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Biological databases are essential for providing curated knowledge, but their 
rigid data structures and restrictive query formats often limit flexible and 
exploratory user interactions. In the field of plant phosphorylation, manually 
curated and reviewed data represent only a small portion of the available 
knowledge, and users often seek information that goes beyond what is 
provided in structured databases. While large language models (LLMs) like 
ChatGPT-4o possess extensive contextual knowledge, integrating this capability 
into bioinformatics tools remains an open challenge. Here, we present 
a multimodal question-answering widget that integrates ChatGPT-4o with 
our Plant Protein Phosphorylation Database (P3DB). This system supports 
natural language queries and dynamic prompt formulation, enabling users to 
explore phosphorylation events, kinase-substrate relationships, and protein-
protein interactions through a global entry. In another application, the widget 
leverages ChatGPT’s image interpretation functionality to extract regulatory 
pathways and phosphorylation markers from complex scientific figures. To 
build this widget effectively, we have explored multiple prompt strategies, 
including one-step, two-step, few-shot, and image-cropping techniques, 
demonstrating their impact on output accuracy and consistency. In addition, 
recent multimodal LLMs such as ChatGPT-5 and Gemini 1.5 have demonstrated 
comparable capabilities and adaptability when applied to our test cases and 
the developed widgets. Together, our application widget and results highlight 
the development of the ChatGPT-P3DB integration as a system that enhances 
user accessibility, enables visual extraction, and extends the current utility of 
biological knowledgebases through a flexible and adaptive framework. Our 
“ChatGPT-P3DB” is open-source and can be accessed on GitHub (https://
github.com/yao-laboratory/p3db-chat). The frontend interface, “P3DB askAI” 
web module, can be accessed freely through https://www.p3db.org/ask-ai.
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1 Introduction

Artificial intelligence (AI) and natural language significantly 
enhance content retrieval from databases by offering intuitive and 
user-friendly query interfaces (Reshma and Remya, 2018; Choi et al., 
2021; Ye et al., 2023; Li and Jobson, 2024; Park et al., 2024). In 
bioinformatics, ChatGPT and other Large Language Models (LLMs) 
have been extensively utilized for diverse tasks, including knowledge 
extraction in genomic variants (Lu and Cosgun, 2025), gene set 
function annotations (Hu et al., 2025; Wang et al., 2025), medical 
data analysis (Chen et al., 2024a), and interactive reasoning in 
biomedicine (Wang et al., 2024a) and plant biology (Zhang et al., 
2025). Particularly in building bioinformatics infrastructures and 
knowledge bases, ChatGPT can facilitate data accumulation from 
online resources (Blum et al., 2025; Pop et al., 2025). There are 
several attempts to build databases and knowledge foundations 
using ChatGPT, such as a microRNA and disease association 
database (Wang et al., 2024c), and an integrated Dietary Supplement 
Knowledgebase 2.0 (iDISK2.0) (Hou et al., 2025). InterPro, a protein 
family database, applied the GPT-4 model to generate descriptions 
and annotations (Blum et al., 2025). Similarly, Reactome prototyped 
a ChatGPT-assisted curation process for pathway annotations 
(Tiwari et al., 2023). However, the data harvested through LLMs 
and generative AI models typically raises concerns (Pop et al., 2025), 
and requires substantial manual verification before integration into 
curated databases or necessitates additional fine-tuning and re-
training to align with existing domain-specific knowledge. For 
instance, using ChatGPT to gain gene interaction knowledge, will 
require stringent benchmarks (Chen et al., 2024b). Meanwhile, the 
multimodal capabilities of GPT-4 introduce new opportunities for 
bioinformatics applications, within knowledgebase environment. 
For example, GPT-4V has been tested to enable more advanced 
interpretation and understanding of scientific images within 
bioinformatics contexts (Wang et al., 2024b). This functionality 
holds promise to extend regular Optical Character Recognition 
(OCR) processes in bioinformatics in pathway identification 
and analysis (Shin and Pico, 2023). Nevertheless, ChatGPT is a good 
supplement to data collection methods for bioinformatic databases.

Rather than following the conventional paradigm of “ChatGPT 
for knowledgebases”, where LLMs are primarily used for automated 
data collection, our approach strengthens this relationship by adding 
a “knowledgebase for ChatGPT” linkage. We introduce a widget 
application that actively couples ChatGPT with a specialized plant 
phosphorylation database, creating a two-way interaction where 
the database not only supports but also enhances ChatGPT’s 
performance. This integration allows the knowledgebase to guide, 
correct, and optimize user prompts while serving as a validation 
layer for the model’s responses. By using GPT-4’s multimodal 
capabilities, the system supports natural language queries and 
scientific figure interpretation within the same framework. The 
result is an enriched user experience where ChatGPT becomes 
a centralized and interactive entry point, augmented by curated 
domain knowledge, to deliver complementary insights and extend 
the utility of structured bioinformatics data.

This synergy enhances the utility of the database without 
compromising or contaminating the integrity of existing curated 
data. Moreover, a knowledge base can play a crucial role in 
validating outputs from natural language searches, optimizing query 

performance, and guiding prompt generation for domain-specific 
tasks. Such an approach is particularly beneficial for databases that 
require extended periods for manual updates or for those lacking 
comprehensively structured existing knowledge.

Our team has been developing the Plant Protein 
Phosphorylation Database (P3DB) extensively (Yao et al., 2012; 
Yao et al., 2014), making it an ideal platform or testing bed to 
demonstrate this innovative framework through ChatGPT-P3DB 
coupled extension widgets. Several factors make P3DB especially 
suitable for this test case. First, although protein phosphorylation 
plays a central role in plant physiology and cell signaling cascade 
(Heintz et al., 2004; Jiang et al., 2021; Wang et al., 2021). But plant 
phosphorylation data are considerably less abundant compared to 
those available for mammalian systems; thus, users frequently seek 
additional insights when curated database searches yield limited 
results. Second, to maintain user trust and ensure data integrity, 
we deliberately avoid directly integrating LLM-generated content 
into P3DB. Instead, P3DB provides APIs that enhance ChatGPT’s 
functionality while keeping the two systems clearly separated, 
preserving the database’s role as a source of experimentally validated 
information. Third, publications processed behind ChatGPT are 
often more current and advanced than those reviewed manually for 
database inclusion. It’s known by our developers that expanding 
the data in P3DB takes serious human efforts. Under these 
circumstances, P3DB effectively guides ChatGPT prompts, while 
ChatGPT simultaneously enriches and extends the reach of P3DB, 
creating a complementary and mutually beneficial coupling. 

2 Results

2.1 Overview of the system

Our core system is implemented in Python, designed to 
run on a Linux command line environment, and functions 
primarily as a backend service interacting with users through 
Application Programming Interface (API) endpoints. The system 
takes advantage of both the OpenAI API and our internally 
developed P3DB API to enable seamless coupling and enhance 
query precision. It comprises two main applications: one facilitating 
open-ended user queries related to plant phosphorylation, and 
another enabling the extraction and exploration of pathway 
knowledge from images containing gene and phosphorylation 
information. The first application employs the P3DB API to 
standardize and refine arbitrary user queries, generating targeted 
prompts. The second application leverages the P3DB API to create 
optimized, structured prompts, linking user-provided pathway 
images to carefully curated phosphorylation data. This system takes 
advantage of the capability of text reasoning and multimodality of 
ChatGPT-4o. By replacing the API in the future, this system is ready 
to support new ChatGPT models.

The first widget application (Figure 1A) handles general user 
questions regarding plant phosphorylation. When a user submits 
a query, the system initially uses the P3DB API to normalize 
and refine the question by going through a global entry prompt. 
This prompt is sent to the ChatGPT API, which classifies the 
query and determines whether it falls within the scope of plant 
phosphorylation topics supported by P3DB. If the question is 
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FIGURE 1
System overview of API-based user applications. (A) General question-answering system for phosphorylation-related queries. (B) Pathway extraction 
system for interpreting phosphorylation events from images. Green boxes indicate backend APIs; red boxes represent engineered and 
normalized prompts.

classified as out of scope, it is logged and reported, ensuring 
transparency and maintaining database integrity. For in-scope 
queries, the system utilizes phosphorylation-specific prompts, asks 
the user for confirmation or to provide revisions, and returns 
ChatGPT answers (with a generative AI warning to users) 
together with precise protein identity information and P3DB 
phosphorylation record link from our P3DB API. This global entry 
strategy provides flexible, detailed and reliable answers to the user, 
while avoiding any potential contamination of the authoritative 
P3DB data. In our experiments, we will also use P3DB data 
and API to enhance the usage of phosphorylation questions by 
recognizing protein IDs and substitutes by more effective names if
possible.

The global entry prompt provides a flexible interface for 
handling open-ended user questions. To evaluate the effectiveness 
of this design, we tested 10 real-world cases derived from recent 
plant protein phosphorylation publications (Ding et al., 2020; 
Lin et al., 2020; Lin et al., 2022; Chen et al., 2021; Jiang et al., 

2021; Wang et al., 2021; Li et al., 2022; Zhang and Zhang, 2022; 
Geng et al., 2024; Wei et al., 2024), formulating each case as a 
user question in arbitrary formats. The results demonstrated that 
our universal prompt design effectively managed all 10 scenarios 
within the plant science domain (Supplementary Table S1). We 
did not perform systematic or exhaustive testing for this step, 
as our system inherently supports user intervention through a 
human-in-the-loop approach, allowing users to review and correct 
the normalized questions if needed. Currently, our framework 
can support redirection of user questions into categories such 
as phosphorylation event identification (determining if a protein 
can be phosphorylated), kinase-substrate relationships (whether 
a specific kinase phosphorylates a given substrate), and protein-
protein interaction (PPI) questions (Supplementary Figure S1). 
Questions falling outside these categories are appropriately classified 
as out-of-scope. This approach ensures that, at a minimum, 
unsupported or irrelevant queries are identified and prevented from 
compromising the quality and focus of our knowledge base. This 
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global entry prompt is very expandable for future usage or for a 
different purpose through this question routing idea.

The second widget application (Figure 1B) focuses on extracting 
and analyzing biological pathway information from user-submitted 
images. Multimodal capability in the new version of ChatGPT-4o 
provides a more convenient way to implement this image-based 
functionality, which does not require the user or developer to 
have image processing skills. After receiving a pathway image, the 
system employs the ChatGPT API to interpret the content and 
perform initial model tuning to identify relevant elements, i.e., gene 
names, regulation types and directions, and the involvement of 
phosphorylation events. This will produce raw output structured 
in JSON format. This JSON output undergoes further element 
extraction, resulting in a clearly structured, table-formatted 
summary, which can be easily reviewed by users. Subsequently, 
the identified gene or protein names can be cross-linked by P3DB’s 
curated phosphorylation data via API calls. P3DB provides different 
strategies to apply our pre-designed prompts to perform this image-
based pathway extraction application. The detailed testing cases for 
this application will be described in the following sections. 

2.2 Protein names are more appropriate for 
developing prompts

The global entry prompt normalizes users’ open-ended 
questions into specific phosphorylation-related queries. To ensure 
the effectiveness of these text-based prompts used in the first 
application, we performed targeted tests and optimizations on each 
prompt type individually, assisted by P3DB data.

First, we randomly selected 100 known phosphoproteins from 
Arabidopsis, using different identifiers, full Protein Names, TAIR 
IDs, UniProt IDs, and Gene Symbols, to evaluate the precision of 
phosphorylation event identification when formulating prompts 
for ChatGPT. The bar plot (Figure 2A) clearly illustrates the 
performance differences among these identification methods 
(Supplementary Table S2). Using the full protein name achieved 
the highest accuracy (100%), indicating it provides the most 
effective input for prompt formulation with ChatGPT. Gene 
Symbols also showed strong performance with 99% accuracy, closely 
followed by TAIR IDs and UniProt IDs, reaching 98% accuracy. 
Although the difference is not statistically significant, a similar 
trend was observed with ChatGPT-5 and Gemini 1.5, both of which 
showed slightly better performance when using full protein names 
and gene symbols as input identifiers (Supplementary Table S2; 
Supplementary Figures S2, S3). These results suggest that providing 
more explicit and descriptive protein information enhances 
ChatGPT’s ability to accurately interpret and respond to 
phosphorylation-related prompts. For other major plant species, i.e., 
soybean, maize, and rice, we observed similar trends (Figure 2B). We 
compared the precision by including UniProt IDs and full protein 
names in ChatGPT prompts (Supplementary Table S2). Across all 
tested species, full protein names consistently outperformed UniProt 
IDs, demonstrating better alignment with ChatGPT’s language 
understanding capabilities.

P3DB includes kinase-substrate relationship data generated 
from KiC-assay experiments (Ahsan et al., 2013; Ahsan et al., 
2024; Jorge et al., 2024), which we used to evaluate prompt 

effectiveness across different kinase families in Arabidopsis. As 
shown in the figure, ChatGPT’s and Gemini’s ability to correctly 
classify kinases varies by family, with higher recall observed 
for families such as the S/T-related kinase superfamily, the 
Lectin Receptor Kinase family and CDPK family (Figure 2C; 
Supplementary Figures S2C, S3C; Supplementary Table S3), which 
are mostly studied in plant science domain. Kinase families with 
fewer cases may be disadvantaged due to sampling bias. In addition, 
P3DB contains a substantial collection of PPI data for Arabidopsis 
(Figure 2D; Supplementary Table S4). Since the quality and usability 
of the PPI dataset, as well as ChatGPT’s performance (GPT models) 
on similar PPI-related tasks, have been extensively reported in 
previous studies (Rehana et al., 2024; Chang et al., 2025), we did not 
perform additional ChatGPT-specific testing for PPI performance.

In addition, P3DB supports ID mapping API (see Methods), 
enabling seamless conversion of various identifiers such as 
UniProt IDs, TAIR IDs, and gene names. We utilized P3DB 
APIs to dynamically insert protein names into normalized 
user prompts, enhancing user experience with ChatGPT. This 
functionality exemplifies the strength of the ChatGPT-P3DB 
coupling, allowing accurate and context-aware query generation 
without compromising data integrity or user flexibility. 

2.3 Phosphorylation-associated pathway 
identification from scientific images

Phosphorylation plays a central role in plant signaling pathways 
(Lin et al., 2020; Jiang et al., 2021; Wang et al., 2021; Zhang and 
Zhang, 2022), and many plant phosphorylation-related publications 
include complex figures that depict gene activations, inhibitions, 
and phosphorylation events. However, users often lack the image 
processing skills or tools to extract gene relationships and compare 
them with curated phosphorylation data in P3DB. To address this 
gap, the second application of our widget leverages the multimodal 
capabilities of ChatGPT-4o to interpret pathway diagrams and 
extract structured biological insights using different designs of 
image-based prompts (Supplementary Table S5).

For this prompt construction and testing, we manually 
curated 18 pathway images from 18 recent peer-reviewed plant 
phosphorylation publications published between 2019 and 2025 
(Supplementary Table S6). Each image was manually annotated to 
establish ground-truth data, including gene pairs, regulatory types 
(activation or inhibition, direct or indirect), and phosphorylation 
involvement. We then evaluated two prompting strategies using 
ChatGPT-4o (also work in ChatGPT-5 and Gemini-1.5): a one-step 
method, which asks ChatGPT to identify all relevant information 
(gene pairs, regulation types, and phosphorylation events) in a 
“convenient” single prompt, and a two-step method, which separates 
the analysis into two refined steps. In the two-step approach, the first 
prompt extracts gene pairs and regulatory types, and the second 
prompt focuses specifically on identifying visual phosphorylation 
markers (e.g., small “P” circles) to determine whether each 
regulatory interaction involves phosphorylation (looping through 
identified interactions from the first step) (Supplementary Table S5).

Both one-step and two-step prompts performed reasonably 
well across all metrics (Figure 3A), including PRGP (Precision 
of Regulatory Gene Pairs), ART (Accuracy of Regulatory Types), 
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FIGURE 2
Phosphorylation-specific tasks and evaluation results using P3DB datasets and ChatGPT-4o API. (A) Precision scores for the “Is this protein 
phosphorylated?” task, evaluated using TAIR IDs, gene symbols, UniProt IDs, and full protein names. (B) Precision scores for the same task in major 
plant species (Arabidopsis, soybean, maize, rice), using UniProt IDs and full protein names from randomized P3DB data. (C) Precision scores across 
kinase families for the “Does this kinase phosphorylate the substrate?” task, using KiC-assay data from Arabidopsis. (D) Precision scores for Arabidopsis 
protein-protein interaction (PPI) questions, evaluated using both protein names and TAIR IDs.

APE (Accuracy of Phosphorylation Event), and RRGP (Recall 
of Regulatory Gene Pairs). The two-step method demonstrated 
marginally higher performance in APE but lower in PRGP. While 
the performance gains were modest, given that the prompts 
are separated, the two-step strategy allows for more targeted 
extraction and interpretation of phosphorylation-specific features 
within complex diagrams. APE benefited the most from the two-step 
refinement, confirming that separate attention to phosphorylation 
markers improves accuracy in phosphorylation event detection. 
In addition to accuracy, we evaluated consistency using standard 
deviation across the 18 samples (Figure 3B). The two types 
of prompts display a variation of around 10%–20% among 
experimental repeats.

The detailed performance breakdown across individual images 
reveals that the visual complexity and layout of pathway diagrams 
can significantly impact ChatGPT’s ability to accurately extract 
information (Figure 3C–F; Supplementary Tables S7, S8). For 
example, Image 12 exhibited consistently poor performance 
across all evaluated metrics, likely due to its highly crowded 
layout and dense visual elements, which make it challenging for 
the model to identify gene relationships and phosphorylation 
events all at once. Some images also contain gene names 
or relationships distant from the marked phosphorylation 
events. These results highlight the sensitivity of multimodal 

prompt performance to image design and suggest that tailored 
strategies may be needed for more complex figures. The same 
images and prompts were also tested in two other multimodal 
LLMs, i.e., ChatGPT-5 and Gemini-1.5, and we observed 
similar performance patterns on challenging images 3,5,10,12,14 
(Supplementary Figures S4, S5; Supplementary Tables S9, S10). In 
the following section, we explore additional prompt engineering 
techniques and design considerations that may improve 
performance on visually challenging images. 

2.4 Additional practical strategies or 
techniques for pathway identification

2.4.1 Image cropping test
To address the poor performance observed in visually dense 

diagrams (i.e., in Image 12), we conducted an image cropping test to 
isolate smaller, less crowded segments of the figure. The results 
(Figure 4A; Supplementary Table S11) show that performance 
improves by 10%–60% on different scores when cropped images are 
used. Across all metrics, the cropped version outperformed both the 
original one-step and two-step methods. This confirms that clutter 
and visual complexity in original figures hinder ChatGPT’s ability 
to extract biological relationships, and that segmenting complex 
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FIGURE 3
ChatGPT-4o image processing results for 18 pathway diagrams using one-step and two-step prompt approaches. (A) Average performance scores 
across all images comparing one-step and two-step prompt methods. (B) Standard deviation of performance scores for each method, indicating 
consistency. Box plots showing distribution across 50 trials for each image: (C) PRGP (precision of regulatory gene pairs), (D) RRGP (recall of regulatory 
gene pairs), (E) ART (accuracy of regulatory types), and (F) APE (accuracy of phosphorylation event identification).

figures can serve as a practical strategy to improve multimodal 
interpretation. Given the variability across images, image cropping 
may not yield consistent and robust gains among all cases.

2.4.2 Substitute with nonsense names
In this experiment, we tested whether substituting actual 

gene names with meaningless, random alphabetic identifiers (e.g., 
“ABC”, “XYZ”) would impact ChatGPT’s ability to parse and 
analyze the pathway information. The substitution had a moderate 

impact on performance scores, typically ranging from 10%–20% 
variation across different metrics. These effects were inconsistent, 
sometimes increasing and sometimes decreasing performance, 
and were observed across both one-step and two-step prompting 
methods, generally falling within the range of standard deviations 
reported previously. This suggests that ChatGPT’s interpretation of 
pathway diagrams is driven primarily by the structural and visual 
features of the image rather than its reliance on domain-specific 
knowledge or learned associations from real-world gene names 
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FIGURE 4
Analyses exploring image and prompt design and engineering strategies for image-based pathway extraction by ChatGPT-4o. (A) Comparison of full 
images versus cropped, segmented images for improving extraction accuracy. (B) Evaluation of original images versus images with gene names 
substituted by random alphabetic labels, testing robustness to semantic information. (C) Comparison of standard prompts with prompts augmented 
using ASCII formatting. Performance comparison between zero-shot (original) prompts and few-shot prompts using example-guided prompting 
strategies, (D) PRGP (precision of regulatory gene pairs), (E) RRGP (recall of regulatory gene pairs), (F) ART (accuracy of regulatory types), and (G) APE 
(accuracy of phosphorylation event identification).

(Figure 4B; Supplementary Table S12). In other words, the model’s 
visual understanding is limited enough to function without textual 
priors from the literature. 

2.4.3 ASCII used in prompts
Some prior research (Jiang et al., 2024) has suggested that 

injecting random noise characters or using ASCII-art formatting 
can enhance ChatGPT’s robustness in cross-modal tasks. Motivated 
by this observation, we tested the impact of including ASCII-
style text at the beginning of our prompt to assess whether 
it could enhance ChatGPT’s performance in our image-based 
pathway extraction task. However, as shown in our results 
(Figure 4C; Supplementary Table S13), the ASCII-enhanced 

prompts did not yield any noticeable improvement. In fact, in 
some cases, standard (non-ASCII) prompts slightly outperformed 
the ASCII versions. These findings suggest that, in the specific 
context of interpreting biological pathway images, ASCII formatting 
offers no substantial advantage in ChatGPT4o. Therefore, future 
prompt optimization efforts should prioritize strategies like image 
segmentation and visual layout enhancement rather than relying on 
syntactic tricks or formatting noise. 

2.4.4 Few-shot (two-shot) testing
To evaluate the potential benefits of few-shot learning in the 

context of image-based prompt design, we conducted a two-
shot testing experiment. Few-shot prompting is a commonly used 
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technique to enhance the performance of LLMs by providing a few 
relevant examples. In our test, images numbered 1 through 10 were 
used as the primary evaluation set, while images 11 and 12, both rich 
in diverse pathway content, served as embedded few-shot examples 
within the prompts.

The results showed varied impacts across performance metrics 
(Figure 4D–G; Supplementary Table S14). For instance, specific 
images that previously performed poorly, such as images 9 and 10, 
exhibited marginal improvements in metrics like ART and APE. 
Conversely, some images, such as image 3, continued to demonstrate 
consistently low performance, even under the few-shot settings.

This variability suggests that while well-structured and 
information-rich few-shot examples can help in some cases, they 
do not consistently enhance model performance across all image 
types, displaying context sensitivity. In summary, incorporating 
few-shot prompts provided limited benefit for complex and visually 
dense scientific figures in our domain. Additional work may be 
required to tailor few-shot designs to specific image types or layout 
characteristics for more reliable improvement. 

2.5 Integrate the system into the P3DB web 
interface

The ChatGPT-P3DB web interface, named P3DB-AskAI, offers 
an integrated platform that supports two primary functionalities: 
(a) natural language-based general querying and (b) image-based 
pathway interpretation. These modes are accessible through a user-
friendly sidebar panel, allowing simple toggling between text and 
image input workflows. Each module includes a brief interactive 
tutorial and example to guide users through its features, enabling 
intuitive engagement with phosphorylation-related tasks.

The natural language query interface is designed to accept a 
wide range of user questions, providing a flexible and universal 
interaction experience (Figure 5A). Users begin by entering free-
form questions related to plant phosphorylation. The system 
automatically performs species detection, protein name or ID 
recognition, and query classification. Based on the content, 
the interface either normalizes the input into one of several 
supported phosphorylation-specific tasks, such as determining 
whether a protein is phosphorylated, identifying kinase-substrate 
relationships, or detecting protein-protein interactions, or returns 
an “out-of-scope” message when the query cannot be addressed 
by the underlying database. Once a question is classified, the 
system responds with relevant, curated data from P3DB, improving 
accessibility to high-quality biological insights without requiring a 
structured query language or prior database expertise. For involving 
humans in the loop, we have designed an additional interface to 
allow users to correct species or protein names if the system fails 
to do the normalization.

In the image-based pathway extraction workflow (Figure 5B), 
users upload a pathway diagram, often derived from scientific 
figures. The system parses the image using ChatGPT-4o′s 
multimodal capabilities, extracting gene names, interaction types 
(activation/inhibition), and phosphorylation events. These extracted 
relationships are displayed in a tabular format, making the visual 
content computationally accessible. In addition to the command 
line version, the web system supports redirection through gene ID 

or gene symbol mapping, and then queries P3DB to cross-reference 
whether the identified proteins and phosphorylation events are 
supported by experimental evidence. Matched entries are presented 
with detailed annotation and links to original P3DB records. This 
provides a connection between the external information and the 
internal P3DB curations. 

3 Discussion

Our work demonstrates the feasibility and benefits of 
integrating ChatGPT with a domain-specific bioinformatics 
resource, P3DB, to support flexible, user-driven query interpretation 
and pathway analysis. Although we did not retrain the GPT 
models, previous studies have shown that prompt engineering 
and retrieval-augmented generation (RAG)-based systems can 
perform effectively in various bioinformatics applications, such 
as gene variant interpretation and gene set annotation, by 
leveraging pre-trained ChatGPT models (Hu et al., 2025; Lu and 
Cosgun, 2025; Wang et al., 2025).

Similar to a network router, our design of a global entry prompt 
offers a user-friendly and adaptable interface that accepts open-
question input and converts it into task-specific prompts, such as 
phosphorylation event recognition, kinase-substrate interaction, 
and protein-protein interaction questions. This normalization 
step bridges the gap between general user queries and structured 
database queries, enabling more accessible interaction with 
complex biological data from the public domain to a professional 
knowledgebase.

One key finding is that full protein names outperform other 
identifiers (e.g., TAIR IDs, UniProt IDs, and gene symbols) when 
used in prompt construction. This may be due to ChatGPT’s stronger 
language modeling capabilities with descriptive text, as full names 
likely contain richer semantic cues that align with its pretrained 
knowledge. This insight can inform the design of user interfaces and 
APIs, suggesting that mapping abbreviated identifiers to full names 
before querying consistently yields better performance.

In parallel, our image-based application highlights the 
importance of visual pathway interpretation as a complement 
to text-based database queries. Many critical insights in plant 
phosphorylation research are encoded in figures that contain 
multiple signaling pathways, regulation types, and phosphorylation 
markers. Our system, powered by ChatGPT-4o′s multimodal 
capabilities, successfully extracts structured biological relationships 
from these images. The use of refined prompting strategies (e.g., two-
step and few-shot prompts) further improved both the accuracy and 
consistency of output, especially when analyzing visually complex 
diagrams. Image cropping and few-shot prompting emerged as 
practical techniques to address noisy or dense input, which can be 
further explored and automated.

In terms of system limitations, we observed that performance 
declines were most observed in crowded or visually complex 
pathway figures (such as image 12), where overlapping labels and 
overlapping graphical elements hindered major gene relationships 
and phosphorylation events (images 13 and 15). Ambiguous 
symbols, for example, unclear phosphorylation markers or 
inconsistent arrow styles, as well as misclassification of kinase-
substrate relationships, were also common in low-performing cases. 
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FIGURE 5
P3DB-AskAI web interface demonstration. (A) A user’s general input question is automatically normalized into a phosphorylation-specific query or 
flagged as out of scope. (B) A user-uploaded pathway image is processed to identify gene relationships and phosphorylation-regulated interactions, 
which are then linked to curated gene and phosphorylation data in P3DB.
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These cases highlight the importance of both prompt refinement and 
pre-processing strategies, such as image segmentation and image 
enhancement, to improve extraction performance in future work.

In this study, we primarily focused on ChatGPT-4o for 
both natural language and image-based prompt testing, tested 
minimally on ChatGPT-5 and Gemini-1.5. In the final system 
implementation and web deployment, our decision was driven by 
practical considerations, not necessarily by our limited benchmarks. 
By the time of writing, ChatGPT-4o currently offers convenient, 
economic, and efficient multimodal APIs, with strong support for 
text and image inputs, making it a suitable platform for testing 
end-to-end workflows in real-world biological tasks. Moreover, 
the methods and prompt designs explored in our work, such 
as global entry normalization, two-step prompting, and few-shot 
image interpretation, are model-agnostic by nature. They can be 
readily adapted to other LLMs in future work, by replacing the 
backend APIs (ChatGPT-5, Gemini-1.5 or future models), similar to 
the work of GeneAgent (Wang et al., 2025). Our goal was to establish 
a proof of concept using a stable and well-documented system 
coupling GPT and P3DB, focusing on system development instead 
of comparative evaluation and benchmark type of work. The user 
experience of extending P3DB search through ChatGPT is designed 
to go beyond strictly reviewed data, allowing for exploratory and 
complementary insights. As a result, the system is not burdened 
by the need to achieve extreme accuracy, but instead focuses on 
enhancing accessibility, flexibility, and knowledge discovery.

Together, these results showcase how the ChatGPT-P3DB 
coupling addresses two major gaps: (1) the lack of flexible natural 
language guided by a domain-specific knowledge base and (2) the 
difficulty of extracting structured knowledge from visual scientific 
content. This dual-capability system exemplifies the potential 
of AI-augmented knowledge bases to expand user accessibility, 
improve data integration, and streamline analysis workflows in 
plant biology and beyond. As AI technologies continue to evolve, 
coupling curated bioinformatics databases with powerful language 
models offers a scalable path toward more intelligent, multimodal 
biological knowledge systems. Looking forward, the framework 
presented in this manuscript can be extended to support other 
post-translational modifications (e.g., ubiquitination, acetylation) 
by adapting the database coupling and prompt design accordingly. 
Additionally, the integration of spatial omics images (Martinez-
Val et al., 2021; Crook et al., 2022) or subcellular localization 
maps (Currie et al., 2024; Hein et al., 2025) could further expand 
the system’s multimodal capability to interpret biologically relevant 
functions from visual data. 

4 Materials and methods

4.1 Data collection

The global entry prompt was tested using real scientific 
data sourced from peer-reviewed publications identified via a 
random search using the keyword “plant phosphorylation” (specific 
PubMed IDs are listed in the Supplementary Tables). Pathway 
images were similarly obtained through a general Google image 
search using the same keyword from scientific publications during 
2019–2025. Figures were manually filtered to select those explicitly 

depicting multiple pathways, clear gene identifiers, regulatory 
interactions (such as inhibition and activation), and marked 
phosphorylation events.

Phosphorylated proteins used for prompt testing, particularly 
those from Arabidopsis, maize, soybean, and rice, were randomly 
retrieved from our internal P3DB database. In addition, PPI data 
and kinase-substrate relationship data derived from KiC-assay 
experiments (Kim et al., 2025) were obtained from P3DB. All protein 
identifiers and corresponding full names used in testing were also 
sourced from P3DB, with further methodological details provided 
in subsequent sections. 

4.2 ID mapping

Our P3DB APIs for ID mapping were constructed using data 
obtained from Phytozome (Goodstein et al., 2012), EnsemblPlants 
(Bolser et al., 2017), and STRING (von Mering et al., 2003). Gene 
annotations, sequence headers, and UniProt ID mapping tables were 
extracted from these resources and stored in a hybrid database 
system combining MongoDB and MySQL. 

4.3 Prompt precision calculation

For phosphorylation-associated prompts, we calculated only 
precision, as P3DB exclusively contains confirmed positive datasets. 
Generating a comprehensive negative dataset for phosphorylation 
events is challenging and may introduce artificial bias. Therefore, 
precision was defined as the proportion of correct positive 
predictions (i.e., “yes” answers) relative to the total number of 
predictions made.

To systematically evaluate the prompts, we utilized APIs from 
multimodal LLMs to test both the phosphorylation-related and 
image-based queries. Specifically, we used ChatGPT models gpt-
4o-2024-08-06 and gpt-5-2025-08-07, along with the Gemini model 
gemini-1.5-pro, to ensure consistency and comparability. 

4.4 Evaluation metrics for image-based 
pathway extraction

Following ChatGPT-4o documentation, our system supports 
standard image formats, including PNG and JPEG. In this study, 
pathway figures were captured via screenshot from peer-reviewed 
publications and saved in PNG or JPEG format. These images 
were then processed using structured prompts to extract pathway 
components and biological interactions. Evaluation metrics were 
kept consistent across different prompting strategies for valid 
comparisons. The following metrics were used to evaluate image 
interpretation performance: PRGP (Precision of Regulatory Gene 
Pairs), the proportion of gene pairs identified by the model as 
regulatory interactions that are truly correct, among all predicted 
gene pairs; RRGP (Recall of Regulatory Gene Pairs), the proportion 
of true regulatory gene pairs the model correctly identified, out of all 
ground-truth gene pairs; ART (Accuracy of Regulatory Types), the 
percentage of correctly predicted interaction types (e.g., activation 
or inhibition; direct or indirect) among all identified interactions; 
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APE (Accuracy of Phosphorylation Event), the proportion of 
phosphorylation events correctly identified by the model, relative to 
the total number of predicted phosphorylation events.

Evaluation of regulatory types was performed only when 
the gene pair was correctly identified. Similarly, phosphorylation 
events were evaluated only when the regulatory type was correctly 
predicted. Ground-truth data were manually curated from 
each image (Supplementary Table S6). To match natural biological 
interpretation, we adopted the following guidelines. Elements placed 
above arrows were treated as gene names when they served a 
regulatory function; When two gene names appeared together 
in a single graphical object (e.g., a box), they were annotated 
as a composite gene entity due to ambiguous attribution. In 
alignment with standard biological diagram conventions, arrows 
were interpreted as activation, while T-bars were considered 
inhibitory interactions. 

4.5 P3DB-askAI web development

The ChatGPT-P3DB application widget was developed and 
integrated into the P3DB web platform using the Angular 
framework and TypeScript, ensuring full compatibility with the 
existing architecture. This web-based implementation enhances user 
experience beyond that of a traditional command-line interface by 
offering an interactive and intuitive environment for both text-based 
and image-based queries. Users can access the tool directly from the 
P3DB homepage by navigating to the “Tools” menu and selecting 
“Ask AI” from the dropdown list. The application features two 
main modes: (a) natural language query processing and (b) pathway 
image analysis. Both modes are supported by P3DB backend APIs, 
as described in previous sections, which enable dynamic prompt 
generation, result retrieval, and protein ID normalization. It is also 
leveraged by the OpenAI API (gpt-4o-2024-08-06) and the ID 
mapping module described above. 

5 Data and code availability

Our backend system “ChatGPT-P3DB” is open-source and can 
be accessed on GitHub (https://github.com/yao-laboratory/p3db-
chat). The frontend interface, “P3DB askAI” web module, can be 
accessed freely through https://www.p3db.org/ask-ai. Our testing 
cases and results are summarized in the supplementary tables. The 
original data from existing publications are mentioned as PubMed 
IDs in supplementary tables. All prompts in this paper are listed 
in the supplementary table as well as on the GitHub code base. 
The system was tested on Python version 3.9 and OpenAI SDK 
version 1.107.2.
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