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Accurate prediction of antibody paratopes is a critical challenge in structure-
limited, high-throughput discovery workflows. We present ParaDeep, a 
lightweight and interpretable deep learning framework for residue-level 
paratope prediction directly from amino acid sequences. ParaDeep integrates 
bidirectional long short-term memory networks with one-dimensional 
convolutional layers to capture both long-range sequence context and local 
binding motifs. We systematically evaluated 30 model configurations varying in 
encoding schemes, convolutional kernel sizes, and antibody chain types. In five-
fold cross-validation, heavy (H) chain models achieved the highest performance 
(F1 = 0.856 ± 0.014, MCC = 0.842 ± 0.015), outperforming light (L) chain models 
(F1 = 0.774 ± 0.023, MCC = 0.772 ± 0.022). On an independent blind test 
set, ParaDeep attained F1 = 0.723 and MCC = 0.685 for H chains, and F1 = 
0.607 and MCC = 0.587 for L chains, representing a 27% MCC improvement 
over the sequence-based baseline Parapred. Chain-specific modeling revealed 
that heavy chains provide stronger sequence-based predictive signals, while 
light chains benefit more from structural context. ParaDeep approaches the 
performance of state-of-the-art structure-based methods on heavy chains 
while requiring only sequence input, enabling faster and broader applicability 
without the computational cost of 3D modeling. Its efficiency and scalability 
make it well-suited for early-stage antibody discovery, repertoire profiling, 
and therapeutic design, particularly in the absence of structural data. The 
implementation is freely available at https://github.com/PiyachatU/ParaDeep, 
with Python (PyTorch) code and a Google Colab interface for ease of use.
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1 Introduction

Antibodies neutralize antigens through a subset of surface-
exposed residues known as paratopes (a set of antibody residues 
in direct contact with the antigen), which are predominantly 
located in the hypervariable loops within the variable domain 
of heavy (VH) and light (VL) chains, termed complementarity-
determining regions (CDRs) (Chothia and Lesk, 1987; Foote 
and Winter, 1992). While CDRs guide antigen specificity, only a 
fraction of their residues directly contacts antigens (Dunbar et al., 
2014), and numerous binding residues occur outside canonical 
CDRs (Kunik et al., 2012). Recent studies have demonstrated that 
representing paratope–epitope interactions using a standardized 
and compact vocabulary can improve the predictability of 
antibody–antigen binding from sequence data (Akbar et al., 2021). 
Predicting paratopes at residue resolution is therefore essential for 
antibody engineering, docking, repertoire profiling, and therapeutic 
design. Humanization (the process of genetically engineered 
non-human antibodies to minimize immunogenicity in humans 
while retaining their antigen-binding specificity) and modification 
of antibody frameworks can significantly influence paratope 
conformation and binding specificity (Almagro and Fransson, 
2008). However, accurate prediction is challenging due to CDR loop 
flexibility, the subtlety of antigen–antibody interfaces, and strong 
class imbalance, where binding residues typically comprise ∼10% 
of the sequence (Berman et al., 2000). Structure-based techniques 
such as homology modeling and docking provide valuable insights 
(Sivasubramanian et al., 2009; Vreven et al., 2015) but rely on 
static templates and oversimplified scoring, limiting adaptability 
to dynamic interactions (Wodak et al., 2013).

Sequence-based approaches have advanced from early machine 
learning models, such as support vector machines and random 
forests, which relied on handcrafted physicochemical features 
(Ruffolo et al., 2022), to deep learning methods capable of modeling 
long-range dependencies (LeCun et al., 2015). Bidirectional 
long short-term memory (BiLSTM) networks (Hochreiter and 
Schmidhuber, 1997; Schuster and Paliwal, 1997; Siami-Namini et al., 
2019) and convolutional neural networks (CNNs) have been 
successfully applied to capture sequence context and local motifs. 
Parapred (Liberis et al., 2018) combines CNNs and BiLSTMs using 
input windows consisting of CDRs plus two flanking residues 
on either side (CDR ± 2), while ParaAntiProt (Kalemati et al., 
2024) integrates pretrained protein language models (PLMs) 
with CNNs. These methods have demonstrated good predictive 
power but often lack explicit chain-specific modeling and, in 
some cases, rely on predefined CDR segmentation, introducing 
variability from external annotation tools. Recent PLM-based 
models such as ESM-2 (Lin et al., 2023) and AntiBERTy (Leem et al., 
2022) offer strong sequence representations but require 
substantial computational resources and can sacrifice model
interpretability.

Structure-based approaches exploit three-dimensional 
information to improve accuracy. PECAN (Pittala and Bailey-
Kellogg, 2020) uses graph neural networks (GNNs) with attention to 
capture context-aware structural representations, while Paragraph 
(Chinery et al., 2022) applies equivariant GNNs to antibody CDR ± 
2 regions. ParaSurf (Papadopoulos et al., 2025) leverages 3D ResNet 

architectures with transformer-derived features to achieve state-
of-the-art performance, but depends on Fab-region structures (the 
antigen-binding portion of antibody comprises VH, the first heavy 
chain constant domain; CH1, VL, and light chain constant domain; 
CL), limiting applicability when structural data are unavailable. 
Experimental mapping methods such as AbMap (Qi et al., 2021) 
provide high-throughput residue-level annotations but are restricted 
to linear epitopes. While structure-based methods can offer high 
spatial precision, they typically require high resolution or well-
refined PDB structures to achieve accurate prediction, making them 
less practical for large-scale or early-stage discovery. A comparative 
summary of representative sequence-based, structure-based, and 
hybrid paratope prediction methods is presented in Table 1.

Despite these advances, no prior study has systematically 
investigated chain-specific, sequence-only modeling for residue-
level paratope prediction across a wide range of convolutional 
receptive fields and encoding strategies. To address this gap, 
we introduce ParaDeep, a chain-aware BiLSTM–CNN framework 
trained directly on full-length antibody sequences using either one-
hot encoding or learnable embeddings. By combining BiLSTM 
layers to capture global sequence dependencies with CNN layers 
to detect local binding motifs, thereby balancing long-range 
contextual awareness with motif-level sensitivity. We systematically 
evaluated 30 model configurations varying in encoding schemes, 
kernel sizes, and antibody chain types (heavy (H), light (L), 
and combined heavy-light (HL)) using five-fold cross-validation, 
followed by independent blind test evaluation. Results demonstrate 
that chain-specific training markedly enhances predictive accuracy, 
particularly for heavy chains, and that kernel size is a critical 
determinant of performance. The overall ParaDeep framework is 
illustrated in Figure 1.

2 Materials and methods

2.1 Data preparation

2.1.1 Dataset and chain annotation
A curated dataset of 2,807 antibody–antigen complexes 

was retrieved from the Antigen–Antibody Complex 
Database (AACDB; Zhou et al., 2025; https://i.uestc.edu.cn/
AACDB/), version 1.0 (released 30 May 2024), accessed on 16 
June 2025. The dataset contains paired heavy (H) and light (L) 
antibody chains for each complex, yielding a total of 5,614 sequences 
(2,807 H chains and 2,807 L chains). Binding residues were labeled 
using AACDB’s atom-distance method, which classifies an antibody 
residue as interacting (label = 1) if at least one atom in the residue 
is within the proximity range defined by AACDB’s atom-distance 
criterion to any atom in an antigen residue; otherwise, the residue is 
labeled as non-binding (label = 0).

To ensure the structural relevance and consistency of antibody 
variable domains in our analysis, we limited sequences to the typical 
length of antibody variable domains (VH and VL, approximately 
110–130 residues), rather than an arbitrary cutoff based on a 
fixed number of initial residues or a specific numbering scheme 
(e.g., Chothia). This approach ensures that we include biologically 
relevant full variable regions while excluding constant domains or 
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TABLE 1  Comparative summary of representative paratope prediction methods.

Model Input type Method Chain-
specificity

MCC rangea Strengths Weaknesses

Liberis et al. (2018) Sequence (CDR ± 2b) CNN + BiLSTM No 0.35–0.45 Efficient; 
sequence-only model

No chain awareness; 
limited context

Pittala and 
Bailey-Kellogg 

(2020)

Structure (Ab + Ag) GNN + attention + 
transfer learning

No 0.55–0.65 Captures paired 
Ab-Ag interface

Needs both Ag and 
Ab structures

Chinery et al. (2022) Structure (CDR ± 2, 
Ab only)

EGNN with minimal 
features

No 0.65–0.69 Antigen-agnostic; 
precise

Needs PDB input; 
CDR ± 2 only

Kalemati et al. (2024) Sequence (Full chain 
or CDRs)

PLM embeddings + 
CNN

Partial 0.55–0.59 High accuracy; 
nanobody-capable

CDR-restricted 
input, limited 

interpretability

aRanges reflect reported Matthews correlation coefficients from respective publications; not all values are directly comparable due to dataset differences.
bCDR ± 2 refers to complementarity-determining regions with two adjacent framework residues included at each boundary.

FIGURE 1
Framework for protein binding site prediction using Integrated 
BiLSTM-CNN Model.

incomplete entries, which are not the focus of paratope prediction 
in this study.

Furthermore, the dataset was curated at the complex level. 
No additional redundancy reduction (e.g., sequence identity 
clustering) was applied to the sequences, as our aim was to 
capture the full diversity of VH and VL repertoires present 
in PDB-resolved complexes and assess our model’s performance 
across this natural variability. Certain PDB entries do not initiate 
residue numbering at position 1, indicating potential issues with 
structural completeness or annotation. By applying this length 
cutoff, we aimed to eliminate structurally inconsistent or biologically 
irrelevant antibody complexes, retaining only those suitable for 
meaningful paratope analysis and downstream modeling. Amino 
acids were represented either through one-hot encoding or learnable 
embeddings. 

2.1.2 Dataset statistics
The final dataset used for model development comprised 2,807 

heavy (H) chains and 2,807 light (L) chains, yielding a total of 
5,614 antibody sequences. Collectively, these sequences contained 
716,896 residues, of which 74,350 (10.37%) were annotated as 
binding and 642,546 as non-binding, as defined in the AACDB. This 
distribution reflects a pronounced class imbalance, where binding 
residues constitute only ∼10% of the total, representing a typical 
challenge in supervised classification for protein–protein interaction 

prediction. In terms of structural formats, the dataset encompassed 
three main antibody types: Fab (n = 2,560; 91.20%), representing 
the antigen-binding fragment (VH + CH1 + VL + CL); Fv (n = 213; 
7.59%), consisting only of the variable fragment (VH + VL); and full-
length antibodies (n = 34; 1.21%), containing intact heavy and light 
chains. The distribution of antibody types is summarized in Table 2 
and illustrated in Figure 2, where Fab fragments clearly dominate 
the dataset.

2.1.3 Amino acid representation
Two encoding schemes were applied to numerically represent 

amino acid sequences. In the one-hot encoding scheme, 
each residue was mapped to a 21-dimensional binary vector 
(representing the 20 standard amino acids plus an additional 
category for unknown residues, denoted as “X”), thereby 
preserving categorical relationships without introducing artificial 
ordinality (Mikolov et al., 2013).

In the learnable embedding scheme, input residues were first 
converted into integer indices ranging from 0 to 20, corresponding 
to the 20 standard amino acids and a special token for padding or 
unknown residues. These indices were then mapped to trainable 
dense vectors of dimension 21 using a PyTorch embedding layer. 
The embedding vectors were randomly initialized and optimized 
during training, allowing the network to learn context-specific 
representations of amino acids directly from sequence data (Asgari 
and Mofrad, 2015; Heffernan et al., 2016).

Both encoding methods were systematically evaluated across 
all model configurations to assess their effect on prediction 
performance. 

2.1.4 Chain-specific model design
To evaluate the effect of chain-aware learning, models were 

trained under three configurations: H-only (H), using heavy chain 
sequences exclusively; L-only (L), using light chain sequences 
exclusively; and HL-combined (HL), trained on a pooled dataset 
of both heavy and light chain sequences. This design enabled 
a systematic comparison between specialized (chain-specific) 
and generalized (combined) modeling approaches, allowing 
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TABLE 2  Antibody structural type distribution in the dataset with corresponding frequencies, percentages, and descriptions.

Antibody type Frequency Percentage Description

Fab 2,560 91.20% Antigen-binding fragment (VH + CH1 + VL + CL)

Fv 213 7.59% Variable fragment (VH + VL)

Full-length 34 1.21% Intact heavy and light chain antibodies

FIGURE 2
Distribution of antibody structural types in the dataset (n = 2,807 complexes).

investigation into whether chain identity influences predictive 
performance. For HL-combined models, heavy and light chain 
sequences were not concatenated per antibody. Instead, H and 
L sequences were pooled into a single dataset and trained under 
one shared model architecture, with each input sequence (H or L) 
processed individually. This design allows the model to learn features 
common to both chain types without assuming direct inter-chain 
sequence dependency within a single input. 

2.1.5 Train–test split
To ensure robust model development and fair generalization 

assessment, the dataset was partitioned at the antibody–antigen 
complex level into a 90% modeling set and a 10% blind test set 
(222 complexes). The modeling set (2,585 complexes) was further 
split using five-fold stratified grouped cross-validation, ensuring that 
paired heavy and light chains from the same complex were assigned 
to the same fold to prevent information leakage. 

2.2 Bidirectional long short-term memory 
(BiLSTM)

A Bidirectional Long Short-Term Memory (BiLSTM) network 
(Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997) 

extends the standard LSTM by processing sequences in both forward 
and reverse directions. This bidirectional context allows each residue 
representation to incorporate information from both upstream and 
downstream positions, which is particularly important for protein 
binding site prediction where interacting residues may be far apart 
in the primary sequence but close in three-dimensional space 
(Hanson et al., 2019; Liberis et al., 2018). The structural diagram of 
the BiLSTM module is shown in Figure 3.

Given an input sequence X = [x1,x2,…,xT], where xt ∈ ℝd is 
the residue feature vector at position t, the BiLSTM computes 
two hidden state sequences: the forward hidden states h⃗t and the 
backward hidden states h⃖t. These are calculated as:

h⃗t = LSTM→(xt, h⃗t−1 ) (1)

h⃖t = LSTM←(xt, h⃖t−1) (2)

The final hidden ht representation at position t is obtained by 
concatenating the outputs from both directions:

ht = [h⃗t⨁ h⃖t] ∈ ℝ2H (3)

where ⨁ represents the concatenation symbol. H is the hidden 
size of each LSTM layer. This concatenated vector ht captures both 
long-range dependencies and bidirectional residue interactions, 
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FIGURE 3
BiLSTM model architecture. The input sequence [xt−1,xt,xt+1] is processed simultaneously by a forward LSTM (blue arrows) and a backward LSTM (red 
arrows), producing hidden states in both directions. The outputs from the two directions are concatenated at each position to form the final 
bidirectional hidden state ht.

providing a richer sequence context for downstream convolutional 
layers to detect local paratope motifs. 

2.3 Convolutional neural networks (CNN)

Convolutional Neural Networks (CNNs) are well suited for 
detecting local patterns in structured data and have been widely 
applied to sequence-based bioinformatics problems, including 
protein–ligand and antibody–antigen binding site prediction 
(Liberis et al., 2018; Zeng et al., 2016; Alipanahi et al., 2015), 
building upon foundational work in gradient-based learning and 
convolutional architectures (LeCun et al., 1998). In this context, 
one-dimensional CNNs (1D CNNs) slide learnable filters along 
the sequence to extract motif-like features that may correspond to 
conserved biochemical interaction patterns, a concept similar to 
their application in text classification where convolutional filters 
capture local n-gram patterns (Kim, 2014). The structural diagram 
of the CNN module is shown in Figure 4.

Given an input H = [h1,h2,…,hT], and a convolutional kernel of 
size k, the output at position t, denoted zt, is computed as:

zt =
k−1

∑
i=0

wi · ht+i + b (4)

where wi ∈ ℝd are the kernel weights and b is the bias term, and d
is the input feature dimension. This output is passed through a non-
linear activation function, typically ReLU:

̂zt =max(0,zt) (5)

Multiple convolutional kernels with different sizes are applied 
in parallel to capture patterns across varying sequence spans, 
from short local motifs to broader regions relevant for antigen 
recognition. Pooling operations, common in other domains, are 

omitted to preserve the per-residue spatial resolution necessary for 
paratope prediction. In ParaDeep, kernel sizes of 7, 15, 31, 71, 
and 130 residues were selected to represent short-, medium-, and 
long-range receptive fields along the antibody sequence. Smaller 
kernels enable the detection of compact, localized motifs, while 
larger kernels aggregate information from widely separated residues, 
which is important when paratope residues span multiple CDRs 
or extend into framework regions. This approach is conceptually 
analogous to the optimization of sliding window sizes in protein 
sequence and structure prediction (Chen et al., 2006), where 
window length critically determines the context available for feature 
extraction. 

2.4 BiLSTM-CNN for protein binding site 
prediction

The BiLSTM–CNN module serves as the core prediction 
component in our protein binding site detection pipeline, 
integrating the operations formally described in Equations 4–9. 
It combines long-range contextual modeling via a Bidirectional 
Long Short-Term Memory (BiLSTM) network with local pattern 
extraction using one-dimensional Convolutional Neural Networks 
(1D CNN). This residue-level framework builds on prior work 
in deep learning-based motif recognition and antibody paratope 
prediction (Liberis et al., 2018; Ruffolo et al., 2022), which has shown 
that BiLSTM–CNN architectures can deliver strong predictive 
performance while maintaining interpretability in antibody–antigen 
interaction modeling. The overall architecture is shown in Figure 5 
and summarized in Algorithm 1. 

1. Sequence Encoding: Protein sequences are zero-padded to 
a fixed length of 130 residues to ensure uniform input 
dimensions. Each residue is encoded using one of two 
strategies:
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FIGURE 4
1D CNN model architecture. The input sequence is encoded and processed by a 1D convolutional layer with sliding kernels to generate feature maps 
that capture learned patterns. These features are then passed through a dense layer and sigmoid activation to yield per-position predictions.

• One-hot encoding: a binary vector of length 21 (20 amino 
acids + unknown residue ‘X’).

• Learnable embedding: a trainable vector of dimension xt ∈
ℝ21

2. Contextualization via BiLSTM: The encoded sequence is 
processed by a BiLSTM layer with a hidden size of 64 
per direction, yielding a contextual vector ht ∈ ℝ128 at each 
position, as defined in Equations 1–3. The BiLSTM is well-
suited for capturing long-range dependencies in protein 
sequences where binding residues may be far apart in sequence 
but close in three-dimensional space (Hanson et al., 2019;
Liberis et al., 2018).

3. Local Feature Extraction with 1D CNN: The BiLSTM output is 
transposed and processed by a 1D CNN using multiple kernel 
sizes k ∈ {7,15,31,71,Full}. Each convolutional operation 
generates local feature maps:

zt = f(
k−1

∑
i=0

wi · ht+i + b) (6)

where f(·) is the ReLU, wi are kernel weights, and zt ∈ ℝH

captures local sequence motifs (Liberis et al., 2018).

4. Per-Residue Prediction: Each local feature vector zt is passed 
through a fully connected layer:

yt =W · zt + b (7)

followed by a sigmoid activation to obtain the predicted binding 
probability:

pt =
1

1+ e−yt
∈ [0,1] (8)

where W and b are learnable parameters.
5. Regularization via Dropout: Dropout (p = 0.3) is applied 

after the embedding layer, BiLSTM output, and CNN feature 

maps to reduce overfitting by preventing co-adaptation of 
hidden units.

6. Handling Class Imbalance: To address the imbalance between 
binding and non-binding residues, the model uses a weighted 
binary cross-entropy loss (He and Garcia, 2009), a strategy 
conceptually similar to cost-sensitive learning approaches 
previously applied in protein-binding site prediction (Wu and
Zhou, 2017):

L = −
L

∑
t=1
[w+yt log(pt) +w−(1− yt) log (1− pt)] (9)

where w+ =
Nneg

Npos
 is weight for positive class. Nneg and Npos

denote the number of negative and positive labels, respectively. 
The negative class weight is implicitly set to w− = 1. For the final 
model configuration, we used optimized weights of w− = 1 and w+ =
8.616, derived from the ratio of non-binding to binding residues 
in the training set. This weighting scheme penalizes errors on 
the minority (binding) class more strongly and encourages the 
model to assign higher importance to correctly identifying binding 
residues. This method is supported by prior work on class imbalance 
(He and Garcia, 2009; Liberis, et al., 2018) and implemented 
in deep learning frameworks like PyTorch (Paszke, et al., 
2019), with masking applied to ignore padded residues during
training.

7. Optimization and Training: Training is performed using the 
Adam optimizer with a learning rate of 0.001 (Paszke et al., 
2019). Padding masks are applied to exclude padded residues 
from loss computation. Early stopping is used to prevent 
overfitting, where training is terminated if the validation loss 
does not improve for 5 consecutive epochs. This strategy 
promotes better generalization and reduces the risk of 
overtraining.
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FIGURE 5
BiLSTM-CNN model architecture with dropout for residue-level binding site prediction. The input protein sequence of fixed length is first converted 
into one-hot or learnable embedding representations. A dropout layer is applied to the embeddings to reduce overfitting. The encoded sequence is 
then processed by a bidirectional LSTM (BiLSTM) layer to capture long-range contextual information, followed by another dropout layer on the BiLSTM 
output. The contextual features are transposed and passed through a 1D convolutional layer with a kernel of predefined size to capture local sequence 
patterns. Dropout is applied once more to the convolutional features before transposing back to sequence-aligned format. Finally, a fully connected 
layer maps each residue’s local features to a logit, and a sigmoid activation is applied to produce per-residue binding probabilities.

2.5 Training procedure and experimental 
design

The BiLSTM–CNN architecture was trained and evaluated using 
a five-fold cross-validation protocol on the training set of 2,585 
antibody–antigen complexes. In each fold, 80% of the data were 
used for training and 20% for validation, with stratification at the 
complex level to ensure paired heavy (H) and light (L) chains 
from the same complex were not split across sets. Performance 
metrics were averaged across folds and reported as mean ± standard 
deviation. In addition to the general model trained on all chain 
types, chain-specific models were developed for H-only, L-only, 
and HL-combined configurations using the same cross-validation 
scheme. Each chain-specific model was evaluated exclusively on 
its corresponding chain type to assess the influence of chain 
identity on predictive performance. Generalization was further 
tested on an independent blind hold-out set of 222 complexes, 
withheld from all training and hyperparameter tuning stages. These 
complexes included residue-level binding site annotations, enabling 
rigorous, unbiased evaluation on structurally diverse and previously 
unseen samples. 

2.6 Model evaluation and performance 
metrics

Model performance was assessed on the independent blind 
test set using both threshold-dependent and threshold-independent 
metrics. From the confusion matrix, we computed the standard 
classification metrics:

Precision = TP
TP+ FP

Recall = TP
TP+ FN

F1 = 2 · Precision ·Recall
Precision+Recall

Accuracy = TP+TN
TP+TN+ FP+ FN

BAC = 1
2
( TP

TP+ FN
+ TN

TN+ FP
)

MCC = TP ·TN− FP · FN

√(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

Here, true positives (TP) and true negatives (TN) refer to 
correctly predicted binding and non-binding residues, respectively, 
while false positives (FP) and false negatives (FN) indicate 
incorrect predictions. We also report the area under the receiver 
operating characteristic curve (AUC-ROC) and the area under 
the precision–recall curve (PR AUC). Importantly, to address 
the class imbalance inherent in paratope datasets, we emphasize 
the use of F1-score, Balanced Accuracy (BAC), and Matthews 
Correlation Coefficient (MCC), all of which are well-established 
and robust metrics for evaluating binary classifiers under skewed 
class distributions. PR AUC offers a more informative evaluation 
under severe class imbalance by focusing on the trade-off between 
precision and recall (Davis and Goadrich, 2006), which is 
particularly relevant for binding site prediction where positive 
residues typically constitute a small fraction of the sequence. 
This perspective aligns with the unified framework for analyzing 
performance measures proposed by Wu and Zhou (2013), which 
emphasizes selecting metrics appropriate to the prediction setting. 

3 Results

3.1 Overview of model configurations

To systematically investigate residue-level paratope prediction, 
we developed 30 BiLSTM–CNN model configurations by varying 
three primary factors: (i) amino acid encoding scheme (one-hot 
vs. learnable embedding), (ii) antibody chain type (heavy (H), light 
(L), and combined (HL)), and (iii) convolutional kernel size (7, 
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Input: Amino-acid sequence S (padded to length L =

130).

Output: per-residue binding probabilities {pt}
L
t=1

  1. Residue Encoding
     Map each residue st to xt ∈ ℝd using either
  one-hot encoding (d = 21) or a learnable

  embedding (d = 21). 
X = [x1,x2,…,xL] ∈ ℝL×d

  2. Dropout (Embedding)

     Apply dropout to the embedding
  representation to prevent overfitting. 

X← Dropout(X,p = 0.3)

  3. BiLSTM Contextualization

     Pass the embedded input into a bidirectional
  LSTM layer to obtain contextual

  representations.

      − Forward hidden state: h⃗t = LSTM→(xt, h⃗t−1 )

      − Backward hidden state: h⃖t = LSTM←(xt, h⃖t−1)

      − Concatenate: ht = [h⃗t⨁ h⃖t] ∈ ℝ2H (with H = 64)

      − Collect: H(seq) = [h1,…,hL] ∈ ℝL×2H

  4. Dropout (BiLSTM)
     Apply dropout to the BiLSTM output to
  enhance generalization. 

H(seq)← Dropout(H(seq),p = 0.3)

  5. 1D Convolution without Pooling
     Reshape BiLSTM output to match CNN input
  shape.
     Transpose for CNN: H(cnn_in) ∈ ℝ2H×L
     For each kernel size k ∈ {7,15,31,71,L}
  (use same padding to preserve length L): 

z
(k)
t = ReLU(

k−1

∑
i=0

w
(k)
i
·ht+i +b(k))

     Concatenate feature maps over kernels to
  obtain Z ∈ ℝL×C

     (C is the total number of convolutional
  filters across all kernel sizes.)
  6. Dropout (CNN)
     Apply dropout to the CNN output to reduce
  over-reliance on specific features: 

Z← Dropout(Z,p = 0.3)

  7. Per-residue classifier

     Logit: yt = W ·zt +b
     Probability: pt = σ(yt) = 1/(1+e−yt)
  8. Masked, class-weighted binary cross-entropy

     Positive weight: w+ = Nneg

Npos
, negative weight w− = 1

     Loss (mask padded positions): 

L = −
L

∑
t=1

mt[w+y∗t log (pt) +w−(1−y
∗
t)log (1−pt)]

     where y∗t ∈ {0,1} and mt ∈ {0,1} is the padding
  mask (1 = real residue, 0 = padding). 

.

  9. Optimization and Early Stopping: Train the

  model using the Adam optimizer with a

  learning rate of 0.001; terminate training

  if validation loss fails to improve for 5

  consecutive epochs. 

Algorithm 1. Pseudo-code of the BiLSTM-CNN binding site 
prediction model.

15, 31, 71, and 130 residues). All sequences were zero-padded to 
a uniform length of 130 residues. Models were trained using five-
fold cross-validation with MCC-based early stopping (patience = 5 
epochs) to select the best epoch per fold. The complete configuration 
set is detailed in Supplementary Table S1. For downstream 
benchmarking against the sequence-based baseline Parapred, we 
selected four representative ParaDeep models (M1–M4; Table 3). 
These representatives were chosen to capture the best-performing 
configurations for each chain type and encoding strategy, enabling 
both within-chain and cross-chain performance comparisons on 
the blind test set.

3.2 Comparison of encoding strategies

We evaluated the impact of encoding strategies on model 
performance by comparing F1 and Matthews Correlation 
Coefficient (MCC) across H, L, and HL chains with varying 
convolutional kernel sizes.

For H-chain models, the one-hot encoded configuration 
achieved the highest performance, with an F1 of 0.856 
± 0.014 and MCC of 0.842 ± 0.015 at full kernel size 
(130 residues). In comparison, the embedding-based model 
achieved F1 = 0.813 ± 0.015 and MCC = 0.796 ± 0.016 
(Figures 6A,B; Supplementary Table S2).

A similar pattern was observed for L-chain models (Figures 6C,D). 
The one-hot model achieved a peak F1 of 0.774 ± 0.023 and MCC 
of 0.772 ± 0.022, outperforming the embedding-based counterpart 
(F1 = 0.711 ± 0.017, MCC = 0.712 ± 0.016) at the same 
kernel size (Supplementary Table S3). While absolute performance for 
L chains was lower than for H chains, the relative superiority of one-hot 
encoding was consistent across all kernel sizes. 

For HL-chain models, the same trend persisted (Figures 6E,F). 
The best one-hot model achieved F1 of 0.777 ± 0.031 and MCC of 
0.767 ± 0.031, compared to F1 = 0.723 ± 0.017 and MCC = 0.712 
± 0.018 for the embedding-based model (Supplementary Table S4). 
Notably, the performance gap between encodings schemes widened 
with increasing kernel size, suggesting that one-hot encoding benefits 
more from broader sequence context than learnable embeddings. 

While one-hot encoding outperformed embeddings in 
terms of F1 and MCC across most configurations, embedding-
based models achieved slightly higher Balanced Accuracy 
(BAC), with only marginal differences between the two 
approaches (Supplementary Table S7). Together, these results 
underscore the robustness and efficiency of one-hot encoding 
for residue-level paratope prediction. Despite lacking trainable 
parameters, one-hot vectors consistently outperformed learned 
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TABLE 3  Representative chain-specific BiLSTM-CNN models evaluated on the blind test set. All models were trained using five-fold cross-validation 
with MCC-based early stopping (patience = 5 epochs).

Model id Encoding Chain Kernel size Description

M1 Embedding H 130 Best H-chain embedding model

M2 One-hot H 130 Best H-chain one-hot model

M3 Embedding L 130 Best L-chain embedding model

M4 One-hot L 130 Best L-chain one-hot model

FIGURE 6
Comparison of F1 and Matthews Correlation Coefficient (MCC) between embedding-based and one-hot encoding strategies across various 
convolutional kernel sizes, evaluated on HL chain data. Panels (A,B) present results for H chain models; (C,D) for L chain models; and (E,F) for HL chain 
models. Each bar represents the mean performance over five-fold cross-validation, with error bars indicating the mean ± standard deviation.

embeddings across all chain types and kernel sizes, particularly 
in models with wide convolutional receptive fields. 

3.3 Impact of convolutional kernel size

We systematically evaluated the impact of convolutional kernel size 
on model performance across encoding strategies (embedding vs. one-
hot) and antibody chain types (H, L, HL). As illustrated in Figure 7, 
increasing the kernel size from 7 to the full sequence length (130 
residues) consistently improved both F1 and Matthews Correlation 
Coefficient (MCC) across all model configurations. 

For embedding-based models (Figures 7A,B), performance 
increased steadily with kernel size, although absolute metrics 
remained lower than those of one-hot models. On the H chain, 
F1 improved from 0.605 ± 0.019 (kernel size 7) to 0.813 
± 0.015 (full length), with MCC rising from 0.572 ± 0.023 
to 0.796 ± 0.016. L and HL chain models showed similar 
trends, reaching maximum values of F1 ≈ 0.711–0.723 and MCC 

≈0.712, but consistently lagged behind the one-hot counterparts 
(Supplementary Table S5). Balanced Accuracy (BAC) values for 
embedding-based models showed small but consistent increases 
across kernel sizes, supporting the modest gains observed in 
F1 and MCC (Supplementary Table S8).

In one-hot encoded models (Figures 7C,D), performance gains 
with larger kernels were pronounced. For the H chain, F1 and 
MCC increased from 0.642 ± 0.039 and 0.613 ± 0.044 (kernel = 
7) to 0.856 ± 0.014 and 0.842 ± 0.015 (full length), respectively. L 
chain models improved from F1 = 0.491 ± 0.024, MCC = 0.503 
± 0.025 to F1 = 0.774 ± 0.023, MCC = 0.772 ± 0.022, while HL 
models peaked at F1 = 0.777 ± 0.031 and MCC = 0.767 ± 0.031 (see 
Supplementary Table S6). One-hot encoded models exhibited slight 
BAC improvements with larger kernels, although the differences 
were relatively small (Supplementary Table S9).

Interestingly, intermediate kernel sizes—particularly kernel size 
71—offered near-peak performance with reduced computational 
cost. For example, the one-hot H chain model with kernel 
71 attained F1 = 0.799 ± 0.020 and MCC = 0.781 ± 0.021, 
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FIGURE 7
Comparison of F1 (mean ± standard deviation) and Matthews Correlation Coefficient (MCC) across convolutional kernel sizes for embedding-based 
and one-hot encoded models trained on H, L, and HL chain datasets. Subfigures (A,B) display the F1 and MCC for embedding models, while (C,D) show 
the corresponding metrics for one-hot models. All models were trained with early stopping and evaluated on a shared test set comprising H, L, and HL 
chains. Each bar represents the average performance across five-fold cross-validation, with error bars indicating ± one standard deviation.

closely approximating the full-length results. These results highlight 
the importance of kernel width in capturing long-range residue 
dependencies in paratope prediction. While full-length kernels yield 
the highest accuracy, mid-sized kernels offer a practical balance 
between performance and efficiency, making them well-suited for 
deployment in resource-constrained environments. 

3.4 Impact of chain-specific modeling

To investigate the importance of chain specialization, 30 
BiLSTM-CNN configurations were evaluated on heavy (H), light 
(L), and combined heavy–light (HL) chain validation sets. Models 
were ranked by mean Matthews Correlation Coefficient (MCC) 
from five-fold cross-validation, with the top 10 for each dataset 
shown in Figures 8–10.

On the H-chain validation set (Figure 8), models trained 
exclusively on H-chain sequences consistently outperformed L- or 
HL-trained models. The best-performing configuration—one-hot 
encoding with a full-length kernel—achieved F1 = 0.856 ± 0.014 
and MCC = 0.842 ± 0.015. Notably, all top 10 models in this 
category were H-trained, reflecting the strong predictive signal in 
heavy chains.

For the L-chain validation set (Figure 9), the top model was also 
chain-specific (one-hot encoding, full-length kernel), reaching F1 = 
0.774 ± 0.023 and MCC = 0.772 ± 0.022. Although some HL-trained 
models appeared in the top 10, they consistently underperformed 
compared to L-specific models.

On the HL-chain test set (Figure 10), the highest-ranked model 
was trained on HL sequences and achieved F1 = 0.777 ± 0.031, 
MCC = 0.767 ± 0.031. However, this score still fell slightly below 
the best H-chain model tested on H-chain data, suggesting that 
mixed-chain training may dilute chain-specific features essential for 
high-precision binding site prediction.

Across all three validation sets, one-hot encoding outperformed 
embedding-based models. The top embedding models recorded 
MCC values between 0.712 and 0.796, consistently below their 
one-hot counterparts. These results highlight the advantages of 
chain-specific modeling, particularly for the heavy chain, which 
demonstrated robust and consistent predictive power. Based on 
these findings, we prioritized H- and L-chain models for blind 
test evaluation and excluded HL-trained models from downstream 
benchmarking. 

3.5 Comparison with existing method on 
the blind test dataset

On the blind test set comprising 222 antibody–antigen 
complexes, the proposed ParaDeep models (M1–M4) consistently 
outperformed the sequence-based baseline, Parapred, across all 
key evaluation metrics. These results demonstrate the strong 
generalization capability of the chain-aware BiLSTM–CNN 
framework and highlight the benefits of full-length convolution and 
one-hot encoding for capturing long-range sequence dependencies 
in residue-level paratope prediction. The four representative 
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FIGURE 8
Heatmap showing the performance metrics of the top 10 deep learning models on the H chain validation dataset, based on five-fold cross-validation. 
Each cell presents the mean ± standard deviation for key evaluation metrics, including AUC, PR AUC, Accuracy, Precision, Recall, F1, and Matthews 
Correlation Coefficient (MCC). Models are ranked in descending order by MCC to emphasize those with superior binding site prediction performance. 
The color intensity corresponds to the magnitude of each metric, with red tones indicating higher values and blue tones indicating lower values.

FIGURE 9
Heatmap showing the performance metrics of the top 10 deep learning models on the L chain validation dataset, based on five-fold cross-validation. 
Each cell presents the mean ± standard deviation for key evaluation metrics, including AUC, PR AUC, Accuracy, Precision, Recall, F1, and Matthews 
Correlation Coefficient (MCC). Models are ranked in descending order by MCC to emphasize those with superior binding site prediction performance. 
The color intensity corresponds to the magnitude of each metric, with red tones indicating higher values and blue tones indicating lower values.

ParaDeep configurations (Table 3) were selected as the top-
performing models from five-fold cross-validation: two trained on 
heavy (H) chains (M1–M2) and two on light (L) chains (M3–M4), 
each using either one-hot or embedding-based encoding. Models 
were evaluated separately on the H- and L-chain subsets of the blind 
test set, alongside Parapred.

Heavy chain evaluation (Table 4) showed that the embedding-
based H-chain model (M1) achieved the highest overall performance, 
with AUC = 0.959, PR AUC = 0.805, F1 = 0.723, and MCC = 0.685. Its 
one-hot counterpart (M2) also performed strongly (F1 = 0.715, MCC 

= 0.676). In contrast, L-trained models (M3–M4) showed markedly 
lower MCC values (<0.460) when evaluated on H-chain sequences, 
underscoring the importance of chain-specific training. Parapred 
scored an MCC of 0.410, substantially below both M1 and M2. 

Light chain evaluation (Table 5) reversed the trend: the one-hot 
L-chain model (M4) achieved the best performance, with F1 = 0.607 
and MCC = 0.587, followed closely by the embedding-based L-chain 
model (M3). H-trained models (M1–M2) underperformed in this 
setting, further confirming the chain specificity of learned features. 
Parapred again lagged behind, with F1 = 0.437 and MCC = 0.404.
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FIGURE 10
Heatmap showing the performance metrics of the top 10 deep learning models on the HL chain validation dataset, based on five-fold cross-validation. 
Each cell presents the mean ± standard deviation for key evaluation metrics, including AUC, PR AUC, Accuracy, Precision, Recall, F1, and Matthews 
Correlation Coefficient (MCC). Models are ranked in descending order by MCC to emphasize those with superior binding site prediction performance. 
The color intensity corresponds to the magnitude of each metric, with red tones indicating higher values and blue tones indicating lower values.

FIGURE 11
Precision–Recall Trade-off for Heavy Chain Models. The plot compares Parapred and proposed models M1–M4 on the H chain blind test set, with F1 
iso-contours and MCC color gradient.

Precision–recall trade-offs are illustrated in Figures 11, 12 for H- 
and L-chain evaluations, respectively, with F1 contours and MCC 
color encoding. Figures 13, 14 present radar plots comparing all 
models across seven metrics (AUC, PR AUC, accuracy, precision, 
recall, F1, and MCC). Overall, ParaDeep’s chain-aware BiLSTM–CNN 
models deliver consistent improvements over existing sequence-based 
approaches, particularly in metrics robust to class imbalance, such as 
PR AUC and MCC. These findings reinforce the value of chain-specific 
modeling for high-fidelity paratope prediction. 

4 Discussion

4.1 Summary of key findings

This study introduced ParaDeep, a sequence-based deep 
learning framework for residue-level paratope prediction that 
integrates bidirectional long short-term memory (BiLSTM) 
networks with one-dimensional convolutional neural networks 
(CNNs). BiLSTM layers capture bidirectional sequence 
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TABLE 4  Performance of ParaDeep models and Parapred on the heavy-chain blind test set. The best value for each metric is shown in bold.

Model Id Description AUC PR AUC Accuracy Precision Recall F1 MCC

M1 BiLSTM–CNN, embedding, H 0.959 0.805 0.919 0.636 0.837 0.723 0.685

M2 BiLSTM–CNN, one-hot, H 0.956 0.790 0.917 0.630 0.827 0.715 0.676

M3 BiLSTM–CNN, embedding, L 0.866 0.509 0.873 0.499 0.555 0.526 0.454

M4 BiLSTM–CNN, one-hot, L 0.838 0.459 0.873 0.498 0.434 0.464 0.394

Parapred Parapred (baseline) 0.861 0.516 0.884 0.562 0.397 0.466 0.410

TABLE 5  Performance of ParaDeep models and Parapred on the light-chain blind test set. The best value for each metric is shown in bold.

Model id Description AUC PR AUC Accuracy Precision Recall F1 MCC

M1 BiLSTM–CNN, embedding, H 0.862 0.391 0.915 0.432 0.467 0.449 0.403

M2 BiLSTM–CNN, one-hot, H 0.855 0.388 0.914 0.423 0.473 0.447 0.401

M3 BiLSTM–CNN, embedding, L 0.948 0.708 0.913 0.451 0.828 0.584 0.571

M4 BiLSTM–CNN, one-hot, L 0.945 0.697 0.925 0.495 0.786 0.607 0.587

Parapred Parapred (baseline) 0.861 0.442 0.928 0.509 0.383 0.437 0.404

FIGURE 12
Precision–Recall Trade-off for Heavy Chain Models. The plot compares Parapred and proposed models M1–M4 on the L chain blind test set, with F1 
iso-contours and MCC color gradient.

dependencies (Hochreiter and Schmidhuber, 1997; Schuster and 
Paliwal, 1997), while CNN layers extract local structural motifs 
relevant to binding (Liberis et al., 2018; Hanson et al., 2019). 
We systematically evaluated 30 model configurations by varying 

three primary factors: amino acid encoding strategy (one-hot vs. 
learnable embedding), antibody chain type (H, L, and HL), and 
convolutional kernel size. The results demonstrated that chain-
specific training, long-range convolution, and appropriate encoding 
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FIGURE 13
Radar Chart of Model Performance on Heavy Chain. Summary of metrics (AUC, PR AUC, Accuracy, Precision, Recall, F1, MCC) for each model on the H 
chain blind test set.

strategy are critical determinants of model performance, in line 
with prior evidence that chain-aware modeling enhances antibody 
binding site prediction (Ruffolo et al., 2022). On a blind test 
set of 222 antibody–antigen complexes, ParaDeep outperformed 
the widely used sequence-based baseline Parapred (Liberis et al., 
2018) across all key metrics, including precision–recall AUC 
and Matthews correlation coefficient, which are particularly 
informative under class imbalance. This generalization capability, 
achieved without requiring structural input, underscores ParaDeep’s 
potential as a scalable, structure-independent tool for early-stage 
antibody design, complementing structure-based methods such as 
AlphaFold (Jumper et al., 2021) or graph-based approaches like 
ParaAntiProt (Kalemati et al., 2024).

While attention mechanisms and transformer-based 
architectures are well-known for their ability to capture long-range 
dependencies and offer interpretability, our initial focus in this 
study was to prioritize model interpretability through the analysis of 
learned motifs and to maintain lightweight deployment capabilities. 
We designed our architecture to demonstrate the effectiveness of 
combining BiLSTM and CNN layers for residue-level paratope 
prediction. Future work will benchmark attention layers and full 
transformer-based architectures against our current model to 
assess potential gains in performance, computational efficiency, and 

enhanced interpretability, providing a comprehensive comparison 
of different mechanisms for capturing sequence context. 

4.2 Chain-dependent effects of encoding 
strategy

While one-hot encoding yielded superior results in most 
cross-validation settings, chain-specific blind test evaluations 
revealed a more nuanced pattern. On the H-chain dataset, 
the embedding-based model (M1) slightly outperformed its 
one-hot counterpart (M2). Biologically, this advantage is likely 
driven by the higher sequence and structural diversity of heavy 
chains, particularly in the CDR-H3 region, which exhibits the 
greatest variability in length, amino acid composition, and 
conformational flexibility among antibody loops (Xu and Davis, 
2000; Kuroda et al., 2012). Such diversity provides a rich feature 
space for learnable embeddings to capture subtle biochemical 
similarities and contextual dependencies, beyond what discrete 
one-hot representations can offer. This is consistent with the 
principle that embeddings project residues into a continuous vector 
space, enabling proximity-based relationships between amino acids 
(Mikolov et al., 2013; Peters et al., 2018).
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FIGURE 14
Radar Chart of Model Performance on Light Chain. Summary of metrics (AUC, PR AUC, Accuracy, Precision, Recall, F1, MCC) for each model on the L 
chain blind test set.

In contrast, for the L-chain dataset, the one-hot encoded model 
(M4) outperformed the embedding-based model (M3). Light chains 
are generally more conserved in sequence and structure, with 
reduced loop variability compared to heavy chains (Almagro et al., 
2019; Abhinandan and Martin, 2008). Computationally, one-hot 
encoding avoids additional trainable parameters, reducing the risk 
of overfitting when sequence diversity is low (Goodfellow et al., 
2016). Sparse categorical encodings also preserve exact residue 
identity, which can be advantageous when modeling conserved 
motifs (Krizhevsky et al., 2017; Wu et al., 2021).

Our model architecture consistently performed better on 
antibody heavy chains (VH) compared to light chains (VL). 
While heavy chains are known for their higher sequence and 
structural diversity, this variability, paradoxically, can provide richer 
and more distinct signals for learnable embeddings to capture 
contextual dependencies. The increased information content within 
VH sequences, especially concerning CDR H3, which is the most 
diverse and often central to antigen binding, allows the model’s 
embedding layers to learn more discriminative features. Thus, 
this ‘diversity’ enhances the model’s ability to learn meaningful 
representations rather than inherently hindering it, particularly 
when coupled with architectures capable of capturing complex 
patterns from these richer signals. Light chains, being less diverse, 

might offer fewer distinct features for the model to leverage, leading 
to slightly lower performance.

From a computational perspective, these results underscore 
that encoding strategy should align with both biological diversity 
and dataset characteristics. Embeddings can leverage variability 
in diverse repertoires such as H chains, while one-hot encoding 
remains a robust choice for conserved repertoires like L chains. This 
observation aligns with findings from protein language modeling 
studies, where encoding choices directly influence downstream task 
performance (Elnaggar et al., 2022; Rao et al., 2019). 

4.3 Effect of convolutional kernel size

Convolutional kernel size was a critical determinant of 
ParaDeep’s predictive performance. Across all encoding strategies 
and antibody chain types, models employing full-length convolution 
(kernel = 130 residues) achieved the highest F1 and MCC scores. 
This improvement reflects the biological reality that antibody 
paratopes can span multiple complementarity-determining regions 
(CDRs) and may also include framework residues (Saha and 
Raghava, 2006; Chen, Kurgan, and Ruan, 2008; Jones, 1999). 
Such residues are often distant in the primary sequence yet 
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spatially close in three-dimensional space, cooperating to form 
the antigen-binding interface (Sela-Culang et al., 2013).

The superior performance of ‘full-length convolution’ (which is 
structurally analogous to a fully connected layer applied across the 
entire sequence) over standard CNN filters indicates that paratope 
residues are not solely determined by short-range local flanking 
residues. Instead, paratope residues often span multiple CDRs and 
framework regions, requiring a broader, more global sequence 
context for accurate prediction. This result does not indicate a 
failure of CNNs, but highlights that their effectiveness in this task 
depends strongly on the kernel size, which determines the accessible 
sequence context. The biological distribution of binding residues 
across disparate segments of the variable domain necessitates a 
model that can capture these long-range dependencies effectively.

From a computational standpoint, larger convolutional kernels 
expand the receptive field of the CNN, allowing aggregation of 
features over broad sequence contexts. This capability complements 
the BiLSTM’s bidirectional context modeling by enabling the 
detection of distributed motifs that span multiple structural 
segments. As discussed by Araujo et al. (2019), the size of the 
receptive field is directly related to kernel width and network depth, 
with larger receptive fields providing the ability to capture global 
sequence patterns.

However, large kernels also increase the number of trainable 
parameters and computational cost per forward pass, which 
can impact scalability in large-scale applications. Interestingly, 
our results revealed that mid-sized kernels (e.g., 71 residues) 
achieved near-peak performance while significantly reducing 
computation. This balance aligns with the bias–variance trade-
off described by Goodfellow et al. (2016), in which overly large 
models risk overfitting, while excessively small kernels may 
underfit. Furthermore, findings from Gehring et al. (2017) in 
convolutional sequence modeling show that intermediate receptive 
fields can capture most relevant dependencies without incurring the 
computational and overfitting risks of full-length kernels.

Overall, kernel size tuning emerges as both a biologically and 
computationally significant hyperparameter in paratope prediction. 
While full-length kernels maximize performance by capturing 
all possible long-range dependencies, mid-sized kernels provide 
an attractive trade-off between accuracy and efficiency, making 
them particularly suitable for deployment in real-time or resource-
constrained antibody design workflows. 

4.4 Comparison with prior methods

ParaDeep consistently outperformed Parapred (Liberis et al., 
2018), a widely adopted sequence-based paratope predictor, in 
both H- and L-chain blind test evaluations. On the H-chain 
set, ParaDeep achieved a relative MCC improvement of over 
27%, with corresponding gains in F1 and PR AUC. On the 
L-chain, ParaDeep similarly outperformed Parapred across all 
metrics. These improvements can be attributed to ParaDeep’s chain-
specific modeling, class imbalance handling, and deep contextual 
architecture. Parapred employs a CNN–BiLSTM architecture but 
does not incorporate chain-specific training, instead using a 
single model for all antibody chains. This lack of specialization, 
coupled with its shorter convolutional kernels, limits its ability to 

capture long-range dependencies critical for high-fidelity paratope 
prediction.

ParaSurf represents a leading structure-based approach 
for paratope prediction. The most recent version, ParaSurf 
(Papadopoulos et al., 2025), integrates surface geometric, chemical, 
and force-field features using a hybrid 3D ResNet and transformer 
architecture. This method achieves state-of-the-art results on 
multiple benchmark datasets, including prediction across the 
entire Fab region. However, ParaSurf ’s reliance on high-quality 
3D antibody structures limits its utility in early-stage antibody 
discovery pipelines, where structural data may be incomplete 
or unavailable. Although structure prediction tools such as 
AlphaFold (Jumper et al., 2021) can mitigate this requirement, 
they introduce additional computational overhead and modeling 
uncertainty. ParaAntiProt (Kalemati et al., 2024) offers another 
deep learning–based sequence predictor, but it requires explicit 
CDR segmentation during both training and inference. This 
dependency introduces variability due to differences in numbering 
schemes (Dunbar and Deane, 2016) and definitions of CDR 
boundaries (Chothia and Lesk, 1987), potentially affecting 
reproducibility across datasets and studies.

In contrast, ParaDeep operates directly on raw amino 
acid sequences without requiring structural input or domain-
specific segmentation. This design choice enables fair and 
reproducible comparisons across datasets, isolates the benefits of 
the BiLSTM–CNN architecture from preprocessing biases, and 
makes the method adaptable to varied antibody formats and 
discovery pipelines. For benchmarking, Parapred was chosen as the 
primary sequence-based comparator, as it shares ParaDeep’s input 
modality and preprocessing simplicity, allowing a direct assessment 
of architectural improvements. 

4.5 Practical implications and limitations

ParaDeep is well-suited for high-throughput antibody 
discovery, particularly in early-stage workflows where structural 
information is unavailable. Its reliance solely on primary amino 
acid sequences enables application to antibodies without resolved 
3D structures, making it ideal for computational pre-screening 
prior to experimental validation. The modular architecture and 
compact parameter count (<10 M) allow efficient deployment 
on standard computing resources without specialized hardware, 
supporting both academic and industrial use. In hybrid pipelines, 
ParaDeep can be paired with structural modeling tools such 
as AlphaFold (Jumper et al., 2021) and docking platforms 
like ClusPro (Kozakov et al., 2017) to refine downstream structural 
analyses, acting as a rapid sequence-based filter to narrow candidates 
before more computationally intensive modeling.

Nevertheless, limitations remain. First, the training dataset 
primarily comprises canonical Fab and Fv formats, leaving 
generalization to single-chain variable fragments (scFv), 
nanobodies, and synthetic constructs untested. Second, although 
sequence-based methods such as ParaDeep capture biochemical 
and contextual relationships between residues, they may lack 
the atomic-level spatial precision achievable by structure-based 
methods (Krawczyk et al., 2013). Third, while weighted binary 
cross-entropy loss mitigates class imbalance (Buda et al., 2018; Wu 
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and Zhou, 2017), rare paratope configurations may still be 
underrepresented, potentially biasing predictions toward more 
common binding patterns.

Future improvements include expanding training data to 
encompass scFv, nanobody, and synthetic constructs; integrating 
attention mechanisms or graph-based encoders (Gligorijević et al., 
2021) to enhance spatial reasoning without full 3D inputs; and 
exploring pretrained protein language models such as ESM-2 
(Lin et al., 2023) or AntiBERTy (Ruffolo et al., 2021) to enrich residue 
embeddings while maintaining interpretability. 

4.6 Computational techniques and design 
considerations

Building on these practical insights, ParaDeep’s BiLSTM–CNN 
framework was designed to balance interpretability, accuracy, 
and computational efficiency. Bidirectional LSTMs capture long-
range dependencies in both sequence directions (Hochreiter and 
Schmidhuber, 1997), while 1D CNNs serve as adaptive context 
windows for detecting local binding motifs. Kernel sizes were 
optimized per chain type to reflect biological variation in paratope 
patterns, with mid-to long-range kernels (71 and 130 residues) 
delivering the best results.

Unlike pretrained protein language models (PLMs) such 
as ESM-2 (Lin et al., 2023) or AntiBERTy (Ruffolo et al., 
2021)—which offer high representational power but demand 
significant computational resources and can reduce transparency 
(Choromanski et al., 2020; Kalemati et al., 2024)—ParaDeep 
uses lightweight, task-specific embeddings, enabling fast, resource-
efficient deployment.

To address severe class imbalance between binding and non-
binding residues, weighted binary cross-entropy loss was applied, a 
method shown effective in prior studies (Buda et al., 2018; Wu and 
Zhou, 2017). An ablation study of 30 model variants revealed that 
early stopping had minimal impact, likely due to stable training from 
class weighting.

Overall, ParaDeep’s hybrid architecture achieves chain-
aware, interpretable modeling without relying on structural 
input or PLMs. This makes it a practical and flexible 
alternative to structure-dependent or PLM-heavy predictors 
(Kalemati et al., 2024; Liberis et al., 2018), suitable for diverse 
paratope prediction scenarios. 

5 Conclusion

This study introduces ParaDeep, a lightweight and 
interpretable deep learning framework for residue-level paratope 
prediction, based solely on amino acid sequences. The 
proposed chain-aware BiLSTM-CNN architecture integrates 
bidirectional context modeling with adaptive 1D convolution, 
enabling the extraction of both local and non-local sequence 
features without reliance on structural input or pretrained
embeddings.

Across 30 systematically evaluated model configurations, 
embedding-based models generally outperformed one-hot 
encodings, particularly on heavy chains, while chain-specific 

training led to the highest overall performance—especially for 
light chains, which benefited from longer receptive fields. Optimal 
kernel sizes varied by chain, reflecting distinct biological binding 
characteristics.

Compared to structure-based tools like ParaSurf, ParaDeep 
achieved comparable performance on key metrics (e.g., 
MCC, F1), while offering significantly lower computational 
overhead and broader usability in sequence-only contexts. 
Importantly, ParaDeep outperformed the sequence-based 
baseline Parapred on the same benchmark dataset. These 
results highlight ParaDeep’s strength in capturing functional 
antibody features in a structure-independent and resource-efficient
manner.

With its generalization across chain types, sensitivity to CDR3 
diversity, and ability to detect binding signals in non-CDR regions, 
ParaDeep represents a practical tool for early-stage antibody 
discovery, repertoire profiling, and therapeutic design—particularly 
under conditions where structural data is unavailable or
incomplete.
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