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Biological databases are essential for providing curated knowledge, but their
rigid data structures and restrictive query formats often limit flexible and
exploratory user interactions. In the field of plant phosphorylation, manually
curated and reviewed data represent only a small portion of the available
knowledge, and users often seek information that goes beyond what is
provided in structured databases. While large language models (LLMs) like
ChatGPT-40 possess extensive contextual knowledge, integrating this capability
into bioinformatics tools remains an open challenge. Here, we present
a multimodal question-answering widget that integrates ChatGPT-40 with
our Plant Protein Phosphorylation Database (P3DB). This system supports
natural language queries and dynamic prompt formulation, enabling users to
explore phosphorylation events, kinase-substrate relationships, and protein-
protein interactions through a global entry. In another application, the widget
leverages ChatGPT's image interpretation functionality to extract regulatory
pathways and phosphorylation markers from complex scientific figures. To
build this widget effectively, we have explored multiple prompt strategies,
including one-step, two-step, few-shot, and image-cropping techniques,
demonstrating their impact on output accuracy and consistency. In addition,
recent multimodal LLMs such as ChatGPT-5 and Gemini 1.5 have demonstrated
comparable capabilities and adaptability when applied to our test cases and
the developed widgets. Together, our application widget and results highlight
the development of the ChatGPT-P3DB integration as a system that enhances
user accessibility, enables visual extraction, and extends the current utility of
biological knowledgebases through a flexible and adaptive framework. Our
"ChatGPT-P3DB" is open-source and can be accessed on GitHub (https://
github.com/yao-laboratory/p3db-chat). The frontend interface, "P3DB askAl"
web module, can be accessed freely through https://www.p3db.org/ask-ai.
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1 Introduction

Artificial intelligence (AI) and natural language significantly
enhance content retrieval from databases by offering intuitive and
user-friendly query interfaces (Reshma and Remya, 2018; Choi et al.,
2021; Ye et al.,, 2023; Li and Jobson, 2024; Park et al., 2024). In
bioinformatics, ChatGPT and other Large Language Models (LLMs)
have been extensively utilized for diverse tasks, including knowledge
extraction in genomic variants (Lu and Cosgun, 2025), gene set
function annotations (Hu et al., 2025; Wang et al., 2025), medical
data analysis (Chen et al, 2024a), and interactive reasoning in
biomedicine (Wang et al., 2024a) and plant biology (Zhang et al.,
2025). Particularly in building bioinformatics infrastructures and
knowledge bases, ChatGPT can facilitate data accumulation from
online resources (Blum et al., 2025; Pop et al, 2025). There are
several attempts to build databases and knowledge foundations
using ChatGPT, such as a microRNA and disease association
database (Wang et al., 2024c), and an integrated Dietary Supplement
Knowledgebase 2.0 (iDISK2.0) (Hou et al., 2025). InterPro, a protein
family database, applied the GPT-4 model to generate descriptions
and annotations (Blum et al., 2025). Similarly, Reactome prototyped
a ChatGPT-assisted curation process for pathway annotations
(Tiwari et al., 2023). However, the data harvested through LLMs
and generative AT models typically raises concerns (Pop et al., 2025),
and requires substantial manual verification before integration into
curated databases or necessitates additional fine-tuning and re-
training to align with existing domain-specific knowledge. For
instance, using ChatGPT to gain gene interaction knowledge, will
require stringent benchmarks (Chen et al., 2024b). Meanwhile, the
multimodal capabilities of GPT-4 introduce new opportunities for
bioinformatics applications, within knowledgebase environment.
For example, GPT-4V has been tested to enable more advanced
interpretation and understanding of scientific images within
bioinformatics contexts (Wang et al., 2024b). This functionality
holds promise to extend regular Optical Character Recognition
(OCR) processes in bioinformatics in pathway identification
and analysis (Shin and Pico, 2023). Nevertheless, ChatGPT is a good
supplement to data collection methods for bioinformatic databases.

Rather than following the conventional paradigm of “ChatGPT
for knowledgebases”, where LLMs are primarily used for automated
data collection, our approach strengthens this relationship by adding
a “knowledgebase for ChatGPT” linkage. We introduce a widget
application that actively couples ChatGPT with a specialized plant
phosphorylation database, creating a two-way interaction where
the database not only supports but also enhances ChatGPT’s
performance. This integration allows the knowledgebase to guide,
correct, and optimize user prompts while serving as a validation
layer for the model’s responses. By using GPT-4’s multimodal
capabilities, the system supports natural language queries and
scientific figure interpretation within the same framework. The
result is an enriched user experience where ChatGPT becomes
a centralized and interactive entry point, augmented by curated
domain knowledge, to deliver complementary insights and extend
the utility of structured bioinformatics data.

This synergy enhances the utility of the database without
compromising or contaminating the integrity of existing curated
data. Moreover, a knowledge base can play a crucial role in
validating outputs from natural language searches, optimizing query
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performance, and guiding prompt generation for domain-specific
tasks. Such an approach is particularly beneficial for databases that
require extended periods for manual updates or for those lacking
comprehensively structured existing knowledge.

Our team has been developing the Plant Protein
Phosphorylation Database (P3DB) extensively (Yao et al., 2012;
Yao et al, 2014), making it an ideal platform or testing bed to
demonstrate this innovative framework through ChatGPT-P3DB
coupled extension widgets. Several factors make P3DB especially
suitable for this test case. First, although protein phosphorylation
plays a central role in plant physiology and cell signaling cascade
(Heintz et al., 2004; Jiang et al., 2021; Wang et al., 2021). But plant
phosphorylation data are considerably less abundant compared to
those available for mammalian systems; thus, users frequently seek
additional insights when curated database searches yield limited
results. Second, to maintain user trust and ensure data integrity,
we deliberately avoid directly integrating LLM-generated content
into P3DB. Instead, P3DB provides APIs that enhance ChatGPT’s
functionality while keeping the two systems clearly separated,
preserving the database’s role as a source of experimentally validated
information. Third, publications processed behind ChatGPT are
often more current and advanced than those reviewed manually for
database inclusion. It's known by our developers that expanding
the data in P3DB takes serious human efforts. Under these
circumstances, P3DB effectively guides ChatGPT prompts, while
ChatGPT simultaneously enriches and extends the reach of P3DB,
creating a complementary and mutually beneficial coupling.

2 Results
2.1 Overview of the system

Our core system is implemented in Python, designed to
run on a Linux command line environment, and functions
primarily as a backend service interacting with users through
Application Programming Interface (API) endpoints. The system
takes advantage of both the OpenAl API and our internally
developed P3DB API to enable seamless coupling and enhance
query precision. It comprises two main applications: one facilitating
open-ended user queries related to plant phosphorylation, and
another enabling the extraction and exploration of pathway
knowledge from images containing gene and phosphorylation
information. The first application employs the P3DB API to
standardize and refine arbitrary user queries, generating targeted
prompts. The second application leverages the P3DB API to create
optimized, structured prompts, linking user-provided pathway
images to carefully curated phosphorylation data. This system takes
advantage of the capability of text reasoning and multimodality of
ChatGPT-4o. By replacing the API in the future, this system is ready
to support new ChatGPT models.

The first widget application (Figure 1A) handles general user
questions regarding plant phosphorylation. When a user submits
a query, the system initially uses the P3DB API to normalize
and refine the question by going through a global entry prompt.
This prompt is sent to the ChatGPT API, which classifies the
query and determines whether it falls within the scope of plant
phosphorylation topics supported by P3DB. If the question is
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FIGURE 1
System overview of API-based user applications. (A) General question-answering system for phosphorylation-related queries. (B) Pathway extraction
system for interpreting phosphorylation events from images. Green boxes indicate backend APIs; red boxes represent engineered and
normalized prompts.

classified as out of scope, it is logged and reported, ensuring
transparency and maintaining database integrity. For in-scope
queries, the system utilizes phosphorylation-specific prompts, asks
the user for confirmation or to provide revisions, and returns
ChatGPT answers (with a generative AI warning to users)
together with precise protein identity information and P3DB
phosphorylation record link from our P3DB API. This global entry
strategy provides flexible, detailed and reliable answers to the user,
while avoiding any potential contamination of the authoritative
P3DB data. In our experiments, we will also use P3DB data
and API to enhance the usage of phosphorylation questions by
recognizing protein IDs and substitutes by more effective names if
possible.

The global entry prompt provides a flexible interface for
handling open-ended user questions. To evaluate the effectiveness
of this design, we tested 10 real-world cases derived from recent
plant protein phosphorylation publications (Ding et al., 2020;
Lin et al, 2020; Lin et al., 2022; Chen et al,, 2021; Jiang et al,,
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2021; Wang et al,, 2021; Li et al.,, 2022; Zhang and Zhang, 2022;
Geng et al,, 2024; Wei et al, 2024), formulating each case as a
user question in arbitrary formats. The results demonstrated that
our universal prompt design effectively managed all 10 scenarios
within the plant science domain (Supplementary Table S1). We
did not perform systematic or exhaustive testing for this step,
as our system inherently supports user intervention through a
human-in-the-loop approach, allowing users to review and correct
the normalized questions if needed. Currently, our framework
can support redirection of user questions into categories such
as phosphorylation event identification (determining if a protein
can be phosphorylated), kinase-substrate relationships (whether
a specific kinase phosphorylates a given substrate), and protein-
protein interaction (PPI) questions (Supplementary Figure S1).
Questions falling outside these categories are appropriately classified
as out-of-scope. This approach ensures that, at a minimum,
unsupported or irrelevant queries are identified and prevented from
compromising the quality and focus of our knowledge base. This
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global entry prompt is very expandable for future usage or for a
different purpose through this question routing idea.

The second widget application (Figure 1B) focuses on extracting
and analyzing biological pathway information from user-submitted
images. Multimodal capability in the new version of ChatGPT-40
provides a more convenient way to implement this image-based
functionality, which does not require the user or developer to
have image processing skills. After receiving a pathway image, the
system employs the ChatGPT API to interpret the content and
perform initial model tuning to identify relevant elements, i.e., gene
names, regulation types and directions, and the involvement of
phosphorylation events. This will produce raw output structured
in JSON format. This JSON output undergoes further element
extraction, resulting in a clearly structured, table-formatted
summary, which can be easily reviewed by users. Subsequently,
the identified gene or protein names can be cross-linked by P3DB’s
curated phosphorylation data via API calls. P3DB provides different
strategies to apply our pre-designed prompts to perform this image-
based pathway extraction application. The detailed testing cases for
this application will be described in the following sections.

2.2 Protein names are more appropriate for
developing prompts

The global entry prompt normalizes users’ open-ended
questions into specific phosphorylation-related queries. To ensure
the effectiveness of these text-based prompts used in the first
application, we performed targeted tests and optimizations on each
prompt type individually, assisted by P3DB data.

First, we randomly selected 100 known phosphoproteins from
Arabidopsis, using different identifiers, full Protein Names, TAIR
IDs, UniProt IDs, and Gene Symbols, to evaluate the precision of
phosphorylation event identification when formulating prompts
for ChatGPT. The bar plot (Figure 2A) clearly illustrates the
performance differences among these identification methods
(Supplementary Table S2). Using the full protein name achieved
the highest accuracy (100%), indicating it provides the most
effective input for prompt formulation with ChatGPT. Gene
Symbols also showed strong performance with 99% accuracy, closely
followed by TAIR IDs and UniProt IDs, reaching 98% accuracy.
Although the difference is not statistically significant, a similar
trend was observed with ChatGPT-5 and Gemini 1.5, both of which
showed slightly better performance when using full protein names
and gene symbols as input identifiers (Supplementary Table S2;
Supplementary Figures S2, S3). These results suggest that providing
more explicit and descriptive protein information enhances
ChatGPT’s ability to accurately interpret and respond to
phosphorylation-related prompts. For other major plant species, i.e.,
soybean, maize, and rice, we observed similar trends (Figure 2B). We
compared the precision by including UniProt IDs and full protein
names in ChatGPT prompts (Supplementary Table S2). Across all
tested species, full protein names consistently outperformed UniProt
IDs, demonstrating better alignment with ChatGPT’s language
understanding capabilities.

P3DB includes kinase-substrate relationship data generated
from KiC-assay experiments (Ahsan et al, 2013; Ahsan et al,
2024; Jorge et al, 2024), which we used to evaluate prompt

Frontiers in Bioinformatics

10.3389/fbinf.2025.1687687

effectiveness across different kinase families in Arabidopsis. As
shown in the figure, ChatGPT’s and Gemini’s ability to correctly
classify kinases varies by family, with higher recall observed
for families such as the S/T-related kinase superfamily, the
Lectin Receptor Kinase family and CDPK family (Figure 2C;
Supplementary Figures S2C, S3C; Supplementary Table S3), which
are mostly studied in plant science domain. Kinase families with
fewer cases may be disadvantaged due to sampling bias. In addition,
P3DB contains a substantial collection of PPI data for Arabidopsis
(Figure 2D; Supplementary Table S4). Since the quality and usability
of the PPI dataset, as well as ChatGPT’s performance (GPT models)
on similar PPI-related tasks, have been extensively reported in
previous studies (Rehana et al., 2024; Chang et al., 2025), we did not
perform additional ChatGPT-specific testing for PPI performance.

In addition, P3DB supports ID mapping API (see Methods),
enabling seamless conversion of various identifiers such as
UniProt IDs, TAIR IDs, and gene names. We utilized P3DB
APIs to dynamically insert protein names into normalized
user prompts, enhancing user experience with ChatGPT. This
functionality exemplifies the strength of the ChatGPT-P3DB
coupling, allowing accurate and context-aware query generation
without compromising data integrity or user flexibility.

2.3 Phosphorylation-associated pathway
identification from scientific images

Phosphorylation plays a central role in plant signaling pathways
(Lin et al., 20205 Jiang et al., 2021; Wang et al.,, 2021; Zhang and
Zhang, 2022), and many plant phosphorylation-related publications
include complex figures that depict gene activations, inhibitions,
and phosphorylation events. However, users often lack the image
processing skills or tools to extract gene relationships and compare
them with curated phosphorylation data in P3DB. To address this
gap, the second application of our widget leverages the multimodal
capabilities of ChatGPT-40 to interpret pathway diagrams and
extract structured biological insights using different designs of
image-based prompts (Supplementary Table S5).

For this prompt construction and testing, we manually
curated 18 pathway images from 18 recent peer-reviewed plant
phosphorylation publications published between 2019 and 2025
(Supplementary Table S6). Each image was manually annotated to
establish ground-truth data, including gene pairs, regulatory types
(activation or inhibition, direct or indirect), and phosphorylation
involvement. We then evaluated two prompting strategies using
ChatGPT-4o (also work in ChatGPT-5 and Gemini-1.5): a one-step
method, which asks ChatGPT to identify all relevant information
(gene pairs, regulation types, and phosphorylation events) in a
“convenient” single prompt, and a two-step method, which separates
the analysis into two refined steps. In the two-step approach, the first
prompt extracts gene pairs and regulatory types, and the second
prompt focuses specifically on identifying visual phosphorylation
markers (e.g., small “P” circles) to determine whether each
regulatory interaction involves phosphorylation (looping through
identified interactions from the first step) (Supplementary Table S5).

Both one-step and two-step prompts performed reasonably
well across all metrics (Figure 3A), including PRGP (Precision
of Regulatory Gene Pairs), ART (Accuracy of Regulatory Types),
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FIGURE 2
Phosphorylation-specific tasks and evaluation results using P3DB datasets and ChatGPT-40 API. (A) Precision scores for the “Is this protein
phosphorylated?” task, evaluated using TAIR IDs, gene symbols, UniProt IDs, and full protein names. (B) Precision scores for the same task in major
plant species (Arabidopsis, soybean, maize, rice), using UniProt IDs and full protein names from randomized P3DB data. (C) Precision scores across
kinase families for the "Does this kinase phosphorylate the substrate?” task, using KiC-assay data from Arabidopsis. (D) Precision scores for Arabidopsis
protein-protein interaction (PPI) questions, evaluated using both protein names and TAIR IDs.

APE (Accuracy of Phosphorylation Event), and RRGP (Recall
of Regulatory Gene Pairs). The two-step method demonstrated
marginally higher performance in APE but lower in PRGP. While
the performance gains were modest, given that the prompts
are separated, the two-step strategy allows for more targeted
extraction and interpretation of phosphorylation-specific features
within complex diagrams. APE benefited the most from the two-step
refinement, confirming that separate attention to phosphorylation
markers improves accuracy in phosphorylation event detection.
In addition to accuracy, we evaluated consistency using standard
deviation across the 18 samples (Figure 3B). The two types
of prompts display a variation of around 10%-20% among
experimental repeats.

The detailed performance breakdown across individual images
reveals that the visual complexity and layout of pathway diagrams
can significantly impact ChatGPT’s ability to accurately extract
information (Figure 3C-F; Supplementary Tables S7, S8).  For
example, Image 12 exhibited consistently poor performance
across all evaluated metrics, likely due to its highly crowded
layout and dense visual elements, which make it challenging for
the model to identify gene relationships and phosphorylation
events all at once. Some images also contain gene names
or relationships distant from the marked phosphorylation
events. These results highlight the sensitivity of multimodal
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prompt performance to image design and suggest that tailored
strategies may be needed for more complex figures. The same
images and prompts were also tested in two other multimodal
LLMs, ChatGPT-5 and Gemini-1.5, and we observed
similar performance patterns on challenging images 3,5,10,12,14
(Supplementary Figures S4, S5; Supplementary Tables S9, $10). In
the following section, we explore additional prompt engineering
techniques that

ie.,

and design considerations may improve

performance on visually challenging images.

2.4 Additional practical strategies or
techniques for pathway identification

2.4.1 Image cropping test

To address the poor performance observed in visually dense
diagrams (i.e., in Image 12), we conducted an image cropping test to
isolate smaller, less crowded segments of the figure. The results
(Figure 4A; Supplementary Table S11) show that performance
improves by 10%-60% on different scores when cropped images are
used. Across all metrics, the cropped version outperformed both the
original one-step and two-step methods. This confirms that clutter
and visual complexity in original figures hinder ChatGPT’s ability
to extract biological relationships, and that segmenting complex
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gene pairs), (E) ART (accuracy of regulatory types), and (F) APE (accuracy of phosphorylation event identification).

figures can serve as a practical strategy to improve multimodal
interpretation. Given the variability across images, image cropping
may not yield consistent and robust gains among all cases.

2.4.2 Substitute with nonsense names

In this experiment, we tested whether substituting actual
gene names with meaningless, random alphabetic identifiers (e.g.,
“ABC”, “XYZ”) would impact ChatGPT’s ability to parse and
analyze the pathway information. The substitution had a moderate
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impact on performance scores, typically ranging from 10%-20%
variation across different metrics. These effects were inconsistent,
sometimes increasing and sometimes decreasing performance,
and were observed across both one-step and two-step prompting
methods, generally falling within the range of standard deviations
reported previously. This suggests that ChatGPT’s interpretation of
pathway diagrams is driven primarily by the structural and visual
features of the image rather than its reliance on domain-specific
knowledge or learned associations from real-world gene names
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(Figure 4B; Supplementary Table S12). In other words, the model’s
visual understanding is limited enough to function without textual
priors from the literature.

2.4.3 ASCIl used in prompts

Some prior research (Jiang et al., 2024) has suggested that
injecting random noise characters or using ASCII-art formatting
can enhance ChatGPT’s robustness in cross-modal tasks. Motivated
by this observation, we tested the impact of including ASCII-
style text at the beginning of our prompt to assess whether
it could enhance ChatGPT’s performance in our image-based
pathway extraction task. However, as shown in our results

(Figure 4C;  Supplementary Table S13), the ASCII-enhanced
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prompts did not yield any noticeable improvement. In fact, in
some cases, standard (non-ASCII) prompts slightly outperformed
the ASCII versions. These findings suggest that, in the specific
context of interpreting biological pathway images, ASCII formatting
offers no substantial advantage in ChatGPT4o. Therefore, future
prompt optimization efforts should prioritize strategies like image
segmentation and visual layout enhancement rather than relying on
syntactic tricks or formatting noise.

2.4.4 Few-shot (two-shot) testing

To evaluate the potential benefits of few-shot learning in the
context of image-based prompt design, we conducted a two-
shot testing experiment. Few-shot prompting is a commonly used
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technique to enhance the performance of LLMs by providing a few
relevant examples. In our test, images numbered 1 through 10 were
used as the primary evaluation set, while images 11 and 12, both rich
in diverse pathway content, served as embedded few-shot examples
within the prompts.

The results showed varied impacts across performance metrics
(Figure 4D-G; Supplementary Table S14). For instance, specific
images that previously performed poorly, such as images 9 and 10,
exhibited marginal improvements in metrics like ART and APE.
Conversely, some images, such as image 3, continued to demonstrate
consistently low performance, even under the few-shot settings.

This variability suggests that while well-structured and
information-rich few-shot examples can help in some cases, they
do not consistently enhance model performance across all image
types, displaying context sensitivity. In summary, incorporating
few-shot prompts provided limited benefit for complex and visually
dense scientific figures in our domain. Additional work may be
required to tailor few-shot designs to specific image types or layout
characteristics for more reliable improvement.

2.5 Integrate the system into the P3DB web
interface

The ChatGPT-P3DB web interface, named P3DB-AskAl, offers
an integrated platform that supports two primary functionalities:
(a) natural language-based general querying and (b) image-based
pathway interpretation. These modes are accessible through a user-
friendly sidebar panel, allowing simple toggling between text and
image input workflows. Each module includes a brief interactive
tutorial and example to guide users through its features, enabling
intuitive engagement with phosphorylation-related tasks.

The natural language query interface is designed to accept a
wide range of user questions, providing a flexible and universal
interaction experience (Figure 5A). Users begin by entering free-
form questions related to plant phosphorylation. The system
automatically performs species detection, protein name or ID
recognition, and query classification. Based on the content,
the interface either normalizes the input into one of several
supported phosphorylation-specific tasks, such as determining
whether a protein is phosphorylated, identifying kinase-substrate
relationships, or detecting protein-protein interactions, or returns
an “out-of-scope” message when the query cannot be addressed
by the underlying database. Once a question is classified, the
system responds with relevant, curated data from P3DB, improving
accessibility to high-quality biological insights without requiring a
structured query language or prior database expertise. For involving
humans in the loop, we have designed an additional interface to
allow users to correct species or protein names if the system fails
to do the normalization.

In the image-based pathway extraction workflow (Figure 5B),
users upload a pathway diagram, often derived from scientific
figures. The system parses the image using ChatGPT-40's
multimodal capabilities, extracting gene names, interaction types
(activation/inhibition), and phosphorylation events. These extracted
relationships are displayed in a tabular format, making the visual
content computationally accessible. In addition to the command
line version, the web system supports redirection through gene ID
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or gene symbol mapping, and then queries P3DB to cross-reference
whether the identified proteins and phosphorylation events are
supported by experimental evidence. Matched entries are presented
with detailed annotation and links to original P3DB records. This
provides a connection between the external information and the
internal P3DB curations.

3 Discussion

Our work demonstrates the feasibility and benefits of
integrating ChatGPT with a domain-specific bioinformatics
resource, P3DB, to support flexible, user-driven query interpretation
and pathway analysis. Although we did not retrain the GPT
models, previous studies have shown that prompt engineering
and retrieval-augmented generation (RAG)-based systems can
perform effectively in various bioinformatics applications, such
as gene variant interpretation and gene set annotation, by
leveraging pre-trained ChatGPT models (Hu et al., 2025; Lu and
Cosgun, 2025; Wang et al., 2025).

Similar to a network router, our design of a global entry prompt
offers a user-friendly and adaptable interface that accepts open-
question input and converts it into task-specific prompts, such as
phosphorylation event recognition, kinase-substrate interaction,
and protein-protein interaction questions. This normalization
step bridges the gap between general user queries and structured
database queries, enabling more accessible interaction with
complex biological data from the public domain to a professional
knowledgebase.

One key finding is that full protein names outperform other
identifiers (e.g., TAIR IDs, UniProt IDs, and gene symbols) when
used in prompt construction. This may be due to ChatGPT’s stronger
language modeling capabilities with descriptive text, as full names
likely contain richer semantic cues that align with its pretrained
knowledge. This insight can inform the design of user interfaces and
APIs, suggesting that mapping abbreviated identifiers to full names
before querying consistently yields better performance.

In parallel, our image-based application highlights the
importance of visual pathway interpretation as a complement
to text-based database queries. Many critical insights in plant
phosphorylation research are encoded in figures that contain
multiple signaling pathways, regulation types, and phosphorylation
markers. Our system, powered by ChatGPT-40’s multimodal
capabilities, successfully extracts structured biological relationships
from these images. The use of refined prompting strategies (e.g., two-
step and few-shot prompts) further improved both the accuracy and
consistency of output, especially when analyzing visually complex
diagrams. Image cropping and few-shot prompting emerged as
practical techniques to address noisy or dense input, which can be
further explored and automated.

In terms of system limitations, we observed that performance
declines were most observed in crowded or visually complex
pathway figures (such as image 12), where overlapping labels and
overlapping graphical elements hindered major gene relationships
and phosphorylation events (images 13 and 15). Ambiguous
symbols, for example, unclear phosphorylation markers or
inconsistent arrow styles, as well as misclassification of kinase-
substrate relationships, were also common in low-performing cases.
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These cases highlight the importance of both prompt refinement and
pre-processing strategies, such as image segmentation and image
enhancement, to improve extraction performance in future work.

In this study, we primarily focused on ChatGPT-40 for
both natural language and image-based prompt testing, tested
minimally on ChatGPT-5 and Gemini-1.5. In the final system
implementation and web deployment, our decision was driven by
practical considerations, not necessarily by our limited benchmarks.
By the time of writing, ChatGPT-40 currently offers convenient,
economic, and efficient multimodal APIs, with strong support for
text and image inputs, making it a suitable platform for testing
end-to-end workflows in real-world biological tasks. Moreover,
the methods and prompt designs explored in our work, such
as global entry normalization, two-step prompting, and few-shot
image interpretation, are model-agnostic by nature. They can be
readily adapted to other LLMs in future work, by replacing the
backend APIs (ChatGPT-5, Gemini-1.5 or future models), similar to
the work of GeneAgent (Wang et al., 2025). Our goal was to establish
a proof of concept using a stable and well-documented system
coupling GPT and P3DB, focusing on system development instead
of comparative evaluation and benchmark type of work. The user
experience of extending P3DB search through ChatGPT is designed
to go beyond strictly reviewed data, allowing for exploratory and
complementary insights. As a result, the system is not burdened
by the need to achieve extreme accuracy, but instead focuses on
enhancing accessibility, flexibility, and knowledge discovery.

Together, these results showcase how the ChatGPT-P3DB
coupling addresses two major gaps: (1) the lack of flexible natural
language guided by a domain-specific knowledge base and (2) the
difficulty of extracting structured knowledge from visual scientific
content. This dual-capability system exemplifies the potential
of Al-augmented knowledge bases to expand user accessibility,
improve data integration, and streamline analysis workflows in
plant biology and beyond. As Al technologies continue to evolve,
coupling curated bioinformatics databases with powerful language
models offers a scalable path toward more intelligent, multimodal
biological knowledge systems. Looking forward, the framework
presented in this manuscript can be extended to support other
post-translational modifications (e.g., ubiquitination, acetylation)
by adapting the database coupling and prompt design accordingly.
Additionally, the integration of spatial omics images (Martinez-
Val et al,, 2021; Crook et al.,, 2022) or subcellular localization
maps (Currie et al., 2024; Hein et al., 2025) could further expand
the system’s multimodal capability to interpret biologically relevant
functions from visual data.

4 Materials and methods
4.1 Data collection

The global entry prompt was tested using real scientific
data sourced from peer-reviewed publications identified via a
random search using the keyword “plant phosphorylation” (specific
PubMed IDs are listed in the Supplementary Tables). Pathway
images were similarly obtained through a general Google image
search using the same keyword from scientific publications during
2019-2025. Figures were manually filtered to select those explicitly
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depicting multiple pathways, clear gene identifiers, regulatory
interactions (such as inhibition and activation), and marked
phosphorylation events.

Phosphorylated proteins used for prompt testing, particularly
those from Arabidopsis, maize, soybean, and rice, were randomly
retrieved from our internal P3DB database. In addition, PPI data
and kinase-substrate relationship data derived from KiC-assay
experiments (Kim et al., 2025) were obtained from P3DB. All protein
identifiers and corresponding full names used in testing were also
sourced from P3DB, with further methodological details provided
in subsequent sections.

4.2 ID mapping

Our P3DB APIs for ID mapping were constructed using data
obtained from Phytozome (Goodstein et al., 2012), EnsemblPlants
(Bolser et al., 2017), and STRING (von Mering et al., 2003). Gene
annotations, sequence headers, and UniProt ID mapping tables were
extracted from these resources and stored in a hybrid database
system combining MongoDB and MySQL.

4.3 Prompt precision calculation

For phosphorylation-associated prompts, we calculated only
precision, as P3DB exclusively contains confirmed positive datasets.
Generating a comprehensive negative dataset for phosphorylation
events is challenging and may introduce artificial bias. Therefore,
precision was defined as the proportion of correct positive
predictions (i.e., “yes” answers) relative to the total number of
predictions made.

To systematically evaluate the prompts, we utilized APIs from
multimodal LLMs to test both the phosphorylation-related and
image-based queries. Specifically, we used ChatGPT models gpt-
40-2024-08-06 and gpt-5-2025-08-07, along with the Gemini model
gemini-1.5-pro, to ensure consistency and comparability.

4.4 Evaluation metrics for image-based
pathway extraction

Following ChatGPT-40 documentation, our system supports
standard image formats, including PNG and JPEG. In this study,
pathway figures were captured via screenshot from peer-reviewed
publications and saved in PNG or JPEG format. These images
were then processed using structured prompts to extract pathway
components and biological interactions. Evaluation metrics were
kept consistent across different prompting strategies for valid
comparisons. The following metrics were used to evaluate image
interpretation performance: PRGP (Precision of Regulatory Gene
Pairs), the proportion of gene pairs identified by the model as
regulatory interactions that are truly correct, among all predicted
gene pairs; RRGP (Recall of Regulatory Gene Pairs), the proportion
of true regulatory gene pairs the model correctly identified, out of all
ground-truth gene pairs; ART (Accuracy of Regulatory Types), the
percentage of correctly predicted interaction types (e.g., activation
or inhibition; direct or indirect) among all identified interactions;
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APE (Accuracy of Phosphorylation Event), the proportion of
phosphorylation events correctly identified by the model, relative to
the total number of predicted phosphorylation events.

Evaluation of regulatory types was performed only when
the gene pair was correctly identified. Similarly, phosphorylation
events were evaluated only when the regulatory type was correctly
predicted. Ground-truth data were manually curated from
each image (Supplementary Table S6). To match natural biological
interpretation, we adopted the following guidelines. Elements placed
above arrows were treated as gene names when they served a
regulatory function; When two gene names appeared together
in a single graphical object (e.g., a box), they were annotated
as a composite gene entity due to ambiguous attribution. In
alignment with standard biological diagram conventions, arrows
were interpreted as activation, while T-bars were considered
inhibitory interactions.

4.5 P3DB-askAl web development

The ChatGPT-P3DB application widget was developed and
integrated into the P3DB web platform using the Angular
framework and TypeScript, ensuring full compatibility with the
existing architecture. This web-based implementation enhances user
experience beyond that of a traditional command-line interface by
offering an interactive and intuitive environment for both text-based
and image-based queries. Users can access the tool directly from the
P3DB homepage by navigating to the “Tools” menu and selecting
“Ask AI” from the dropdown list. The application features two
main modes: (a) natural language query processing and (b) pathway
image analysis. Both modes are supported by P3DB backend APIs,
as described in previous sections, which enable dynamic prompt
generation, result retrieval, and protein ID normalization. It is also
leveraged by the OpenAI API (gpt-40-2024-08-06) and the ID
mapping module described above.

5 Data and code availability

Our backend system “ChatGPT-P3DB” is open-source and can
be accessed on GitHub (https://github.com/yao-laboratory/p3db-
chat). The frontend interface, “P3DB askAI” web module, can be
accessed freely through https://www.p3db.org/ask-ai. Our testing
cases and results are summarized in the supplementary tables. The
original data from existing publications are mentioned as PubMed
IDs in supplementary tables. All prompts in this paper are listed
in the supplementary table as well as on the GitHub code base.
The system was tested on Python version 3.9 and OpenAl SDK
version 1.107.2.
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