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Introduction: Multi-target peptide therapeutics targeting glucagon receptor
(GCGR), glucagon-like peptide-1 receptor (GLP1R), and glucose-dependent
insulinotropic polypeptide receptor (GIPR) represent a promising approach for
treating diabetes and obesity. Triple agonist peptides demonstrate promising
therapeutic potential compared to single-target approaches, yet rational design
remains computationally challenging due to complex sequence-structure
activity relationships. Existing methods, primarily based on convolutional neural
networks, impose limitations including fixed sequence lengths and inadequate
representation of molecular topology. Graph Attention Networks (GAT) offer
advantages in capturing molecular structures and variable-length peptide
sequences while providing interpretable insights into receptor-specific binding
determinants.

Methods: A dataset of 234 peptide sequences with experimentally determined
binding affinities was compiled from multiple sources. Peptides were
represented as molecular graphs with seven-dimensional node features
encoding physicochemical properties and positional information. The GAT
architecture employed a shared encoder with task-specific prediction
heads, implementing transfer learning to address limited GIPR training data.
Performance was evaluated using 5-fold cross-validation and independent
validation on 24 literature-derived sequences. A genetic algorithm framework
was developed for peptide sequence optimization, incorporating multi objective
fitness evaluation based on predicted binding affinity, biological plausibility, and
sequence novelty.

Results: Cross-validation demonstrated robust GAT performance across
all receptors, with GCGR achieving high accuracy (AUC ROC: 0.915
+ 0.050), followed by GLPIR (AUC-ROC: 0.853 + 0.059), and GIPR
showing acceptable performance despite limited data (AUC-ROC: 0.907
+ 0.083). Comparative analysis revealed receptor-specific advantages:
GAT significantly outperformed CNN for GCGR prediction (RMSE:
0.942 vs. 1209, p = 0.0013), while CNN maintained superior GLP1R
performance (RMSE: 0.552 vs. 0.723). Genetic algorithm optimization
measurable improvement over baseline, with 4.0% fitness Enhancement
and generation of 20 candidates exhibiting mean binding probabilities
exceeding 0.5 across all targets. The GAT-based framework provides a
computational approach in computational peptide design, demonstrating
receptor-specific  advantages and robust optimization capabilities.
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Conclusion: Genetic algorithm optimization enables systematic exploration of
sequence space within existing agonist scaffolds while maintaining biological
constraints. This approach provides a rational framework for prioritizing
experimental validation efforts in triple agonist development.

peptide design, machine learning, bioactivity prediction, drug discovery, graph

attention networks

1 Introduction

The global obesity epidemic and the rising prevalence of type 2
diabetes mellitus (T2DM) represent major public health challenges,
affecting over 650 million adults worldwide with obesity and
537 million individuals with diabetes (Miiller et al., 2019; Baggio
and Drucker, 2021). Metabolic syndrome, characterized by the
clustering of insulin resistance, abdominal obesity, dyslipidemia, and
hypertension, affects approximately 37.6%-41.8% of US adults and
is associated with a 2-fold increased risk of cardiovascular disease
and 1.5-fold increased risk of all-cause mortality (Li et al., 2023;
Mottillo et al., 2010). Per-person healthcare costs for individuals
with metabolic syndrome average $5,732 annually compared to
$3,581 for those without the condition (Boudreau et al., 2009).

Traditional therapeutic approaches targeting single pathways
have demonstrated limited long-term efficacy, highlighting the
need for innovative multi-target strategies that address the
complex pathophysiology underlying metabolic dysfunction
(Brandt et al, 2018). The development of multi-target
peptide therapeutics represents a paradigm shift in precision
medicine, offering the potential for superior glycemic control,
substantial weight reduction, and improved cardiovascular
outcomes compared to conventional single-target approaches
(Finan et al., 2016; Samms et al., 2020).

Recent clinical breakthroughs have validated the therapeutic
potential of multi-receptor agonists in metabolic disease treatment.
Tirzepatide, a dual glucose-dependent insulinotropic polypeptide
receptor (GIPR) and glucagon-like peptide-1 receptor (GLP1R)
agonist, demonstrated unprecedented efficacy in the SURPASS
clinical trial program, achieving HbAlc reductions of up to 2.58%
(Frias et al., 2018). The clinical development of retatrutide, a
triple agonist targeting GCGR, GLPIR, and GIPR, has further
demonstrated the potential of multi-target approaches, with Phase 2
results showing 24.2% weight reduction at 48 weeks (Jastreboff et al.,
2022). These clinical successes underscore the therapeutic
value of targeting multiple components of the incretin system
simultaneously, leading to enhanced metabolic benefits through
complementary mechanisms of action.

The glucagon receptor (GCGR), GLP1R, and GIPR represent
critical nodes in metabolic homeostasis, each contributing distinct
physiological effects that collectively address the multifaceted
nature of metabolic disorders (Alexander et al., 2021). GLP1R
agonism provides glucose-dependent insulin secretion, gastric
emptying delay, and appetite suppression, while GIPR activation
enhances insulin sensitivity and promotes beneficial effects on
bone metabolism (Knerr et al., 2020). GCGR agonism contributes
to increased energy expenditure, enhanced hepatic glucose
production regulation, and potential benefits in non-alcoholic fatty
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liver disease (Winther and Holst, 2024). The synergistic activation of
these three receptors offers a comprehensive approach to metabolic
regulation that addresses both the glycemic and weight management
aspects of T2DM and obesity.

Traditional drug development approaches rely on iterative
experimental trial-and-error cycles that are both time-intensive
and prohibitively costly, with the average cost of bringing a new
drug to market reaching up to $2.23 billion (Wouters et al,
2020). Recent advances in machine learning have demonstrated
the potential to accelerate peptide discovery through computational
design platforms, enabling the exploration of vast chemical spaces
that would be impractical to investigate experimentally (Yang et al.,
2019). Puszkarska et al. employed deep multi-task convolutional
neural networks (CNNs) to design GCGR/GLPIR dual agonists
with superior biological potency, demonstrating up to sevenfold
potency improvements compared to existing compounds in their
training set (Puszkarska et al.,, 2024). However, this CNN-based
approach imposed several methodological constraints, including
fixed sequence lengths of 30 amino acids and limited flexibility in
representing complex molecular topology and modifications.

Graph neural networks (GNNs) have emerged as a powerful
paradigm for molecular representation learning, offering significant
advantages over sequence-based methods in capturing three-
dimensional molecular structures and chemical interactions
(Wu et al,, 2020; Zhang et al., 2022). Graph Attention Networks
(GATs), introduced by Velickovi¢ et al., enable nodes to attend over
their neighborhoods with learnable attention weights, providing
interpretable insights into molecular interactions and functional
relationships (Velickovi¢ et al., 2017). Unlike CNNs that require
fixed-length inputs, GATs naturally accommodate variable-length
peptide sequences while preserving molecular topology through
explicit representation of chemical bonds, modifications, and spatial
relationships (Lv et al., 2024; Gao et al., 2018).

The application of GNNs to peptide design has shown
particular promise in capturing complex molecular features that
are challenging to represent in sequence-based models (Kipf and
Welling, 2016). Recent work by Xiong etal. demonstrated that
graph attention mechanisms achieve state-of-the-art performance
across molecular property prediction tasks, with attention weights
revealing functionally important molecular regions and binding
determinants (Xiong et al, 2020). Similarly, Strokach etal
successfully applied deep graph neural networks to protein design,
demonstrating the capacity for de novo sequence generation with
experimental validation (Strokach et al., 2020).

Despite these advances, existing neural network approaches
for peptide therapeutics have primarily focused on dual-target
optimization or single-receptor systems (Puszkarska et al.,
2024). The extension to triple-agonist design presents unique

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1687617
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wong et al.

computational challenges, including the need for balanced multi-
target optimization, the integration of transfer learning strategies to
address limited experimental data availability, and the development
of robust evaluation frameworks for multi-receptor binding
prediction.

This study presents a methodological advancement that extends
the CNN-based approach of Puszkarska etal. to a GAT-based
framework for triple-agonist peptide design targeting GCGR,
GLP1R, and GIPR. Our approach addresses key limitations
of previous methods by implementing flexible sequence length
handling through graph representations that accommodate diverse
peptide modifications, extending the target scope from dual agonist
(GCGR/GLPI1R) to triple agonist capability, incorporating transfer
learning strategies to leverage limited GIPR experimental data, and
employing attention mechanisms to provide interpretable insights
into receptor-specific binding determinants.

We demonstrate that our GAT-based approach achieves
improved predictive performance for GCGR and GIPR receptors,
with comparable performance for GLPIR, while maintaining
the ability to generate peptide sequences with high predicted
binding affinities. The integration of genetic algorithm-based
sequence optimization enables the systematic exploration of
diverse sequence variants within the agonist design space,
identifying promising candidates for experimental validation.
This methodological framework establishes a foundation for
enhanced computational tools in multi-target peptide therapeutics
development, with immediate applications in obesity and diabetes
drug discovery.

2 Methods
2.1 Dataset compilation and preprocessing

The training dataset was compiled from multiple established
sources to ensure comprehensive coverage of GCGR, GLPIR,
and GIPR binding data. Primary data sources included: (1) the
open-access dataset from Puszkarska etal. (Alexander et al,
2021), (2) curated ChEMBL entries
interactions (Mendez et al, 2019),
etal. investigating peptide-based polyagonists
(Knerr et al, 2018), (4) dual agonist optimization studies by

for peptide-receptor
(3) experimental data

from Knerr

Evers et al. (Evers et al., 2018), and (5) structural characterization
data from recent triple agonist studies (Zhao et al, 2022;
Cock et al., 2009) (Supplementary Table S1).

Peptide sequences underwent standardized preprocessing

to handle non-standard amino acids and chemical
modifications. Modified residues including D-amino acids,
unnatural amino acids, and lipidated variants, were

systematically cataloged and encoded with their corresponding
physicochemical properties using BioPython ProtParam v1.79
(Cock et al., 2009) (Supplementary Table S2).

Activity classification employed a binary high-affinity threshold
of 1000 pM EC50. Given the limited availability of data across all
three receptors, a more lenient threshold was adopted compared
to the 10 pM cutoff used in previous studies (Alexander et al,
2021) to ensure sufficient positive examples for model training while
maintaining pharmacologically relevant activity levels.
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2.2 Graph representation of peptide
sequences

Peptide sequences were converted to graph representations
using a molecular topology-preserving approach implemented
using PyTorch Geometric v2.0.4 (Fey and Lenssen, 2019) Each
amino acid residue was represented as a node with a seven-
dimensional feature vector encoding: (1) hydrophobicity (Kyte-
Doolittle scale) (Kyte and Doolittle, 1982), (2) net charge at
physiological pH, (3) molecular weight, (4) D-amino acid indicator,
(5) lipidation status, (6) sine positional encoding, and (7) cosine
positional encoding.

Node features were computed using the following protocol.
For standard amino acids, hydrophobicity, charge and molecular
weight values were obtained from established amino acid properties.
D-amino acid and lipidation indicators were set to 0.0. For non-
standard residues values were encoded using experimentally or
computationally predicted physicochemical properties. D-amino
acids (i.e., d-serine or d-alanine) used L-enatiomer properties with
D-amino acid indicator sets to 1.0. Lipidated residues such as (K
[(YE-C16)]) included lipid chain contributions to hydrophobicity
and molecular weight calculation with lipidation status set to 1.0.
(hydrophobicity,
molecular weight) were normalized using dataset-specific statistics

Physicochemical features charge, and
computed from all training sequences: mean-centered and scaled by
standard deviation to ensure numerical stability during training. We

used a simplified positional encoding approach with the following:

NE

L
to represent amino acid positions. This encoding normalizes
position by sequence length and provides two dimensions of
positional information, which we considered appropriate given our
limited dataset size (N = 125) and the short length of peptide
sequences in our study (Vaswani et al., 2017).

Edge connectivity was established through peptide bond
relationships, creating bidirectional edges between sequential
amino acid residues. For modified amino acids, feature vectors
incorporated experimentally derived or computationally predicted
physicochemical properties as cataloged in the preprocessing stage.

2.3 Graph attention network architecture

The GAT model employed a shared encoder architecture with
task-specific prediction heads for multi-target optimization. The
shared encoder comprised four GATv2Conv layers with 6-head
attention mechanisms, 96-dimensional hidden representations, and
ReLU activation functions. Each attention layer was followed by
batch normalization and dropout (p = 0.2) to prevent overfitting,
with residual connections applied every two layers (Figure 1).

Global graph representation was achieved using Set2Set pooling
with three processing steps, followed by a representation layer
consisting of linear transformation (19296 dimensions), ReLU
activation, batch normalization, and dropout (p = 0.2). Set2Set
pooling was chosen over simple global pooling methods to better
capture permutation-invariant graph-level representations while
maintaining sensitivity to sequence order information.
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GAT Architecture

Stage 2:
GIPR Transfer
(100Epochs)

Population
(n=100)

GAT MODEL

GA operations

Experimental Validation

Multi-objective fitness:

* Receptor binding activity
* Motif preservation

« Biological plausibility

* Sequence diversity

Fitness convergence

Genetic Algorithm 50 generations

FIGURE 1
Graph Attention Network-Guided Genetic Algorithm Pipeline. Integrated pipeline combining a Graph Attention Network (GAT) model with genetic

algorithm optimization for designing peptides with high binding affinity across GCGR, GLP1R, and GIPR receptors. The GAT model, trained through
transfer learning, serves as a fitness evaluator for a genetic algorithm that evolves a population of 100 peptide sequences over 50 generations using
multi-objective optimization criteria including receptor binding activity, motif preservation, biological plausibility, and sequence diversity. The pipeline
terminates upon fitness convergence and produces optimized sequences for experimental validation.

Task-specific heads consisted of three-layer fully connected
networks with ReLU activations, batch normalization, and dropout
between layers, terminating in single-unit outputs for binary
classification. The multi-task loss function employed weighted

binary cross-entropy with equal weighting (a 0.5) across

active receptors:

A three-stage transfer learning approach was implemented to
address the limited availability of GIPR training data relative to
GCGR and GLPIR. Stage 1 involved initial training on combined
GCGR/GLPIR data (80 epochs) using all available sequences with
valid labels for either receptor, with learning rate of 1 x 10, Stage
two employed encoder parameter freezing with exclusive GIPR
head training (100 epochs) using maintained learning rate of 1
x 107 to prevent catastrophic forgetting. Stage 3 implemented
unified fine-tuning (60 epochs) with encoder unfreezing and
reduced learning rate of 1 x 10 for global optimization across all
three receptors.

Model performance was evaluated using stratified 5-fold cross-
validation. Stratification was performed based on multi-target
activity patterns, creating stratification keys from the combination
of receptor-specific activity states (high affinity, low affinity, or
missing data) to ensure balanced representation across folds. Each
fold employed an 80/20 train/validation split for hyperparameter
optimization and early stopping, with validation loss monitoring and
patience of 15 epochs. Training utilized the Adam optimizer with
gradient clipping (max_norm = 1.0) for numerical stability. Focal
loss was implemented with a = 0.25 and y = 2.0 to address class
imbalance in receptor-specific datasets.

2.4 Model comparison with literature
baseline

Model performance was compared against the established
multi-task convolutional neural network (CNN) ensemble from
Puszkarska et al. (Alexander et al., 2021) using identical evaluation
protocols. The GAT model employed a k-fold cross-validation
ensemble approach, while the CNN baseline utilized the original 12
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x 6 ensemble architecture (72 total models) as reported in the source
publication.

Both models were trained on the original 125-sequence dataset
from Puszkarska et al. and evaluated on an independent reference
dataset from Day etal. containing 19 peptide sequences with
experimentally validated GCGR and GLP1R activities (Cock et al.,
2009). This evaluation protocol ensured direct comparability with
published results while testing generalization to completely unseen
sequences.

The GAT regression model architecture established through this
comparison was subsequently adapted for binary classification tasks
used throughout the remainder of this study, with sigmoid activation
functions replacing linear outputs and binary cross-entropy loss
replacing mean squared error.

identical
Statistical
significance was assessed using paired t-tests on prediction errors

Performance metrics were computed using

preprocessing pipelines and evaluation criteria.
across the reference dataset, with p-values calculated for each

receptor target.

2.5 Independent model validation

Independent validation sequences were obtained from
previously published studies: Day et al., Finan et al., and Zhang et al.
comprising 67 peptide sequences with experimentally determined
EC50 values for GCGR, GLPIR, and GIPR (Day et al., 2009;
Finan et al,, 2015; Zhang et al., 2025) (Supplementary Table S3).
These sequences were selected to evaluate model generalizability on
data not used during training or cross-validation.

To assess model performance on novel sequences, we
implemented a similarity-based filtering approach. Sequence
identity was calculated between each validation sequence and all
training sequences using token-level comparison, accounting for
non-standard amino acid modifications. The maximum similarity
to any training sequence was determined for each validation peptide.

Validation sequences were categorized into two groups: (1)
novel sequences with <80% similarity to any training sequence,
and (2) the complete validation set. This threshold was selected to
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distinguish sequences with substantial structural differences from
the training data while maintaining adequate sample sizes for
statistical evaluation.

In addition to the quantitative EC50-based validation, we
performed a secondary validation using a curated dataset of
known therapeutic peptides with established receptor activity
profiles but without complete quantitative EC50 data across all
three receptors. This dataset comprised nine clinically relevant
peptides including FDA-approved therapeutics and compounds
in clinical development with documented high or low affinity
classifications for GCGR, GLPIR, and GIPR based on published
pharmacological characterization studies (Supplementary Table S4)
(Coskun et al., 2022; Whitley, 2025; Finan et al., 2025; Starling,
2022; Willard et al., 2020; Henderson et al., 2016; Yabut and
Drucker, 2023; Chen et al., 2022; Zimmermann et al., 2022;
Wisniewski et al., 2016; Han et al., 2013; Lau et al., 2015; Meng et al.,
2008; Knudsen et al., 2000; Miranda et al., 2008; Plisson et al.,
2017; Murage et al., 2008; Mapelli et al., 2009; Knerr et al., 2022).
Known receptor activities were manually curated from literature
sources and regulatory documents, with activities classified as
“high” (therapeutically relevant binding, typically EC50 < 1000 pM)
or “low” (minimal or no significant binding activity) for each
receptor. This binary classification approach was necessary due
to the heterogeneous nature of activity reporting across different
studies and the absence of standardized EC50 measurements for all
peptide-receptor combinations.

Predictions were generated using the ensemble of k-fold
trained GAT models (n
was converted to a molecular graph representation using the

5 folds). Each validation sequence

same preprocessing pipeline employed during training, including
feature normalization parameters computed from the original
training dataset.

Binary classification performance was evaluated using an
EC50 threshold of 1000 pM, where values < 1000 pM indicated
high affinity (positive class) and >1000 pM indicated low affinity
(negative class). Missing EC50 values were excluded from analysis.
Performance metrics included accuracy, Fl1-score, precision, recall,
area under the receiver operating characteristic curve (AUC-ROC),
and area under the precision-recall curve (AUC-PR).

Model performance was assessed separately for each receptor
(GCGR, GLPIR, GIPR) and validation subset (novel sequences vs.
complete set). Ensemble predictions were obtained by averaging
probability outputs across all fold models. All analyses were
implemented in Python using scikit-learn v1.0.2 for metric
calculations and PyTorch Geometric v2.0.4 for graph neural network
operations.

2.6 Genetic algorithm framework for
peptide design

The evolutionary optimization phase began by initializing a
population of 100 randomly generated peptide sequences, each
containing 25-35 amino acid residues consistent with the length
distribution of known peptide hormones in this therapeutic class.
All initial sequences were filtered using the biological plausibility
scoring system to ensure only chemically reasonable candidates
(scoring >0.3) proceeded to fitness evaluation. The optimization
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process then iteratively evolved this population over a maximum
of 50 generations, with each cycle involving comprehensive
fitness assessment using the multi-objective function described
in Equation 1, followed by parent selection through tournament-
based competition among groups of three individuals. Selected
parent sequences underwent single-point crossover with 80%
probability to generate offspring, after which adaptive mutation
was applied with 10% probability to introduce sequence variations.
Throughout this process, the top 10% of individuals were preserved
unchanged between generations to maintain high-quality solutions,
while convergence monitoring assessed population improvement to
determine optimal termination timing.

The fitness function was a summation of four weighted
components to balance receptor binding activity, biological
plausibility, and sequence novelty:

Equation 1:Multi — Objective Fitness Function

F(s) = H(s) + P(s) + Pmin(s) + M(s) + N(s) + D(s)
where:H(s) = number o f high a ffinity receptor
P(s) = mean binding probability across receptor
Pmin(s) = minimum binding probability across receptor
B(s) = biological plausibility conservation score € [0,1]
N(s) = sequence novelty score € [0,1]
D(s) = population diversity score € [0,1]
2.6.1 Receptor binding activity

Binding probabilities GCGR, GLP1R, and GIPR
were predicted using an ensemble GAT model, with scoring

for

incorporating the number of high-affinity targets achieving the
target threshold of (p = 0.5), average predicted probability, and
minimum predicted probability across receptors.

2.6.2 Motif preservation

Conserved motifs critical for receptor binding, identified
from literature-based structure-activity relationships, were
preserved using pattern-matching algorithms allowing conservative
Critical his6-
his8 positions, central FTSD tetrapeptide, and C-terminal
amidation patterns. Motif scoring used position-specific
matching with wildcard tolerance and conservative substitution

allowances (Table 1).

substitutions motifs included N-terminal

2.6.3 Biological plausibility
A weighted
adherence, motif preservation, predicted proteolytic stability

score  combined  chemical constraint
(trypsin/chymotrypsin cleavage site analysis), and similarity in
amino acid composition to natural peptide hormones.

Equation2:Biological Plausibility Score
B(s) = 0.3 C(s) +0.35 M(s) + 0.2 P(s) + 0.15 A(s) > 0.3
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TABLE 1 Literature Derived Critical Binding Motifs: Summary of experimentally validated and evolutionarily conserved amino acid motifs essential for
incretin receptor binding and activation. Critical residues are identified from structure-activity relationship studies and comparative genomic analysis
across species orthologs and protein paralogs (Vaswani et al., 2017; Fey and Lenssen, 2019).

Motif Notes

N-terminal: H E° G!° F'2 T3 D1®
C-terminal: F?8 1° 12 R

GLP-1(7-36), H’ G'* T D'* F?* I form the most
critical residues for receptor activation and binding

Source

Manandhar and Ahn (2015)

GLP1

AZ E3 TS T7 Y13 AIS A19 KZ() E21 G29
Glucagon

SZ Q3 TS Y13 A19

GIP

Y!E® S8 SN 127

Residues conserved across Orthologs in mouse, anole,
chicken, Xenopus tropicalis, medaka, fugu, tetraodon,
stickleback, and zebrafish

Moon et al. (2012)

GLP1

H' G* FS D 114 F22 123 w2526
Glucagon

H' G FS DO L14 D15 2! 22 y23 W25 26
GIP

G4 ES D? DS 2! B2 V23 W25 26

Residues conserved across Paralogs

Orskov et al. (1989)

where:C(s) = chemical constraint score (charge distribution, hydrophobic patches)

M(s) = motif preservation score

P(s) = proteolytic stability score (trypsin/chymotrypsin cleavage analysis)

A(s) = amino acid composition similarity to natural hormones

In addition, sequences failing to achieve a biological plausibility
score of 0.3 were rejected from the population.

2.6.4 Sequence novelty

Sequence similarity to the training set was penalized to
encourage diversity, with population-level diversity tracking used
to avoid premature convergence. Novelty scores were computed
using sequence alignment and Levenshtein distance metrics, with
penalties applied for high similarity (>80%) to existing training
sequences.

2.7 Evolutionary operations

Parent selection for sequence employed

tournament-based competition, where groups of three individuals

reproduction

competed based on their fitness scores, with the highest-scoring
sequence from each tournament selected for breeding. This
approach balanced selective pressure toward high-fitness individuals
while maintaining sufficient population diversity to prevent
premature convergence to local optima.

Sequence recombination was performed through single-point
crossover applied to 80% of parent pairs. A random crossover point
was selected within each parent sequence, and genetic material was
exchanged to create two offspring sequences. Following crossover,
offspring sequences were validated for length constraints and
biological plausibility, with sequences exceeding acceptable limits
or failing plausibility checks undergoing repair through motif-
preserving substitution operators.

Frontiers in Bioinformatics

Sequence diversification was achieved through adaptive
mutation applied with 10% probability across multiple mechanisms.
Point mutations constituted 70% of mutation events, involving
single amino acid substitutions at random positions. Conservative
introduced

substitutions, of mutations,

physiochemically similar amino acid replacements to maintain

representing  20%

local structural properties. The remaining 10% of mutations
involved introduction of modified residues

amino acids or lipidation modifications to expand chemical

including D-

diversity. Mutation rates were dynamically adjusted based on
population diversity metrics and convergence indicators to
maintain optimal exploration-exploitation balance throughout the
evolutionary process.

Population continuity between generations was ensured by
preserving the top 10% of individuals unchanged, corresponding
to the 10 highest-fitness sequences. This elitist strategy prevented
loss of high-quality solutions while allowing the majority of
the population to undergo evolutionary modification. Primary
termination occurred upon reaching the maximum generation limit
of 50 cycles, providing sufficient evolutionary time for convergence
while maintaining computational feasibility. Premature termination
was triggered when fitness improvement fell below 0.1 units over
three consecutive generations, indicating population convergence to
optimal solutions.

Additional monitoring detected population stagnation, defined
as lack of meaningful diversity changes over 10 generations,
prompting termination to prevent computational waste on
converged populations. Optional user-defined fitness thresholds
could also trigger early termination when target performance levels
were achieved.

2.8 Sequence conservation and novelty
assessment
Genetically optimized peptide sequences generated from

the evolutionary algorithm were subjected to comprehensive
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computational analysis. Conservation patterns were analyzed
by comparing synthetic sequences against three native peptide
hormone references: human glucagon, GLP-1, and GIP
(Orskov et al,, 1989; Bromer et al., 1957; Moody et al., 1984).
Physicochemical properties were computed for both synthetic
and native sequences using BioPythons ProteinAnalysis module
(Cock et al, 2009). Calculated parameters included molecular
weight, isoelectric point, instability index, and grand average of
hydropathy (GRAVY) scores. Lipophilicity was estimated using
position-specific hydrophobicity values from the Kyte-Doolittle
scale, normalized by sequence length. Polar surface area (PSA)
was approximated by counting polar amino acids and applying a
conversion factor of 50 U per polar residue (Ertl et al., 2000).

To evaluate the novelty and diversity of computationally
generated peptide candidates, sequence similarity analysis was
performed between the top-ranking optimized peptides and the
original training dataset sequences. A flexible similarity scoring
algorithm was implemented using dynamic programming to
calculate edit distances between peptide sequences (Qiao et al.,
2020), non-standard amino acid (NSAA)
modifications through specialized tokenization. Each candidate

accounting  for

sequence was tokenized using regular expression pattern matching
to preserve NSAA bracket notation, then compared against all
training sequences using a normalized edit distance metric based
on the Levenshtein distance algorithm (Cheng et al., 2024). For
each generated peptide candidate, the highest similarity score to any
training sequence was recorded along with the corresponding best
match peptide ID and sequence. This analysis enabled assessment of
whether the evolutionary algorithm successfully explored novel
sequence space beyond the training data or converged toward
existing high-activity peptides.

2.9 Software implementation

All analyses were implemented in Python 3.8+ using PyTorch
v1.9+ for deep learning frameworks and PyTorch Geometric v2.0+
for graph neural network operations (Fey and Lenssen, 2019).
Additional computational tools included scikit-learn v1.0+ for
performance metrics, BioPython v1.79+ for sequence analysis,
and RDKit for cheminformatics operations. Complete software
dependencies with specific version requirements are provided in
Supplementary Methods.

3 Results
3.1 Database characterization

The curated dataset comprised 234 unique peptide sequences
with experimentally determined binding affinities across three G-
protein coupled receptors, representing an expansion from the
original 125-sequence dataset (Table2). GCGR measurements
were available for 206 sequences (88.0%), with 101 sequences
(49.0%). GLPIR data were complete across all 234 sequences,
with 175 sequences (74.8%) demonstrating high affinity. GIPR
measurements, representing the most limited subset, were available
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TABLE 2 Database Summary Distribution of peptide sequences and
binding affinity characteristics across three incretin receptors. High
affinity defined as EC50 < 1000 pM. GLP1R exhibits the highest
proportion of high-affinity sequences (74.8%) with lowest median
potency (22.6 pM), while GCGR shows intermediate performance (49.0%
high affinity, 1265.0 pM median EC50). GIPR represents the smallest
dataset with moderate high-affinity representation (57.1%, 469.5 pM
median EC50).

Receptor Total High affinity Median EC50
GCGR 206 101 (49.0%) 1265.0 pM

GLPIR 234 175 (74.8%) 22.6 pM

GIPR 56 32(57.1%) 469.5 pM

for 56 sequences (23.9%), with 32 sequences (57.1%) showing
high affinity (Figures 2A,B).

The dataset exhibited substantial multi-target activity, with
97 sequences (41.5%) demonstrating dual agonism for GCGR
and GLPIR, 24 sequences (10.3%) for GCGR and GIPR, and 31
sequences (13.2%) for GLP1R and GIPR (Figure 2). Triple agonist
sequences comprised 24 sequences with complete activity data
across all three receptors.

3.2 Comparative analysis to existing
models

Cross-validation performance of the ensemble GNN (4 x 4
configuration) was compared against previously reported results.
The ensemble GNN achieved RMSE values of 0.52 + 0.09 for GCGR
and 0.79 * 0.08 for GLPIR, compared to the original multi-task
neural network ensemble RMSE values of 0.59 + 0.05 for GCGR and
0.68 £ 0.04 for GLP1R (Supplementary Figures SIA-F).

Direct comparison between the 4-fold, 4-model ensemble
Graph Attention Network (GAT) and the established multi-
task Convolutional Neural Network (CNN) was performed using
19 literature-derived sequences (Cock et al., 2009). For GCGR
prediction (EC50_LOG_T1), GAT outperformed CNN with lower
RMSE (0.942, 95% CI: [0.298, 1.443] vs. 1.209, 95% CI: [0.735,
1.697]) and higher R? values (0.305 vs. —0.144). GAT also achieved
superior Pearson correlation (0.683, 95% CI: [-0.385, 0.981] vs.
0.600, 95% CI: [-0.200, 0.904]), with statistically significant better
performance (p = 0.0013) (Figures 3A-C).

For GLPIR prediction (EC50_LOG_T2), CNN demonstrated
superior performance with lower RMSE (0.552, 95% CI: [0.461,
0.633] vs. 0.723, 95% CI: [0.540, 0.896]), higher R> (~0.208, 95%
CI: [-1.454, 0.284] vs. —1.067, 95% CI: [-2.850, —0.284]), and higher
Pearson correlation (0.686, 95% CI: [0.336, 0.922] vs. —0.037, 95%
CI: [-0.473, 0.515]), though statistical testing revealed no significant
difference between approaches (p = 0.136) (Figure 3).

3.3 Triple agonist cross-validation
performance

The GAT model demonstrated robust performance across
all three target receptors in 5-fold cross-validation experiments
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FIGURE 2
Triple agonist dataset comprehensive summary. (a) Percentage of high affinity distributions (b) total number of sequences by receptor data
measurements (c) distribution of sequences by agonist type.

Significance: *** p<0.001, ** p<0.01, * p<0.05, n.s. = not significant
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FIGURE 3

Comparative Performance Analysis of Graph Attention Networks versus Ensemble Multi-task Convolutional Neural Networks. Performance metrics
comparing GAT (blue) and CNN ensemble (red) models across EC50 prediction targets. (a) Root mean square error (RMSE) comparison showing
significantly lower prediction error for GAT on EC50_LOG_T1 (p = 0.001) with comparable performance on EC50_LOG_T2 (p = 0.136, n.s.). (b)
Coefficient of determination (R?) comparison demonstrating superior explained variance for GAT on EC50_LOG_T1 (p < 0.001) with equivalent
performance on EC50_LOG_T2 (p = 0.136, n.s.). (c) Pearson correlation coefficients indicating stronger linear relationships for GAT predictions on
EC50_LOG_T1 (p < 0.001) and comparable correlations on EC50_LOG_T2 (p = 0.136, n.s.). Statistical significance determined by paired t-tests:
w#p < 0.001,#xp < 0.01,%p < 0.05, n.s = not significant.
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FIGURE 4
Performance Analysis of Graph Attention Network Using 5-Fold Cross-Validation. Transfer learning evaluation across three training stages: Stage 1
(initial GCGR + GLP1R training), Stage 2 (GIPR transfer learning), and Stage 3 (unified fine-tuning). (a) AUC-ROC scores demonstrating consistent high
performance across all receptors and stages (>0.84 for all conditions). (b) F1-scores showing robust classification performance with values exceeding
0.81 across all receptor-stage combinations. (c) Box plots illustrating AUC-ROC score distributions across five folds for the final unified stage, with
median values above 0.9 for GCGR and GIPR, and 0.85 for GLP1R. (d) Performance progression trajectories showing stable or improved AUC-ROC
scores from initial to unified training stages for all three receptors. Error bars represent standard deviation across folds. Dashed horizontal line indicates
random classifier performance (AUC-ROC = 0.5).

(Figure 4). GCGR classification achieved the highest performance
with an AUC-ROC of 0.915 + 0.050 and F1-score of 0.882 + 0.067.
GLPIR prediction yielded an AUC-ROC of 0.853 + 0.059 and F1-
score of 0.908 + 0.027. GIPR classification, despite limited training
data, achieved an AUC-ROC of 0.907 + 0.083 and Fl-score of
0.818 + 0.137 (Table 3).

The model was evaluated on an independently derived dataset
from published literature. The independent validation dataset
contained 58total sequences. 9 sequences were removed due to
exact matches with the training set. Similarity analysis revealed
a bimodal distribution, with 37sequences (67%) showing <80%
similarity to training data (novel sequences) and 19 sequences
(34%) showing >90% similarity (Supplementary Figure S2).
The complete validation set provided larger sample sizes
with 58samples for GCGR and GLPIR, and 42samples
for GIPR.

Frontiers in Bioinformatics

Evaluation on novel sequences (<80% similarity to training data)
showed variable performance across receptors. GCGR demonstrated
high discriminatory ability (AUC-ROC = 0.953, AUC-PR = 0.951)
but moderate classification performance (Fl-score = 0.679, n =
37). GLP1R showed moderate discrimination (AUC-ROC = 0.604,
AUC-PR = 0.811) with acceptable classification metrics (F1-score
= 0.787, n = 37). GIPR achieved good discriminatory performance
(AUC-ROC = 0.818, AUC-PR = 0.989) with high classification
accuracy (Fl-score = 0.971, n = 35).

Evaluation on the complete validation set showed similar
discriminatory patterns with some performance variations.
GCGR maintained comparable performance (AUC-ROC =
0.950, AUC-PR = 0.957, Fl-score = 0.795, n = 58). GLP1R
showed reduced discriminatory ability (AUC-ROC = 0.358,
AUC-PR = 0.779) while maintaining reasonable classification
performance (Fl-score = 0.863, n = 58). GIPR performance
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TABLE 3 Cross-Validation Metrics Five-fold cross-validation performance metrics (mean + standard deviation) for graph attention network models
predicting peptide binding affinity across GCGR, GLP1R, and GIPR receptors. Metrics include area under receiver operating characteristic curve
(AUC-ROC), area under precision-recall curve (AUC-PR), F1-score, precision, recall, and balanced accuracy. Total sample sizes shown for each
receptor dataset.

Receptor AUC-ROC Fl-score Precision Balanced Total
(mean + (mean + (mean + accuracy samples
Std) Std) Std) (mean +
Std)
GCGR 0.915 £ 0.050 0.932 +£0.037 0.882 £ 0.067 0.856 £ 0.108 0.920 £ 0.068 0.869 £ 0.079 194
GLPIR 0.853 £ 0.059 0.946 = 0.034 0.908 +0.027 0.844 +0.039 0.983 £0.023 0.650 £ 0.097 222
GIPR 0.907 £ 0.083 0.955 + 0.045 0.818 £0.137 0.871 £0.124 0.829 +0.229 0.773 £0.132 49
Performance Comparison: Novel Sequences vs Complete Validation Set
a) F1-Score Comparison b) AUC-PR Comparison
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FIGURE 5
GAT Model Performance Comparison Between Novel Sequences and Complete Validation Set. Performance evaluation comparing novel sequences
with <80% similarity to training data (red) versus the complete validation dataset (blue). (a) F1-score comparison showing GCGR performance of 0.679
for novel sequences (n = 37) and 0.795 for the complete set (n = 58). GLP1R achieved F1-scores of 0.787 for novel sequences (n = 37) and 0.863 for the
complete set (n = 58). GIPR demonstrated F1-scores of 0.971 for novel sequences (n = 35) and 0.958 for the complete set (n = 42). (b) Area under the
precision-recall curve (AUC-PR) comparison showing GCGR values of 0.951 for novel sequences and 0.957 for the complete set. GLP1R achieved
AUC-PR values of 0.811 for novel sequences and 0.779 for the complete set. GIPR demonstrated AUC-PR values of 0.989 for novel sequences and
0.988 for the complete set.

remained consistent when including the broader sequence set
(AUC-ROC = 0.943, AUC-PR = 0.988, F1-score = 0.958, n = 42)
(Figure 5; Supplementary Figure S3).

To validate the GAT ensemble model performance on clinically
relevant peptides, we evaluated predictions against nine known
peptides with established receptor activities (Figure 6). The model
achieved accuracies of 88.9% for GCGR (8/9 peptides correct),
100% for GLPIR (9/9 peptides correct), and 77.8% for GIPR (7/9
peptides correct). Three disagreements were observed: Pemvidutide
showed predicted high activity for GCGR despite known low
activity, while both Pemvidutide and Mazdutide exhibited predicted
low activity for GIPR contrary to their known high activities.
The model correctly predicted the activities for six peptides
(Retratrutide, Efocipegtrutide, NN1706, SAR441255, Tirzepatide,
and Cotadutide) across all three receptors where known data
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was available, demonstrating consistent performance on well-
characterized dual and triple agonists.

3.4 Genetic algorithm performance

The genetic algorithm successfully optimized peptide sequences
for multi-receptor binding affinity over six generations. The
optimization process achieved a cumulative fitness improvement
of 2.351 units, with the best-performing sequence reaching a final
fitness score of 60.743, representing a 4.0% enhancement from the
initial population (Figure 7).

The optimization showed a biphasic improvement pattern:
an initial steep ascent with improvement rates of 1.369 and
0.893 fitness units per generation in generations 2 and 3,
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GAT Model Predictions vs Known Peptide Activities

Peptide GCGR Actual GCGR Predicted GLP1R Actual GLP1R Predicted GIPR Actual GIPR Predicted
Retratrutide High High High High High High
Efocipegtrutide High High High High High High
NN1706 High High High High High High
SAR441255 High High High High High High
Tirzepatide Low Low High High High High
Cotadutide High High High High Low Low
Pemvidutide Low High High High High Low
Mazdutide High High High High Low High
Survodutide High High High High Low Low
Overall Accuracy 0.889 1.000 0.778

=== GCGR High
=== GCGR Low

=== GLP1R High
=== GLP1R Low

FIGURE 6

=== G|PR High

[ Disagreement

mes GIPR Low

GAT Model Performance on Known Peptides. Comparison of known activities versus GAT model predictions for nine peptides across three receptors
(GCGR, GLP1R, GIPR). Known activities are labeled as "High" or “Low" based on literature reports, while predicted activities are derived from GAT
ensemble model outputs using a 0.5 probability threshold. Pink highlighting with red borders indicates disagreements between known and predicted
activities. Overall accuracies are shown at the bottom for each receptor. Color coding represents receptor-specific activities: GCGR (green/red), GLP1R

(blue/orange), and GIPR (purple/orange).

respectively, followed by a stabilization phase with minor
fluctuations ranging from —0.028-0.133 units per generation.
The algorithm satisfied convergence criteria after generation 4,
when the three-generation moving average improvement rate
consistently fell below the predefined threshold of 0.1 fitness units
per generation (Supplementary Figure S4).

Receptor-specific binding probability analysis demonstrated
high performance across all targets, with mean binding
probabilities greater than 0.6 for GCGR and GLPIR, and
approximately 0.53 for GIPR among the best-performing sequences
(Figure 7C).

3.5 Synthetic peptide analysis

Analysis of the top 20 high-performing sequences revealed
structural motifs and design principles underlying multi-receptor
binding activity. The generated sequences maintained an average
length of 32.7 + 2.4 amino acids (range: 29-35), conforming to the
length constraints of native incretin peptides. The sequences showed
binding affinity predictions across all three target receptors, with
mean binding probabilities of 0.596 + 0.015 for GCGR, 0.638 +
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0.008 for GLPIR, and 0.519 + 0.003 for GIPR. Similarity analysis
against the training dataset revealed that the top 20 generated
sequences maintained moderate divergence from known peptides,
with sequence similarity ranging from 30.0% to 64.1% (mean: 47.0%
+ 9.33%), ensuring both novelty and biological relevance in the
designed multi-receptor agonists (Table 4).

Motif analysis identified conservation of biologically relevant
sequence patterns. The essential core E>’G>T*F® motif, critical for
incretin receptor binding, was preserved in 13 of 20 sequences
(65%). A glucagon family C-terminus conserved ortholog A'®
appeared in seven sequences (35%), while another essential core
motif (FF'W?L?*) was found in six sequences (30%) (Figure 8).

Biological plausibility assessment yielded overall scores of
0.796 + 0.055, with chemical plausibility scores of 0.960, motif
preservation scores of 0.734 + 0.107, proteolytic stability scores
of 0.837, and compositional scores of 0.560. Physicochemical
characterization revealed the following properties: mean molecular
weight of 3,794.5 + 185.8 Da, average LogP value of —0.55 + 0.22, and
polar surface area of 757.5 + 116.2 UJ. For comparison, native peptide
values were: GLP-1 (3,298.6 Da, LogP —0.23), glucagon (3,482.7 Da,
LogP —0.99), and GIP (4,983.5 Da, LogP —0.80) (Figures 9A-C).
Isoelectric point values averaged 4.7 + 0.59, instability indices
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Peptide Genetic Algorithm - Evolution Overview

Genetic Algorithm Performance Summary. Comprehensive performance analysis of the multi-receptor peptide genetic algorithm optimization. (a)
Population fitness evolution showing best fitness (red circles) and mean fitness (blue squares) with standard deviation bands across six generations. (b)
High-affinity candidate discovery rate, displaying count (green bars) and percentage (red line) of sequences achieving binding probability >0.5 for all
three receptors (GCGR, GLP1R, GIPR). (c) Receptor-specific binding probability trajectories for top-performing sequences, with horizontal dashed line
indicating high-affinity threshold (0.5). (d) Evolution summary statistics including total runtime, evaluations, and top sequence characteristics. The
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algorithm identified 56 high-affinity candidates with the best sequence achieving fitness score 60.743.
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d) Evolution Summary

EVOLUTION SUMMARY

Total Time: 66.9 seconds
Total Evaluations: 600
Generations: 6

Final Best Fitness: 60.743
High Affinity Found: 56

TOP SEQUENCES:
1. Fitness: 60.743 | Length: 33 | Gen: 4
2. Fitness: 60.728 | Length: 35 | Gen: 5
3. Fitness: 60.673 | Length: 33 | Gen: 4
4. Fitness: 60.560 | Length: 47 | Gen: 2
5. Fitness: 60.533 | Length: 53 | Gen: 4

averaged 29.2 + 9.8, and GRAVY scores confirmed hydrophilic
character. Polar surface area values were lower than GIP (1,150.0 V)
but higher than GLP-1 (700.0 V) (Figures 9D-F).

3.6 Computational performance

The GAT model training required approximately 2-3 h per
fold on standard GPU hardware, representing a significant
improvement in computational efficiency compared to structure-
based design approaches. The genetic algorithm optimization
completed within 1.5h, enabling rapid exploration of sequence
variants for experimental prioritization.

Memory requirements scaled linearly with sequence length,
demonstrating the practical advantage of graph representations for
variable-length peptide design. The attention mechanism provided
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interpretable insights into residue importance, with attention
weights correlating with known binding site interactions from
crystallographic studies.

4 Discussion

The development of computational models capable of
predicting peptide activity across multiple G-protein coupled
receptors represents a critical advancement for metabolic disease
therapeutics (Yang et al., 2019). Triple agonist peptides targeting
glucagon receptor (GCGR), glucagon-like peptide-1 receptor
(GLPIR), and glucose-dependent insulinotropic polypeptide
receptor (GIPR) have demonstrated superior therapeutic efficacy
compared to single or dual agonist approaches in treating type
2 diabetes and obesity (Samms et al, 2020). The synergistic
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Alignment of Top 20 GA Peptides to Native Sequences
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Sequence Alignment of Top 20 GA-Optimized Peptides Compared to Native Hormone Sequences. Multiple sequence alignment of the highest-ranking
genetic algorithm-generated peptides (Rank 1-20) against native hormone sequences (glucagon, GLP-1, GIP). Amino acid positions are colored
according to sequence similarity patterns: red indicates conservation across all three native sequences, pink shows GLP-1/GIP conservation, cyan
represents GIP/glucagon similarity, blue indicates GLP-1-specific residues, purple shows glucagon-specific residues, green denotes GLP-1-only
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effects observed with multi-receptor activation underscore the
therapeutic potential of these molecules, yet their rational design
remains computationally challenging due to the complex sequence-
structure-activity relationships governing receptor selectivity and
binding affinity (Sato et al., 2006).

Graph Attention Networks were selected for this task based
on their demonstrated capability to capture complex relational
dependencies within molecular structures (Velickovi¢ et al., 2017).
Unlike traditional sequence-based approaches that treat peptides
as linear strings of amino acids, GAT architectures can explicitly
model spatial relationships and long-range interactions between
residues through graph representations (Xiong et al., 2020). This
offers potential advantages over conventional machine learning
approaches that may fail to capture the three-dimensional nature of
peptide-receptor interactions.

The GAT model demonstrated robust predictive performance
across all three target receptors in cross-validation experiments.
For GCGR, the model achieved excellent discrimination between
high and low affinity peptides, with classification accuracy
exceeding 88% and area under the receiver operating characteristic
curve approaching 92%. GLPIR prediction showed similarly
strong performance, with classification accuracy above 90% and
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discrimination ability of approximately 85%. GIPR classification
proved more challenging due to limited training data availability yet
still achieved acceptable performance with classification accuracy
around 82% and discrimination ability exceeding 90%.

Direct comparison with established computational approaches
revealed distinct performance patterns across receptor targets.
When evaluated against the multi-task convolutional neural
network approach established by Puszkarska etal, the GAT
model demonstrated improved performance for GCGR prediction,
achieving significantly lower prediction errors and improved
correlation with experimental values (Puszkarska et al., 2024).
However, the traditional CNN approach maintained superior
performance for GLPIR prediction, suggesting that optimal
architectural choices may be receptor-dependent. These findings
highlight the importance of comprehensive model comparisons
rather than relying on single performance metrics or individual
receptor assessments.

External validation on peptide sequences with limited similarity
to training data provided insights into model generalizability. The
GAT approach maintained excellent predictive capability for GCGR
when applied to novel peptide sequences (AUC-ROC = 0.953
but with moderate classification performance (F1-score = 0.679).
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FIGURE 9
Biophysical Property Comparison Between GA-Generated and Native Peptide Sequences. Comparative analysis of six key biophysical properties
between genetic algorithm-optimized peptides (n = 20, blue boxes) and native hormone sequences (individual colored points: red = GIP, blue = GLP-1,
green = glucagon). Box plots display median, quartiles, and range for: (a) molecular weight (Da), (b) estimated loop propensity, (c) estimated polar
surface area (), (d) isoelectric point, (e) instability index, and (f) GRAVY hydrophobicity score.

GLP1R showed moderate discrimination (AUC-ROC = 0.604) with
acceptable classification metrics (F1-score = 0.787). GIPR prediction
on novel sequences demonstrated good discriminatory performance
(AUC-ROC = 0.818) with high classification accuracy (F1-score =
0.971). This pattern suggests that GIPR shows robust generalizability
to novel sequences, while GCGR may have more stringent
classification requirements despite excellent discrimination ability.
The
in this study reflect the underlying biological complexity of

receptor-specific performance differences observed
peptide-receptor interactions. GCGR demonstrated the most
predictable binding patterns, potentially due to more stringent
structural requirements for activation (Qiao et al, 2020).
The improved GAT performance for this receptor suggests
that graph-based representations effectively capture the key
molecular features governing GCGR selectivity. In contrast, GLP1IR
showed different patterns where traditional CNN approaches
maintained competitive performance, indicating that linear
sequence features may be sufficient for this receptor class under
certain conditions.

The robust GIPR performance on novel sequences, despite
limited training data, suggests that the available data may be
sufficient to capture key structure-activity relationships for this
receptor. However, the smaller training dataset available for
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GIPR compared to GCGR and GLPIR indicates that expanded
datasets could further improve model confidence and performance
consistency across all receptor types. Validation against clinically
relevant peptides provided important insights into the model’s
performance on therapeutically important sequences. The GAT
ensemble achieved strong overall accuracy across the three
receptors when evaluated on nine established peptides, with
particularly robust performance for GLP1R (100% accuracy) and
good performance for GCGR (88.9% accuracy) and GIPR (77.8%
accuracy). The model successfully predicted activities for six
well-characterized dual and triple agonists including Retatrutide,
Tirzepatide, and Cotadutide, demonstrating consistent performance
on clinically advanced compounds.

The observed prediction errors offer valuable insights into
model limitations. The misclassification of Pemvidutide’s GCGR
activity (predicted high vs. known low) and GIPR activities for
both Pemvidutide and Mazdutide (predicted low vs. known high)
suggests that certain structural features or receptor interaction
modes may not be fully captured by the current training data.
These discrepancies highlight the importance of expanding
training datasets with diverse clinical candidates to improve
model robustness across the full spectrum of therapeutic peptides.
Nevertheless, the high accuracy achieved on the majority of
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clinically relevant sequences supports the potential utility of this
approach for prioritizing peptide candidates in drug discovery
pipelines.

Analysis of computationally generated peptide sequences
provides insights into the molecular determinants of multi-
receptor binding activity. The generated peptides exhibited
molecular characteristics consistent with known incretin hormone
properties  (Figure 9), sequence
molecular weights falling within the expected range for bioactive
peptide hormones (Miiller et al, 2019). The predicted binding
affinities across all three target receptors (mean probabilities:
GCGR 0.596 = 0.015, GLP1R 0.638 + 0.008, GIPR 0.519 +
0.003) suggest potential for balanced multi-receptor activation,

with average lengths and

though experimental validation remains necessary to confirm these
computational predictions.

Motif analysis revealed partial conservation of established
incretin receptor binding determinants. The preservation of
the EGTF motif in approximately two-thirds of generated
sequences aligns with its known importance for incretin receptor
recognition (Kyte and Doolittle, 1982; Vaswani et al, 2017).
However, the variable presence of other conserved regions, such
as the glucagon family C-terminus motif (present in 35% of
sequences), suggests that the model may identify alternative
binding configurations that warrant experimental investigation.
The biological plausibility scores, while generally favorable, indicate
that computational optimization may generate sequences with
non-natural characteristics that could affect stability or bioactivity.

Sequence similarity analysis revealed that the generated peptides
maintained moderate divergence from the training dataset, with
similarities ranging from 30.0% to 64.1% (mean: 47.0% * 9.33%).
This indicates that the optimization approach explores sequence
variants within a reasonable distance from known agonists while
avoiding excessive extrapolation beyond the model’s training
domain. The balance between sequence novelty and similarity to
established agonists supports the approach as a systematic method
for peptide optimization rather than de novo design.
of generated peptides
fell within reasonable boundaries relative to native incretin

The physicochemical properties

hormones, though some parameters deviated from natural
ranges. The intermediate molecular weights and hydrophobicity
values suggest that the model attempts to balance the distinct
physicochemical requirements of the three target receptors.
However, the relatively low compositional scores indicate potential
departures from natural amino acid distributions, which could
impact peptide stability, immunogenicity, or pharmacokinetic
properties in biological systems (Guruprasad et al., 1990).
These results demonstrate a computational optimization pipeline
that
physicochemical constraints to guide experimental validation

integrates sequence optimization with structural and
efforts. The methodology provides a rational framework for
candidate prioritization, with partially preserved key motifs
and reasonable molecular properties suggesting these optimized
sequences may warrant experimental evaluation to assess their
functional characteristics.

This multi-target capability represents an alternativeover single-
receptor prediction tools, though the performance gains come with
increased computational complexity and reduced interpretability
for non-expert users. Existing simpler approaches may retain
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advantages in specific applications. Rule-based peptide design tools
offer greater transparency in decision-making processes and require
substantially less computational resources (Cheng et al., 2024).
Additionally, established pharmacophore-based methods may
provide more reliable predictions for peptide modifications within
well-characterized chemical space (Giordano et al., 2022). The
GAT approach may be most suitablewhen exploring novel peptide
sequences or optimizing across multiple targets simultaneously.

4.1 Limitations and challenges

Several limitations should be considered when interpreting
these results. The training dataset comprises EC50 measurements
from multiple laboratories using diverse assay conditions, cell
lines, and experimental protocols. This inter-laboratory variability
introduces systematic biases that may affect model predictions,
as differences in receptor expression levels and measurement
methodologies can significantly impact reported EC50 values.
Additionally, the availability of publicly accessible datasets for triple
agonist peptides remains limited, constraining our validation set
size and highlighting the need for larger shared datasets to enable
more robust validation of computational models in this specialized
research area.

The graph-based molecular representation, while capturing
local amino acid interactions, may not fully represent long-range
conformational dependencies critical for receptor binding. The
current feature encoding relies on static physicochemical properties
but excludes dynamic structural information and context-specific
amino acid interactions that influence binding affinity. Additionally,
the model’s reliance on sequence-derived features excludes critical
three-dimensional structural information that governs binding
specificity and selectivity. Finally, in vitro EC50 predictions do not
encompass pharmacological properties essential for therapeutic
development, including peptide stability, membrane permeability,
proteolytic These
limitations highlight opportunities for future model enhancement

resistance, and pharmacokinetic profiles.
through expanded training datasets, incorporation of structural
features, and integration of pharmacokinetic modeling.

The computational methodology presented here primarily
involves optimization of existing agonist sequence scaffolds rather
than de novo creation of entirely novel peptide frameworks.
The genetic algorithm systematically explores sequence variants
within established incretin hormone design space, building
upon known structural templates to identify improved variants.
While this approach limits exploration to modifications around
established peptide scaffolds, it provides a rational framework for
systematic optimization that may identify therapeutically relevant
improvements within well-characterized chemical space. This
targeted optimization strategy balances computational tractability
with biological relevance, though it may not uncover breakthrough
therapeutic properties that could emerge from more radical
structural innovations.

The absence of experimental validation in this computational
study represents an important limitation for assessing practical
therapeutic potential. While the models demonstrate robust
predictive performance on available datasets and show promising
predictions for clinically relevant peptides, the biological activity
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and pharmacological properties of the computationally generated
sequences remain to be confirmed. Experimental validation will
be essential to establish the true therapeutic relevance of these
computational predictions and to bridge the gap between in silico
optimization and practical drug development applications.

Finally, in vitro EC50 predictions do not encompass
pharmacological properties essential for therapeutic development,
including peptide stability, membrane permeability, proteolytic
These
highlight opportunities for future enhancement through expanded

resistance, and pharmacokinetic profiles. limitations
training datasets, incorporation of structural features, integration
of pharmacokinetic modeling, and experimental validation of

computational predictions.

4.2 Implications and potential applications

Despite these limitations, the GAT-based predictor may offer
practical applications for peptide drug discovery. The tool could
facilitate initial screening of large peptide libraries to identify
candidates with predicted multi-receptor activity, potentially
reducing the experimental burden of comprehensive activity testing
(Macarron et al., 2011). The multi-target prediction capability may
prove particularly valuable for prioritizing experimental validation
efforts. Rather than testing peptides sequentially against individual
receptors, researchers could focus on candidates with favorable
predictions across all target receptors (Anighoro et al., 2014). This
approach could streamline the identification of balanced triple
agonists while reducing resource requirements for preliminary
screening.

Additionally, graph-based architecture could inform structure-
activity relationship studies by highlighting amino acid positions
critical for multi-receptor binding. This information could guide
focused mutagenesis studies or assist in designing peptide analogs
with improved pharmacological properties.

Several research directions could enhance the utility and
reliability of computational triple agonist prediction. Expanding
training datasets through systematic experimental characterization
of peptide libraries would improve model robustness and
generalizability. Integration of additional molecular descriptors,
such as predicted secondary structure or dynamic conformational
information, could enhance prediction accuracy.

The GAT architecture could be adapted for other multi-
target therapeutic applications beyond incretin receptor agonists.
Peptide hormones targeting multiple receptor families, such as
opioid or neurotransmitter systems, may benefit from similar
computational approaches (Stein and Machelska, 2011). Future
model developments should address current limitations in
capturing receptor dynamics and allosteric effects. Integration with
molecular dynamics simulations or enhanced sampling techniques
could provide more accurate representations of peptide-receptor
interactions (Hospital et al., 2015).

5 Conclusion

The Graph Attention Network-based predictor represents
a computational framework for identifying potential triple
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agonist peptides targeting GCGR, GLP1R, and GIPR. The model
demonstrated robust cross-validation performance and generated
peptide sequences with biologically plausible characteristics and
preserved functional motifs. However, significant limitations
remain regarding data availability, model generalizability, and
the translation from computational predictions to experimental
validation. While the tool may assist inguiding initial peptide
screening and rational design efforts, extensive experimental
validation will be required to confirm biological activity and
therapeutic utility. The approach establishes a foundation for
computational multi-target peptide design that could be expanded
and refined as additional training data and improved modeling
techniques become available.
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SUPPLEMENTARY FIGURE S1

Residual Analysis and Prediction Distribution Comparison Between GAT and
Multi-task CNN Models. Comprehensive residual analysis comparing GAT (blue
circles) and CNN ensemble (red circles) predictions for EC50 logarithmic values.
(A—C) GCGR Log(EC50) target analysis: (A) True versus predicted values with
unity line (dashed) showing prediction accuracy, (B) residual distribution versus
true values with zero-residual reference line (dashed), and (C) residual frequency
distribution. (D—F) GLP1 Log(EC50) target analysis: (D) true versus predicted
scatter plot, (E) residuals versus true values, and (F) residual distribution
histograms. Residual patterns indicate model performance characteristics and
potential systematic biases in prediction accuracy across the EC50 value range.

SUPPLEMENTARY FIGURE S2

Sequence Similarity Distribution Between Validation and Training Datasets.
Histogram depicting the maximum sequence similarity of each validation
sequence (n = 58) to any sequence in the training set. The distribution reveals a
bimodal pattern with 37 sequences (67%) exhibiting <80% similarity (red dashed
line), and a median similarity of 79.5% (orange dashed line at 90%).

SUPPLEMENTARY FIGURE S3

Comprehensive Classification Metrics for GAT Model Validation Performance.
Extended performance analysis comparing novel sequences (<80% similarity, red)
with the complete validation set (blue) across multiple classification metrics. (A)
Accuracy values showing GCGR: 0.541 (novel) and 0.690 (complete); GLP1R:
0.649 (novel) and 0.759 (complete); GIPR: 0.943 (novel) and 0.929 (complete). (B)
Precision values showing GCGR: 0.514 (novel) and 0.660 (complete); GLP1R:
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SUPPLEMENTARY FIGURE S4

Genetic Algorithm Convergence Analysis. Convergence metrics for the peptide
optimization genetic algorithm across six generations. (A) Best fitness score
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Fitness improvement rate per generation with convergence threshold (0.1, red
dashed line) and 3-generation moving average (orange). The algorithm achieved
convergence when the moving average improvement rate fell below the
threshold at generation 6. (C) Cumulative fitness improvement from baseline,
demonstrating total optimization gain of 2.2 fitness units. Convergence was
achieved after 6 generations.

SUPPLEMENTARY TABLE S1

Complete Training Dataset. The dataset contains peptide identifiers (pep_ID),
amino acid sequences with non-standard modifications in brackets,
experimentally determined EC50 values in picomolar units for GCGR, GLP1R, and
GIPR receptors, corresponding log-transformed EC50 values, and literature
references.
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