the 
Random Forest and SVM classifiers are high for both, males and 
females. XGBoost displays a high recall score for males and a lower 
one for females. Logistic Regression also provides a satisfactory 

recall with a recall score of 70%. In general, the metrics suggest 
a relatively modest performance regarding classification of true 
positives. Logistic Regression presents with a precision of over 
70% for all genders. XGBoost and Random Forest deliver precision 
values of 74% and 70% correspondingly. Interestingly, the Random 
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FIGURE 3
(A) XGBoost 10-fold cross validation ROC-AUC and PR-AUC display promising results across all folds for male stratum. (B) XGBoost 10-fold cross 
validation for female stratum presents likewise satisfactory results as ROC-AUC and PR-AUC suggest. (C) Predictions made by the Random Forest 
classifier for the male stratum present a ROC-AUC score of 0.71 and PR-AUC of 0.83, reflecting a moreover satisfactory result in favor of the case class.
(D) Random Forest classification for the female stratum yields less satisfactory results compared to the performance on the male stratum in regards to 
the Precision-Recall, and a slightly better ROC-AUC score.
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TABLE 1  Detailed classification metrics - Values for precision and recall and ROC-AUC, PR-AUC for each classifier and gender (M = Male; F =Female) 
during prediction for age stratum 50–70 years of age.

LR SVM RF XGB

M F M F M F M F

Precision
HC 0.37 0.56 0.52 0.68 0.50 0.80 0.59 0.59

PD 0.70 0.72 0.75 0.69 0.70 0.65 0.74 0.68

Recall
HC 0.38 0.71 0.45 0.54 0.13 0.36 0.33 0.57

PD 0.70 0.58 0.80 0.81 0.94 0.93 0.89 0.70

ROC-AUC 0.582 0.707 0.641 0.689 0.714 0.732 0.694 0.707

PR-AUC 0.739 0.747 0.790 0.703 0.828 0.737 0.790 0.743

Scores above 70% appear in bold.

Forest model achieves its highest precision of 80% specifically for 
samples originating from female participants. The ROC-AUC and 
PR-AUC curves alongside with an appropriate confusion matrix 
were plotted and included in Supplementary Figures S11–S18. 
Despite the promising performance reflected during the validation 
phase of the XGBoost classifier, the categorization via Random 
Forest delivered a slightly better performance during prediction
(Figures 3C,D).

As a means to extract information about which genes were 
deemed important by the classification models and thus influenced 
the prediction, as well as the extent, SHAP analysis was performed 
for each classification model (Lundberg and Lee, 2017). SHAP 
analysis offers a clear and straightforward method for illustrating 
feature importances by capturing both, the influence of specific 
features on decision making and whether a feature has an impact 
on negative or positive categorization based on its expression 
values (Supplementary Figures S19–S22). Generally, the features 
that influenced classification the most for males and females 
are different. This could support a hypothesis of a distinct 
transcription motif for Parkinson’s disease in males and females 
and consequently the involvement of different mediating pathways 
in disease pathogenesis. Accordingly, the expression patterns for 
the same gender stratum, as derived from SHAP analysis, align 
across the models. For the classification models Logistic Regression 
and SVM the common genes LFALS2 and LRRC37A17P present 
with a high score in regard to classification importance which 
also align by having a similar expression motif. Similar motifs 
are further presented by the Random Forest classifier for the 
same gender stratum (Figure 4A). In the male stratum, the genes 
ENSG00000283537, STK19B and KRT79 display importance with 
downregulated motif in favor of the case cohort while, on the other 
hand, genes IL9RP1, ENSG00000281741 and BTNL3 present as 
classification drivers for the case cohort with an upregulated motif. 
The XGBoost classifier presents LGALS2 again as an important 
feature for females, yet the gene LRRC37A17P is not included 
within the three top-most ranked features. Instead, the higher 
ranks are occupied by the genes ENSG00000239265, C4BPA and 
GPRC5D-AS1 which were deemed as low-importance features 
by the other classification models (Figure 4B). For males, the 

Random Forest and XGBoost classifiers display similarities among 
the higher ranked features, in particular, ENSG00000281741, 
BTNL3 and STK19B. Conclusively, SHAP analysis showed similar 
results among the gender strata within the same age group, while 
the similarity is not merely justified by the placement of the 
genes among the ranks but also by the similarity in expression
motifs.

3.4 Functional enrichment analysis

The set of differentially expressed genes was imported into 
Cytoscape and the respective networks were constructed. Functional 
enrichment analysis and publication enrichment were performed 
by leveraging Cytoscape’s built-in connectivity with the STRING 
database (Szklarczyk et al., 2023). The results retrieved for females 
were dominated by the genes IFITM3, SIGLEC1 and MYOM2 which 
formed a network as presented in Supplementary Figure S23. Darker 
colored nodes represent higher absolute expression values whereas 
lighter ones represent lower. The main characteristic in this network 
is the presence of interferons, which signify immune response 
to inflammation or even cellular damage (Kopitar-Jerala, 2017). 
Publication enrichment via the STRING database delivered results 
for a subnetwork composed of genes RSAD2, IFIT1, SIGLEC1 
and IFI44L (Supplementary Figure S23) which are linked to the 
Janus kinase (Yamaoka et al., 2004) and involved in the Jak/Stat 
pathway, which has been linked to Parkinson’s disease as a potential 
therapeutic target (Lashgari et al., 2021) and neuronal degeneration 
(Cooray et al., 2023). The summarized results as delivered from 
the STRING database are presented in Supplementary Table S1 
for the functional enrichment and in Table 2 for publication
enrichment.

The enrichment results retrieved for the differentially expressed 
genes via the Enrichr API do not deviate much from the STRING 
results, as the enrichment terms with the highest statistical 
significance concern interferon transcription and indicate ties 
to the immune system. Additionally, to gene ontology terms, 
transcription factor databases were consulted as well, which also 
yield immune-related enrichment results. Interesting is the finding 
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FIGURE 4
SHAP Analysis. (A) SHAP Analysis results after assessment of the Random Forest classifier (Left: Males, Right: Females). Substantial differences in gene 
importance during classification can be observed. (B) SHAP Analysis for the XGBoost classification model shares similarities in gene importances as well 
as expression motifs with the Random Forest classifier in the set of the most impactful genes in the top-half positions of the plots among the 
respective strata.
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TABLE 2  Publication enrichment excerpt from the STRING database: Results for females 50–70 years of age contain pathways related to janus kinase 
and neuroinflammation.

Description FDR PMID

Janus Kinase Inhibitors in the Treatment of Type I
Interferonopathies: A Case Series From a Single Center in China

1.75 × 10−5 PMID:35418997

JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology 7.98 × 10−5 PMID:34563217

Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4 1.2 × 10−4 PMID:37744344

of the transcription factor HESX1, for which a search on the 
Gene4PD database (Li et al., 2021) returned results from the Humap 
Phenotype Ontology (Gargano et al., 2024) referring to motor 
issues, tremors, hyposmia and anosmia (Jankovic and Tan, 2020; 
Mitchell et al., 2025) and pathological levels of prolactin. The latter 
has been a subject of research, yet an involvement in Parkinson’s 
disease pathology could not be conclusively confirmed (Al-
Kuraishy et al., 2023).

The results for the male stratum are dominated by the presence 
of keratin. According to the results from differential gene expression 
analysis, the gene KRT77 is downregulated and was also involved 
as one of the 30 topmost important features in machine learning 
classification, according to the results from SHAP analysis. The 
results from the analysis conducted via Cytoscape on the other hand 
do not align with this finding, since there are several keratin-like 
proteins presenting as upregulated in the respective network as 
depicted in Supplementary Figure S24. Nevertheless, the impact 
of keratin in Parkinson’s disease is discussed in publications 
(Wang et al., 2022; Liu et al., 2025). In the absence of compelling and 
conclusive evidence supporting a biological role for keratin in PD 
pathogenesis, we interpret this finding as a potential artifact. Given 
the lack of an established mechanistic link, we consider it more 
likely to stem from an unidentified technical bias or confounding 
factor than to represent a genuine biomarker. Unlike with the 
results for the female stratum, there were not enrichment terms 
returned related to the immune system. Enrichment for publications 
did not yield any results for the male stratum, while functional 
enrichment was unsurprisingly dominated by enrichment terms 
related to biological processes related to keratin while genes 
like LCE1A, LC5AA repeatedly appear in the respective process 
(Supplementary Table S2). The dominance of keratin, as provided 
by the results from network analysis, could be related to the fact 
that keratin degradation is regulated by the ubiquitin-proteasome 
pathway, which is also linked to PD pathogenesis (Lim and Tan, 
2007). While the reported fold changes are statistically significant, 
their magnitude could partially be attributed to covariate-
driven overamplification and/or low-level sample contamination. 
For instance, ambiguously expressed transcripts near detection 
thresholds might appear artificially inflated. Future studies 
with stratified sampling and RNA-seq verification could clarify 
whether these signals reflect biological variation or methodological
artifacts.

Functional enrichment was conducted for the emerged DEGs 
via the Enrichr API, which did not yield any statistically significant 
results, with the adjusted p-value being either very close or equal 
1. Despite the low statistical score for the enrichment results, 

the enrichment terms bear in parts a proximity to processes 
and pathways involved in Parkinson’s disease (The results are 
summarized in Supplementary Table S3). The first four entries 
reflect cellular components and biological processes of the nervous 
system. The relationship of the entry IL-2/STAT5 signaling concerns 
processes of the immune system. The entry Xenobiotic Metabolism 
corresponds to the metabolism of foreign chemicals that may 
impact metabolic processes and, as a general term, may refer to 
chemicals like pesticides as well as other drugs (Croom, 2012). The 
relationships between pesticides and Parkinson’s disease in respect 
to influences to xenobiotic metabolism have been analyzed in the 
past (Le Couteur et al., 1999). A potential association of pathways 
related to lipid metabolism and Parkinson’s disease is analyzed 
by Alecu and Bennett, 2019. The possible manifold influence of 
heme metabolism on neurodegenerative diseases is described by 
Chiabrando et al., 2018. The entries that follow are linked to immune 
responses to viral pathogens like SARS CoV2 as well as post-COVID 
neuroinflammation and chronic oxidative stress. Enrichment for 
gene TUBB8 is related to Parkin and Ubiquitin pathways, with 
a potential role in protein degradation disorders that are linked 
to SYNCA accumulation and thus to neuronal degeneration in 
Parkinson’s disease (Zhao et al., 2024). Copper homeostasis and its 
involvement in cell signaling is also in alliance with Gaggelli et al., 
2006, where links to neurodegenerative disorders are explored and 
biochemical correlations between copper ions and SYNCA are 
analyzed. In the last three entries, Alzheimer’s disease is mentioned 
and finally, the enrichment term that sets a link between TUBB8 and 
Parkinson’s disease. Genetic variants implicated in PD pathogenesis 
have also been documented, based on analyses of neurons derived 
from the substantia nigra of individuals with Parkinson’s disease
(Simunovic et al., 2010). 

4 Conclusion

The present work reveals significant differences in gene 
expression between male and female pathological samples 
within the same age group (50–70 years). Functional network 
analysis, based on differentially expressed genes identified through 
stratified analysis, revealed immune-related signatures, while 
male samples exhibited a significant enrichment of keratin 
proteins. The enrichment analysis indicates that whole blood 
may harbor transcriptomic signatures associated with PD. 
Despite substantial existing evidence, the assumption lacks a 
definitive and distinguishable connection to established biological 
processes in PD—such as those implicated in protein degradation 
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pathways. The strong difference in expression patterns among 
male and female as well as the differential expression and 
sequence of important features, which emerged from the SHAP 
analysis, allows us to understand that the disease exhibits sex-
specific biological expression. There is also evidence suggesting 
shared biological pathways that contribute to the disease’s
pathogenesis.

The limitations of this work primarily focus on the lack of 
further datasets for validating the performance of the established 
models. The reason behind this omission is the scarcity of 
immediately available and suitable datasets, that were created 
using the same sequencing platform. The authors consciously 
abstained from using microarray-based datasets or high-throughput 
ones that originate from a different platform and the demanding 
and error-prone pre-processing involved by choosing a different 
validation set. Also, the performance of the employed models 
presumably leaves room for improvement. A possible and direct 
optimization would affect the hyperparameter tuning, considering 
a more strategic approach. Apart from an immediate change 
on model parametrization, different normalization or variance 
stabilizing actions would probably yield improvement but also 
a different stratification strategy. Furthermore, the results for 
the male stratum require rigorous validation, since there is a 
serious lack of undisputable evidence that would reliably link 
Parkinson’s disease pathogenesis with Keratin related pathways. 
Nevertheless, the present study positions itself among a plethora 
of publications, that implement efforts to aid the discovery of 
biomarker detection and the mapping of functional networks 
in Parkinson’s disease. Yet, there are few that use blood-based 
samples, as, for example, the work of Shamir et al., 2017, where 
an SVM model was created with classification performance 
similar to the one established in this paper. Tabashum et al., 
2024 systematically analyzed the landscape of machine learning 
models for Parkinson’s disease, by assessing a considerable number 
of publications by several parameters, like parametrization, 
validation strategy, sampling strategy and sample sources. Given 
the information conveyed by the work of Tabashum et al., 
we consider the major strength of the present work lies in 
the demographic stratification, the employment of multiple 
classification models, the use of an easily accessible source of sample 
biospecimen and the respective assessment of SHAP analysis to 
elucidate model decision and potential revelation of candidate
biomarkers.
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