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Accurate prediction of antibody paratopes is a critical challenge in structure-
limited, high-throughput discovery workflows. We present ParaDeep, a
lightweight and interpretable deep learning framework for residue-level
paratope prediction directly from amino acid sequences. ParaDeep integrates
bidirectional long short-term memory networks with one-dimensional
convolutional layers to capture both long-range sequence context and local
binding motifs. We systematically evaluated 30 model configurations varying in
encoding schemes, convolutional kernel sizes, and antibody chain types. In five-
fold cross-validation, heavy (H) chain models achieved the highest performance
(F1=0.856 + 0.014, MCC = 0.842 + 0.015), outperforming light (L) chain models
(F1 = 0.774 + 0.023, MCC = 0.772 + 0.022). On an independent blind test
set, ParaDeep attained F1 = 0.723 and MCC = 0.685 for H chains, and F1 =
0.607 and MCC = 0.587 for L chains, representing a 27% MCC improvement
over the sequence-based baseline Parapred. Chain-specific modeling revealed
that heavy chains provide stronger sequence-based predictive signals, while
light chains benefit more from structural context. ParaDeep approaches the
performance of state-of-the-art structure-based methods on heavy chains
while requiring only sequence input, enabling faster and broader applicability
without the computational cost of 3D modeling. Its efficiency and scalability
make it well-suited for early-stage antibody discovery, repertoire profiling,
and therapeutic design, particularly in the absence of structural data. The
implementation is freely available at https://github.com/PiyachatU/ParaDeep,
with Python (PyTorch) code and a Google Colab interface for ease of use.
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antibody binding site prediction, deep learning, BiLSTM-CNN, heavy and light chains,
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1 Introduction

Antibodies neutralize antigens through a subset of surface-
exposed residues known as paratopes (a set of antibody residues
in direct contact with the antigen), which are predominantly
located in the hypervariable loops within the variable domain
of heavy (VH) and light (VL) chains, termed complementarity-
determining regions (CDRs) (Chothia and Lesk, 1987; Foote
and Winter, 1992). While CDRs guide antigen specificity, only a
fraction of their residues directly contacts antigens (Dunbar et al.,
2014), and numerous binding residues occur outside canonical
CDRs (Kunik et al., 2012). Recent studies have demonstrated that
representing paratope-epitope interactions using a standardized
and compact vocabulary can improve the predictability of
antibody-antigen binding from sequence data (Akbar et al., 2021).
Predicting paratopes at residue resolution is therefore essential for
antibody engineering, docking, repertoire profiling, and therapeutic
design. Humanization (the process of genetically engineered
non-human antibodies to minimize immunogenicity in humans
while retaining their antigen-binding specificity) and modification
of antibody frameworks can significantly influence paratope
conformation and binding specificity (Almagro and Fransson,
2008). However, accurate prediction is challenging due to CDR loop
flexibility, the subtlety of antigen-antibody interfaces, and strong
class imbalance, where binding residues typically comprise ~10%
of the sequence (Berman et al., 2000). Structure-based techniques
such as homology modeling and docking provide valuable insights
(Sivasubramanian et al., 2009; Vreven et al., 2015) but rely on
static templates and oversimplified scoring, limiting adaptability
to dynamic interactions (Wodak et al., 2013).

Sequence-based approaches have advanced from early machine
learning models, such as support vector machines and random
forests, which relied on handcrafted physicochemical features
(Ruffolo et al., 2022), to deep learning methods capable of modeling
long-range dependencies (LeCun et al, 2015). Bidirectional
long short-term memory (BiLSTM) networks (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997; Siami-Namini et al.,
2019) and convolutional neural networks (CNNs) have been
successfully applied to capture sequence context and local motifs.
Parapred (Liberis et al., 2018) combines CNNs and BiLSTMs using
input windows consisting of CDRs plus two flanking residues
on either side (CDR + 2), while ParaAntiProt (Kalemati et al.,
2024) integrates pretrained protein language models (PLMs)
with CNNs. These methods have demonstrated good predictive
power but often lack explicit chain-specific modeling and, in
some cases, rely on predefined CDR segmentation, introducing
variability from external annotation tools. Recent PLM-based
models such as ESM-2 (Lin et al., 2023) and AntiBERTy (Leem et al.,
2022) offer
substantial computational resources and can sacrifice model

strong sequence representations but require

interpretability.

Structure-based  approaches three-dimensional

information to improve accuracy. PECAN (Pittala and Bailey-

exploit

Kellogg, 2020) uses graph neural networks (GNNs) with attention to
capture context-aware structural representations, while Paragraph
(Chinery et al., 2022) applies equivariant GNNs to antibody CDR +
2 regions. ParaSurf (Papadopoulos et al., 2025) leverages 3D ResNet
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architectures with transformer-derived features to achieve state-
of-the-art performance, but depends on Fab-region structures (the
antigen-binding portion of antibody comprises VH, the first heavy
chain constant domain; CH1, VL, and light chain constant domain;
CL), limiting applicability when structural data are unavailable.
Experimental mapping methods such as AbMap (Qi et al.,, 2021)
provide high-throughput residue-level annotations but are restricted
to linear epitopes. While structure-based methods can offer high
spatial precision, they typically require high resolution or well-
refined PDB structures to achieve accurate prediction, making them
less practical for large-scale or early-stage discovery. A comparative
summary of representative sequence-based, structure-based, and
hybrid paratope prediction methods is presented in Table 1.

Despite these advances, no prior study has systematically
investigated chain-specific, sequence-only modeling for residue-
level paratope prediction across a wide range of convolutional
receptive fields and encoding strategies. To address this gap,
we introduce ParaDeep, a chain-aware BILSTM-CNN framework
trained directly on full-length antibody sequences using either one-
hot encoding or learnable embeddings. By combining BiLSTM
layers to capture global sequence dependencies with CNN layers
to detect local binding motifs, thereby balancing long-range
contextual awareness with motif-level sensitivity. We systematically
evaluated 30 model configurations varying in encoding schemes,
kernel sizes, and antibody chain types (heavy (H), light (L),
and combined heavy-light (HL)) using five-fold cross-validation,
followed by independent blind test evaluation. Results demonstrate
that chain-specific training markedly enhances predictive accuracy,
particularly for heavy chains, and that kernel size is a critical
determinant of performance. The overall ParaDeep framework is
illustrated in Figure 1.

2 Materials and methods
2.1 Data preparation

2.1.1 Dataset and chain annotation

A curated dataset of 2,807 antibody-antigen complexes
was  retrieved from the Antigen-Antibody = Complex
Database (AACDB; Zhou et al, 2025; https://i.uestc.edu.cn/
AACDB/), version 1.0 (released 30 May 2024), accessed on 16
June 2025. The dataset contains paired heavy (H) and light (L)
antibody chains for each complex, yielding a total of 5,614 sequences
(2,807 H chains and 2,807 L chains). Binding residues were labeled
using AACDB’s atom-distance method, which classifies an antibody
residue as interacting (label = 1) if at least one atom in the residue
is within the proximity range defined by AACDB’s atom-distance
criterion to any atom in an antigen residue; otherwise, the residue is
labeled as non-binding (label = 0).

To ensure the structural relevance and consistency of antibody
variable domains in our analysis, we limited sequences to the typical
length of antibody variable domains (VH and VL, approximately
110-130 residues), rather than an arbitrary cutoff based on a
fixed number of initial residues or a specific numbering scheme
(e.g., Chothia). This approach ensures that we include biologically
relevant full variable regions while excluding constant domains or
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TABLE 1 Comparative summary of representative paratope prediction methods.

10.3389/fbinf.2025.1684042

Input type Method Chain- MCC range? Strengths Weaknesses
specificity
Liberis et al. (2018) Sequence (CDR + 2b) CNN + BiLSTM No 0.35-0.45 Efficient; No chain awareness;
sequence-only model limited context
Pittala and Structure (Ab + Ag) GNN + attention + No 0.55-0.65 Captures paired Needs both Ag and
Bailey-Kellogg transfer learning Ab-Ag interface Ab structures
(2020)
Chinery et al. (2022) Structure (CDR + 2, EGNN with minimal No 0.65-0.69 Antigen-agnostic; Needs PDB input;
AD only) features precise CDR + 2 only
Kalemati et al. (2024) Sequence (Full chain PLM embeddings + Partial 0.55-0.59 High accuracy; CDR-restricted
or CDRs) CNN nanobody-capable input, limited
interpretability

“Ranges reflect reported Matthews correlation coefficients from respective publications; not all values are directly comparable due to dataset differences.
CDR + 2 refers to complementarity-determining regions with two adjacent framework residues included at each boundary.

=

Amino Acid
Encoding

Data Preprocessing

Input Sequence

H |

FIGURE 1
Framework for protein binding site prediction using Integrated
BiLSTM-CNN Model.

incomplete entries, which are not the focus of paratope prediction
in this study.

Furthermore, the dataset was curated at the complex level.
No additional redundancy reduction (e.g., sequence identity
clustering) was applied to the sequences, as our aim was to
capture the full diversity of VH and VL repertoires present
in PDB-resolved complexes and assess our model’s performance
across this natural variability. Certain PDB entries do not initiate
residue numbering at position 1, indicating potential issues with
structural completeness or annotation. By applying this length
cutoff, we aimed to eliminate structurally inconsistent or biologically
irrelevant antibody complexes, retaining only those suitable for
meaningful paratope analysis and downstream modeling. Amino
acids were represented either through one-hot encoding or learnable
embeddings.

2.1.2 Dataset statistics

The final dataset used for model development comprised 2,807
heavy (H) chains and 2,807 light (L) chains, yielding a total of
5,614 antibody sequences. Collectively, these sequences contained
716,896 residues, of which 74,350 (10.37%) were annotated as
binding and 642,546 as non-binding, as defined in the AACDB. This
distribution reflects a pronounced class imbalance, where binding
residues constitute only ~10% of the total, representing a typical
challenge in supervised classification for protein—protein interaction

Frontiers in Bioinformatics

03

prediction. In terms of structural formats, the dataset encompassed
three main antibody types: Fab (n = 2,560; 91.20%), representing
the antigen-binding fragment (VH + CHI1 + VL + CL); Fv (n = 213;
7.59%), consisting only of the variable fragment (VH + VL); and full-
length antibodies (n = 34; 1.21%), containing intact heavy and light
chains. The distribution of antibody types is summarized in Table 2
and illustrated in Figure 2, where Fab fragments clearly dominate
the dataset.

2.1.3 Amino acid representation

Two encoding schemes were applied to numerically represent
amino acid sequences. In the one-hot encoding scheme,
each residue was mapped to a 21-dimensional binary vector
(representing the 20 standard amino acids plus an additional
category for unknown residues, denoted as “X”), thereby
preserving categorical relationships without introducing artificial
ordinality (Mikolov et al., 2013).

In the learnable embedding scheme, input residues were first
converted into integer indices ranging from 0 to 20, corresponding
to the 20 standard amino acids and a special token for padding or
unknown residues. These indices were then mapped to trainable
dense vectors of dimension 21 using a PyTorch embedding layer.
The embedding vectors were randomly initialized and optimized
during training, allowing the network to learn context-specific
representations of amino acids directly from sequence data (Asgari
and Mofrad, 2015; Heffernan et al., 2016).

Both encoding methods were systematically evaluated across
all model configurations to assess their effect on prediction
performance.

2.1.4 Chain-specific model design

To evaluate the effect of chain-aware learning, models were
trained under three configurations: H-only (H), using heavy chain
sequences exclusively; L-only (L), using light chain sequences
exclusively; and HL-combined (HL), trained on a pooled dataset
of both heavy and light chain sequences. This design enabled
a systematic comparison between specialized (chain-specific)
and generalized (combined) modeling approaches, allowing

frontiersin.org
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TABLE 2 Antibody structural type distribution in the dataset with corresponding frequencies, percentages, and descriptions.

Antibody type Frequency Percentage ’ Description
Fab 2,560 91.20% Antigen-binding fragment (VH + CHI1 + VL + CL)
Fv 213 7.59% Variable fragment (VH + VL)
Full-length 34 1.21% Intact heavy and light chain antibodies
Full-length

FIGURE 2

Distribution of antibody structural types in the dataset (n = 2,807 complexes).

Antibody Types
w Fab

Fv
e Full-length

investigation into whether chain identity influences predictive
performance. For HL-combined models, heavy and light chain
sequences were not concatenated per antibody. Instead, H and
L sequences were pooled into a single dataset and trained under
one shared model architecture, with each input sequence (H or L)
processed individually. This design allows the model to learn features
common to both chain types without assuming direct inter-chain
sequence dependency within a single input.

2.1.5 Train—test split

To ensure robust model development and fair generalization
assessment, the dataset was partitioned at the antibody-antigen
complex level into a 90% modeling set and a 10% blind test set
(222 complexes). The modeling set (2,585 complexes) was further
split using five-fold stratified grouped cross-validation, ensuring that
paired heavy and light chains from the same complex were assigned
to the same fold to prevent information leakage.

2.2 Bidirectional long short-term memory
(BiLSTM)

A Bidirectional Long Short-Term Memory (BiLSTM) network
(Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997)

Frontiers in Bioinformatics

extends the standard LSTM by processing sequences in both forward
and reverse directions. This bidirectional context allows each residue
representation to incorporate information from both upstream and
downstream positions, which is particularly important for protein
binding site prediction where interacting residues may be far apart
in the primary sequence but close in three-dimensional space
(Hanson et al., 2019; Liberis et al., 2018). The structural diagram of
the BiLSTM module is shown in Figure 3.

Given an input sequence X = [x;,X,,...,%x;], where x, € R? is
the residue feature vector at position ¢, the BILSTM computes
two hidden state sequences: the forward hidden states ”_l; and the
backward hidden states J1,. These are calculated as:

hy = LSTM™ (x,, 1, ) (1)
hy = LSTM ™ (x,, 1, @)

The final hidden h, representation at position f is obtained by
concatenating the outputs from both directions:

he=[h @ h] e R 3)

where P represents the concatenation symbol. H is the hidden
size of each LSTM layer. This concatenated vector h, captures both
long-range dependencies and bidirectional residue interactions,

frontiersin.org
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Output Layer

Bidirectional Layer
Backward Layer
Forward Layer

Input Layer

FIGURE 3

—[LS"I:M ]«—[LS?:M |

LSTM

10.3389/fbinf.2025.1684042

> LSTM |—1>(LSTM |

Xt t+1

BiLSTM model architecture. The input sequence [X,_;,X;,X.,1] is processed simultaneously by a forward LSTM (blue arrows) and a backward LSTM (red
arrows), producing hidden states in both directions. The outputs from the two directions are concatenated at each position to form the final

bidirectional hidden state h;,.

providing a richer sequence context for downstream convolutional
layers to detect local paratope motifs.

2.3 Convolutional neural networks (CNN)

Convolutional Neural Networks (CNNs) are well suited for
detecting local patterns in structured data and have been widely
applied to sequence-based bioinformatics problems, including
protein-ligand and antibody-antigen binding site prediction
(Liberis et al., 2018; Zeng et al, 2016; Alipanahi et al, 2015),
building upon foundational work in gradient-based learning and
convolutional architectures (LeCun et al., 1998). In this context,
one-dimensional CNNs (1D CNNs) slide learnable filters along
the sequence to extract motif-like features that may correspond to
conserved biochemical interaction patterns, a concept similar to
their application in text classification where convolutional filters
capture local n-gram patterns (Kim, 2014). The structural diagram
of the CNN module is shown in Figure 4.

Given an input H = [h}, h,, ..., h;], and a convolutional kernel of
size k, the output at position ¢, denoted z,, is computed as:

k-1
z = Zwi'htﬂ""b

i=0

(4)

where w; € R? are the kernel weights and b is the bias term, and d
is the input feature dimension. This output is passed through a non-
linear activation function, typically ReLU:

(5)

z, = max(0,z,)

Multiple convolutional kernels with different sizes are applied
in parallel to capture patterns across varying sequence spans,
from short local motifs to broader regions relevant for antigen
recognition. Pooling operations, common in other domains, are
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omitted to preserve the per-residue spatial resolution necessary for
paratope prediction. In ParaDeep, kernel sizes of 7, 15, 31, 71,
and 130 residues were selected to represent short-, medium-, and
long-range receptive fields along the antibody sequence. Smaller
kernels enable the detection of compact, localized motifs, while
larger kernels aggregate information from widely separated residues,
which is important when paratope residues span multiple CDRs
or extend into framework regions. This approach is conceptually
analogous to the optimization of sliding window sizes in protein
sequence and structure prediction (Chen et al., 2006), where
window length critically determines the context available for feature
extraction.

2.4 BiLSTM-CNN for protein binding site
prediction

The BiLSTM-CNN module serves as the core prediction
component in our protein binding site detection pipeline,
integrating the operations formally described in Equations 4-9.
It combines long-range contextual modeling via a Bidirectional
Long Short-Term Memory (BiLSTM) network with local pattern
extraction using one-dimensional Convolutional Neural Networks
(ID CNN). This residue-level framework builds on prior work
in deep learning-based motif recognition and antibody paratope
prediction (Liberis et al., 2018; Ruffolo et al., 2022), which has shown
that BiLSTM-CNN architectures can deliver strong predictive
performance while maintaining interpretability in antibody-antigen
interaction modeling. The overall architecture is shown in Figure 5
and summarized in Algorithm 1.

1. Sequence Encoding: Protein sequences are zero-padded to
a fixed length of 130 residues to ensure uniform input
dimensions. Each residue is encoded using one of two
strategies:

frontiersin.org
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Pooling
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FIGURE 4

Flatten
Layer

10.3389/fbinf.2025.1684042

Fully Connected
Layer

Output
Layer

1D CNN model architecture. The input sequence is encoded and processed by a 1D convolutional layer with sliding kernels to generate feature maps
that capture learned patterns. These features are then passed through a dense layer and sigmoid activation to yield per-position predictions.

» One-hot encoding: a binary vector of length 21 (20 amino
acids + unknown residue X’).

o Learnable embedding: a trainable vector of dimension x, €
IRZ]

2. Contextualization via BiLSTM: The encoded sequence is
processed by a BiLSTM layer with a hidden size of 64
per direction, yielding a contextual vector h, € R'*® at each
position, as defined in Equations 1-3. The BiLSTM is well-
suited for capturing long-range dependencies in protein
sequences where binding residues may be far apart in sequence
but close in three-dimensional space (Hanson et al., 2019;
Liberis et al., 2018).

3. Local Feature Extraction with 1D CNN: The BiLSTM output is
transposed and processed by a 1D CNN using multiple kernel
sizes k€ {7,15,31,71,Full}. Each convolutional operation
generates local feature maps:

k-1
Zt:f<zwi'ht+i+b>

i=0

(6)

where f(-) is the ReLU, w; are kernel weights, and z, € R
captures local sequence motifs (Liberis et al., 2018).

4. Per-Residue Prediction: Each local feature vector z, is passed
through a fully connected layer:

y,=W-z+b (7)

followed by a sigmoid activation to obtain the predicted binding
probability:
1
T l+e

P, € [0,1] (8)
where W and b are learnable parameters.
5. Regularization via Dropout: Dropout (p=0.3) is applied

after the embedding layer, BILSTM output, and CNN feature
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maps to reduce overfitting by preventing co-adaptation of
hidden units.

. Handling Class Imbalance: To address the imbalance between
binding and non-binding residues, the model uses a weighted
binary cross-entropy loss (He and Garcia, 2009), a strategy
conceptually similar to cost-sensitive learning approaches
previously applied in protein-binding site prediction (Wu and
Zhou, 2017):

L= _Z [w.y,log(p,) +w_(1-y,)log (1-p,)]

t=1

)

Nneg

and N,

pos
os
denote the number of negative and positive labels, respectively.

where w, =

is weight for positive class. N,

The negative class weight is implicitly set to w_ = 1. For the final
model configuration, we used optimized weights of w_=1and w, =
8.616, derived from the ratio of non-binding to binding residues
in the training set. This weighting scheme penalizes errors on
the minority (binding) class more strongly and encourages the
model to assign higher importance to correctly identifying binding
residues. This method is supported by prior work on class imbalance
(He and Garcia, 2009; Liberis, et al, 2018) and implemented
in deep learning frameworks like PyTorch (Paszke, et al,
2019), with masking applied to ignore padded residues during
training.

7. Optimization and Training: Training is performed using the
Adam optimizer with a learning rate of 0.001 (Paszke et al.,
2019). Padding masks are applied to exclude padded residues
from loss computation. Early stopping is used to prevent
overfitting, where training is terminated if the validation loss
does not improve for 5 consecutive epochs. This strategy
promotes better generalization and reduces the risk of
overtraining.
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FIGURE 5

BiLSTM-CNN

BiLSTM-CNN model architecture with dropout for residue-level binding site prediction. The input protein sequence of fixed length is first converted
into one-hot or learnable embedding representations. A dropout layer is applied to the embeddings to reduce overfitting. The encoded sequence is
then processed by a bidirectional LSTM (BiLSTM) layer to capture long-range contextual information, followed by another dropout layer on the BiLSTM
output. The contextual features are transposed and passed through a 1D convolutional layer with a kernel of predefined size to capture local sequence
patterns. Dropout is applied once more to the convolutional features before transposing back to sequence-aligned format. Finally, a fully connected
layer maps each residue’s local features to a logit, and a sigmoid activation is applied to produce per-residue binding probabilities.

2.5 Training procedure and experimental
design

The BiLSTM-CNN architecture was trained and evaluated using
a five-fold cross-validation protocol on the training set of 2,585
antibody-antigen complexes. In each fold, 80% of the data were
used for training and 20% for validation, with stratification at the
complex level to ensure paired heavy (H) and light (L) chains
from the same complex were not split across sets. Performance
metrics were averaged across folds and reported as mean + standard
deviation. In addition to the general model trained on all chain
types, chain-specific models were developed for H-only, L-only,
and HL-combined configurations using the same cross-validation
scheme. Each chain-specific model was evaluated exclusively on
its corresponding chain type to assess the influence of chain
identity on predictive performance. Generalization was further
tested on an independent blind hold-out set of 222 complexes,
withheld from all training and hyperparameter tuning stages. These
complexes included residue-level binding site annotations, enabling
rigorous, unbiased evaluation on structurally diverse and previously
unseen samples.

2.6 Model evaluation and performance
metrics

Model performance was assessed on the independent blind
test set using both threshold-dependent and threshold-independent
metrics. From the confusion matrix, we computed the standard
classification metrics:

.. TP
Precision = ————
TP+ FP
Recall = _TIr
TP+ FN

1 = 2 Precision- Recall

Precision + Recall
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Accuracy = —IP+TN
Y TP+ IN+ FP+EN
BAC:l(L+ﬂ)
2\TP+EFN ' TN+FP
TP.TN—FP.FN

MCC =

\(TP + EP)(TP + EN)(TN + FP)(TN + FN)

Here, true positives (TP) and true negatives (IN) refer to
correctly predicted binding and non-binding residues, respectively,
while false positives (FP) and false negatives (FN) indicate
incorrect predictions. We also report the area under the receiver
operating characteristic curve (AUC-ROC) and the area under
the precision-recall curve (PR AUC). Importantly, to address
the class imbalance inherent in paratope datasets, we emphasize
the use of Fl-score, Balanced Accuracy (BAC), and Matthews
Correlation Coeflicient (MCC), all of which are well-established
and robust metrics for evaluating binary classifiers under skewed
class distributions. PR AUC offers a more informative evaluation
under severe class imbalance by focusing on the trade-off between
precision and recall (Davis and Goadrich, 2006), which is
particularly relevant for binding site prediction where positive
residues typically constitute a small fraction of the sequence.
This perspective aligns with the unified framework for analyzing
performance measures proposed by Wu and Zhou (2013), which
emphasizes selecting metrics appropriate to the prediction setting.

3 Results
3.1 Overview of model configurations

To systematically investigate residue-level paratope prediction,
we developed 30 BILSTM-CNN model configurations by varying
three primary factors: (i) amino acid encoding scheme (one-hot
vs. learnable embedding), (ii) antibody chain type (heavy (H), light
(L), and combined (HL)), and (iii) convolutional kernel size (7,
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Input: Amino-acid sequence S (padded to length L=
130).
Output: per-residue binding probabilities {Pr}%:q
1. Residue Encoding
Map each residue s, to x,eRY using either
one-hot encoding (d=21) or a learnable
embedding (d=21).
X =[X1,Xg5...,X, ] € R™Y

2. Dropout (Embedding)
Apply dropout to the embedding
representation to prevent overfitting.

X —Dropout(X,p =0.3)

3. BiLSTM Contextualization
Pass the embedded input into a bidirectional
LSTM layer to obtain contextual
representations.
- Forward hidden state: h;=LSTM~(x..h; ;)
- Backward hidden state: h,=LSTM™(x.h, )
- Concatenate: h,=[h; @ h;]eR¥ (with H=64)
- Collect: H®®®={h,,...,h;] e RP?H
4. Dropout (BiLSTM)
Apply dropout to the BiLSTM output to
enhance generalization.

HSD — Dropout(H<*?,p = 0.3)

5. 1D Convolution without Pooling
Reshape BilLSTM output to match CNN input
shape.
Transpose for CNN: HEM-im ¢ g2t
For each kernel size ke{7,15,31,71,L}
(use same padding to preserve length L):

k-1
z$:Raﬂ(Zw?.mﬁ+bm)
=0

Concatenate feature maps over kernels to
obtain ZeRMC
(C is the total number of convolutional
filters across all kernel sizes.)

6. Dropout (CNN)
Apply dropout to the CNN output to reduce

over-reliance on specific features:
Z < Dropout(Z,p=0.3)

7. Per-residue classifier
Logit: y,=W-z,+b
Probability: p,;=0(y,)=1/(1+e7%)
8. Masked,
Positive weight: W+=Z

class-weighted binary cross-entropy

neg

negative weight w_=1
os
Loss (mask padded positions):

L
L==-Ym[w,y; 1og (p,)+w (1-y;)log (1-p,)]

t=1

where y;e{0,1} and m, €{0,1} is the padding

mask (1 = real residue, © = padding).
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9. Optimization and Early Stopping: Train the
model using the Adam optimizer with a
learning rate of ©.001; terminate training
if validation loss fails to improve for 5
consecutive epochs.

Algorithm 1. Pseudo-code of the BiLSTM-CNN site

prediction model.

binding

15, 31, 71, and 130 residues). All sequences were zero-padded to
a uniform length of 130 residues. Models were trained using five-
fold cross-validation with MCC-based early stopping (patience = 5
epochs) to select the best epoch per fold. The complete configuration
set is detailed in Supplementary Table S1. For downstream
benchmarking against the sequence-based baseline Parapred, we
selected four representative ParaDeep models (M1-M4; Table 3).
These representatives were chosen to capture the best-performing
configurations for each chain type and encoding strategy, enabling
both within-chain and cross-chain performance comparisons on
the blind test set.

3.2 Comparison of encoding strategies

We evaluated the impact of encoding strategies on model
performance by comparing Fl1 and Matthews Correlation
Coefficient (MCC) across H, L, and HL chains with varying
convolutional kernel sizes.

For H-chain models, the one-hot encoded configuration
achieved the highest performance, with an F1 of 0.856
+ 0.014 and MCC of 0.842 + 0.015 at full kernel size
(130 residues). In comparison, the embedding-based model
achieved F1 = 0.813 + 0.015 and MCC = 0.796 + 0.016
(Figures 6A,B; Supplementary Table S2).

A similar pattern was observed for L-chain models (Figures 6C,D).
The one-hot model achieved a peak F1 of 0.774 + 0.023 and MCC
of 0.772 + 0.022, outperforming the embedding-based counterpart
(F1 = 0.711 + 0.017, MCC = 0.712 + 0.016) at the same
kernel size (Supplementary Table S3). While absolute performance for
L chains was lower than for H chains, the relative superiority of one-hot
encoding was consistent across all kernel sizes.

For HL-chain models, the same trend persisted (Figures 6E,F).
The best one-hot model achieved F1 of 0.777 + 0.031 and MCC of
0.767 + 0.031, compared to F1 = 0.723 + 0.017 and MCC = 0.712
+ 0.018 for the embedding-based model (Supplementary Table S4).
Notably, the performance gap between encodings schemes widened
with increasing kernel size, suggesting that one-hot encoding benefits
more from broader sequence context than learnable embeddings.

While one-hot encoding outperformed embeddings in
terms of F1 and MCC across most configurations, embedding-
based models achieved slightly higher Balanced Accuracy
(BAC), with only marginal differences between the two
approaches (Supplementary Table S7). Together, these results
underscore the robustness and efficiency of one-hot encoding
for residue-level paratope prediction. Despite lacking trainable
parameters, one-hot vectors consistently outperformed learned
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TABLE 3 Representative chain-specific BILSTM-CNN models evaluated on the blind test set. All models were trained using five-fold cross-validation
with MCC-based early stopping (patience = 5 epochs).

Model id Encoding Chain ‘ Kernel size ‘ Description
M1 Embedding H 130 Best H-chain embedding model
M2 One-hot H 130 Best H-chain one-hot model
M3 Embedding L 130 Best L-chain embedding model
M4 One-hot L 130 Best L-chain one-hot model
1 F1 Score Comparison with Error Bars - Chain H N MCC C with Error Bars - Chain H N F1 Score Comparison with Error Bars - Chain L
e Embedding Embedding e Embedding
[ One-hot . One-hot s One-hot
08 08 £ 08
L
g 06 06 1 I = 06
3 3 g
z = 4
o4 04 Loa
02 0.2 0.2
0.0 0.0
Kermei ize ! ® Kerl size " o ® Kernel Size " o
N MCC C with Error Bars - Chain L N F1 Score Comparison with Error Bars - Chain HL N MCC Comparison with Error Bars - Chain HL
. Embedding : e Embedding : Embedding
= one-hot = one-ot == onehot
0.8 08
I
0.6 0.6 L
§ g | . L
: 04 04
0.2 0.2
00
7 15 31 7 Full 7 15 31 7 Full 7 15 31 7 Full
Kernel Size Kernel Size Kernel Size
FIGURE 6
Comparison of F1 and Matthews Correlation Coefficient (MCC) between embedding-based and one-hot encoding strategies across various
convolutional kernel sizes, evaluated on HL chain data. Panels (A,B) present results for H chain models; (C,D) for L chain models; and (E,F) for HL chain
models. Each bar represents the mean performance over five-fold cross-validation, with error bars indicating the mean + standard deviation.

embeddings across all chain types and kernel sizes, particularly
in models with wide convolutional receptive fields.

3.3 Impact of convolutional kernel size

We systematically evaluated the impact of convolutional kernel size
onmodel performance across encoding strategies (embedding vs. one-
hot) and antibody chain types (H, L, HL). As illustrated in Figure 7,
increasing the kernel size from 7 to the full sequence length (130
residues) consistently improved both F1 and Matthews Correlation
Coefficient (MCC) across all model configurations.

For embedding-based models (Figures 7A,B), performance
increased steadily with kernel size, although absolute metrics
remained lower than those of one-hot models. On the H chain,
F1 improved from 0.605 + 0.019 (kernel size 7) to 0.813
+ 0.015 (full length), with MCC rising from 0.572 + 0.023
to 0.796 * 0.016. L and HL chain models showed similar
trends, reaching maximum values of F1 ~ 0.711-0.723 and MCC

Frontiers in Bioinformatics

09

~0.712, but consistently lagged behind the one-hot counterparts
(Supplementary Table S5). Balanced Accuracy (BAC) values for
embedding-based models showed small but consistent increases
across kernel sizes, supporting the modest gains observed in
F1 and MCC (Supplementary Table S8).

In one-hot encoded models (Figures 7C,D), performance gains
with larger kernels were pronounced. For the H chain, F1 and
MCC increased from 0.642 + 0.039 and 0.613 * 0.044 (kernel =
7) to 0.856 + 0.014 and 0.842 + 0.015 (full length), respectively. L
chain models improved from F1 = 0.491 + 0.024, MCC = 0.503
+ 0.025 to F1 = 0.774 + 0.023, MCC = 0.772 + 0.022, while HL
models peaked at F1 = 0.777 £ 0.031 and MCC = 0.767 £ 0.031 (see
Supplementary Table S6). One-hot encoded models exhibited slight
BAC improvements with larger kernels, although the differences
were relatively small (Supplementary Table S9).

Interestingly, intermediate kernel sizes—particularly kernel size
71—offered near-peak performance with reduced computational
cost. For example, the one-hot H chain model with kernel
71 attained F1 = 0.799 + 0.020 and MCC = 0.781 + 0.021,
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FIGURE 7

Comparison of F1 (mean + standard deviation) and Matthews Correlation Coefficient (MCC) across convolutional kernel sizes for embedding-based
and one-hot encoded models trained on H, L, and HL chain datasets. Subfigures (A,B) display the F1 and MCC for embedding models, while (C,D) show
the corresponding metrics for one-hot models. All models were trained with early stopping and evaluated on a shared test set comprising H, L, and HL
chains. Each bar represents the average performance across five-fold cross-validation, with error bars indicating + one standard deviation.
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closely approximating the full-length results. These results highlight
the importance of kernel width in capturing long-range residue
dependencies in paratope prediction. While full-length kernels yield
the highest accuracy, mid-sized kernels offer a practical balance
between performance and efficiency, making them well-suited for
deployment in resource-constrained environments.

3.4 Impact of chain-specific modeling

To investigate the importance of chain specialization, 30
BiLSTM-CNN configurations were evaluated on heavy (H), light
(L), and combined heavy-light (HL) chain validation sets. Models
were ranked by mean Matthews Correlation Coefficient (MCC)
from five-fold cross-validation, with the top 10 for each dataset
shown in Figures 8-10.

On the H-chain validation set (Figure 8), models trained
exclusively on H-chain sequences consistently outperformed L- or
HL-trained models. The best-performing configuration—one-hot
encoding with a full-length kernel—achieved F1 = 0.856 + 0.014
and MCC = 0.842 + 0.015. Notably, all top 10 models in this
category were H-trained, reflecting the strong predictive signal in
heavy chains.

For the L-chain validation set (Figure 9), the top model was also
chain-specific (one-hot encoding, full-length kernel), reaching F1 =
0.774 +0.023 and MCC = 0.772 + 0.022. Although some HL-trained
models appeared in the top 10, they consistently underperformed
compared to L-specific models.
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On the HL-chain test set (Figure 10), the highest-ranked model
was trained on HL sequences and achieved F1 = 0.777 + 0.031,
MCC = 0.767 + 0.031. However, this score still fell slightly below
the best H-chain model tested on H-chain data, suggesting that
mixed-chain training may dilute chain-specific features essential for
high-precision binding site prediction.

Across all three validation sets, one-hot encoding outperformed
embedding-based models. The top embedding models recorded
MCC values between 0.712 and 0.796, consistently below their
one-hot counterparts. These results highlight the advantages of
chain-specific modeling, particularly for the heavy chain, which
demonstrated robust and consistent predictive power. Based on
these findings, we prioritized H- and L-chain models for blind
test evaluation and excluded HL-trained models from downstream
benchmarking.

3.5 Comparison with existing method on
the blind test dataset

On the blind test set comprising 222 antibody-antigen
complexes, the proposed ParaDeep models (M1-M4) consistently
outperformed the sequence-based baseline, Parapred, across all
key evaluation metrics. These results demonstrate the strong
generalization capability of the chain-aware BiLSTM-CNN
framework and highlight the benefits of full-length convolution and
one-hot encoding for capturing long-range sequence dependencies
in residue-level paratope prediction. The four representative
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Heatmap showing the performance metrics of the top 10 deep learning models on the H chain validation dataset, based on five-fold cross-validation.
Each cell presents the mean + standard deviation for key evaluation metrics, including AUC, PR AUC, Accuracy, Precision, Recall, F1, and Matthews
Correlation Coefficient (MCC). Models are ranked in descending order by MCC to emphasize those with superior binding site prediction performance.
The color intensity corresponds to the magnitude of each metric, with red tones indicating higher values and blue tones indicating lower values.
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ParaDeep configurations (Table 3) were selected as the top-
performing models from five-fold cross-validation: two trained on
heavy (H) chains (M1-M2) and two on light (L) chains (M3-M4),
each using either one-hot or embedding-based encoding. Models
were evaluated separately on the H- and L-chain subsets of the blind
test set, alongside Parapred.

Heavy chain evaluation (Table 4) showed that the embedding-
based H-chain model (M1) achieved the highest overall performance,
with AUC = 0.959, PR AUC = 0.805, F1 = 0.723, and MCC = 0.685. Its
one-hot counterpart (M2) also performed strongly (F1 =0.715, MCC

Frontiers in Bioinformatics

11

= 0.676). In contrast, L-trained models (M3-M4) showed markedly
lower MCC values (<0.460) when evaluated on H-chain sequences,
underscoring the importance of chain-specific training. Parapred
scored an MCC of 0.410, substantially below both M1 and M2.

Light chain evaluation (Table 5) reversed the trend: the one-hot
L-chain model (M4) achieved the best performance, with F1 = 0.607
and MCC = 0.587, followed closely by the embedding-based L-chain
model (M3). H-trained models (M1-M2) underperformed in this
setting, further confirming the chain specificity of learned features.
Parapred again lagged behind, with F1 = 0.437 and MCC = 0.404.
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Heatmap showing the performance metrics of the top 10 deep learning models on the HL chain validation dataset, based on five-fold cross-validation.
Each cell presents the mean + standard deviation for key evaluation metrics, including AUC, PR AUC, Accuracy, Precision, Recall, F1, and Matthews
Correlation Coefficient (MCC). Models are ranked in descending order by MCC to emphasize those with superior binding site prediction performance.
The color intensity corresponds to the magnitude of each metric, with red tones indicating higher values and blue tones indicating lower values.
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Precision—Recall Trade-off for Heavy Chain Models. The plot compares Parapred and proposed models M1-M4 on the H chain blind test set, with F1
iso-contours and MCC color gradient.

Precision-recall trade-offs are illustrated in Figures 11, 12 for H- 4 Discussion

and L-chain evaluations, respectively, with F1 contours and MCC

color encoding. Figures 13, 14 present radar plots comparing all 4.1 Summary of key findings

models across seven metrics (AUC, PR AUC, accuracy, precision,

recall, F1,and MCC). Overall, ParaDeep’s chain-aware BILSTM-CNN This study introduced ParaDeep, a sequence-based deep
models deliver consistent improvements over existing sequence-based ~ learning framework for residue-level paratope prediction that
approaches, particularly in metrics robust to class imbalance, such as  integrates bidirectional long short-term memory (BiLSTM)
PR AUC and MCC. These findings reinforce the value of chain-specific =~ networks with one-dimensional convolutional neural networks
modeling for high-fidelity paratope prediction. (CNNs).  BIiLSTM  layers capture bidirectional sequence
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TABLE 4 Performance of ParaDeep models and Parapred on the heavy-chain blind test set. The best value for each metric is shown in bold.

Model Id Description AUC PR AUC Accuracy Precision Recall F1

M1 BiLSTM-CNN, embedding, H 0.959 0.805 0.919 0.636 0.837 0.723 0.685
M2 BiLSTM-CNN, one-hot, H 0.956 0.790 0917 0.630 0.827 0.715 0.676
M3 BiLSTM-CNN, embedding, L 0.866 0.509 0.873 0.499 0.555 0.526 0.454
M4 BiLSTM-CNN, one-hot, L 0.838 0.459 0.873 0.498 0.434 0.464 0.394
Parapred Parapred (baseline) 0.861 0.516 0.884 0.562 0.397 0.466 0.410

TABLE 5 Performance of ParaDeep models and Parapred on the light-chain blind test set. The best value for each metric is shown in bold.

Model id Description AUC PR AUC Accuracy Precision Recall F1
M1 BiLSTM-CNN, embedding, H 0.862 0.391 0.915 0.432 0.467 0.449 0.403
M2 BiLSTM-CNN, one-hot, H 0.855 0.388 0.914 0.423 0.473 0.447 0.401
M3 BiLSTM-CNN, embedding, L 0.948 0.708 0.913 0.451 0.828 0.584 0.571
M4 BiLSTM-CNN, one-hot, L 0.945 0.697 0.925 0.495 0.786 0.607 0.587
Parapred Parapred (baseline) 0.861 0.442 0.928 0.509 0.383 0.437 0.404
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Precision—Recall Trade-off for Heavy Chain Models. The plot compares Parapred and proposed models M1-M4 on the L chain blind test set, with F1
iso-contours and MCC color gradient.

dependencies (Hochreiter and Schmidhuber, 1997; Schuster and  three primary factors: amino acid encoding strategy (one-hot vs.
Paliwal, 1997), while CNN layers extract local structural motifs learnable embedding), antibody chain type (H, L, and HL), and
relevant to binding (Liberis et al,, 2018; Hanson et al, 2019).  convolutional kernel size. The results demonstrated that chain-
We systematically evaluated 30 model configurations by varying  specific training, long-range convolution, and appropriate encoding
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FIGURE 13

chain blind test set.

Model Performance Radar Chart - H Chain
Accuracy

Radar Chart of Model Performance on Heavy Chain. Summary of metrics (AUC, PR AUC, Accuracy, Precision, Recall, F1, MCC) for each model on the H

M1
M2
M3
M4
Parapred

strategy are critical determinants of model performance, in line
with prior evidence that chain-aware modeling enhances antibody
binding site prediction (Ruffolo et al., 2022). On a blind test
set of 222 antibody-antigen complexes, ParaDeep outperformed
the widely used sequence-based baseline Parapred (Liberis et al.,
2018) across all key metrics, including precision-recall AUC
and Matthews correlation coeflicient, which are particularly
informative under class imbalance. This generalization capability,
achieved without requiring structural input, underscores ParaDeep’s
potential as a scalable, structure-independent tool for early-stage
antibody design, complementing structure-based methods such as
AlphaFold (Jumper et al.,, 2021) or graph-based approaches like
ParaAntiProt (Kalemati et al., 2024).

While
architectures are well-known for their ability to capture long-range

attention  mechanisms and  transformer-based
dependencies and offer interpretability, our initial focus in this
study was to prioritize model interpretability through the analysis of
learned motifs and to maintain lightweight deployment capabilities.
We designed our architecture to demonstrate the effectiveness of
combining BiLSTM and CNN layers for residue-level paratope
prediction. Future work will benchmark attention layers and full
transformer-based architectures against our current model to

assess potential gains in performance, computational efficiency, and
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enhanced interpretability, providing a comprehensive comparison
of different mechanisms for capturing sequence context.

4.2 Chain-dependent effects of encoding
strategy

While one-hot encoding yielded superior results in most
cross-validation settings, chain-specific blind test evaluations
revealed a more nuanced pattern. On the H-chain dataset,
the embedding-based model (M1) slightly outperformed its
one-hot counterpart (M2). Biologically, this advantage is likely
driven by the higher sequence and structural diversity of heavy
chains, particularly in the CDR-H3 region, which exhibits the
greatest variability in length, amino acid composition, and
conformational flexibility among antibody loops (Xu and Davis,
2000; Kuroda et al., 2012). Such diversity provides a rich feature
space for learnable embeddings to capture subtle biochemical
similarities and contextual dependencies, beyond what discrete
one-hot representations can offer. This is consistent with the
principle that embeddings project residues into a continuous vector
space, enabling proximity-based relationships between amino acids
(Mikolov et al., 2013; Peters et al., 2018).
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FIGURE 14

chain blind test set.

Model Performance Radar Chart - L Chain
Accuracy

Radar Chart of Model Performance on Light Chain. Summary of metrics (AUC, PR AUC, Accuracy, Precision, Recall, F1, MCC) for each model on the L

M1
M2
M3
M4
Parapred

In contrast, for the L-chain dataset, the one-hot encoded model
(M4) outperformed the embedding-based model (M3). Light chains
are generally more conserved in sequence and structure, with
reduced loop variability compared to heavy chains (Almagro et al,
2019; Abhinandan and Martin, 2008). Computationally, one-hot
encoding avoids additional trainable parameters, reducing the risk
of overfitting when sequence diversity is low (Goodfellow et al.,
2016). Sparse categorical encodings also preserve exact residue
identity, which can be advantageous when modeling conserved
motifs (Krizhevsky et al., 2017; Wu et al., 2021).

Our model architecture consistently performed better on
antibody heavy chains (VH) compared to light chains (VL).
While heavy chains are known for their higher sequence and
structural diversity, this variability, paradoxically, can provide richer
and more distinct signals for learnable embeddings to capture
contextual dependencies. The increased information content within
VH sequences, especially concerning CDR H3, which is the most
diverse and often central to antigen binding, allows the model’s
embedding layers to learn more discriminative features. Thus,
this ‘diversity’ enhances the models ability to learn meaningful
representations rather than inherently hindering it, particularly
when coupled with architectures capable of capturing complex
patterns from these richer signals. Light chains, being less diverse,
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might offer fewer distinct features for the model to leverage, leading
to slightly lower performance.

From a computational perspective, these results underscore
that encoding strategy should align with both biological diversity
and dataset characteristics. Embeddings can leverage variability
in diverse repertoires such as H chains, while one-hot encoding
remains a robust choice for conserved repertoires like L chains. This
observation aligns with findings from protein language modeling
studies, where encoding choices directly influence downstream task
performance (Elnaggar et al., 2022; Rao et al., 2019).

4.3 Effect of convolutional kernel size

Convolutional kernel size was a critical determinant of
ParaDeep’s predictive performance. Across all encoding strategies
and antibody chain types, models employing full-length convolution
(kernel = 130 residues) achieved the highest F1 and MCC scores.
This improvement reflects the biological reality that antibody
paratopes can span multiple complementarity-determining regions
(CDRs) and may also include framework residues (Saha and
Raghava, 2006; Chen, Kurgan, and Ruan, 2008; Jones, 1999).
Such residues are often distant in the primary sequence yet
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spatially close in three-dimensional space, cooperating to form
the antigen-binding interface (Sela-Culang et al., 2013).

The superior performance of ‘full-length convolution’ (which is
structurally analogous to a fully connected layer applied across the
entire sequence) over standard CNN filters indicates that paratope
residues are not solely determined by short-range local flanking
residues. Instead, paratope residues often span multiple CDRs and
framework regions, requiring a broader, more global sequence
context for accurate prediction. This result does not indicate a
failure of CNNs, but highlights that their effectiveness in this task
depends strongly on the kernel size, which determines the accessible
sequence context. The biological distribution of binding residues
across disparate segments of the variable domain necessitates a
model that can capture these long-range dependencies effectively.

From a computational standpoint, larger convolutional kernels
expand the receptive field of the CNN, allowing aggregation of
features over broad sequence contexts. This capability complements
the BiLSTM’s bidirectional context modeling by enabling the
detection of distributed motifs that span multiple structural
segments. As discussed by Araujo et al. (2019), the size of the
receptive field is directly related to kernel width and network depth,
with larger receptive fields providing the ability to capture global
sequence patterns.

However, large kernels also increase the number of trainable
parameters and computational cost per forward pass, which
can impact scalability in large-scale applications. Interestingly,
our results revealed that mid-sized kernels (e.g., 71 residues)
achieved near-peak performance while significantly reducing
computation. This balance aligns with the bias-variance trade-
off described by Goodfellow et al. (2016), in which overly large
models risk overfitting, while excessively small kernels may
underfit. Furthermore, findings from Gehring et al. (2017) in
convolutional sequence modeling show that intermediate receptive
fields can capture most relevant dependencies without incurring the
computational and overfitting risks of full-length kernels.

Opverall, kernel size tuning emerges as both a biologically and
computationally significant hyperparameter in paratope prediction.
While full-length kernels maximize performance by capturing
all possible long-range dependencies, mid-sized kernels provide
an attractive trade-off between accuracy and efficiency, making
them particularly suitable for deployment in real-time or resource-
constrained antibody design workflows.

4.4 Comparison with prior methods

ParaDeep consistently outperformed Parapred (Liberis et al.,
2018), a widely adopted sequence-based paratope predictor, in
both H- and L-chain blind test evaluations. On the H-chain
set, ParaDeep achieved a relative MCC improvement of over
27%, with corresponding gains in F1 and PR AUC. On the
L-chain, ParaDeep similarly outperformed Parapred across all
metrics. These improvements can be attributed to ParaDeep’s chain-
specific modeling, class imbalance handling, and deep contextual
architecture. Parapred employs a CNN-BiLSTM architecture but
does not incorporate chain-specific training, instead using a
single model for all antibody chains. This lack of specialization,
coupled with its shorter convolutional kernels, limits its ability to
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capture long-range dependencies critical for high-fidelity paratope
prediction.

ParaSurf represents a leading structure-based approach
for paratope prediction. The most recent version, ParaSurf
(Papadopoulos et al., 2025), integrates surface geometric, chemical,
and force-field features using a hybrid 3D ResNet and transformer
architecture. This method achieves state-of-the-art results on
multiple benchmark datasets, including prediction across the
entire Fab region. However, ParaSurf’s reliance on high-quality
3D antibody structures limits its utility in early-stage antibody
discovery pipelines, where structural data may be incomplete
or unavailable. Although structure prediction tools such as
AlphaFold (Jumper et al., 2021) can mitigate this requirement,
they introduce additional computational overhead and modeling
uncertainty. ParaAntiProt (Kalemati et al., 2024) offers another
deep learning-based sequence predictor, but it requires explicit
CDR segmentation during both training and inference. This
dependency introduces variability due to differences in numbering
schemes (Dunbar and Deane, 2016) and definitions of CDR
boundaries (Chothia and Lesk, 1987), potentially affecting
reproducibility across datasets and studies.

In contrast, ParaDeep operates directly on raw amino
acid sequences without requiring structural input or domain-
specific segmentation. This design choice enables fair and
reproducible comparisons across datasets, isolates the benefits of
the BILSTM-CNN architecture from preprocessing biases, and
makes the method adaptable to varied antibody formats and
discovery pipelines. For benchmarking, Parapred was chosen as the
primary sequence-based comparator, as it shares ParaDeep’s input
modality and preprocessing simplicity, allowing a direct assessment
of architectural improvements.

4.5 Practical implications and limitations

ParaDeep is well-suited for high-throughput antibody
discovery, particularly in early-stage workflows where structural
information is unavailable. Its reliance solely on primary amino
acid sequences enables application to antibodies without resolved
3D structures, making it ideal for computational pre-screening
prior to experimental validation. The modular architecture and
compact parameter count (<10 M) allow efficient deployment
on standard computing resources without specialized hardware,
supporting both academic and industrial use. In hybrid pipelines,
ParaDeep can be paired with structural modeling tools such
as AlphaFold (Jumper et al, 2021) and docking platforms
like ClusPro (Kozakov et al., 2017) to refine downstream structural
analyses, acting as a rapid sequence-based filter to narrow candidates
before more computationally intensive modeling.

Nevertheless, limitations remain. First, the training dataset
primarily comprises canonical Fab and Fv formats, leaving
(scFv),

nanobodies, and synthetic constructs untested. Second, although

generalization to single-chain variable fragments
sequence-based methods such as ParaDeep capture biochemical
and contextual relationships between residues, they may lack
the atomic-level spatial precision achievable by structure-based
methods (Krawczyk et al, 2013). Third, while weighted binary

cross-entropy loss mitigates class imbalance (Buda et al., 2018; Wu
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and Zhou, 2017), rare paratope configurations may still be
underrepresented, potentially biasing predictions toward more
common binding patterns.

Future improvements include expanding training data to
encompass scFv, nanobody, and synthetic constructs; integrating
attention mechanisms or graph-based encoders (Gligorijevi¢ et al.,
2021) to enhance spatial reasoning without full 3D inputs; and
exploring pretrained protein language models such as ESM-2
(Linetal., 2023) or AntiBERTY (Ruffolo et al., 2021) to enrich residue
embeddings while maintaining interpretability.

4.6 Computational techniques and design
considerations

Building on these practical insights, ParaDeep’s BILSTM-CNN
framework was designed to balance interpretability, accuracy,
and computational efficiency. Bidirectional LSTMs capture long-
range dependencies in both sequence directions (Hochreiter and
Schmidhuber, 1997), while 1D CNNs serve as adaptive context
windows for detecting local binding motifs. Kernel sizes were
optimized per chain type to reflect biological variation in paratope
patterns, with mid-to long-range kernels (71 and 130 residues)
delivering the best results.

Unlike pretrained protein language models (PLMs) such
as ESM-2 (Lin et al, 2023) or AntiBERTy (Ruffolo et al,
2021)—which offer high representational power but demand
significant computational resources and can reduce transparency
(Choromanski et al, 2020; Kalemati et al, 2024)—ParaDeep
uses lightweight, task-specific embeddings, enabling fast, resource-
efficient deployment.

To address severe class imbalance between binding and non-
binding residues, weighted binary cross-entropy loss was applied, a
method shown effective in prior studies (Buda et al., 2018; Wu and
Zhou, 2017). An ablation study of 30 model variants revealed that
early stopping had minimal impact, likely due to stable training from
class weighting.

Overall, ParaDeeps hybrid architecture achieves chain-
aware, interpretable modeling without relying on structural
input or PLMs. This makes it a practical and flexible
alternative to structure-dependent or PLM-heavy predictors
(Kalemati et al., 2024; Liberis et al., 2018), suitable for diverse
paratope prediction scenarios.

5 Conclusion

This study introduces ParaDeep, a lightweight and
interpretable deep learning framework for residue-level paratope
based solely on amino acid sequences. The
chain-aware BiLSTM-CNN architecture integrates

bidirectional context modeling with adaptive 1D convolution,

prediction,
proposed

enabling the extraction of both local and non-local sequence
features without reliance on structural input or pretrained
embeddings.

Across 30 systematically evaluated model configurations,
embedding-based models generally outperformed one-hot

encodings, particularly on heavy chains, while chain-specific
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training led to the highest overall performance—especially for
light chains, which benefited from longer receptive fields. Optimal
kernel sizes varied by chain, reflecting distinct biological binding
characteristics.

Compared to structure-based tools like ParaSurf, ParaDeep
(e.g.
MCC, F1), while offering significantly lower computational

achieved comparable performance on key metrics
overhead and broader usability in sequence-only contexts.
the sequence-based

baseline Parapred on the same benchmark dataset. These

Importantly, ParaDeep outperformed
results highlight ParaDeep’s strength in capturing functional
antibody features in a structure-independent and resource-efficient
manner.

With its generalization across chain types, sensitivity to CDR3
diversity, and ability to detect binding signals in non-CDR regions,
ParaDeep represents a practical tool for early-stage antibody
discovery, repertoire profiling, and therapeutic design—particularly
is unavailable or

under conditions where structural data

incomplete.
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