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Introduction: Recent advances in Alzheimer’s research suggest that the brain’s 
immune system plays a critical role in the development and progression of 
this devastating disease. Microglial cells are vital as immune cells in the brain’s 
defense system. Human Microglia Clone 3 (HMC3) is a cell line developed as 
a promising experimental model to understand the role of microglial cells in 
human diseases including Alzheimer’s and other neurodegenerative diseases. 
The frequency of HMC3 cell usage has increased in recent years, with the idea 
that this cell line could serve as a convenient model for human microglial cell 
functions.
Methods: We utilized gene-pair ratios from bulk and single-cell RNA sequencing 
(scRNA-seq) expression data to create predictive models of cell-type origins.
Results: Our model reveals that the HMC3 cell line represents various cell types, 
with the highest cell similarity score relating to astrocytes, not microglia.
Discussion: These findings suggest that the HMC3 cell line is not a reliable 
human microglia model and that extreme caution should be taken when 
interpreting the results of studies using the HMC3 cell line.

KEYWORDS

HMC3 cells, iPSC-derived microglia (iMG), microglia, astrocytes, cell-type classification, 
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Introduction

As Alzheimer’s disease (AD) is a growing global health concern and a leading cause 
of death in the United States, it is essential to better understand this disease (Weuve et al., 
2014; James et al., 2014; Author anonymous, 2024). AD causes neuronal breakdown and 
brain atrophy (Cedres et al., 2020). Recent studies suggest that the brain’s immune system 
may play a key role in developing AD (Weiner, 2025). Microglial cells are the first line 
of the brain’s innate immune defense. These cells maintain brain homeostasis and, when 
working properly, find cells that are diseased or injured (Bohlen et al., 2019; Condello et al., 
2015; Vainchtein and Molofsky, 2020). Clustering and chronic activation of microglial 
cells around β-amyloid plaques have long hinted at potential roles for these cells in AD
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progression (McGeer et al., 1993), and recent identification in 
genome-wide association studies of many AD risk genes with 
microglia-specific expression has underscored that microglia are a 
key cell type that governs AD pathogenesis (Hansen et al., 2018). 
Many genetic and environmental factors can alter the activity 
and responses of microglial cells, and the mechanisms by which 
microglia promote or restrain AD development and progression are 
not fully understood and require further investigation.

AD-relevant microglial activities such as chemotaxis, 
phagocytosis, lysosome function, and proteostasis can be modeled 
in vitro using cultured cells. Primary human microglial cells isolated 
from brain tissue are not commonly utilized since fresh brain tissue 
is not readily available. Human microglia-like cells known as iMG 
or iMGL (iPSC-derived microglia-like) cells can be differentiated 
from induced pluripotent stem cell (iPSC) lines and are increasingly 
recognized as the best available alternative to primary microglial cells 
(Wickstead, 2023; Abud et al., 2017). However, iPSC maintenance 
and iMG differentiation are expensive, laborious, and lengthy 
procedures. Another alternative that allows researchers to produce 
their (pseudo)cell type of interest in unlimited numbers is to convert 
primary cultured cells into “immortalized” cell lines with unlimited 
proliferative potential. Although immortalized cells are not the same 
as their primary cell progenitors, they may nonetheless serve as useful 
substitutes that are convenient and inexpensive to culture, and they 
are more amenable to genetic manipulation to study the functionality 
of the individual genes. 

Currently, multiple immortalized lines of murine microglial 
cells are available, including the widely used BV-2 and N9 cell 
lines, both immortalized using retroviral oncogenes (Blasi et al., 
1990; Righi et al., 1989; Timmerman, Burm, and Bajramovic, 
2018). However, interspecific differences between human and mouse 
immune signaling argue for the use of human cells when possible. 
For example, the microglia-expressed AD risk gene and therapeutic 
target CD33 has no murine ortholog (Bhattacherjee et al., 2019). 
Very few immortalized human microglia cell lines have been 
produced, but one cell line being increasingly utilized by researchers 
is the Human Microglia Clone 3 (HMC3) cell line (Figure 1A).

The HMC3 cell line was created by immortalizing human 
embryonic microglial cultures with SV40 antigen to further scientific 
investigation of how microglial cells impact human conditions 
including Alzheimer’s and other neurodegenerative diseases (Janabi 
et al., 1995). Notably, HMC3 cells have also been distributed and used 
under different names including CHME-3, CHME-5, and C13-NJ 
cells (Russo et al., 2018). In 2016, it was discovered that ostensible 
CHME-5 cells being used by several labs at that time were in fact 
rat-derived cells (Garcia-Mesa et al., 2017), prompting the American 
Type Culture Collection (ATCC) to authenticate the human origin of 
the HMC3 cell line (product #CRL-3304). 

Motivated by interest in using HMC3 cells as potential research 
tools, we spot-checked some existing HMC3 RNA-seq datasets from 
Gene Expression Omnibus to validate the expression of common 
myeloid cell markers including ITGAM (CD11b), PTPRC (CD45), 
SYK, TYROBP (DAP12), CX3CR1, and Fc receptors. To our surprise, 
these markers were not expressed, prompting us to examine the 
research literature for insights as to whether HMC3 cells should be 
classified as microglia-derived. Indeed, some researchers have noted 
the lack of expected marker expression in HMC3 cells (Rawat and 
Spector, 2017; Rai et al., 2020), while others reported that HMC3 

cells’ transcriptional profile more closely resembled that of U87 cells 
(Quiroga et al., 2022)—a glioblastoma-derived cell line commonly 
used to represent astrocyte biology—than profiles of myeloid lineage 
cells including iMG cells, the monocytic leukemia-derived THP-1 cell 
line, or primary cultures of microglia, macrophages, or monocytes (see 
our similar principal component analysis in Figure 1B). If the research 
community increasingly uses the HMC3 cell line to study the role 
of microglial cells in neurodegenerative diseases, we must present a 
definitive classification of what type of brain cell it best represents. 

The purpose of this paper is to computationally assess the 
myeloid nature of the HMC3 cell line, specifically distinguishing 
between microglia and astrocytes or other CNS cell types. Although 
astrocytes and microglia are physically different and easy to 
distinguish while examining morphology in vivo (Vainchtein 
and Molofsky, 2020), transformed or immortalized cells cultured 
in vitro have less distinct morphologies and can have altered 
traits due to the immortalization process (Kaur and Dufour, 
2012). Single-cell and bulk RNA sequencing are powerful tools 
for distinguishing cell types by measuring transcriptome-wide 
differences in gene expression levels, providing a robust alternative 
to morphology-based observations (Haque et al., 2017; Mukamel 
and Ngai, 2019; Ofengeim et al., 2017).

Our strategy for HMC3 cell classification used publicly available 
RNA-seq expression data from multiple studies to determine the 
proper placement of the HMC3 cell line amongst different lineages of 
cells within the brain. Microglial cells and other CNS cell types have 
been sequenced many times for study and classification (Spurgat, 
2022), and the resulting datasets are accessible in databases such as 
Gene Expression Omnibus (GEO) and Genotype-Tissue Expression 
Portal (GTEx) (Gerrits et al., 2020; Keil et al., 2018).

Our primary goal was to understand if the HMC3 line 
could be confidently characterized as microglia-derived cells 
and subsequently used in researching the mechanisms of 
neurodegenerative diseases such as Alzheimer’s. Given that gene 
expression directly influences phenotypic features of a cell, including 
its behavior, we developed two independent Random Forest 
classifiers to investigate the cellular identity of the HMC3 cell line 
using gene-ratio comparisons. The first classifier was trained on 
primary human cells from multiple studies to establish gene-pair 
rules for distinguishing among cell types and to generate prediction 
scores reflecting cell-type similarity. When the HMC3 cell line was 
analyzed with this classifier, it exhibited variability in predicted cell-
type scores, with the highest similarity observed for astrocytes. The 
second classifier was trained on the extensive cohort of cell lines 
collected by the DepMap project (Tsherniak et al., 2017). Using 
this classifier, HMC3 cells were predicted to have greater similarity 
with cells of the central nervous system as opposed to the expected 
myeloid lineage.

Materials and Methods

PubMed trend analysis of “HMC3 and 
microglia” publications

We conducted a comprehensive search on the PubMed 
(pubmed.ncbi.nlm.nih.gov/) research database to identify all articles 
published between 2009 and 12 July 2025 that included both “HMC3 
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FIGURE 1
Analysis of previous literature justifies the study. (A) PubMed search results for “(HMC3) AND (microglia)” show sharply increasing numbers of 
publications since 2020, with 57 articles in 2023, 81 in 2024 and 46 so far in 2025 as of July 12. (B) Principal components were recalculated using brain 
cell types from Quiroga et al., 2022 (GSE181153). We observed an unexpected clustering of the HMC3 microglial cell line with the U87 astrocyte cell 
line (red and pink clusters). Note: Adapted from Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture 
systems, (I) Y. Quiroga et al., 2022, http://creativecommons.org/licenses/by/4.0/ (Quiroga et al., 2022).

AND Microglia” as search terms. After downloading the search 
results, we compiled the number of relevant publications per year 
and created a table summarizing the annual publication counts. 

Data access and cleaning

RNA sequencing datasets derived from healthy human tissues, 
a variety of brain cell types, and various cell lines were collected 
from GEO, DepMap, and several papers (Supplementary Table S1). 
Control and diseased samples from each dataset were used as part 
of our analysis. All datasets used the HUGO gene symbols, and 
any datasets that used the human Ensembl gene nomenclature were 
converted through the R IDConverter package to enable gene-
pair comparisons among different datasets (Wang et al., 2021). 
Additionally, we restricted genes within the datasets to those where 
80% or higher of the samples had a non-zero observation in the 
specified gene. This restricted our training datasets to 8,723 genes. 

Principal component analysis

Figure 1B in this manuscript mimics Figure 1 from Quiroga 
et al. (GSE181153) but with fewer cell type comparisons 
(Quiroga et al., 2022). First, the gene-counts table was converted 
to transcripts per million. As performed by Quiroga et al., only 
genes with greater than 100 transcripts per million were kept in 
the analysis. Samples were then restricted to only include control 
non-treated samples, i.e., only “NONE_NONE” labels were kept. 
Additionally, To recreate the Quiroga PCA, iPSCs were not included 
in the plot despite the raw data including iPSCs. Of note, when 

the iPSC lines were included, they cluster with U87a and HMC3 
lines (Supplementary Figure S1). Once samples and genes were 
removed, gene count data were processed using DES (Love et al., 
2014), followed by variant stabilization (‘vst()’ function). Following 
the variant stabilization step, the ‘plotPCA()’, a native function in 
DES, was used to generate the Principal Component plots. 

The primary cell Random Forest classifier

A primary cell Random Forest classifier was developed using the 
multiclassPairs R package (v0.4.3), which implements a rule-based 
classification framework with gene-pair comparisons (Marzouka 
and Eriksson, 2021). The classifier was built from five publicly 
available datasets, comprising a total of 258 healthy and diseased 
human samples. From the Galatro et al. dataset (GSE99074), 
65 microglia samples were included. The Gosselin et al. dataset 
(phs001373. v1. p1.) contributed 46 microglia and 13 monocyte 
samples. The Srinivasan et al. dataset (GSE125050) provided 19 
adult astrocytes, 27 endothelial, 25 microglia, and 42 neuron 
samples. From the Zhang et al. dataset (GSE73721), 9 adult 
astrocyte, 4 microglia, and 1 neuron sample were included. Lastly, 
the Costa-Verdera et al. dataset (GSE253820) contributed 4 adult 
astrocyte and 3 neuron samples. After preprocessing, each sample 
was annotated with its respective cell type and dataset of origin. All 
data were merged into a single gene expression matrix, with genes 
as rows and samples as columns, for input into the multiclassPairs 
workflow. It should be noted that data normalization and batch effect 
correction was not performed on the combined dataset as the only 
comparisons of gene expression values occurred within samples, and 
never across samples, in all further analyses using this dataset.
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The ‘ReadData’ function from the multiclassPairs R package was 
implemented to structure the combined matrix into an appropriate 
format with correct labeling for downstream analysis. The data were 
partitioned into training (60%) and testing (40%) sets, ensuring no 
sample overlap between sets.

To reduce dimensionality and improve classifier performance, 
gene selection was performed using the ‘sort_genes_RF’ function 
and the ‘rank_data’ parameter set to TRUE. This function ranks 
genes within samples based on their importance in differentiating 
cell types, employing a Random Forest-based feature ranking 
strategy of importance scores computed by the embedded ranger 
package. Two methods are employed in the function to rank 
genes: an “altogether” method and a “one-vs-rest” method. In the 
“altogether” method, genes are ranked based on their ability to 
differentiate all cell types from each other. In the “one-vs-rest” 
method, for each cell type, genes are ranked based on their ability to 
differentiate that cell type from the others. A total of 2,000 trees were 
used in the gene sorting step. The top-ranked genes were selected 
for further analysis using the ‘summary_genes_RF’ function, which 
indicated that 85 genes from the “altogether” category and 100 genes 
per class from the “one-vs-rest” category provided optimal rule 
coverage for downstream training.

From the unique set of these genes, binary classification rules 
were generated by forming all gene-pair combinations, where 
a rule was defined as “Gene A < Gene B” and evaluated by 
comparing the gene expression values within each sample. These 
rules were sorted based on their discriminative power using the 
‘sort_rules_RF’ function. To ensure robustness, rules were ranked 
selection was performed using both the above-described “one-vs-
rest” and “all-vs-altogether” ranking approaches. Top-ranked rules 
from each method were selected for downstream analysis, allowing 
for differential weights of all cell types to reduce bias due to sample 
imbalances.

The final classifier was then trained on binary input generated 
by evaluating the selected rules using the ‘train_RF’ function, with 
model parameters optimized through the ‘optimize_RF’ function. 
Combinations of the following parameters were tested to find the 
optimal parameter set: maximum number of times a gene can be 
repeated among the selected rule set, number of rules derived from 
the “one-vs-rest” method used in the model, number of rules per 
class derived from the “altogether” method used in the model, 
whether or not to remove uninformative rules from the selected 
rule set (boruta-based feature selection), and number of trees 
generated in the model. Based on the results from the parameter 
optimization, the final model was then constructed of 1,000 trees, 
with a gene repetition limit of one to ensure rule diversity. A total 
of 100 rules derived from the one-vs-rest scheme and 85 rules 
from the altogether scheme were selected for training. A total of 
100 top-ranking rules derived from the “altogether” method and 
100 top-ranking rules per class derived from the “one-vs-rest” 
method were initially selected for training. Boruta-based feature 
selection was enabled to exclude non-informative rules (Kursa et al., 
2010). Additionally, probability estimation was activated, allowing 
the model to output class scores instead of categorical predictions. 
The resulting model was composed of 452 binary rules (gene-pairs) 
across all classes (Supplementary Figure S2). 

Primary cell-line RF classifier

Concurrently, we generated a cell-line-based Random Forest 
classifier as above but made the training set using cell line expression 
profiles. Specifically, we used data from DepMap (Tsherniak et al., 
2017; Cancer Cell Line Encyclopedia Consortiumand Genomics 
of Drug Sensitivity in Cancer Consortium, 2015), including 174 
cell lines collected from the DepMap Download portal at https://
depmap.org/portal/data_page/?tab=currentRelease version 24Q4 
under the expression tab. We downloaded and integrated data from 
“Model.csv” (the collection of metadata used to describe the cell 
types and their origins, including sex and tissue of origin) and 
“OmicsExpressionProteinCodingGenesTPMLogp1. csv” to get the 
expression data. Entrez gene IDs were removed, and genes were 
subset as above (see Data access and cleaning). Additionally, we 
subset our data to cell types that originated in the brain/central 
nervous system, or blood cancers, in order to classify cells as 
neural or myeloid in nature. 22 gene names were missing from the 
DepMap data and were not considered in the training: “RBM14_
RBM4”, “FPGT_TNNI3K”, “BCL2L2_PABPN1”, “TEN1_CDK3″, 
“PPT2_EGFL8”, “RTEL1_TNFRSF6B”, “SENP3_EIF4A1”, “P2RX5_
TAX1BP3”, “STX16_NPEPL1”, “DLEU1”, “ERV3_1”, “HLA_A”, 
“HLA_C”, “HLA_DMA”, “HLA_DQB1”, “HLA_DRB1”, “HLA_F”, 
“CHKB_CPT1B”, “ST20”, “ANKHD1_EIF4EBP3”, “ZNF286B”, and 
“JMJD7_PLA2G4B”. This left 8,702 genes for training the tissue of 
origin data.

Note “ACH-000075” or the U87 cell line is part of the DepMap 
dataset, but it was withheld from training and used only for testing. 
This also provides some justification for not performing cross-
validation on our data, where U87 might eventually be included to 
optimize the model.

After following the same methodology above, 41 
rules were used to build our classifier (Supplementary 
Figure S3). 

Model testing and evaluation

Upon the creation of two classifiers, a primary cell classifier 
and cell-line classifier, we tested RNA-seq data generated from 
many different studies (Gupta et al., 2024; Schirmer et al., 2019; 
Masuda et al., 2019; Quiroga et al., 2022; Armanville et al., 
2025; Baek and Yoo, 2021; Baek et al., 2022; Abud et al., 
2017) to evaluate the performance of our model and assess 
its validity. The ‘CaretconfusionMatrix’ function was utilized 
to generate model performance metrics for both the training 
and test sets (Supplementary Figure S2, S3). Because our aim 
was to interrogate HMC3 lineage rather than develop a 
broadly generalizable tool, we did not perform k-fold cross-
validation. Instead, model reliability was assessed through 
independent validation using datasets from Masuda et al. 
(2019) and Schirmer et al. (2019), which provided stringent 
external testing and demonstrated strong classifier performance. 
These single-nuclei and single-cells studies, respectively, were 
analyzed using pseudo-bulk strategies by aggregating expression 
data according to the cell-type annotation of the original
publications. 
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Testing for rat sequencing reads

FASTQ files were downloaded to a Google bucket from the 
Sequence Read Archive (SRA) for all HMC3 samples tested 
(GSE181153, GSE275256, GSE155408, specifically, SRR12347826, 
SRR12347827, SRR12347828, SRR15301012, SRR15301013, 
SRR15301082, SRR15301083, SRR30311414, SRR30311415, 
SRR30311416, SRR30311417, SRR30311418, SRR30311419, 
SRR30311420, SRR30311421, and SRR30311422). To test whether 
samples had more RNA sequencing reads that aligned to 
Rat (Rattus norvegicus) or Human (Homo sapiens) reads, we 
used xengsort (Zentgraf and Rahmann, 2021) https://gitlab.com/
genomeinformatics/xengsort) to characterize reads according to 
their alignment preference. We used Ensembl GRCh38 release 114 
cDNA and DNA FASTA files for the human reference and GRCr8 
release 114 cDNA and DNA sequences for the rat genome reference. 
Briefly, the xengsort pipeline uses a memory-intensive step to index 
the reference genomes and then uses Cuckoo hashing for rapid 
assessment of k-mer fidelity in order to classify raw reads to the 
different references for each sample. 

Testing for rRNA in shared reads

Due to the high sequence synteny of rRNA fragments (even 
across species), we evaluated the fraction of reads that aligned to 
both human and rat sequences. Note, rRNA, is the most abundant 
molecule in the cell, can comprise up to 80% of the RNA content in 
a cell (O'Neil et al., 2013). To do this, we first collected a compilation 
of rRNA reference data from SILVA: https://www.arb-silva.de/, a 
database dedicated to building “A comprehensive online resource 
for quality checked and aligned ribosomal RNA sequence data.” 
There, we downloaded a multi-species rRNA reference file, “smr_
v4.3_fast_db.fasta” to capture the Large Subunit (LSU) and Small 
Subunit (SSU) of rRNA (Glöckner et al., 2017). We used SortMeRNA 
(to rapidly quantify the fraction of rRNA reads found to be 
shared between human and rat–as calculated by xengsort (Kopylova 
et al., 2012). We applied this methodology to the Baek et al. 
data, which indicated a high fraction of reads shared between rat
and human. 

Code availability

The code used to clean and analyze these data is available at 
https://github.com/MHBailey/Cellf_deception.

Results

Data collection

Data were collected from fourteen different studies involving 
brain cells and cell lines (Srinivasan et al., 2020; Galatro et al., 
2017; Zhang et al., 2016; Gosselin et al., 2017; Costa-
Verdera et al., 2025; Tsherniak et al., 2017; Gupta et al., 2024; 
Schirmer et al., 2019; Masuda et al., 2019; Quiroga et al., 2022; 
Armanville et al., 2025; Baek and Yoo, 2021; Baek et al., 2022; 

Abud et al., 2017) (Supplementary Table S1). In total, 432 samples 
from six of these studies were used to train two different classifiers–a 
classifier for cells collected from human tissues and another classifier 
from cell lines (Materials and Methods). 

Building a primary tissue-type Random 
Forest classifier

A statistical R package called multiclassPairs was used to 
build these classifiers (Marzouka and Eriksson, 2021) (Materials 
and Methods). Briefly, multiclassPairs builds Random Forest 
classification models based on the relationship between two genes 
instead of single gene quantities. Gene-pair ratios are less subject to 
batch effects (Ellrott et al., 2025) and thus more comparable when 
including many studies. Specifically, we leveraged both bulk-sorted 
and single-cell RNA-seq (scRNA-seq) data from multiple studies to 
create our classifiers. 

Primary tissue classifier training

258 samples were derived from tissue material 
(Supplementary Figure S2). Using RNA-seq information from these 
samples (bulk and single-cell transcriptomics), we built a Random 
Forest using multiclassPairs. We used a 60:40 training-to-test 
ratio. In the training data, only one labeled astrocyte sample was 
predicted as an endothelial cell, and one neuron was misclassified 
to be microglial in origin (Supplementary Table S2). The testing 
confusion matrix showed promising data with an overall accuracy 
of 98.08% (CI 0.9323–0.9977) and high balanced accuracies per 
cell type (>95.83% for each cell type), showing that the majority of 
samples were classified as their correct cell type.

The primary classifier used 452 gene-pair rules to classify 
labeled cell types (Figure 2A). Using these gene-pair rules, most 
cell types have distinguishable groups of gene rules that lead 
to their prediction; notably, gene-pairs-features are less sensitive 
to the data platform (Figure 2B). Overall balanced accuracy, 
sensitivity, and specificity provided strong evidence that our model 
could correctly classify the cell-type of origin for data derived 
from specific cells (Figure 2C; Supplementary Table S2). For our 
purposes, we wished to use this classifier to determine the fidelity 
of established microglial cell lines to the human-derived cellular
material.

Validate primary tissue classifier with 
additional datasets

To further assess the validity and accuracy of the RF classifiers, 
we tested data from two unrelated studies as independent test sets 
using single-cell and single-nuclei sequencing (Figure 3). The first 
dataset from Masuda et al. contains gene expression data for seven 
samples of human microglia cells from both non-MS control brain 
tissue and diseased MS brain tissue (Masuda et al., 2019). The 
second dataset from Schirmer et al. contains gene expression data for 
nine samples of human astrocyte cells from non-MS control brain 
tissue (Schirmer et al., 2019). Despite higher imputation levels (291 
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FIGURE 2
MulticlassPairs cell-type classification on the test dataset from primary tissue. (A) Three subpanels display the results of the classifier on cells derived 
and/or sorted from primary tissue. The top panel contains three rows: “Ref. Labels” display the cell type assigned by each respective study, “Predictions” 
display the calls of our classifiers on a set-aside test set, and “Platform/Study” displays how different studies span different cell types. The middle panel 
displays each sample’s rule activation score (columns) or classification score. The bottom panel displays the binary heatmap of 452 gene-pair decision 
rules. (B) A proximity matrix heatmap portrays similarity clusters of the RF classifier using out-of-bag samples. The top, “Ref. Labels” display cell type 
assigned by each respective study, and the “Platform/Study” row displays how different studies span different cell types. The heatmap shows the cell 
types mapped onto themselves, and each sample is given a proximity value with every other sample. (C) A confusion matrix displaying the specificity, 
sensitivity, and balanced accuracy of the classifier for each cell type, along with the overall accuracy, confidence interval, and p-value. A more 
complete table is found in Supplementary Table S2.

missing genes for Schirmer et al. and 292 missing genes for Masuda 
et al., i.e., more than half of the rules missing, see Materials and 
Methods), all samples from both studies were correctly identified 
as their known cell type of origin (Figure 3). In the Masuda et al. 
study, the microglial cell prediction score for each sample was 
above 95% (Figure 3A). These consistent results for every sample 
demonstrate the high efficiency of the RF classifier to make cell-type-
specific predictions even with missing data. Similarly, 8 of 9 astrocyte 
samples from the Schirmer et al. study were correctly classified 
by a cell prediction score of at least 0.87 (Schirmer et al., 2019). 
The highest astrocyte cell prediction score was 0.957 (Figure 3B). 
Interestingly, samples with the most extreme predictive score, C7 
Astrocyte, C9 Astrocyte, C2 Astrocyte, and C8 Astrocyte, had the 

fewest astrocyte-labeled cells from their single-cell experiments 
(average number of labels astrocytes were 31.5 cells compared to 289 
cells in the rest of the samples: C4, C5, C1, C6, C3; averages generated 
from Schirmer et al.’s Supplementary Table S4). These lower cell 
counts may have led to their less consistent predictions. Overall, 
these two validation sets provide strong evidence for the strength 
of our classification tool.

Classification of the HMC3 cell line

We next employed our primary cell-based RF classifier on 
HMC3 cell line expression datasets to determine how our model 
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FIGURE 3
MulticlassPairs cell-type classification on independent validation sets of primary tissue. (A) Seven human microglia samples from Masuda et al. were run 
through the classifier. Cell prediction scores for microglia range from 0.9875 to 1.000. (B) Nine human astrocyte samples from Schirmer et al. were run 
through the classifier. Cell prediction scores for astrocytes range from 0.344 to 0.957. Values closer to 1 indicate stronger cell assignment congruity.

classifies this line. We began with four HMC3 samples from 
GSE181153 by Quiroga et al. (2022). Our model’s predictions 
for HMC3 cells based on gene-pair expression patterns were 
less conclusive than for our test cases of primary cell isolates, 
but the highest cell prediction scores suggested that HMC3 cells 
were astrocyte-derived, with microglial derivation receiving the 
second highest scores (Figure 4A). The cell prediction scores for 
HMC3 cells representing microglia-derived cells ranged from 0.21 
to 0.22 while the range of scores for HMC3 cells representing 
astrocyte-derived cells was 0.45–0.46 (Figure 4A). Thus, we can 
see that the HMC3 cell line exhibits a heterogenous profile, and 
it may be most appropriately classified as an astrocyte-derived 
line according to its gene expression profile (Voloshin et al., 
2023). When we utilized the primary cell-based RF classifier 
to analyze iMG samples from the same study (Quiroga et al., 
2022) (withheld from the original training data), iMG cells were 
confidently classified as microglia, with predictions ranging from 
0.884 to 0.918 (Figure 4B). It is evident that iMG cells, though 
tedious to produce, provide a much more accurate experimental 
model of microglia than the HMC3 cell line. Notably, the HMC3 
cell line, while previously considered a microglia model, does not 
effectively capture microglial characteristics and instead presents 
a transcriptionally diverse profile more closely aligning with
astrocytes.

To further explore the original finding from Quiroga et al. that 
HMC3 cell profiles clustered more closely with U87 glioblastoma-
derived cells than with myeloid cells, we also tested U87 cell 
line profiles in our primary cell-based RF classifier (Figure 4C). 
The U87 samples were also given an ambiguous classification by 
our tool, with astrocyte scores at ∼0.35 and microglia scores at 
0.29–0.3 (Figure 4C). Interpreting these results, we hypothesized 
scenarios that might explain the data. First, the immortalization 
process could put U87 and HMC3 cell lines onto a similar 
transcriptomic trajectory. This could be supported by our PCA 
analysis when including iPSCs, which showed iPSCs clustering with 
U87 and HMC3 cells (Supplementary Figure S1). An alternative, 
albeit speculative, explanation is inadvertent mixing of U87 and 
HMC3 cells during sample handling.

To address the latter possibility, we extended our analysis 
to two additional datasets that sequenced HMC3 cell lines and 
deposited their data (Armanville et al., 2025; Baek and Yoo, 2021; 
Baek et al., 2022). Similar to the HMC3 samples from Quiroga et al., 
HMC3 samples from these two datasets suggested that HMC3 cells 
reflect astrocyte expression more than microglial expression, with 
predictive scores for astrocyte derivation again being ∼2-fold higher 
than for microglial derivation (Figures 5A,B). In fact, predictive 
scores for neuron derivation were as high as the scores for microglial 
derivation in these HMC3 samples.
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FIGURE 4
MulticlassPairs cell-type classification identifies human microglia cells. (A) A dataset of the HMC3 cell lines generated by Quiroga et al. was run through 
the classifier. A barplot presents an assorted composition of cell prediction scores, identifying most closely with astrocytes. (B) Again, an expression 
dataset of iMG cells was classified by our Random Forest prediction, and rule activation scores are presented in a boxplot. (C) The same scores are 
presented for the classification of U87 cells generated by Gupta et al.

FIGURE 5
MulticlassPairs cell-type classification identifies human microglia cells (A,B). Two additional datasets of the HMC3 cell lines run through the classifier 
present an assorted composition of cell prediction scores and identify most closely with astrocytes. (C) An expression dataset of monocytes and 
microglia (fetal and adult) cells was collected from human tissue and analyzed by our primary cell classifier, which shows clear distinctions between 
microglia from monocytic cells. Sample names provided by the manuscript, and indicators in the sample name indicate the origin of the cells 
collected: 5 classic monocytes, 3 fetal microglial samples, and 3 adult microglial collections.

To further explore the specificity of our model in accurately 
classifying monocytes and microglia cells from varying age groups 
(fetal and adult), we incorporated an additional test using the Abud 
et al. dataset (2017). Their study included gene expression profiles 
of monocytes as well as induced microglial (iMG) lines derived 
from induced pluripotent stem cells. Abud et al. demonstrated 
that these iMGs closely resembled primary human microglia in 
their transcriptional profiles (Abud et al., 2017). Due to the 
thoroughness of their sequencing across many facets, we found 
that both fetal and adult microglial populations were properly 
identified by our classifier (Figure 5C). These findings further 
support the robustness of our gene-pair classifier across data 
platforms and its relative immunity to batch effects while also 

confirming its ability to accurately identify microglia regardless of
developmental stage. 

Classification of a cell-type classifier using 
DepMap cell lines

To address the possibility that HMC3 cells and 
U87 cells clustered together mainly because they are 
transformed/immortalized cell lines and not because they have 
similar cell origins, we built another RF classifier using only 
transformed cell lines derived from human cancers of myeloid 
cell lineages or of the brain (neural, astroglial, or oligodendroglial 
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cancers). To build our transformed cell line-based RF classifier, we 
used cell lines studied in the DepMap cell line project (Tsherniak 
et al., 2017; Cancer Cell Line Encyclopedia Consortiumand 
Genomics of Drug Sensitivity in Cancer Consortium, 2015). 
Similar to above, we used multi-class pairs to build a gene-
pair classifier, allowing us to compare the DepMap sample to 
the datasets we collected above (Materials and Methods). Of 
the 174 different cell lines from CNS/Brain or Myeloid in the 
DepMap dataset, we used 56 CNS/Brain labeled cell lines and 48 
Myeloid cell lines to train the gene-pair Random Forest classifier 
(Supplementary Figure S3A, S3B). The test set revealed an F1 
statistic of 0.978, an accuracy of 97.1%, a sensitivity score of 1.00, 
and a specificity of 0.923 when using the remaining cells as a test 
set (Supplementary Figure S3). Of note, the 2 cell lines that were 
misclassified in the test set were the HAP1 line (ACH-002475) 
and HDMYZ (ACH-000190, Supplementary Figure S3C, S3D). 
Both lines have lineages labeled by DepMap to be myeloid in 
nature, but were better classified with the Brain/CNS labels in 
our classifier. Interestingly, HAP1 is a cell line derived from the 
chronic myeloid leukemia line, KBM-7 (Kotecki et al., 1999), and 
is a near-haploid cell line, making it easier to introduce mutations 
into a model system. Interestingly, the HAP1 arose from the failed 
attempt to induce pluripotency in KBM-7 by the overexpression 
of OCT4, SOX2, MYC, and KLF4. However, the resulting cell lost 
its hematopoietic markers (Carette et al., 2011), which agrees with 
our misclassification. The HD-MY-Z cell line, originally derived 
from a pleural effusion taken from a 29-year-old Hodgkin’s patient 
(Bargou et al., 1993), has also undergone scrutiny, and is now 
considered to be more AML in origin (Drexler et al., 2018). 
Drexler et al.’s commentary suggests these cells are more typical 
of myelomonocytic cells. Our classifier suggests a different origin 
that warrants further investigation. These results suggest that our 
classifier can accurately distinguish between cells and can capture 
known discrepancies in the field.

When we tested HMC3 lines datasets (none of which are in 
the DepMap data), we observed close alignment with CNS/Brain 
cancer-derived cell line profiles, a result that is counter to the non-
CNS origin of microglial cells (Figures 6A,D,E). Similarly, we also 
observed that U87 cells were predicted to originate from a CNS/Brain 
lineage, as expected (Figure 6B). U87 lines are part of the DepMap 
project but were withheld from our original training data to be used 
as a test case. The iMG cell profiles reported by Quiroga et al. or by 
Abud et al. aligned much more strongly with myeloid lineage cancers 
than CNS/Brain cancer cell lines, a result in line with expectation 
(Figures 6C,F). Finally, from tissue collected by Abud et al., we show 
that monocytes, fetal microglia, and adult microglia all classify with 
myeloid cell line profiles, according to their natural origins (Figure 6F). 
Overall, the transformed cell line-based classifier provides strong 
additional evidence that HMC3 cells lack the microglial-like identity 
or transcriptomic signatures sufficient to warrant their classification 
as a useful cell line for microglial research. 

Classification of reads in HMC3 cell lines

Finally, one important aspect that needs to be addressed is the 
possibility that all three HMC3 datasets analyzed in this manuscript 
were actually derived from rat glioma-derived cells, a widespread 

problem previously described for some neural cell lines (Garcia-
Mesa et al., 2017). A number of sequencing reads from rat cells will 
align with the human genome. While ATCC consistently provides 
high-quality cell lines for labs, we performed a quick assessment 
of RNA read quality and checked alignments for quality control 
purposes. Because of the previous challenges with deriving cell lines 
from R. norvegicus (rat), we assessed read origins based on the k-mer 
fidelity. To accomplish this task, we used a well-designed tool called 
xengsort (Zentgraf and Rahmann, 2021). Briefly, xengsort uses a 
large alignment-free k-mer store, i.e., a large key-value hash table, 
to assess whether the DNA or RNA reads best align to one, both, or 
neither of two references provided. Because of historical problems, it 
must be addressed explicitly by aligning the HMC3 sequencing reads 
with human vs. rat genomes and analyzing mismatches to ensure 
that the HMC3 datasets are in fact, human-derived cells and not rat-
derived cells. Results from this analysis clearly show that data from 
the Armanville et al. and Quiroga et al. studies are primarily from 
the Homo sapiens genome (mean of 98.53% and 98.07%, respectively, 
Figure 7A). Surprisingly, the Baek et al. study did show many 
shared k-mers with the Rat reference (mean 30.69% shared between 
human and rat); but only 0.13% of the k-mers were rat-specific.
Figure 6D.

To further investigate, we traced the cell line’s reported origin 
in the Baek et al. study. To better understand the origin of 
the reads that mapped to both the human and rat genomes, 
we consulted the developers of xengsort. They helped identify 
that most of these “both” reads originated from ribosomal RNA 
(rRNA), which is highly conserved across species. When we 
applied this theory using SortMeRNA (Kopylova et al., 2012), a 
read-mapping tool (Materials and Methods), we found strong 
evidence supporting elevated shared content between rat and human 
reads in the Baek et al. dataset is likely the result of insufficient 
rRNA depletion in the library preparation prior to sequencing, 
rather than contamination or misidentification of the cell line
(Figure 7B).

Discussion

The HMC3 cell line was created from an in vitro microglial 
sample in 1995 by transfection of the SV40-T antigen in primary 
human microglial cultures taken from human embryos (Janabi et al., 
1995). At the time of its creation, however, the line was never 
directly compared to mature human microglial cells to confirm its 
identity. Complicating its provenance further, HMC3 is reported 
to be a direct derivative of the CHME-5 cell line, which was 
later found to consist of rat glioma cells in many laboratories’ 
samples (Garcia-Mesa et al., 2017). HMC3 cells were also checked 
by qualitative immunostaining for the expression of certain markers. 
Although the HMC3 cells lacked glial fibrillary acidic protein 
(GFAP) staining and neurofilament staining (used to rule out 
astrocytic and neuronal contamination), this is not definitive, as 
other commonly used astrocyte-like lines, such as U87 cells, also 
lack GFAP expression (Russo et al., 2018). HMC3 also revealed 
markedly higher basal secretion levels than other microglial cell 
lines. Additionally, certain chemical transformations done to acquire 
the immortalized HMC3 cell made it nearly impossible to compare 
directly with microglial cells (Russo et al., 2018). As HMC3 becomes 
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FIGURE 6
DepMap cell of origin classifier distinguishes myeloid and CNS/Brain cell lines. 7 panels from 5 studies show how the DepMap classifier assigns 
predictions to many different data types in the exact same manner as Figures 3–5. (A) HMC3 lines from Quiroga et al., (B) U87s from Gupta et al., (C)
iMG (induced microglial lines) from Quiroga et al., (D) HMC3 lines from Chai et al., (E) HMC3 lines from Armanville et al., and (F) iMG (induced 
microglial line), monocytes, fetal microglia, and adult microglia samples from Abud et al.

more widely used, its unexpected behavior has prompted researchers 
to speculate about its true nature as a microglial substitute. This 
study’s goal was to provide an informed statistical opinion on the 
true lineage of the HMC3 cell line.

The results of our study indicate that HMC3 cells are more 
closely aligned with astrocytic expression profiles than with 
microglia. Our results demonstrate that the classification method 
is robust and accurate in our test (Figure 2) and validation sets 
(Figure 3). Furthermore, we highlight the strength of rules-based 
features as a viable method to combine gene expression analyses 
from multiple analyses, i.e., gene-pair qualifiers instead of absolute 
transcripts per million. While it was advantageous to apply this 
feature-based tool to multiple datasets with minimum effort in batch 
correction, the results of this data integration highlight the fact that 
HMC3 cells classify better with astrocytes than myeloid lineages. 
One possible explanation is that in the process of creating HMC3, 
due to the nature of how cells are changed to become immortalized, 
the cells acquired a stem-like state void of their developmental 
lineage (Pauklin and Vallier, 2013). However, our transformed cell 
line-based RF classifier refuted this possibility. Additionally, we also 
consider rat glioma contamination an unlikely explanation for the 
HMC3 profile given our read-classification results (Figure 7B). This 
showed that HMC3 datasets overwhelmingly aligned to the human 
genome, with any ambiguous reads largely attributable to highly 
conserved rRNA rather than true rat contamination. Therefore, a 

more likely explanation is that the cell culture from which the 
HMC3 cell line was created was not pure microglia, and that a 
contaminating astrocyte gave rise to the SV40-transformed clonal 
cell line that became known as HMC3. Regardless of the true 
explanation, our results show that using HMC3 cells as a method 
to model microglial activity for AD research is not justified.

These findings also have implications for AD research. 
Since HMC3 cells resemble astrocytes more closely than 
microglia, studies using HMC3 to model microglial biology may 
inadvertently lead to misinterpretation of microglial roles in 
AD pathogenesis—particularly in studies investigating immune 
signaling, phagocytosis of β-amyloid, and neuroinflammation. This 
misclassification could obscure the true contributions of microglia 
to AD pathogenesis and yield misleading conclusions about 
immune responses around β-amyloid plaques or therapeutic targets. 
In contrast, iPSC-derived microglia, though resource-intensive, 
more accurately model microglial biology and are preferable for 
mechanistic and translational AD studies.

Our findings align with recent work by Woolf et al. (2025), 
who conducted a direct phenotypic and functional comparison of 
commonly used in vitro microglia models, including HMC3 (Woolf 
et al., 2025). In their study, HMC3 cells failed to express canonical 
microglia markers (Iba1, CD45, PU.1) and instead stained positive 
for mural cell markers such as PDGFRβ and NG2. Functionally, 
HMC3 displayed significantly lower phagocytic activity and 
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FIGURE 7
Sequence read quality of the HMC3 cell lines. (A) Bar charts for the three HMC3 studies show the percentage of RNA sequencing k-mers that match 
with the Rat transcriptomic reference (Rattus norvegicus) or the Human transcriptomic reference (Hhomo sapiens). The x-axis indicates the percentage 
of k-mers that are unique to Rat, Human, Both, Neither, or are Ambiguous. More samples are present in the Armanville study than in previous analyses 
because we did not restrict to HMC3 lines. (B) Fraction of rRNA detected in reads that aligned to both Human and Rat in the Baek et al. samples.

secretory responsiveness compared to primary and iPSC-derived 
microglia—more closely resembling pericytes than cells of myeloid 
lineage. These findings, derived from an independently sourced 

and ATCC-validated vial of HMC3 cells, provide an important 
biological complement to our transcriptomic findings. In addition 
to validating the classifier on independent primary-cell datasets 
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(Masuda et al., 2019; Schirmer et al., 2019), we applied the model 
to independent HMC3 datasets (Armanville et al., 2025; Baek 
and Yoo, 2021). While these latter datasets are not used to 
validate cross-cell-type performance, they provide out-of-sample 
replication of our central finding that HMC3 aligns more closely 
with astrocytic than microglial signatures. These independent 
testing sets consistently supported our findings. The convergence 
of computational and experimental evidence strengthens the 
robustness and generalizability of our conclusion that HMC3 does 
not represent a valid microglial model.

It is critical to accurately determine the origin of HMC3 cell 
lines, as they are widely used in key research on Alzheimer’s 
disease (Russo et al., 2018). Microglial recruitment in the brain 
and central nervous system plays a vital role in supporting 
brain health and resilience in the face of neurodegenerative 
diseases, due to microglia’s regulation of several essential immune 
functions (Miao et al., 2023). This motivated our investigation into 
the HMC3 line, which we found cannot be accurately classified as 
microglia. As a result, findings from studies that substitute HMC3 
for microglia may be compromised or misleading.

Future studies with larger datasets could provide greater 
statistical power to detect cell-type-specific expression differences, 
strengthening confidence in our conclusions. Further analysis 
should identify the genes that most effectively distinguish 
astrocytes and microglia from other cell types, and evaluate 
whether HMC3 has any valid, limited applications. Additionally, 
to the power of data integration between bulk-RNA and 
single-cell RNA experiments, we believe this strategy for data 
integration may help boost power as new tools seek to use AI 
to identify novel drug targets (Zhao et al., 2022). This will be 
increasingly important as higher-resolution data emerges across 
the spectrum of human diseases and the cells that drive their
expression.

Our computational findings strongly indicate that 
HMC3 is not a true human microglial model of myeloid 
origin and call into question its use in prior research, 
urging caution in continuing to use HMC3 as a proxy for
microglia.
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