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Introduction: Multi-target peptide therapeutics targeting glucagon receptor 
(GCGR), glucagon-like peptide-1 receptor (GLP1R), and glucose-dependent 
insulinotropic polypeptide receptor (GIPR) represent a promising approach for 
treating diabetes and obesity. Triple agonist peptides demonstrate promising 
therapeutic potential compared to single-target approaches, yet rational design 
remains computationally challenging due to complex sequence-structure 
activity relationships. Existing methods, primarily based on convolutional neural 
networks, impose limitations including fixed sequence lengths and inadequate 
representation of molecular topology. Graph Attention Networks (GAT) offer 
advantages in capturing molecular structures and variable-length peptide 
sequences while providing interpretable insights into receptor-specific binding 
determinants.
Methods: A dataset of 234 peptide sequences with experimentally determined 
binding affinities was compiled from multiple sources. Peptides were 
represented as molecular graphs with seven-dimensional node features 
encoding physicochemical properties and positional information. The GAT 
architecture employed a shared encoder with task-specific prediction 
heads, implementing transfer learning to address limited GIPR training data. 
Performance was evaluated using 5-fold cross-validation and independent 
validation on 24 literature-derived sequences. A genetic algorithm framework 
was developed for peptide sequence optimization, incorporating multi objective 
fitness evaluation based on predicted binding affinity, biological plausibility, and 
sequence novelty.
Results: Cross-validation demonstrated robust GAT performance across 
all receptors, with GCGR achieving high accuracy (AUC ROC: 0.915 
± 0.050), followed by GLP1R (AUC-ROC: 0.853 ± 0.059), and GIPR 
showing acceptable performance despite limited data (AUC-ROC: 0.907 
± 0.083). Comparative analysis revealed receptor-specific advantages: 
GAT significantly outperformed CNN for GCGR prediction (RMSE: 
0.942 vs. 1.209, p = 0.0013), while CNN maintained superior GLP1R 
performance (RMSE: 0.552 vs. 0.723). Genetic algorithm optimization 
measurable improvement over baseline, with 4.0% fitness Enhancement 
and generation of 20 candidates exhibiting mean binding probabilities 
exceeding 0.5 across all targets. The GAT-based framework provides a 
computational approach in computational peptide design, demonstrating 
receptor-specific advantages and robust optimization capabilities.
 

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1687617
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1687617&domain=pdf&date_stamp=2025-11-13
mailto:awong16@illinois.edu
mailto:awong16@illinois.edu
https://doi.org/10.3389/fbinf.2025.1687617
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1687617/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1687617/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1687617/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1687617/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Wong et al. 10.3389/fbinf.2025.1687617

Conclusion: Genetic algorithm optimization enables systematic exploration of 
sequence space within existing agonist scaffolds while maintaining biological 
constraints. This approach provides a rational framework for prioritizing 
experimental validation efforts in triple agonist development.

KEYWORDS

peptide design, machine learning, bioactivity prediction, drug discovery, graph 
attention networks 

1 Introduction

The global obesity epidemic and the rising prevalence of type 2 
diabetes mellitus (T2DM) represent major public health challenges, 
affecting over 650 million adults worldwide with obesity and 
537 million individuals with diabetes (Müller et al., 2019; Baggio 
and Drucker, 2021). Metabolic syndrome, characterized by the 
clustering of insulin resistance, abdominal obesity, dyslipidemia, and 
hypertension, affects approximately 37.6%–41.8% of US adults and 
is associated with a 2-fold increased risk of cardiovascular disease 
and 1.5-fold increased risk of all-cause mortality (Li et al., 2023; 
Mottillo et al., 2010). Per-person healthcare costs for individuals 
with metabolic syndrome average $5,732 annually compared to 
$3,581 for those without the condition (Boudreau et al., 2009).

Traditional therapeutic approaches targeting single pathways 
have demonstrated limited long-term efficacy, highlighting the 
need for innovative multi-target strategies that address the 
complex pathophysiology underlying metabolic dysfunction 
(Brandt et al., 2018). The development of multi-target 
peptide therapeutics represents a paradigm shift in precision 
medicine, offering the potential for superior glycemic control, 
substantial weight reduction, and improved cardiovascular 
outcomes compared to conventional single-target approaches 
(Finan et al., 2016; Samms et al., 2020).

Recent clinical breakthroughs have validated the therapeutic 
potential of multi-receptor agonists in metabolic disease treatment. 
Tirzepatide, a dual glucose-dependent insulinotropic polypeptide 
receptor (GIPR) and glucagon-like peptide-1 receptor (GLP1R) 
agonist, demonstrated unprecedented efficacy in the SURPASS 
clinical trial program, achieving HbA1c reductions of up to 2.58% 
(Frias et al., 2018). The clinical development of retatrutide, a 
triple agonist targeting GCGR, GLP1R, and GIPR, has further 
demonstrated the potential of multi-target approaches, with Phase 2 
results showing 24.2% weight reduction at 48 weeks (Jastreboff et al., 
2022). These clinical successes underscore the therapeutic 
value of targeting multiple components of the incretin system 
simultaneously, leading to enhanced metabolic benefits through 
complementary mechanisms of action.

The glucagon receptor (GCGR), GLP1R, and GIPR represent 
critical nodes in metabolic homeostasis, each contributing distinct 
physiological effects that collectively address the multifaceted 
nature of metabolic disorders (Alexander et al., 2021). GLP1R 
agonism provides glucose-dependent insulin secretion, gastric 
emptying delay, and appetite suppression, while GIPR activation 
enhances insulin sensitivity and promotes beneficial effects on 
bone metabolism (Knerr et al., 2020). GCGR agonism contributes 
to increased energy expenditure, enhanced hepatic glucose 
production regulation, and potential benefits in non-alcoholic fatty 

liver disease (Winther and Holst, 2024). The synergistic activation of 
these three receptors offers a comprehensive approach to metabolic 
regulation that addresses both the glycemic and weight management 
aspects of T2DM and obesity.

Traditional drug development approaches rely on iterative 
experimental trial-and-error cycles that are both time-intensive 
and prohibitively costly, with the average cost of bringing a new 
drug to market reaching up to $2.23 billion (Wouters et al., 
2020). Recent advances in machine learning have demonstrated 
the potential to accelerate peptide discovery through computational 
design platforms, enabling the exploration of vast chemical spaces 
that would be impractical to investigate experimentally (Yang et al., 
2019). Puszkarska et al. employed deep multi-task convolutional 
neural networks (CNNs) to design GCGR/GLP1R dual agonists 
with superior biological potency, demonstrating up to sevenfold 
potency improvements compared to existing compounds in their 
training set (Puszkarska et al., 2024). However, this CNN-based 
approach imposed several methodological constraints, including 
fixed sequence lengths of 30 amino acids and limited flexibility in 
representing complex molecular topology and modifications.

Graph neural networks (GNNs) have emerged as a powerful 
paradigm for molecular representation learning, offering significant 
advantages over sequence-based methods in capturing three-
dimensional molecular structures and chemical interactions 
(Wu et al., 2020; Zhang et al., 2022). Graph Attention Networks 
(GATs), introduced by Veličković et al., enable nodes to attend over 
their neighborhoods with learnable attention weights, providing 
interpretable insights into molecular interactions and functional 
relationships (Veličković et al., 2017). Unlike CNNs that require 
fixed-length inputs, GATs naturally accommodate variable-length 
peptide sequences while preserving molecular topology through 
explicit representation of chemical bonds, modifications, and spatial 
relationships (Lv et al., 2024; Gao et al., 2018).

The application of GNNs to peptide design has shown 
particular promise in capturing complex molecular features that 
are challenging to represent in sequence-based models (Kipf and 
Welling, 2016). Recent work by Xiong et al. demonstrated that 
graph attention mechanisms achieve state-of-the-art performance 
across molecular property prediction tasks, with attention weights 
revealing functionally important molecular regions and binding 
determinants (Xiong et al., 2020). Similarly, Strokach et al. 
successfully applied deep graph neural networks to protein design, 
demonstrating the capacity for de novo sequence generation with 
experimental validation (Strokach et al., 2020).

Despite these advances, existing neural network approaches 
for peptide therapeutics have primarily focused on dual-target 
optimization or single-receptor systems (Puszkarska et al., 
2024). The extension to triple-agonist design presents unique 
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computational challenges, including the need for balanced multi-
target optimization, the integration of transfer learning strategies to 
address limited experimental data availability, and the development 
of robust evaluation frameworks for multi-receptor binding 
prediction.

This study presents a methodological advancement that extends 
the CNN-based approach of Puszkarska et al. to a GAT-based 
framework for triple-agonist peptide design targeting GCGR, 
GLP1R, and GIPR. Our approach addresses key limitations 
of previous methods by implementing flexible sequence length 
handling through graph representations that accommodate diverse 
peptide modifications, extending the target scope from dual agonist 
(GCGR/GLP1R) to triple agonist capability, incorporating transfer 
learning strategies to leverage limited GIPR experimental data, and 
employing attention mechanisms to provide interpretable insights 
into receptor-specific binding determinants.

We demonstrate that our GAT-based approach achieves 
improved predictive performance for GCGR and GIPR receptors, 
with comparable performance for GLP1R, while maintaining 
the ability to generate peptide sequences with high predicted 
binding affinities. The integration of genetic algorithm-based 
sequence optimization enables the systematic exploration of 
diverse sequence variants within the agonist design space, 
identifying promising candidates for experimental validation. 
This methodological framework establishes a foundation for 
enhanced computational tools in multi-target peptide therapeutics 
development, with immediate applications in obesity and diabetes
drug discovery. 

2 Methods

2.1 Dataset compilation and preprocessing

The training dataset was compiled from multiple established 
sources to ensure comprehensive coverage of GCGR, GLP1R, 
and GIPR binding data. Primary data sources included: (1) the 
open-access dataset from Puszkarska et al. (Alexander et al., 
2021), (2) curated ChEMBL entries for peptide-receptor 
interactions (Mendez et al., 2019), (3) experimental data 
from Knerr et al. investigating peptide-based polyagonists 
(Knerr et al., 2018), (4) dual agonist optimization studies by 
Evers et al. (Evers et al., 2018), and (5) structural characterization 
data from recent triple agonist studies (Zhao et al., 2022; 
Cock et al., 2009) (Supplementary Table S1).

Peptide sequences underwent standardized preprocessing 
to handle non-standard amino acids and chemical 
modifications. Modified residues including D-amino acids, 
unnatural amino acids, and lipidated variants, were 
systematically cataloged and encoded with their corresponding 
physicochemical properties using BioPython ProtParam v1.79 
(Cock et al., 2009) (Supplementary Table S2).

Activity classification employed a binary high-affinity threshold 
of 1000 pM EC50. Given the limited availability of data across all 
three receptors, a more lenient threshold was adopted compared 
to the 10 pM cutoff used in previous studies (Alexander et al., 
2021) to ensure sufficient positive examples for model training while 
maintaining pharmacologically relevant activity levels. 

2.2 Graph representation of peptide 
sequences

Peptide sequences were converted to graph representations 
using a molecular topology-preserving approach implemented 
using PyTorch Geometric v2.0.4 (Fey and Lenssen, 2019) Each 
amino acid residue was represented as a node with a seven-
dimensional feature vector encoding: (1) hydrophobicity (Kyte-
Doolittle scale) (Kyte and Doolittle, 1982), (2) net charge at 
physiological pH, (3) molecular weight, (4) D-amino acid indicator, 
(5) lipidation status, (6) sine positional encoding, and (7) cosine 
positional encoding.

Node features were computed using the following protocol. 
For standard amino acids, hydrophobicity, charge and molecular 
weight values were obtained from established amino acid properties. 
D-amino acid and lipidation indicators were set to 0.0. For non-
standard residues values were encoded using experimentally or 
computationally predicted physicochemical properties. D-amino 
acids (i.e., d-serine or d-alanine) used L-enatiomer properties with 
D-amino acid indicator sets to 1.0. Lipidated residues such as (K 
[(yE-C16)]) included lipid chain contributions to hydrophobicity 
and molecular weight calculation with lipidation status set to 1.0.

Physicochemical features (hydrophobicity, charge, and 
molecular weight) were normalized using dataset-specific statistics 
computed from all training sequences: mean-centered and scaled by 
standard deviation to ensure numerical stability during training. We 
used a simplified positional encoding approach with the following:

sin(π
pos
L
), cos(π

pos
L
)

to represent amino acid positions. This encoding normalizes 
position by sequence length and provides two dimensions of 
positional information, which we considered appropriate given our 
limited dataset size (N = 125) and the short length of peptide 
sequences in our study (Vaswani et al., 2017).

Edge connectivity was established through peptide bond 
relationships, creating bidirectional edges between sequential 
amino acid residues. For modified amino acids, feature vectors 
incorporated experimentally derived or computationally predicted 
physicochemical properties as cataloged in the preprocessing stage. 

2.3 Graph attention network architecture

The GAT model employed a shared encoder architecture with 
task-specific prediction heads for multi-target optimization. The 
shared encoder comprised four GATv2Conv layers with 6-head 
attention mechanisms, 96-dimensional hidden representations, and 
ReLU activation functions. Each attention layer was followed by 
batch normalization and dropout (p = 0.2) to prevent overfitting, 
with residual connections applied every two layers (Figure 1).

Global graph representation was achieved using Set2Set pooling 
with three processing steps, followed by a representation layer 
consisting of linear transformation (192→96 dimensions), ReLU 
activation, batch normalization, and dropout (p = 0.2). Set2Set 
pooling was chosen over simple global pooling methods to better 
capture permutation-invariant graph-level representations while 
maintaining sensitivity to sequence order information.
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FIGURE 1
Graph Attention Network-Guided Genetic Algorithm Pipeline. Integrated pipeline combining a Graph Attention Network (GAT) model with genetic 
algorithm optimization for designing peptides with high binding affinity across GCGR, GLP1R, and GIPR receptors. The GAT model, trained through 
transfer learning, serves as a fitness evaluator for a genetic algorithm that evolves a population of 100 peptide sequences over 50 generations using 
multi-objective optimization criteria including receptor binding activity, motif preservation, biological plausibility, and sequence diversity. The pipeline 
terminates upon fitness convergence and produces optimized sequences for experimental validation.

Task-specific heads consisted of three-layer fully connected 
networks with ReLU activations, batch normalization, and dropout 
between layers, terminating in single-unit outputs for binary 
classification. The multi-task loss function employed weighted 
binary cross-entropy with equal weighting (α = 0.5) across 
active receptors:

A three-stage transfer learning approach was implemented to 
address the limited availability of GIPR training data relative to 
GCGR and GLP1R. Stage 1 involved initial training on combined 
GCGR/GLP1R data (80 epochs) using all available sequences with 
valid labels for either receptor, with learning rate of 1 × 10-3. Stage 
two employed encoder parameter freezing with exclusive GIPR 
head training (100 epochs) using maintained learning rate of 1 
× 10-3 to prevent catastrophic forgetting. Stage 3 implemented 
unified fine-tuning (60 epochs) with encoder unfreezing and 
reduced learning rate of 1 × 10-4 for global optimization across all
three receptors.

Model performance was evaluated using stratified 5-fold cross-
validation. Stratification was performed based on multi-target 
activity patterns, creating stratification keys from the combination 
of receptor-specific activity states (high affinity, low affinity, or 
missing data) to ensure balanced representation across folds. Each 
fold employed an 80/20 train/validation split for hyperparameter 
optimization and early stopping, with validation loss monitoring and 
patience of 15 epochs. Training utilized the Adam optimizer with 
gradient clipping (max_norm = 1.0) for numerical stability. Focal 
loss was implemented with α = 0.25 and γ = 2.0 to address class 
imbalance in receptor-specific datasets. 

2.4 Model comparison with literature 
baseline

Model performance was compared against the established 
multi-task convolutional neural network (CNN) ensemble from 
Puszkarska et al. (Alexander et al., 2021) using identical evaluation 
protocols. The GAT model employed a k-fold cross-validation 
ensemble approach, while the CNN baseline utilized the original 12 

× 6 ensemble architecture (72 total models) as reported in the source 
publication.

Both models were trained on the original 125-sequence dataset 
from Puszkarska et al. and evaluated on an independent reference 
dataset from Day et al. containing 19 peptide sequences with 
experimentally validated GCGR and GLP1R activities (Cock et al., 
2009). This evaluation protocol ensured direct comparability with 
published results while testing generalization to completely unseen 
sequences.

The GAT regression model architecture established through this 
comparison was subsequently adapted for binary classification tasks 
used throughout the remainder of this study, with sigmoid activation 
functions replacing linear outputs and binary cross-entropy loss 
replacing mean squared error.

Performance metrics were computed using identical 
preprocessing pipelines and evaluation criteria. Statistical 
significance was assessed using paired t-tests on prediction errors 
across the reference dataset, with p-values calculated for each 
receptor target. 

2.5 Independent model validation

Independent validation sequences were obtained from 
previously published studies: Day et al., Finan et al., and Zhang et al. 
comprising 67 peptide sequences with experimentally determined 
EC50 values for GCGR, GLP1R, and GIPR (Day et al., 2009; 
Finan et al., 2015; Zhang et al., 2025) (Supplementary Table S3). 
These sequences were selected to evaluate model generalizability on 
data not used during training or cross-validation.

To assess model performance on novel sequences, we 
implemented a similarity-based filtering approach. Sequence 
identity was calculated between each validation sequence and all 
training sequences using token-level comparison, accounting for 
non-standard amino acid modifications. The maximum similarity 
to any training sequence was determined for each validation peptide.

Validation sequences were categorized into two groups: (1) 
novel sequences with ≤80% similarity to any training sequence, 
and (2) the complete validation set. This threshold was selected to 
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distinguish sequences with substantial structural differences from 
the training data while maintaining adequate sample sizes for 
statistical evaluation.

In addition to the quantitative EC50-based validation, we 
performed a secondary validation using a curated dataset of 
known therapeutic peptides with established receptor activity 
profiles but without complete quantitative EC50 data across all 
three receptors. This dataset comprised nine clinically relevant 
peptides including FDA-approved therapeutics and compounds 
in clinical development with documented high or low affinity 
classifications for GCGR, GLP1R, and GIPR based on published 
pharmacological characterization studies (Supplementary Table S4) 
(Coskun et al., 2022; Whitley, 2025; Finan et al., 2025; Starling, 
2022; Willard et al., 2020; Henderson et al., 2016; Yabut and 
Drucker, 2023; Chen et al., 2022; Zimmermann et al., 2022; 
Wiśniewski et al., 2016; Han et al., 2013; Lau et al., 2015; Meng et al., 
2008; Knudsen et al., 2000; Miranda et al., 2008; Plisson et al., 
2017; Murage et al., 2008; Mapelli et al., 2009; Knerr et al., 2022). 
Known receptor activities were manually curated from literature 
sources and regulatory documents, with activities classified as 
“high” (therapeutically relevant binding, typically EC50 < 1000 pM) 
or “low” (minimal or no significant binding activity) for each 
receptor. This binary classification approach was necessary due 
to the heterogeneous nature of activity reporting across different 
studies and the absence of standardized EC50 measurements for all 
peptide-receptor combinations.

Predictions were generated using the ensemble of k-fold 
trained GAT models (n = 5 folds). Each validation sequence 
was converted to a molecular graph representation using the 
same preprocessing pipeline employed during training, including 
feature normalization parameters computed from the original
training dataset.

Binary classification performance was evaluated using an 
EC50 threshold of 1000 pM, where values < 1000 pM indicated 
high affinity (positive class) and ≥1000 pM indicated low affinity 
(negative class). Missing EC50 values were excluded from analysis. 
Performance metrics included accuracy, F1-score, precision, recall, 
area under the receiver operating characteristic curve (AUC-ROC), 
and area under the precision-recall curve (AUC-PR).

Model performance was assessed separately for each receptor 
(GCGR, GLP1R, GIPR) and validation subset (novel sequences vs. 
complete set). Ensemble predictions were obtained by averaging 
probability outputs across all fold models. All analyses were 
implemented in Python using scikit-learn v1.0.2 for metric 
calculations and PyTorch Geometric v2.0.4 for graph neural network 
operations. 

2.6 Genetic algorithm framework for 
peptide design

The evolutionary optimization phase began by initializing a 
population of 100 randomly generated peptide sequences, each 
containing 25–35 amino acid residues consistent with the length 
distribution of known peptide hormones in this therapeutic class. 
All initial sequences were filtered using the biological plausibility 
scoring system to ensure only chemically reasonable candidates 
(scoring ≥0.3) proceeded to fitness evaluation. The optimization 

process then iteratively evolved this population over a maximum 
of 50 generations, with each cycle involving comprehensive 
fitness assessment using the multi-objective function described 
in Equation 1, followed by parent selection through tournament-
based competition among groups of three individuals. Selected 
parent sequences underwent single-point crossover with 80% 
probability to generate offspring, after which adaptive mutation 
was applied with 10% probability to introduce sequence variations. 
Throughout this process, the top 10% of individuals were preserved 
unchanged between generations to maintain high-quality solutions, 
while convergence monitoring assessed population improvement to 
determine optimal termination timing.

The fitness function was a summation of four weighted 
components to balance receptor binding activity, biological 
plausibility, and sequence novelty:

Equation1:Multi−ObjectiveFitnessFunction

F(s) =H(s) + P(s) + Pmin(s) +M(s) +N(s) +D(s)

where:H(s) = number o f high a f finity receptor

P(s) =mean binding probability across receptor

Pmin(s) =minimum binding probability across receptor

B(s) = biological plausibility conservation score ∈ [0,1]

N(s) = sequence novelty score ∈ [0,1]

D(s) = population diversity score ∈ [0,1]

 

2.6.1 Receptor binding activity
Binding probabilities for GCGR, GLP1R, and GIPR 

were predicted using an ensemble GAT model, with scoring 
incorporating the number of high-affinity targets achieving the 
target threshold of (p ≥ 0.5), average predicted probability, and 
minimum predicted probability across receptors. 

2.6.2 Motif preservation
Conserved motifs critical for receptor binding, identified 

from literature-based structure–activity relationships, were 
preserved using pattern-matching algorithms allowing conservative 
substitutions Critical motifs included N-terminal his6-
his8 positions, central FTSD tetrapeptide, and C-terminal 
amidation patterns. Motif scoring used position-specific 
matching with wildcard tolerance and conservative substitution 
allowances (Table 1).

2.6.3 Biological plausibility
A weighted score combined chemical constraint 

adherence, motif preservation, predicted proteolytic stability 
(trypsin/chymotrypsin cleavage site analysis), and similarity in 
amino acid composition to natural peptide hormones.

Equation2:BiologicalPlausibilityScore

B(s) = 0.3C(s) + 0.35M(s) + 0.2P(s) + 0.15A(s) ≥ 0.3
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TABLE 1  Literature Derived Critical Binding Motifs: Summary of experimentally validated and evolutionarily conserved amino acid motifs essential for 
incretin receptor binding and activation. Critical residues are identified from structure-activity relationship studies and comparative genomic analysis 
across species orthologs and protein paralogs (Vaswani et al., 2017; Fey and Lenssen, 2019).

Motif Notes Source

N-terminal: H7 E9 G10 F12 T13 D15

C-terminal: F28 I29 L32 R36
GLP-1 (7–36), H7 G10 T13 D15 F28 I29 form the most 
critical residues for receptor activation and binding

Manandhar and Ahn (2015)

GLP1
A2 E3 T5 T7 Y13 A18 A19 K20 E21 G29

Glucagon
S2 Q3 T5 Y13 A19

GIP
Y1 E3 S8 S11 N24 L27

Residues conserved across Orthologs in mouse, anole, 
chicken, Xenopus tropicalis, medaka, fugu, tetraodon, 
stickleback, and zebrafish

Moon et al. (2012)

GLP1
H1 G4 F6 D9 L14 F22 I23 W25L26

Glucagon
H1 G4 F6 D9 L14 D15 D21 F22 V23 W25 L26

GIP
G4 F6 D9 D15 D21 F22 V23 W25 L26

Residues conserved across Paralogs Orskov et al. (1989)

where:C(s) = chemical constraint score (charge distribution,hydrophobic patches)

M(s) =moti f preservation score

P(s) = proteolytic stability score (trypsin/chymotrypsin cleavage analysis)

A(s) = amino acid composition similarity to natural hormones

In addition, sequences failing to achieve a biological plausibility 
score of 0.3 were rejected from the population. 

2.6.4 Sequence novelty
Sequence similarity to the training set was penalized to 

encourage diversity, with population-level diversity tracking used 
to avoid premature convergence. Novelty scores were computed 
using sequence alignment and Levenshtein distance metrics, with 
penalties applied for high similarity (>80%) to existing training 
sequences. 

2.7 Evolutionary operations

Parent selection for sequence reproduction employed 
tournament-based competition, where groups of three individuals 
competed based on their fitness scores, with the highest-scoring 
sequence from each tournament selected for breeding. This 
approach balanced selective pressure toward high-fitness individuals 
while maintaining sufficient population diversity to prevent 
premature convergence to local optima.

Sequence recombination was performed through single-point 
crossover applied to 80% of parent pairs. A random crossover point 
was selected within each parent sequence, and genetic material was 
exchanged to create two offspring sequences. Following crossover, 
offspring sequences were validated for length constraints and 
biological plausibility, with sequences exceeding acceptable limits 
or failing plausibility checks undergoing repair through motif-
preserving substitution operators.

Sequence diversification was achieved through adaptive 
mutation applied with 10% probability across multiple mechanisms. 
Point mutations constituted 70% of mutation events, involving 
single amino acid substitutions at random positions. Conservative 
substitutions, representing 20% of mutations, introduced 
physiochemically similar amino acid replacements to maintain 
local structural properties. The remaining 10% of mutations 
involved introduction of modified residues including D-
amino acids or lipidation modifications to expand chemical 
diversity. Mutation rates were dynamically adjusted based on 
population diversity metrics and convergence indicators to 
maintain optimal exploration-exploitation balance throughout the 
evolutionary process.

Population continuity between generations was ensured by 
preserving the top 10% of individuals unchanged, corresponding 
to the 10 highest-fitness sequences. This elitist strategy prevented 
loss of high-quality solutions while allowing the majority of 
the population to undergo evolutionary modification. Primary 
termination occurred upon reaching the maximum generation limit 
of 50 cycles, providing sufficient evolutionary time for convergence 
while maintaining computational feasibility. Premature termination 
was triggered when fitness improvement fell below 0.1 units over 
three consecutive generations, indicating population convergence to 
optimal solutions.

Additional monitoring detected population stagnation, defined 
as lack of meaningful diversity changes over 10 generations, 
prompting termination to prevent computational waste on 
converged populations. Optional user-defined fitness thresholds 
could also trigger early termination when target performance levels 
were achieved. 

2.8 Sequence conservation and novelty 
assessment

Genetically optimized peptide sequences generated from 
the evolutionary algorithm were subjected to comprehensive 
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computational analysis. Conservation patterns were analyzed 
by comparing synthetic sequences against three native peptide 
hormone references: human glucagon, GLP-1, and GIP 
(Orskov et al., 1989; Bromer et al., 1957; Moody et al., 1984). 
Physicochemical properties were computed for both synthetic 
and native sequences using BioPython’s ProteinAnalysis module 
(Cock et al., 2009). Calculated parameters included molecular 
weight, isoelectric point, instability index, and grand average of 
hydropathy (GRAVY) scores. Lipophilicity was estimated using 
position-specific hydrophobicity values from the Kyte-Doolittle 
scale, normalized by sequence length. Polar surface area (PSA) 
was approximated by counting polar amino acids and applying a 
conversion factor of 50 Ų per polar residue (Ertl et al., 2000).

To evaluate the novelty and diversity of computationally 
generated peptide candidates, sequence similarity analysis was 
performed between the top-ranking optimized peptides and the 
original training dataset sequences. A flexible similarity scoring 
algorithm was implemented using dynamic programming to 
calculate edit distances between peptide sequences (Qiao et al., 
2020), accounting for non-standard amino acid (NSAA) 
modifications through specialized tokenization. Each candidate 
sequence was tokenized using regular expression pattern matching 
to preserve NSAA bracket notation, then compared against all 
training sequences using a normalized edit distance metric based 
on the Levenshtein distance algorithm (Cheng et al., 2024). For 
each generated peptide candidate, the highest similarity score to any 
training sequence was recorded along with the corresponding best 
match peptide ID and sequence. This analysis enabled assessment of 
whether the evolutionary algorithm successfully explored novel 
sequence space beyond the training data or converged toward 
existing high-activity peptides. 

2.9 Software implementation

All analyses were implemented in Python 3.8+ using PyTorch 
v1.9+ for deep learning frameworks and PyTorch Geometric v2.0+ 
for graph neural network operations (Fey and Lenssen, 2019). 
Additional computational tools included scikit-learn v1.0+ for 
performance metrics, BioPython v1.79+ for sequence analysis, 
and RDKit for cheminformatics operations. Complete software 
dependencies with specific version requirements are provided in 
Supplementary Methods. 

3 Results

3.1 Database characterization

The curated dataset comprised 234 unique peptide sequences 
with experimentally determined binding affinities across three G-
protein coupled receptors, representing an expansion from the 
original 125-sequence dataset (Table 2). GCGR measurements 
were available for 206 sequences (88.0%), with 101 sequences 
(49.0%). GLP1R data were complete across all 234 sequences, 
with 175 sequences (74.8%) demonstrating high affinity. GIPR 
measurements, representing the most limited subset, were available 

TABLE 2  Database Summary Distribution of peptide sequences and 
binding affinity characteristics across three incretin receptors. High 
affinity defined as EC50 ≤ 1000 pM. GLP1R exhibits the highest 
proportion of high-affinity sequences (74.8%) with lowest median 
potency (22.6 pM), while GCGR shows intermediate performance (49.0% 
high affinity, 1265.0 pM median EC50). GIPR represents the smallest 
dataset with moderate high-affinity representation (57.1%, 469.5 pM 
median EC50).

Receptor Total High affinity Median EC50

GCGR 206 101 (49.0%) 1265.0 pM

GLP1R 234 175 (74.8%) 22.6 pM

GIPR 56 32 (57.1%) 469.5 pM

for 56 sequences (23.9%), with 32 sequences (57.1%) showing 
high affinity (Figures 2A,B).

The dataset exhibited substantial multi-target activity, with 
97 sequences (41.5%) demonstrating dual agonism for GCGR 
and GLP1R, 24 sequences (10.3%) for GCGR and GIPR, and 31 
sequences (13.2%) for GLP1R and GIPR (Figure 2). Triple agonist 
sequences comprised 24 sequences with complete activity data 
across all three receptors. 

3.2 Comparative analysis to existing 
models

Cross-validation performance of the ensemble GNN (4 × 4 
configuration) was compared against previously reported results. 
The ensemble GNN achieved RMSE values of 0.52 ± 0.09 for GCGR 
and 0.79 ± 0.08 for GLP1R, compared to the original multi-task 
neural network ensemble RMSE values of 0.59 ± 0.05 for GCGR and 
0.68 ± 0.04 for GLP1R (Supplementary Figures S1A–F).

Direct comparison between the 4-fold, 4-model ensemble 
Graph Attention Network (GAT) and the established multi-
task Convolutional Neural Network (CNN) was performed using 
19 literature-derived sequences (Cock et al., 2009). For GCGR 
prediction (EC50_LOG_T1), GAT outperformed CNN with lower 
RMSE (0.942, 95% CI: [0.298, 1.443] vs. 1.209, 95% CI: [0.735, 
1.697]) and higher R2 values (0.305 vs. −0.144). GAT also achieved 
superior Pearson correlation (0.683, 95% CI: [-0.385, 0.981] vs. 
0.600, 95% CI: [-0.200, 0.904]), with statistically significant better 
performance (p = 0.0013) (Figures 3A–C).

For GLP1R prediction (EC50_LOG_T2), CNN demonstrated 
superior performance with lower RMSE (0.552, 95% CI: [0.461, 
0.633] vs. 0.723, 95% CI: [0.540, 0.896]), higher R2 (−0.208, 95% 
CI: [-1.454, 0.284] vs. −1.067, 95% CI: [-2.850, −0.284]), and higher 
Pearson correlation (0.686, 95% CI: [0.336, 0.922] vs. −0.037, 95% 
CI: [-0.473, 0.515]), though statistical testing revealed no significant 
difference between approaches (p = 0.136) (Figure 3). 

3.3 Triple agonist cross-validation 
performance

The GAT model demonstrated robust performance across 
all three target receptors in 5-fold cross-validation experiments 
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FIGURE 2
Triple agonist dataset comprehensive summary. (a) Percentage of high affinity distributions (b) total number of sequences by receptor data 
measurements (c) distribution of sequences by agonist type.

FIGURE 3
Comparative Performance Analysis of Graph Attention Networks versus Ensemble Multi-task Convolutional Neural Networks. Performance metrics 
comparing GAT (blue) and CNN ensemble (red) models across EC50 prediction targets. (a) Root mean square error (RMSE) comparison showing 
significantly lower prediction error for GAT on EC50_LOG_T1 (p = 0.001) with comparable performance on EC50_LOG_T2 (p = 0.136, n.s.). (b)
Coefficient of determination (R2) comparison demonstrating superior explained variance for GAT on EC50_LOG_T1 (p < 0.001) with equivalent 
performance on EC50_LOG_T2 (p = 0.136, n.s.). (c) Pearson correlation coefficients indicating stronger linear relationships for GAT predictions on 
EC50_LOG_T1 (p < 0.001) and comparable correlations on EC50_LOG_T2 (p = 0.136, n.s.). Statistical significance determined by paired t-tests:
∗∗∗p < 0.001,∗∗p < 0.01,∗p < 0.05, n.s = not significant.
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FIGURE 4
Performance Analysis of Graph Attention Network Using 5-Fold Cross-Validation. Transfer learning evaluation across three training stages: Stage 1 
(initial GCGR + GLP1R training), Stage 2 (GIPR transfer learning), and Stage 3 (unified fine-tuning). (a) AUC-ROC scores demonstrating consistent high 
performance across all receptors and stages (>0.84 for all conditions). (b) F1-scores showing robust classification performance with values exceeding 
0.81 across all receptor-stage combinations. (c) Box plots illustrating AUC-ROC score distributions across five folds for the final unified stage, with 
median values above 0.9 for GCGR and GIPR, and 0.85 for GLP1R. (d) Performance progression trajectories showing stable or improved AUC-ROC 
scores from initial to unified training stages for all three receptors. Error bars represent standard deviation across folds. Dashed horizontal line indicates 
random classifier performance (AUC-ROC = 0.5).

(Figure 4). GCGR classification achieved the highest performance 
with an AUC-ROC of 0.915 ± 0.050 and F1-score of 0.882 ± 0.067. 
GLP1R prediction yielded an AUC-ROC of 0.853 ± 0.059 and F1-
score of 0.908 ± 0.027. GIPR classification, despite limited training 
data, achieved an AUC-ROC of 0.907 ± 0.083 and F1-score of 
0.818 ± 0.137 (Table 3).

The model was evaluated on an independently derived dataset 
from published literature. The independent validation dataset 
contained 58total sequences. 9 sequences were removed due to 
exact matches with the training set. Similarity analysis revealed 
a bimodal distribution, with 37sequences (67%) showing ≤80% 
similarity to training data (novel sequences) and 19 sequences 
(34%) showing >90% similarity (Supplementary Figure S2). 
The complete validation set provided larger sample sizes 
with 58samples for GCGR and GLP1R, and 42samples
for GIPR.

Evaluation on novel sequences (≤80% similarity to training data) 
showed variable performance across receptors. GCGR demonstrated 
high discriminatory ability (AUC-ROC = 0.953, AUC-PR = 0.951) 
but moderate classification performance (F1-score = 0.679, n = 
37). GLP1R showed moderate discrimination (AUC-ROC = 0.604, 
AUC-PR = 0.811) with acceptable classification metrics (F1-score 
= 0.787, n = 37). GIPR achieved good discriminatory performance 
(AUC-ROC = 0.818, AUC-PR = 0.989) with high classification 
accuracy (F1-score = 0.971, n = 35).

Evaluation on the complete validation set showed similar 
discriminatory patterns with some performance variations. 
GCGR maintained comparable performance (AUC-ROC = 
0.950, AUC-PR = 0.957, F1-score = 0.795, n = 58). GLP1R 
showed reduced discriminatory ability (AUC-ROC = 0.358, 
AUC-PR = 0.779) while maintaining reasonable classification 
performance (F1-score = 0.863, n = 58). GIPR performance 
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TABLE 3  Cross-Validation Metrics Five-fold cross-validation performance metrics (mean ± standard deviation) for graph attention network models 
predicting peptide binding affinity across GCGR, GLP1R, and GIPR receptors. Metrics include area under receiver operating characteristic curve 
(AUC-ROC), area under precision-recall curve (AUC-PR), F1-score, precision, recall, and balanced accuracy. Total sample sizes shown for each 
receptor dataset.

Receptor AUC-ROC 
(mean ± 
Std)

AUC-PR 
(mean ± 
Std)

F1-score 
(mean ± 
Std)

Precision 
(mean ± 
Std)

Recall 
(mean ± 
Std)

Balanced 
accuracy 
(mean ± 
Std)

Total 
samples

GCGR 0.915 ± 0.050 0.932 ± 0.037 0.882 ± 0.067 0.856 ± 0.108 0.920 ± 0.068 0.869 ± 0.079 194

GLP1R 0.853 ± 0.059 0.946 ± 0.034 0.908 ± 0.027 0.844 ± 0.039 0.983 ± 0.023 0.650 ± 0.097 222

GIPR 0.907 ± 0.083 0.955 ± 0.045 0.818 ± 0.137 0.871 ± 0.124 0.829 ± 0.229 0.773 ± 0.132 49

FIGURE 5
GAT Model Performance Comparison Between Novel Sequences and Complete Validation Set. Performance evaluation comparing novel sequences 
with ≤80% similarity to training data (red) versus the complete validation dataset (blue). (a) F1-score comparison showing GCGR performance of 0.679 
for novel sequences (n = 37) and 0.795 for the complete set (n = 58). GLP1R achieved F1-scores of 0.787 for novel sequences (n = 37) and 0.863 for the 
complete set (n = 58). GIPR demonstrated F1-scores of 0.971 for novel sequences (n = 35) and 0.958 for the complete set (n = 42). (b) Area under the 
precision-recall curve (AUC-PR) comparison showing GCGR values of 0.951 for novel sequences and 0.957 for the complete set. GLP1R achieved 
AUC-PR values of 0.811 for novel sequences and 0.779 for the complete set. GIPR demonstrated AUC-PR values of 0.989 for novel sequences and 
0.988 for the complete set.

remained consistent when including the broader sequence set 
(AUC-ROC = 0.943, AUC-PR = 0.988, F1-score = 0.958, n = 42) 
(Figure 5; Supplementary Figure S3).

To validate the GAT ensemble model performance on clinically 
relevant peptides, we evaluated predictions against nine known 
peptides with established receptor activities (Figure 6). The model 
achieved accuracies of 88.9% for GCGR (8/9 peptides correct), 
100% for GLP1R (9/9 peptides correct), and 77.8% for GIPR (7/9 
peptides correct). Three disagreements were observed: Pemvidutide 
showed predicted high activity for GCGR despite known low 
activity, while both Pemvidutide and Mazdutide exhibited predicted 
low activity for GIPR contrary to their known high activities. 
The model correctly predicted the activities for six peptides 
(Retratrutide, Efocipegtrutide, NN1706, SAR441255, Tirzepatide, 
and Cotadutide) across all three receptors where known data 

was available, demonstrating consistent performance on well-
characterized dual and triple agonists.

3.4 Genetic algorithm performance

The genetic algorithm successfully optimized peptide sequences 
for multi-receptor binding affinity over six generations. The 
optimization process achieved a cumulative fitness improvement 
of 2.351 units, with the best-performing sequence reaching a final 
fitness score of 60.743, representing a 4.0% enhancement from the 
initial population (Figure 7).

The optimization showed a biphasic improvement pattern: 
an initial steep ascent with improvement rates of 1.369 and 
0.893 fitness units per generation in generations 2 and 3, 
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FIGURE 6
GAT Model Performance on Known Peptides. Comparison of known activities versus GAT model predictions for nine peptides across three receptors 
(GCGR, GLP1R, GIPR). Known activities are labeled as “High” or “Low” based on literature reports, while predicted activities are derived from GAT 
ensemble model outputs using a 0.5 probability threshold. Pink highlighting with red borders indicates disagreements between known and predicted 
activities. Overall accuracies are shown at the bottom for each receptor. Color coding represents receptor-specific activities: GCGR (green/red), GLP1R 
(blue/orange), and GIPR (purple/orange).

respectively, followed by a stabilization phase with minor 
fluctuations ranging from −0.028–0.133 units per generation. 
The algorithm satisfied convergence criteria after generation 4, 
when the three-generation moving average improvement rate 
consistently fell below the predefined threshold of 0.1 fitness units 
per generation (Supplementary Figure S4).

Receptor-specific binding probability analysis demonstrated 
high performance across all targets, with mean binding 
probabilities greater than 0.6 for GCGR and GLP1R, and 
approximately 0.53 for GIPR among the best-performing sequences
(Figure 7C). 

3.5 Synthetic peptide analysis

Analysis of the top 20 high-performing sequences revealed 
structural motifs and design principles underlying multi-receptor 
binding activity. The generated sequences maintained an average 
length of 32.7 ± 2.4 amino acids (range: 29–35), conforming to the 
length constraints of native incretin peptides. The sequences showed 
binding affinity predictions across all three target receptors, with 
mean binding probabilities of 0.596 ± 0.015 for GCGR, 0.638 ± 

0.008 for GLP1R, and 0.519 ± 0.003 for GIPR. Similarity analysis 
against the training dataset revealed that the top 20 generated 
sequences maintained moderate divergence from known peptides, 
with sequence similarity ranging from 30.0% to 64.1% (mean: 47.0% 
± 9.33%), ensuring both novelty and biological relevance in the 
designed multi-receptor agonists (Table 4).

Motif analysis identified conservation of biologically relevant 
sequence patterns. The essential core E2G3T4F5 motif, critical for 
incretin receptor binding, was preserved in 13 of 20 sequences 
(65%). A glucagon family C-terminus conserved ortholog A18 
appeared in seven sequences (35%), while another essential core 
motif (F21W23L24) was found in six sequences (30%) (Figure 8).

Biological plausibility assessment yielded overall scores of 
0.796 ± 0.055, with chemical plausibility scores of 0.960, motif 
preservation scores of 0.734 ± 0.107, proteolytic stability scores 
of 0.837, and compositional scores of 0.560. Physicochemical 
characterization revealed the following properties: mean molecular 
weight of 3,794.5 ± 185.8 Da, average LogP value of −0.55 ± 0.22, and 
polar surface area of 757.5 ± 116.2 Ų. For comparison, native peptide 
values were: GLP-1 (3,298.6 Da, LogP −0.23), glucagon (3,482.7 Da, 
LogP −0.99), and GIP (4,983.5 Da, LogP −0.80) (Figures 9A–C). 
Isoelectric point values averaged 4.7 ± 0.59, instability indices 

Frontiers in Bioinformatics 11 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1687617
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Wong et al. 10.3389/fbinf.2025.1687617

FIGURE 7
Genetic Algorithm Performance Summary. Comprehensive performance analysis of the multi-receptor peptide genetic algorithm optimization. (a)
Population fitness evolution showing best fitness (red circles) and mean fitness (blue squares) with standard deviation bands across six generations. (b)
High-affinity candidate discovery rate, displaying count (green bars) and percentage (red line) of sequences achieving binding probability ≥0.5 for all 
three receptors (GCGR, GLP1R, GIPR). (c) Receptor-specific binding probability trajectories for top-performing sequences, with horizontal dashed line 
indicating high-affinity threshold (0.5). (d) Evolution summary statistics including total runtime, evaluations, and top sequence characteristics. The 
algorithm identified 56 high-affinity candidates with the best sequence achieving fitness score 60.743.

averaged 29.2 ± 9.8, and GRAVY scores confirmed hydrophilic 
character. Polar surface area values were lower than GIP (1,150.0 Ų) 
but higher than GLP-1 (700.0 Ų) (Figures 9D–F).

3.6 Computational performance

The GAT model training required approximately 2–3 h per 
fold on standard GPU hardware, representing a significant 
improvement in computational efficiency compared to structure-
based design approaches. The genetic algorithm optimization 
completed within 1.5 h, enabling rapid exploration of sequence 
variants for experimental prioritization.

Memory requirements scaled linearly with sequence length, 
demonstrating the practical advantage of graph representations for 
variable-length peptide design. The attention mechanism provided 

interpretable insights into residue importance, with attention 
weights correlating with known binding site interactions from 
crystallographic studies. 

4 Discussion

The development of computational models capable of 
predicting peptide activity across multiple G-protein coupled 
receptors represents a critical advancement for metabolic disease 
therapeutics (Yang et al., 2019). Triple agonist peptides targeting 
glucagon receptor (GCGR), glucagon-like peptide-1 receptor 
(GLP1R), and glucose-dependent insulinotropic polypeptide 
receptor (GIPR) have demonstrated superior therapeutic efficacy 
compared to single or dual agonist approaches in treating type 
2 diabetes and obesity (Samms et al., 2020). The synergistic 
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FIGURE 8
Sequence Alignment of Top 20 GA-Optimized Peptides Compared to Native Hormone Sequences. Multiple sequence alignment of the highest-ranking 
genetic algorithm-generated peptides (Rank 1–20) against native hormone sequences (glucagon, GLP-1, GIP). Amino acid positions are colored 
according to sequence similarity patterns: red indicates conservation across all three native sequences, pink shows GLP-1/GIP conservation, cyan 
represents GIP/glucagon similarity, blue indicates GLP-1-specific residues, purple shows glucagon-specific residues, green denotes GLP-1-only 
conservation, and gray represents unique variations.

effects observed with multi-receptor activation underscore the 
therapeutic potential of these molecules, yet their rational design 
remains computationally challenging due to the complex sequence-
structure-activity relationships governing receptor selectivity and 
binding affinity (Sato et al., 2006).

Graph Attention Networks were selected for this task based 
on their demonstrated capability to capture complex relational 
dependencies within molecular structures (Veličković et al., 2017). 
Unlike traditional sequence-based approaches that treat peptides 
as linear strings of amino acids, GAT architectures can explicitly 
model spatial relationships and long-range interactions between 
residues through graph representations (Xiong et al., 2020). This 
offers potential advantages over conventional machine learning 
approaches that may fail to capture the three-dimensional nature of 
peptide-receptor interactions.

The GAT model demonstrated robust predictive performance 
across all three target receptors in cross-validation experiments. 
For GCGR, the model achieved excellent discrimination between 
high and low affinity peptides, with classification accuracy 
exceeding 88% and area under the receiver operating characteristic 
curve approaching 92%. GLP1R prediction showed similarly 
strong performance, with classification accuracy above 90% and 

discrimination ability of approximately 85%. GIPR classification 
proved more challenging due to limited training data availability yet 
still achieved acceptable performance with classification accuracy 
around 82% and discrimination ability exceeding 90%.

Direct comparison with established computational approaches 
revealed distinct performance patterns across receptor targets. 
When evaluated against the multi-task convolutional neural 
network approach established by Puszkarska et al., the GAT 
model demonstrated improved performance for GCGR prediction, 
achieving significantly lower prediction errors and improved 
correlation with experimental values (Puszkarska et al., 2024). 
However, the traditional CNN approach maintained superior 
performance for GLP1R prediction, suggesting that optimal 
architectural choices may be receptor-dependent. These findings 
highlight the importance of comprehensive model comparisons 
rather than relying on single performance metrics or individual 
receptor assessments.

External validation on peptide sequences with limited similarity 
to training data provided insights into model generalizability. The 
GAT approach maintained excellent predictive capability for GCGR 
when applied to novel peptide sequences (AUC-ROC = 0.953 
but with moderate classification performance (F1-score = 0.679). 

Frontiers in Bioinformatics 15 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1687617
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Wong et al. 10.3389/fbinf.2025.1687617

FIGURE 9
Biophysical Property Comparison Between GA-Generated and Native Peptide Sequences. Comparative analysis of six key biophysical properties 
between genetic algorithm-optimized peptides (n = 20, blue boxes) and native hormone sequences (individual colored points: red = GIP, blue = GLP-1, 
green = glucagon). Box plots display median, quartiles, and range for: (a) molecular weight (Da), (b) estimated loop propensity, (c) estimated polar 
surface area (Ų), (d) isoelectric point, (e) instability index, and (f) GRAVY hydrophobicity score.

GLP1R showed moderate discrimination (AUC-ROC = 0.604) with 
acceptable classification metrics (F1-score = 0.787). GIPR prediction 
on novel sequences demonstrated good discriminatory performance 
(AUC-ROC = 0.818) with high classification accuracy (F1-score = 
0.971). This pattern suggests that GIPR shows robust generalizability 
to novel sequences, while GCGR may have more stringent 
classification requirements despite excellent discrimination ability.

The receptor-specific performance differences observed 
in this study reflect the underlying biological complexity of 
peptide-receptor interactions. GCGR demonstrated the most 
predictable binding patterns, potentially due to more stringent 
structural requirements for activation (Qiao et al., 2020). 
The improved GAT performance for this receptor suggests 
that graph-based representations effectively capture the key 
molecular features governing GCGR selectivity. In contrast, GLP1R 
showed different patterns where traditional CNN approaches 
maintained competitive performance, indicating that linear 
sequence features may be sufficient for this receptor class under
certain conditions.

The robust GIPR performance on novel sequences, despite 
limited training data, suggests that the available data may be 
sufficient to capture key structure-activity relationships for this 
receptor. However, the smaller training dataset available for 

GIPR compared to GCGR and GLP1R indicates that expanded 
datasets could further improve model confidence and performance 
consistency across all receptor types. Validation against clinically 
relevant peptides provided important insights into the model’s 
performance on therapeutically important sequences. The GAT 
ensemble achieved strong overall accuracy across the three 
receptors when evaluated on nine established peptides, with 
particularly robust performance for GLP1R (100% accuracy) and 
good performance for GCGR (88.9% accuracy) and GIPR (77.8% 
accuracy). The model successfully predicted activities for six 
well-characterized dual and triple agonists including Retatrutide, 
Tirzepatide, and Cotadutide, demonstrating consistent performance 
on clinically advanced compounds.

The observed prediction errors offer valuable insights into 
model limitations. The misclassification of Pemvidutide’s GCGR 
activity (predicted high vs. known low) and GIPR activities for 
both Pemvidutide and Mazdutide (predicted low vs. known high) 
suggests that certain structural features or receptor interaction 
modes may not be fully captured by the current training data. 
These discrepancies highlight the importance of expanding 
training datasets with diverse clinical candidates to improve 
model robustness across the full spectrum of therapeutic peptides. 
Nevertheless, the high accuracy achieved on the majority of 
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clinically relevant sequences supports the potential utility of this 
approach for prioritizing peptide candidates in drug discovery 
pipelines.

Analysis of computationally generated peptide sequences 
provides insights into the molecular determinants of multi-
receptor binding activity. The generated peptides exhibited 
molecular characteristics consistent with known incretin hormone 
properties (Figure 9), with average sequence lengths and 
molecular weights falling within the expected range for bioactive 
peptide hormones (Müller et al., 2019). The predicted binding 
affinities across all three target receptors (mean probabilities: 
GCGR 0.596 ± 0.015, GLP1R 0.638 ± 0.008, GIPR 0.519 ± 
0.003) suggest potential for balanced multi-receptor activation, 
though experimental validation remains necessary to confirm these 
computational predictions.

Motif analysis revealed partial conservation of established 
incretin receptor binding determinants. The preservation of 
the EGTF motif in approximately two-thirds of generated 
sequences aligns with its known importance for incretin receptor 
recognition (Kyte and Doolittle, 1982; Vaswani et al., 2017). 
However, the variable presence of other conserved regions, such 
as the glucagon family C-terminus motif (present in 35% of 
sequences), suggests that the model may identify alternative 
binding configurations that warrant experimental investigation. 
The biological plausibility scores, while generally favorable, indicate 
that computational optimization may generate sequences with 
non-natural characteristics that could affect stability or bioactivity.

Sequence similarity analysis revealed that the generated peptides 
maintained moderate divergence from the training dataset, with 
similarities ranging from 30.0% to 64.1% (mean: 47.0% ± 9.33%). 
This indicates that the optimization approach explores sequence 
variants within a reasonable distance from known agonists while 
avoiding excessive extrapolation beyond the model’s training 
domain. The balance between sequence novelty and similarity to 
established agonists supports the approach as a systematic method 
for peptide optimization rather than de novo design.

The physicochemical properties of generated peptides 
fell within reasonable boundaries relative to native incretin 
hormones, though some parameters deviated from natural 
ranges. The intermediate molecular weights and hydrophobicity 
values suggest that the model attempts to balance the distinct 
physicochemical requirements of the three target receptors. 
However, the relatively low compositional scores indicate potential 
departures from natural amino acid distributions, which could 
impact peptide stability, immunogenicity, or pharmacokinetic 
properties in biological systems (Guruprasad et al., 1990). 
These results demonstrate a computational optimization pipeline 
that integrates sequence optimization with structural and 
physicochemical constraints to guide experimental validation 
efforts. The methodology provides a rational framework for 
candidate prioritization, with partially preserved key motifs 
and reasonable molecular properties suggesting these optimized 
sequences may warrant experimental evaluation to assess their 
functional characteristics.

This multi-target capability represents an alternativeover single-
receptor prediction tools, though the performance gains come with 
increased computational complexity and reduced interpretability 
for non-expert users. Existing simpler approaches may retain 

advantages in specific applications. Rule-based peptide design tools 
offer greater transparency in decision-making processes and require 
substantially less computational resources (Cheng et al., 2024). 
Additionally, established pharmacophore-based methods may 
provide more reliable predictions for peptide modifications within 
well-characterized chemical space (Giordano et al., 2022). The 
GAT approach may be most suitablewhen exploring novel peptide 
sequences or optimizing across multiple targets simultaneously. 

4.1 Limitations and challenges

Several limitations should be considered when interpreting 
these results. The training dataset comprises EC50 measurements 
from multiple laboratories using diverse assay conditions, cell 
lines, and experimental protocols. This inter-laboratory variability 
introduces systematic biases that may affect model predictions, 
as differences in receptor expression levels and measurement 
methodologies can significantly impact reported EC50 values. 
Additionally, the availability of publicly accessible datasets for triple 
agonist peptides remains limited, constraining our validation set 
size and highlighting the need for larger shared datasets to enable 
more robust validation of computational models in this specialized 
research area.

The graph-based molecular representation, while capturing 
local amino acid interactions, may not fully represent long-range 
conformational dependencies critical for receptor binding. The 
current feature encoding relies on static physicochemical properties 
but excludes dynamic structural information and context-specific 
amino acid interactions that influence binding affinity. Additionally, 
the model’s reliance on sequence-derived features excludes critical 
three-dimensional structural information that governs binding 
specificity and selectivity. Finally, in vitro EC50 predictions do not 
encompass pharmacological properties essential for therapeutic 
development, including peptide stability, membrane permeability, 
proteolytic resistance, and pharmacokinetic profiles. These 
limitations highlight opportunities for future model enhancement 
through expanded training datasets, incorporation of structural 
features, and integration of pharmacokinetic modeling.

The computational methodology presented here primarily 
involves optimization of existing agonist sequence scaffolds rather 
than de novo creation of entirely novel peptide frameworks. 
The genetic algorithm systematically explores sequence variants 
within established incretin hormone design space, building 
upon known structural templates to identify improved variants. 
While this approach limits exploration to modifications around 
established peptide scaffolds, it provides a rational framework for 
systematic optimization that may identify therapeutically relevant 
improvements within well-characterized chemical space. This 
targeted optimization strategy balances computational tractability 
with biological relevance, though it may not uncover breakthrough 
therapeutic properties that could emerge from more radical 
structural innovations.

The absence of experimental validation in this computational 
study represents an important limitation for assessing practical 
therapeutic potential. While the models demonstrate robust 
predictive performance on available datasets and show promising 
predictions for clinically relevant peptides, the biological activity 
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and pharmacological properties of the computationally generated 
sequences remain to be confirmed. Experimental validation will 
be essential to establish the true therapeutic relevance of these 
computational predictions and to bridge the gap between in silico
optimization and practical drug development applications.

Finally, in vitro EC50 predictions do not encompass 
pharmacological properties essential for therapeutic development, 
including peptide stability, membrane permeability, proteolytic 
resistance, and pharmacokinetic profiles. These limitations 
highlight opportunities for future enhancement through expanded 
training datasets, incorporation of structural features, integration 
of pharmacokinetic modeling, and experimental validation of 
computational predictions. 

4.2 Implications and potential applications

Despite these limitations, the GAT-based predictor may offer 
practical applications for peptide drug discovery. The tool could 
facilitate initial screening of large peptide libraries to identify 
candidates with predicted multi-receptor activity, potentially 
reducing the experimental burden of comprehensive activity testing 
(Macarron et al., 2011). The multi-target prediction capability may 
prove particularly valuable for prioritizing experimental validation 
efforts. Rather than testing peptides sequentially against individual 
receptors, researchers could focus on candidates with favorable 
predictions across all target receptors (Anighoro et al., 2014). This 
approach could streamline the identification of balanced triple 
agonists while reducing resource requirements for preliminary 
screening.

Additionally, graph-based architecture could inform structure-
activity relationship studies by highlighting amino acid positions 
critical for multi-receptor binding. This information could guide 
focused mutagenesis studies or assist in designing peptide analogs 
with improved pharmacological properties.

Several research directions could enhance the utility and 
reliability of computational triple agonist prediction. Expanding 
training datasets through systematic experimental characterization 
of peptide libraries would improve model robustness and 
generalizability. Integration of additional molecular descriptors, 
such as predicted secondary structure or dynamic conformational 
information, could enhance prediction accuracy.

The GAT architecture could be adapted for other multi-
target therapeutic applications beyond incretin receptor agonists. 
Peptide hormones targeting multiple receptor families, such as 
opioid or neurotransmitter systems, may benefit from similar 
computational approaches (Stein and Machelska, 2011). Future 
model developments should address current limitations in 
capturing receptor dynamics and allosteric effects. Integration with 
molecular dynamics simulations or enhanced sampling techniques 
could provide more accurate representations of peptide-receptor 
interactions (Hospital et al., 2015). 

5 Conclusion

The Graph Attention Network-based predictor represents 
a computational framework for identifying potential triple 

agonist peptides targeting GCGR, GLP1R, and GIPR. The model 
demonstrated robust cross-validation performance and generated 
peptide sequences with biologically plausible characteristics and 
preserved functional motifs. However, significant limitations 
remain regarding data availability, model generalizability, and 
the translation from computational predictions to experimental 
validation. While the tool may assist inguiding initial peptide 
screening and rational design efforts, extensive experimental 
validation will be required to confirm biological activity and 
therapeutic utility. The approach establishes a foundation for 
computational multi-target peptide design that could be expanded 
and refined as additional training data and improved modeling 
techniques become available.
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SUPPLEMENTARY FIGURE S1
Residual Analysis and Prediction Distribution Comparison Between GAT and 
Multi-task CNN Models. Comprehensive residual analysis comparing GAT (blue 
circles) and CNN ensemble (red circles) predictions for EC50 logarithmic values.
(A–C) GCGR Log(EC50) target analysis: (A) True versus predicted values with 
unity line (dashed) showing prediction accuracy, (B) residual distribution versus
true values with zero-residual reference line (dashed), and (C) residual frequency 
distribution. (D–F) GLP1 Log(EC50) target analysis: (D) true versus predicted 
scatter plot, (E) residuals versus true values, and (F) residual distribution 
histograms. Residual patterns indicate model performance characteristics and 
potential systematic biases in prediction accuracy across the EC50 value range.

SUPPLEMENTARY FIGURE S2
Sequence Similarity Distribution Between Validation and Training Datasets. 
Histogram depicting the maximum sequence similarity of each validation 
sequence (n = 58) to any sequence in the training set. The distribution reveals a 
bimodal pattern with 37 sequences (67%) exhibiting ≤80% similarity (red dashed 
line), and a median similarity of 79.5% (orange dashed line at 90%).

SUPPLEMENTARY FIGURE S3
Comprehensive Classification Metrics for GAT Model Validation Performance. 
Extended performance analysis comparing novel sequences (≤80% similarity, red) 
with the complete validation set (blue) across multiple classification metrics. (A)
Accuracy values showing GCGR: 0.541 (novel) and 0.690 (complete); GLP1R: 
0.649 (novel) and 0.759 (complete); GIPR: 0.943 (novel) and 0.929 (complete). (B)
Precision values showing GCGR: 0.514 (novel) and 0.660 (complete); GLP1R: 

0.649 (novel) and 0.772 (complete); GIPR: 0.943 (novel) and 0.944 (complete). (C)
Recall values showing GCGR: 1.000 (novel) and 1.000 (complete); GLP1R: 1.000 
(novel) and 0.978 (complete); GIPR: 1.000 (novel) and 0.971 (complete). (D)
AUC-ROC values showing GCGR: 0.953 (novel) and 0.950 (complete); GLP1R: 
0.604 (novel) and 0.358 (complete); GIPR: 0.818 (novel) and 0.943 (complete). 
The dashed line represents random classifier performance (AUC-ROC = 0.5).

SUPPLEMENTARY FIGURE S4
Genetic Algorithm Convergence Analysis. Convergence metrics for the peptide 
optimization genetic algorithm across six generations. (A) Best fitness score 
progression showing rapid initial improvement followed by plateau behavior. (B)
Fitness improvement rate per generation with convergence threshold (0.1, red 
dashed line) and 3-generation moving average (orange). The algorithm achieved 
convergence when the moving average improvement rate fell below the 
threshold at generation 6. (C) Cumulative fitness improvement from baseline, 
demonstrating total optimization gain of 2.2 fitness units. Convergence was 
achieved after 6 generations.

SUPPLEMENTARY TABLE S1
Complete Training Dataset. The dataset contains peptide identifiers (pep_ID), 
amino acid sequences with non-standard modifications in brackets, 
experimentally determined EC50 values in picomolar units for GCGR, GLP1R, and 
GIPR receptors, corresponding log-transformed EC50 values, and literature 
references.

SUPPLEMENTARY TABLE S2
Nonstandard Amino Acids and their calculated physicochemical properties with 
ProtParam. Physicochemical properties calculated using BioPython ProtParam 
v1.79 for non-standard amino acids and chemical modifications encountered in 
the dataset, including D-amino acids and unnatural amino acids (Aib, Nle, Sar, 
hSer, nVal, Dap, MetO) with corresponding hydrophobicity values, molecular 
weights, and net charges at physiological pH.

SUPPLEMENTARY TABLE S3
Validation Dataset. The validation dataset contains peptide identifiers (pep_ID), 
amino acid sequences, experimentally determined EC50 values in picomolar units 
(pM) for GCGR, GLP1R, and GIPR receptors, corresponding log-transformed 
EC50 values, and source publications.

SUPPLEMENTARY TABLE S4
FDA-Approved and Clinical-Stage Multi-Receptor Agonists. Current 
FDA-approved therapeutics and compounds in clinical development for 
metabolic diseases with documented receptor binding classifications for GCGR, 
GLP1R, and GIPR, including peptide sequences, therapeutic descriptions dual-, or 
triple-agonists.
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