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Introduction: Recent advances in Alzheimer's research suggest that the brain’s
immune system plays a critical role in the development and progression of
this devastating disease. Microglial cells are vital as immune cells in the brain’s
defense system. Human Microglia Clone 3 (HMC3) is a cell line developed as
a promising experimental model to understand the role of microglial cells in
human diseases including Alzheimer’'s and other neurodegenerative diseases.
The frequency of HMC3 cell usage has increased in recent years, with the idea
that this cell line could serve as a convenient model for human microglial cell
functions.

Methods: We utilized gene-pair ratios from bulk and single-cell RNA sequencing
(scRNA-seq) expression data to create predictive models of cell-type origins.
Results: Our model reveals that the HMC3 cell line represents various cell types,
with the highest cell similarity score relating to astrocytes, not microglia.
Discussion: These findings suggest that the HMC3 cell line is not a reliable
human microglia model and that extreme caution should be taken when
interpreting the results of studies using the HMC3 cell line.

KEYWORDS
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Introduction

As Alzheimer’s disease (AD) is a growing global health concern and a leading cause
of death in the United States, it is essential to better understand this disease (Weuve et al.,
2014; James et al,, 2014; Author anonymous, 2024). AD causes neuronal breakdown and
brain atrophy (Cedres et al., 2020). Recent studies suggest that the brain’s immune system
may play a key role in developing AD (Weiner, 2025). Microglial cells are the first line
of the brain’s innate immune defense. These cells maintain brain homeostasis and, when
working properly, find cells that are diseased or injured (Bohlen et al., 2019; Condello et al.,
2015; Vainchtein and Molofsky, 2020). Clustering and chronic activation of microglial
cells around B-amyloid plaques have long hinted at potential roles for these cells in AD

01 frontiersin.org


https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1681811
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1681811&domain=pdf&date_stamp=
2025-11-02
mailto:matthew.bailey@byu.edu
mailto:matthew.bailey@byu.edu
https://doi.org/10.3389/fbinf.2025.1681811
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1681811/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1681811/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1681811/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1681811/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Rahm et al.

progression (McGeer et al, 1993), and recent identification in
genome-wide association studies of many AD risk genes with
microglia-specific expression has underscored that microglia are a
key cell type that governs AD pathogenesis (Hansen et al., 2018).
Many genetic and environmental factors can alter the activity
and responses of microglial cells, and the mechanisms by which
microglia promote or restrain AD development and progression are
not fully understood and require further investigation.

AD-relevant
phagocytosis, lysosome function, and proteostasis can be modeled

microglial ~activities such as chemotaxis,
in vitro using cultured cells. Primary human microglial cells isolated
from brain tissue are not commonly utilized since fresh brain tissue
is not readily available. Human microglia-like cells known as iMG
or iMGL (iPSC-derived microglia-like) cells can be differentiated
from induced pluripotent stem cell (iPSC) lines and are increasingly
recognized as the best available alternative to primary microglial cells
(Wickstead, 2023; Abud et al., 2017). However, iPSC maintenance
and iMG differentiation are expensive, laborious, and lengthy
procedures. Another alternative that allows researchers to produce
their (pseudo)cell type of interest in unlimited numbers is to convert
primary cultured cells into “immortalized” cell lines with unlimited
proliferative potential. Although immortalized cells are not the same
as their primary cell progenitors, they may nonetheless serve as useful
substitutes that are convenient and inexpensive to culture, and they
are more amenable to genetic manipulation to study the functionality
of the individual genes.

Currently, multiple immortalized lines of murine microglial
cells are available, including the widely used BV-2 and N9 cell
lines, both immortalized using retroviral oncogenes (Blasi et al.,
1990; Righi et al., 1989; Timmerman, Burm, and Bajramovic,
2018). However, interspecific differences between human and mouse
immune signaling argue for the use of human cells when possible.
For example, the microglia-expressed AD risk gene and therapeutic
target CD33 has no murine ortholog (Bhattacherjee et al., 2019).
Very few immortalized human microglia cell lines have been
produced, but one cell line being increasingly utilized by researchers
is the Human Microglia Clone 3 (HMC3) cell line (Figure 1A).

The HMC3 cell line was created by immortalizing human
embryonic microglial cultures with SV40 antigen to further scientific
investigation of how microglial cells impact human conditions
including Alzheimer’s and other neurodegenerative diseases (Janabi
etal, 1995). Notably, HMCS3 cells have also been distributed and used
under different names including CHME-3, CHME-5, and C13-NJ
cells (Russo et al., 2018). In 2016, it was discovered that ostensible
CHME-5 cells being used by several labs at that time were in fact
rat-derived cells (Garcia-Mesa et al., 2017), prompting the American
Type Culture Collection (ATCC) to authenticate the human origin of
the HMC3 cell line (product #CRL-3304).

Motivated by interest in using HMC3 cells as potential research
tools, we spot-checked some existing HMC3 RNA-seq datasets from
Gene Expression Omnibus to validate the expression of common
myeloid cell markers including ITGAM (CD11b), PTPRC (CD45),
SYK, TYROBP (DAP12), CX3CRI, and Fc receptors. To our surprise,
these markers were not expressed, prompting us to examine the
research literature for insights as to whether HMC3 cells should be
classified as microglia-derived. Indeed, some researchers have noted
the lack of expected marker expression in HMC3 cells (Rawat and
Spector, 2017; Rai et al,, 2020), while others reported that HMC3
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cells’ transcriptional profile more closely resembled that of U87 cells
(Quiroga et al.,, 2022)—a glioblastoma-derived cell line commonly
used to represent astrocyte biology—than profiles of myeloid lineage
cells including iMG cells, the monocytic leukemia-derived THP-1 cell
line, or primary cultures of microglia, macrophages, or monocytes (see
our similar principal component analysis in Figure 1B). If the research
community increasingly uses the HMC3 cell line to study the role
of microglial cells in neurodegenerative diseases, we must present a
definitive classification of what type of brain cell it best represents.

The purpose of this paper is to computationally assess the
myeloid nature of the HMC3 cell line, specifically distinguishing
between microglia and astrocytes or other CNS cell types. Although
astrocytes and microglia are physically different and easy to
distinguish while examining morphology in vivo (Vainchtein
and Molofsky, 2020), transformed or immortalized cells cultured
in vitro have less distinct morphologies and can have altered
traits due to the immortalization process (Kaur and Dufour,
2012). Single-cell and bulk RNA sequencing are powerful tools
for distinguishing cell types by measuring transcriptome-wide
differences in gene expression levels, providing a robust alternative
to morphology-based observations (Haque et al., 2017; Mukamel
and Ngai, 2019; Ofengeim et al., 2017).

Our strategy for HMC3 cell classification used publicly available
RNA-seq expression data from multiple studies to determine the
proper placement of the HMC3 cell line amongst different lineages of
cells within the brain. Microglial cells and other CNS cell types have
been sequenced many times for study and classification (Spurgat,
2022), and the resulting datasets are accessible in databases such as
Gene Expression Omnibus (GEO) and Genotype-Tissue Expression
Portal (GTEx) (Gerrits et al., 2020; Keil et al., 2018).

Our primary goal was to understand if the HMC3 line
could be confidently characterized as microglia-derived cells
and subsequently used in researching the mechanisms of
neurodegenerative diseases such as Alzheimer’s. Given that gene
expression directly influences phenotypic features of a cell, including
its behavior, we developed two independent Random Forest
classifiers to investigate the cellular identity of the HMC3 cell line
using gene-ratio comparisons. The first classifier was trained on
primary human cells from multiple studies to establish gene-pair
rules for distinguishing among cell types and to generate prediction
scores reflecting cell-type similarity. When the HMC3 cell line was
analyzed with this classifier, it exhibited variability in predicted cell-
type scores, with the highest similarity observed for astrocytes. The
second classifier was trained on the extensive cohort of cell lines
collected by the DepMap project (Tsherniak etal.,, 2017). Using
this classifier, HMC3 cells were predicted to have greater similarity
with cells of the central nervous system as opposed to the expected
myeloid lineage.

Materials and Methods

PubMed trend analysis of “HMC3 and
microglia” publications

We conducted a comprehensive search on the PubMed
(pubmed.ncbi.nlm.nih.gov/) research database to identify all articles
published between 2009 and 12 July 2025 that included both “HMC3
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Analysis of previous literature justifies the study. (A) PubMed search results for “(HMC3) AND (microglia)” show sharply increasing numbers of
publications since 2020, with 57 articles in 2023, 81 in 2024 and 46 so far in 2025 as of July 12. (B) Principal components were recalculated using brain
cell types from Quiroga et al., 2022 (GSE181153). We observed an unexpected clustering of the HMC3 microglial cell line with the U87 astrocyte cell
line (red and pink clusters). Note: Adapted from Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture
systems, (1) Y. Quiroga et al., 2022, http://creativecommons.org/licenses/by/4.0/ (Quiroga et al., 2022).

AND Microglia” as search terms. After downloading the search
results, we compiled the number of relevant publications per year
and created a table summarizing the annual publication counts.

Data access and cleaning

RNA sequencing datasets derived from healthy human tissues,
a variety of brain cell types, and various cell lines were collected
from GEO, DepMap, and several papers (Supplementary Table S1).
Control and diseased samples from each dataset were used as part
of our analysis. All datasets used the HUGO gene symbols, and
any datasets that used the human Ensembl gene nomenclature were
converted through the R IDConverter package to enable gene-
pair comparisons among different datasets (Wang et al., 2021).
Additionally, we restricted genes within the datasets to those where
80% or higher of the samples had a non-zero observation in the
specified gene. This restricted our training datasets to 8,723 genes.

Principal component analysis

Figure 1B in this manuscript mimics Figure 1 from Quiroga
etal. (GSE181153) but with fewer cell type comparisons
(Quiroga et al., 2022). First, the gene-counts table was converted
to transcripts per million. As performed by Quiroga etal., only
genes with greater than 100 transcripts per million were kept in
the analysis. Samples were then restricted to only include control
non-treated samples, i.e., only “NONE_NONE” labels were kept.
Additionally, To recreate the Quiroga PCA, iPSCs were not included
in the plot despite the raw data including iPSCs. Of note, when
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the iPSC lines were included, they cluster with U87a and HMC3
lines (Supplementary Figure SI1). Once samples and genes were
removed, gene count data were processed using DES (Love et al.,
2014), followed by variant stabilization (‘vst()’ function). Following
the variant stabilization step, the ‘plotPCA(); a native function in
DES, was used to generate the Principal Component plots.

The primary cell Random Forest classifier

A primary cell Random Forest classifier was developed using the
multiclassPairs R package (v0.4.3), which implements a rule-based
classification framework with gene-pair comparisons (Marzouka
and Eriksson, 2021). The classifier was built from five publicly
available datasets, comprising a total of 258 healthy and diseased
human samples. From the Galatro etal. dataset (GSE99074),
65 microglia samples were included. The Gosselin et al. dataset
(phs001373. v1. pl.) contributed 46 microglia and 13 monocyte
samples. The Srinivasan etal. dataset (GSE125050) provided 19
adult astrocytes, 27 endothelial, 25 microglia, and 42 neuron
samples. From the Zhang etal. dataset (GSE73721), 9 adult
astrocyte, 4 microglia, and 1 neuron sample were included. Lastly,
the Costa-Verdera et al. dataset (GSE253820) contributed 4 adult
astrocyte and 3 neuron samples. After preprocessing, each sample
was annotated with its respective cell type and dataset of origin. All
data were merged into a single gene expression matrix, with genes
as rows and samples as columns, for input into the multiclassPairs
workflow. It should be noted that data normalization and batch effect
correction was not performed on the combined dataset as the only
comparisons of gene expression values occurred within samples, and
never across samples, in all further analyses using this dataset.
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The ‘ReadData’ function from the multiclassPairs R package was
implemented to structure the combined matrix into an appropriate
format with correct labeling for downstream analysis. The data were
partitioned into training (60%) and testing (40%) sets, ensuring no
sample overlap between sets.

To reduce dimensionality and improve classifier performance,
gene selection was performed using the ‘sort_genes_RF function
and the ‘rank_data’ parameter set to TRUE. This function ranks
genes within samples based on their importance in differentiating
cell types, employing a Random Forest-based feature ranking
strategy of importance scores computed by the embedded ranger
package. Two methods are employed in the function to rank
genes: an “altogether” method and a “one-vs-rest” method. In the
“altogether” method, genes are ranked based on their ability to
differentiate all cell types from each other. In the “one-vs-rest”
method, for each cell type, genes are ranked based on their ability to
differentiate that cell type from the others. A total of 2,000 trees were
used in the gene sorting step. The top-ranked genes were selected
for further analysis using the ‘summary_genes_RF’ function, which
indicated that 85 genes from the “altogether” category and 100 genes
per class from the “one-vs-rest” category provided optimal rule
coverage for downstream training.

From the unique set of these genes, binary classification rules
were generated by forming all gene-pair combinations, where
a rule was defined as “Gene A < Gene B” and evaluated by
comparing the gene expression values within each sample. These
rules were sorted based on their discriminative power using the
‘sort_rules_RF’ function. To ensure robustness, rules were ranked
selection was performed using both the above-described “one-vs-
rest” and “all-vs-altogether” ranking approaches. Top-ranked rules
from each method were selected for downstream analysis, allowing
for differential weights of all cell types to reduce bias due to sample
imbalances.

The final classifier was then trained on binary input generated
by evaluating the selected rules using the ‘train_RF’ function, with
model parameters optimized through the ‘optimize_RF function.
Combinations of the following parameters were tested to find the
optimal parameter set: maximum number of times a gene can be
repeated among the selected rule set, number of rules derived from
the “one-vs-rest” method used in the model, number of rules per
class derived from the “altogether” method used in the model,
whether or not to remove uninformative rules from the selected
rule set (boruta-based feature selection), and number of trees
generated in the model. Based on the results from the parameter
optimization, the final model was then constructed of 1,000 trees,
with a gene repetition limit of one to ensure rule diversity. A total
of 100 rules derived from the one-vs-rest scheme and 85 rules
from the altogether scheme were selected for training. A total of
100 top-ranking rules derived from the “altogether” method and
100 top-ranking rules per class derived from the “one-vs-rest”
method were initially selected for training. Boruta-based feature
selection was enabled to exclude non-informative rules (Kursa et al.,
2010). Additionally, probability estimation was activated, allowing
the model to output class scores instead of categorical predictions.
The resulting model was composed of 452 binary rules (gene-pairs)
across all classes (Supplementary Figure S2).
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Primary cell-line RF classifier

Concurrently, we generated a cell-line-based Random Forest
classifier as above but made the training set using cell line expression
profiles. Specifically, we used data from DepMap (Tsherniak et al.,
2017; Cancer Cell Line Encyclopedia Consortiumand Genomics
of Drug Sensitivity in Cancer Consortium, 2015), including 174
cell lines collected from the DepMap Download portal at https://
depmap.org/portal/data_page/?tab=currentRelease version 24Q4
under the expression tab. We downloaded and integrated data from
“Model.csv” (the collection of metadata used to describe the cell
types and their origins, including sex and tissue of origin) and
“OmicsExpressionProteinCodingGenesTPMLogpl. csv” to get the
expression data. Entrez gene IDs were removed, and genes were
subset as above (see Data access and cleaning). Additionally, we
subset our data to cell types that originated in the brain/central
nervous system, or blood cancers, in order to classify cells as
neural or myeloid in nature. 22 gene names were missing from the
DepMap data and were not considered in the training: “RBM14_
RBM4”, “FPGT_TNNI3K”, “BCL2L2_PABPN1”, “TEN1_CDK3",
“PPT2_EGFLS”, “RTEL1_TNFRSF6B”, “SENP3_EIF4A1”, “P2RX5_
TAX1BP3”, “STX16_NPEPL1”, “DLEUI”, “ERV3_17, “HLA_A’
“HLA_C”, “HLA_DMA’, “HLA_DQB1”, “HLA_DRB1”, “HLA_F,
“CHKB_CPTI1B’, “ST20”, ANKHD1_EIF4EBP3”, “ZNF286B”, and
“IMJD7_PLA2G4B”. This left 8,702 genes for training the tissue of
origin data.

Note “ACH-000075" or the U87 cell line is part of the DepMap
dataset, but it was withheld from training and used only for testing.
This also provides some justification for not performing cross-
validation on our data, where U87 might eventually be included to
optimize the model.

After following the same methodology above, 41
rules were used to build our classifier (Supplementary
Figure S3).

Model testing and evaluation

Upon the creation of two classifiers, a primary cell classifier
and cell-line classifier, we tested RNA-seq data generated from
many different studies (Gupta et al., 2024; Schirmer et al., 2019;
Masuda et al., 2019; Quiroga et al., 2022; Armanville et al,
2025; Baek and Yoo, 2021; Baek et al, 2022; Abud et al,
2017) to evaluate the performance of our model and assess
its validity. The ‘CaretconfusionMatrix’ function was utilized
to generate model performance metrics for both the training
and test sets (Supplementary Figure S2, S3). Because our aim
was to interrogate HMC3 lineage rather than develop a
broadly generalizable tool, we did not perform k-fold cross-
validation. Instead, model reliability was assessed through
independent validation using datasets from Masuda et al
(2019) and Schirmer et al. (2019), which provided stringent
external testing and demonstrated strong classifier performance.
These single-nuclei and single-cells studies, respectively, were
analyzed using pseudo-bulk strategies by aggregating expression
data according to the cell-type annotation of the original
publications.
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Testing for rat sequencing reads

FASTQ files were downloaded to a Google bucket from the
Sequence Read Archive (SRA) for all HMC3 samples tested
(GSE181153, GSE275256, GSE155408, specifically, SRR12347826,

SRR12347827, SRR12347828, SRR15301012, SRR15301013,
SRR15301082, SRR15301083, SRR30311414, SRR30311415,
SRR30311416, SRR30311417, SRR30311418, SRR30311419,

SRR30311420, SRR30311421, and SRR30311422). To test whether
samples had more RNA sequencing reads that aligned to
Rat (Rattus norvegicus) or Human (Homo sapiens) reads, we
used xengsort (Zentgraf and Rahmann, 2021) https://gitlab.com/
genomeinformatics/xengsort) to characterize reads according to
their alignment preference. We used Ensembl GRCh38 release 114
c¢DNA and DNA FASTA files for the human reference and GRCr8
release 114 cDNA and DNA sequences for the rat genome reference.
Briefly, the xengsort pipeline uses a memory-intensive step to index
the reference genomes and then uses Cuckoo hashing for rapid
assessment of k-mer fidelity in order to classify raw reads to the
different references for each sample.

Testing for rRNA in shared reads

Due to the high sequence synteny of rRNA fragments (even
across species), we evaluated the fraction of reads that aligned to
both human and rat sequences. Note, rRNA, is the most abundant
molecule in the cell, can comprise up to 80% of the RNA content in
acell (O'Neil et al., 2013). To do this, we first collected a compilation
of rRNA reference data from SILVA: https://www.arb-silva.de/, a
database dedicated to building “A comprehensive online resource
for quality checked and aligned ribosomal RNA sequence data”
There, we downloaded a multi-species rRNA reference file, “smr_
v4.3_fast_db.fasta” to capture the Large Subunit (LSU) and Small
Subunit (SSU) of rRNA (Glockner et al., 2017). We used SortMeRNA
(to rapidly quantify the fraction of rRNA reads found to be
shared between human and rat-as calculated by xengsort (Kopylova
etal, 2012). We applied this methodology to the Baek etal
data, which indicated a high fraction of reads shared between rat
and human.

Code availability

The code used to clean and analyze these data is available at
https://github.com/MHBailey/Cellf_deception.

Results
Data collection

Data were collected from fourteen different studies involving
brain cells and cell lines (Srinivasan et al., 2020; Galatro et al,,
2017; Zhang et al, 2016; Gosselin et al, 2017; Costa-
Verdera et al.,, 2025; Tsherniak et al, 2017; Gupta et al., 2024;
Schirmer et al.,, 2019; Masuda et al., 2019; Quiroga et al., 2022;
Armanville et al., 2025; Baek and Yoo, 2021; Baek et al., 2022;
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Abud et al,, 2017) (Supplementary Table S1). In total, 432 samples
from six of these studies were used to train two different classifiers—a
classifier for cells collected from human tissues and another classifier
from cell lines (Materials and Methods).

Building a primary tissue-type Random
Forest classifier

A statistical R package called multiclassPairs was used to
build these classifiers (Marzouka and Eriksson, 2021) (Materials
and Methods). Briefly, multiclassPairs builds Random Forest
classification models based on the relationship between two genes
instead of single gene quantities. Gene-pair ratios are less subject to
batch effects (Ellrott et al., 2025) and thus more comparable when
including many studies. Specifically, we leveraged both bulk-sorted
and single-cell RNA-seq (scRNA-seq) data from multiple studies to
create our classifiers.

Primary tissue classifier training

258
(Supplementary Figure S2). Using RNA-seq information from these

samples were derived from tissue material
samples (bulk and single-cell transcriptomics), we built a Random
Forest using multiclassPairs. We used a 60:40 training-to-test
ratio. In the training data, only one labeled astrocyte sample was
predicted as an endothelial cell, and one neuron was misclassified
to be microglial in origin (Supplementary Table S2). The testing
confusion matrix showed promising data with an overall accuracy
of 98.08% (CI 0.9323-0.9977) and high balanced accuracies per
cell type (>95.83% for each cell type), showing that the majority of
samples were classified as their correct cell type.

The primary classifier used 452 gene-pair rules to classify
labeled cell types (Figure 2A). Using these gene-pair rules, most
cell types have distinguishable groups of gene rules that lead
to their prediction; notably, gene-pairs-features are less sensitive
to the data platform (Figure 2B). Overall balanced accuracy,
sensitivity, and specificity provided strong evidence that our model
could correctly classify the cell-type of origin for data derived
from specific cells (Figure 2C; Supplementary Table S2). For our
purposes, we wished to use this classifier to determine the fidelity
of established microglial cell lines to the human-derived cellular

material.

Validate primary tissue classifier with
additional datasets

To further assess the validity and accuracy of the RF classifiers,
we tested data from two unrelated studies as independent test sets
using single-cell and single-nuclei sequencing (Figure 3). The first
dataset from Masuda et al. contains gene expression data for seven
samples of human microglia cells from both non-MS control brain
tissue and diseased MS brain tissue (Masuda etal., 2019). The
second dataset from Schirmer et al. contains gene expression data for
nine samples of human astrocyte cells from non-MS control brain
tissue (Schirmer et al., 2019). Despite higher imputation levels (291
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FIGURE 2

MulticlassPairs cell-type classification on the test dataset from primary tissue. (A) Three subpanels display the results of the classifier on cells derived
and/or sorted from primary tissue. The top panel contains three rows: “Ref. Labels" display the cell type assigned by each respective study, “Predictions”
display the calls of our classifiers on a set-aside test set, and “Platform/Study” displays how different studies span different cell types. The middle panel
displays each sample's rule activation score (columns) or classification score. The bottom panel displays the binary heatmap of 452 gene-pair decision
rules. (B) A proximity matrix heatmap portrays similarity clusters of the RF classifier using out-of-bag samples. The top, “Ref. Labels” display cell type
assigned by each respective study, and the “Platform/Study” row displays how different studies span different cell types. The heatmap shows the cell
types mapped onto themselves, and each sample is given a proximity value with every other sample. (C) A confusion matrix displaying the specificity,
sensitivity, and balanced accuracy of the classifier for each cell type, along with the overall accuracy, confidence interval, and p-value. A more

complete table is found in Supplementary Table S2.

missing genes for Schirmer et al. and 292 missing genes for Masuda
etal, i.e., more than half of the rules missing, see Materials and
Methods), all samples from both studies were correctly identified
as their known cell type of origin (Figure 3). In the Masuda et al.
study, the microglial cell prediction score for each sample was
above 95% (Figure 3A). These consistent results for every sample
demonstrate the high efficiency of the RF classifier to make cell-type-
specific predictions even with missing data. Similarly, 8 of 9 astrocyte
samples from the Schirmer etal. study were correctly classified
by a cell prediction score of at least 0.87 (Schirmer etal., 2019).
The highest astrocyte cell prediction score was 0.957 (Figure 3B).
Interestingly, samples with the most extreme predictive score, C7
Astrocyte, C9 Astrocyte, C2 Astrocyte, and C8 Astrocyte, had the
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fewest astrocyte-labeled cells from their single-cell experiments
(average number of labels astrocytes were 31.5 cells compared to 289
cells in the rest of the samples: C4, C5, C1, C6, C3; averages generated
from Schirmer etal’s Supplementary Table S4). These lower cell
counts may have led to their less consistent predictions. Overall,
these two validation sets provide strong evidence for the strength
of our classification tool.

Classification of the HMC3 cell line

We next employed our primary cell-based RF classifier on
HMCS3 cell line expression datasets to determine how our model
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FIGURE 3
MulticlassPairs cell-type classification on independent validation sets of primary tissue. (A) Seven human microglia samples from Masuda et al. were run
through the classifier. Cell prediction scores for microglia range from 0.9875 to 1.000. (B) Nine human astrocyte samples from Schirmer et al. were run
through the classifier. Cell prediction scores for astrocytes range from 0.344 to 0.957. Values closer to 1 indicate stronger cell assignment congruity.

classifies this line. We began with four HMC3 samples from
GSE181153 by Quiroga et al. (2022). Our model’s predictions
for HMC3 cells based on gene-pair expression patterns were
less conclusive than for our test cases of primary cell isolates,
but the highest cell prediction scores suggested that HMC3 cells
were astrocyte-derived, with microglial derivation receiving the
second highest scores (Figure 4A). The cell prediction scores for
HMCS3 cells representing microglia-derived cells ranged from 0.21
to 0.22 while the range of scores for HMC3 cells representing
astrocyte-derived cells was 0.45-0.46 (Figure 4A). Thus, we can
see that the HMC3 cell line exhibits a heterogenous profile, and
it may be most appropriately classified as an astrocyte-derived
line according to its gene expression profile (Voloshin et al,
2023). When we utilized the primary cell-based RF classifier
to analyze iMG samples from the same study (Quiroga et al,
2022) (withheld from the original training data), iMG cells were
confidently classified as microglia, with predictions ranging from
0.884 to 0.918 (Figure 4B). It is evident that iMG cells, though
tedious to produce, provide a much more accurate experimental
model of microglia than the HMC3 cell line. Notably, the HMC3
cell line, while previously considered a microglia model, does not
effectively capture microglial characteristics and instead presents
a transcriptionally diverse profile more closely aligning with
astrocytes.
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To further explore the original finding from Quiroga et al. that
HMCS3 cell profiles clustered more closely with U87 glioblastoma-
derived cells than with myeloid cells, we also tested U87 cell
line profiles in our primary cell-based RF classifier (Figure 4C).
The U87 samples were also given an ambiguous classification by
our tool, with astrocyte scores at ~0.35 and microglia scores at
0.29-0.3 (Figure 4C). Interpreting these results, we hypothesized
scenarios that might explain the data. First, the immortalization
process could put U87 and HMC3 cell lines onto a similar
transcriptomic trajectory. This could be supported by our PCA
analysis when including iPSCs, which showed iPSCs clustering with
U87 and HMC3 cells (Supplementary Figure S1). An alternative,
albeit speculative, explanation is inadvertent mixing of U87 and
HMCS3 cells during sample handling.

To address the latter possibility, we extended our analysis
to two additional datasets that sequenced HMC3 cell lines and
deposited their data (Armanville et al., 2025; Baek and Yoo, 2021;
Baek et al., 2022). Similar to the HMC3 samples from Quiroga et al.,
HMCS3 samples from these two datasets suggested that HMC3 cells
reflect astrocyte expression more than microglial expression, with
predictive scores for astrocyte derivation again being ~2-fold higher
than for microglial derivation (Figures 5A,B). In fact, predictive
scores for neuron derivation were as high as the scores for microglial
derivation in these HMC3 samples.
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presented for the classification of U87 cells generated by Gupta et al.

MulticlassPairs cell-type classification identifies human microglia cells. (A) A dataset of the HMC3 cell lines generated by Quiroga et al. was run through
the classifier. A barplot presents an assorted composition of cell prediction scores, identifying most closely with astrocytes. (B) Again, an expression
dataset of iMG cells was classified by our Random Forest prediction, and rule activation scores are presented in a boxplot. (C) The same scores are
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FIGURE 5

MulticlassPairs cell-type classification identifies human microglia cells (A,B). Two additional datasets of the HMC3 cell lines run through the classifier
present an assorted composition of cell prediction scores and identify most closely with astrocytes. (C) An expression dataset of monocytes and
microglia (fetal and adult) cells was collected from human tissue and analyzed by our primary cell classifier, which shows clear distinctions between
microglia from monocytic cells. Sample names provided by the manuscript, and indicators in the sample name indicate the origin of the cells
collected: 5 classic monocytes, 3 fetal microglial samples, and 3 adult microglial collections.

To further explore the specificity of our model in accurately
classifying monocytes and microglia cells from varying age groups
(fetal and adult), we incorporated an additional test using the Abud
et al. dataset (2017). Their study included gene expression profiles
of monocytes as well as induced microglial (iMG) lines derived
from induced pluripotent stem cells. Abud etal. demonstrated
that these iMGs closely resembled primary human microglia in
their transcriptional profiles (Abud et al, 2017). Due to the
thoroughness of their sequencing across many facets, we found
that both fetal and adult microglial populations were properly
identified by our classifier (Figure 5C). These findings further
support the robustness of our gene-pair classifier across data
platforms and its relative immunity to batch effects while also
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confirming its ability to accurately identify microglia regardless of
developmental stage.

Classification of a cell-type classifier using
DepMap cell lines

To the that HMC3 cells and
U87 «cells clustered together mainly because they
transformed/immortalized cell lines and not because they have
similar cell origins, we built another RF classifier using only
transformed cell lines derived from human cancers of myeloid
cell lineages or of the brain (neural, astroglial, or oligodendroglial

address possibility

are
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cancers). To build our transformed cell line-based RF classifier, we
used cell lines studied in the DepMap cell line project (Tsherniak
etal, 2017; Cancer Cell Line Encyclopedia Consortiumand
Genomics of Drug Sensitivity in Cancer Consortium, 2015).
Similar to above, we used multi-class pairs to build a gene-
pair classifier, allowing us to compare the DepMap sample to
the datasets we collected above (Materials and Methods). Of
the 174 different cell lines from CNS/Brain or Myeloid in the
DepMap dataset, we used 56 CNS/Brain labeled cell lines and 48
Myeloid cell lines to train the gene-pair Random Forest classifier
(Supplementary Figure S3A, S3B). The test set revealed an Fl
statistic of 0.978, an accuracy of 97.1%, a sensitivity score of 1.00,
and a specificity of 0.923 when using the remaining cells as a test
set (Supplementary Figure S3). Of note, the 2 cell lines that were
misclassified in the test set were the HAP1 line (ACH-002475)
and HDMYZ (ACH-000190, Supplementary Figure S3C, S3D).
Both lines have lineages labeled by DepMap to be myeloid in
nature, but were better classified with the Brain/CNS labels in
our classifier. Interestingly, HAPI1 is a cell line derived from the
chronic myeloid leukemia line, KBM-7 (Kotecki et al., 1999), and
is a near-haploid cell line, making it easier to introduce mutations
into a model system. Interestingly, the HAP1 arose from the failed
attempt to induce pluripotency in KBM-7 by the overexpression
of OCT4, SOX2, MYC, and KLF4. However, the resulting cell lost
its hematopoietic markers (Carette et al., 2011), which agrees with
our misclassification. The HD-MY-Z cell line, originally derived
from a pleural effusion taken from a 29-year-old Hodgkin’s patient
(Bargou et al., 1993), has also undergone scrutiny, and is now
considered to be more AML in origin (Drexler et al., 2018).
Drexler et al’s commentary suggests these cells are more typical
of myelomonocytic cells. Our classifier suggests a different origin
that warrants further investigation. These results suggest that our
classifier can accurately distinguish between cells and can capture
known discrepancies in the field.

When we tested HMC3 lines datasets (none of which are in
the DepMap data), we observed close alignment with CNS/Brain
cancer-derived cell line profiles, a result that is counter to the non-
CNS origin of microglial cells (Figures 6A,D,E). Similarly, we also
observed that U87 cells were predicted to originate from a CNS/Brain
lineage, as expected (Figure 6B). U87 lines are part of the DepMap
project but were withheld from our original training data to be used
as a test case. The iMG cell profiles reported by Quiroga et al. or by
Abud et al. aligned much more strongly with myeloid lineage cancers
than CNS/Brain cancer cell lines, a result in line with expectation
(Figures 6C,F). Finally, from tissue collected by Abud et al., we show
that monocytes, fetal microglia, and adult microglia all classify with
myeloid cell line profiles, according to their natural origins (Figure 6F).
Overall, the transformed cell line-based classifier provides strong
additional evidence that HMC3 cells lack the microglial-like identity
or transcriptomic signatures sufficient to warrant their classification
as a useful cell line for microglial research.

Classification of reads in HMC3 cell lines

Finally, one important aspect that needs to be addressed is the
possibility that all three HMC3 datasets analyzed in this manuscript
were actually derived from rat glioma-derived cells, a widespread
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problem previously described for some neural cell lines (Garcia-
Mesa et al., 2017). A number of sequencing reads from rat cells will
align with the human genome. While ATCC consistently provides
high-quality cell lines for labs, we performed a quick assessment
of RNA read quality and checked alignments for quality control
purposes. Because of the previous challenges with deriving cell lines
from R. norvegicus (rat), we assessed read origins based on the k-mer
fidelity. To accomplish this task, we used a well-designed tool called
xengsort (Zentgraf and Rahmann, 2021). Briefly, xengsort uses a
large alignment-free k-mer store, i.e., a large key-value hash table,
to assess whether the DNA or RNA reads best align to one, both, or
neither of two references provided. Because of historical problems, it
must be addressed explicitly by aligning the HMC3 sequencing reads
with human vs. rat genomes and analyzing mismatches to ensure
that the HMC3 datasets are in fact, human-derived cells and not rat-
derived cells. Results from this analysis clearly show that data from
the Armanville et al. and Quiroga et al. studies are primarily from
the Homo sapiens genome (mean of 98.53% and 98.07%, respectively,
Figure 7A). Surprisingly, the Baek etal. study did show many
shared k-mers with the Rat reference (mean 30.69% shared between
human and rat); but only 0.13% of the k-mers were rat-specific.
Figure 6D.

To further investigate, we traced the cell line’s reported origin
in the Baek etal. study. To better understand the origin of
the reads that mapped to both the human and rat genomes,
we consulted the developers of xengsort. They helped identify
that most of these “both” reads originated from ribosomal RNA
(rRNA), which is highly conserved across species. When we
applied this theory using SortMeRNA (Kopylova etal., 2012), a
read-mapping tool (Materials and Methods), we found strong
evidence supporting elevated shared content between rat and human
reads in the Baek et al. dataset is likely the result of insufficient
rRNA depletion in the library preparation prior to sequencing,
rather than contamination or misidentification of the cell line
(Figure 7B).

Discussion

The HMC3 cell line was created from an in vitro microglial
sample in 1995 by transfection of the SV40-T antigen in primary
human microglial cultures taken from human embryos (Janabi et al.,
1995). At the time of its creation, however, the line was never
directly compared to mature human microglial cells to confirm its
identity. Complicating its provenance further, HMC3 is reported
to be a direct derivative of the CHME-5 cell line, which was
later found to consist of rat glioma cells in many laboratories’
samples (Garcia-Mesa et al., 2017). HMC3 cells were also checked
by qualitative immunostaining for the expression of certain markers.
Although the HMC3 cells lacked glial fibrillary acidic protein
(GFAP) staining and neurofilament staining (used to rule out
astrocytic and neuronal contamination), this is not definitive, as
other commonly used astrocyte-like lines, such as U87 cells, also
lack GFAP expression (Russo et al., 2018). HMC3 also revealed
markedly higher basal secretion levels than other microglial cell
lines. Additionally, certain chemical transformations done to acquire
the immortalized HMC3 cell made it nearly impossible to compare
directly with microglial cells (Russo et al., 2018). As HMC3 becomes
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FIGURE 6

DepMap cell of origin classifier distinguishes myeloid and CNS/Brain cell lines. 7 panels from 5 studies show how the DepMap classifier assigns
predictions to many different data types in the exact same manner as Figures 3—5. (A) HMC3 lines from Quiroga et al., (B) U87s from Gupta et al., (C)
iMG (induced microglial lines) from Quiroga et al., (D) HMC3 lines from Chai et al., (E) HMC3 lines from Armanville et al., and (F) iMG (induced
microglial line), monocytes, fetal microglia, and adult microglia samples from Abud et al.

more widely used, its unexpected behavior has prompted researchers
to speculate about its true nature as a microglial substitute. This
study’s goal was to provide an informed statistical opinion on the
true lineage of the HMC3 cell line.

The results of our study indicate that HMC3 cells are more
closely aligned with astrocytic expression profiles than with
microglia. Our results demonstrate that the classification method
is robust and accurate in our test (Figure 2) and validation sets
(Figure 3). Furthermore, we highlight the strength of rules-based
features as a viable method to combine gene expression analyses
from multiple analyses, i.e., gene-pair qualifiers instead of absolute
transcripts per million. While it was advantageous to apply this
feature-based tool to multiple datasets with minimum effort in batch
correction, the results of this data integration highlight the fact that
HMCS3 cells classify better with astrocytes than myeloid lineages.
One possible explanation is that in the process of creating HMC3,
due to the nature of how cells are changed to become immortalized,
the cells acquired a stem-like state void of their developmental
lineage (Pauklin and Vallier, 2013). However, our transformed cell
line-based RF classifier refuted this possibility. Additionally, we also
consider rat glioma contamination an unlikely explanation for the
HMCS3 profile given our read-classification results (Figure 7B). This
showed that HMC3 datasets overwhelmingly aligned to the human
genome, with any ambiguous reads largely attributable to highly
conserved rRNA rather than true rat contamination. Therefore, a
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more likely explanation is that the cell culture from which the
HMCS3 cell line was created was not pure microglia, and that a
contaminating astrocyte gave rise to the SV40-transformed clonal
cell line that became known as HMC3. Regardless of the true
explanation, our results show that using HMC3 cells as a method
to model microglial activity for AD research is not justified.

These findings also have implications for AD research.
Since. HMC3 cells resemble astrocytes more closely than
microglia, studies using HMC3 to model microglial biology may
inadvertently lead to misinterpretation of microglial roles in
AD pathogenesis—particularly in studies investigating immune
signaling, phagocytosis of B-amyloid, and neuroinflammation. This
misclassification could obscure the true contributions of microglia
to AD pathogenesis and yield misleading conclusions about
immune responses around 3-amyloid plaques or therapeutic targets.
In contrast, iPSC-derived microglia, though resource-intensive,
more accurately model microglial biology and are preferable for
mechanistic and translational AD studies.

Our findings align with recent work by Woolf et al. (2025),
who conducted a direct phenotypic and functional comparison of
commonly used in vitro microglia models, including HMC3 (Woolf
etal,, 2025). In their study, HMC3 cells failed to express canonical
microglia markers (Ibal, CD45, PU.1) and instead stained positive
for mural cell markers such as PDGFRP and NG2. Functionally,
HMC3 displayed significantly lower phagocytic activity and

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1681811
https://paperpile.com/c/TI4c1m/Vv1X
https://paperpile.com/c/TI4c1m/Vv1X
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Rahm et al. 10.3389/fbinf.2025.1681811

A Baek et al. Quiroga et al. | | Armanville et al.

1004

SRA |dentifiers

[ sRR12347826
. SRR12347827
. SRR12347828

751

SRR15301012
SRR15301013
SRR15301082
SRR15301083

50+

SRR30311414
SRR30311415
SRR30311416
SRR30311417
254 | SRR30311418
| SRR30311419
SRR30311420
SRR30311421
SRR30311422

Percent of reads

|
i
|
|
|

Rat -

Rat -
Human A

Human -
Ambiguous -
Both -
Neither -
Human -
Ambiguous -
Both -
Neither -
Ambiguous -
Both A
Neither -

B 3.46% 4.02% 4.85%
Category

96.54% 95.98% 95.15% . non rRNA

SRR12347826 SRR12347827 SRR12347828

FIGURE 7
Sequence read quality of the HMC3 cell lines. (A) Bar charts for the three HMC3 studies show the percentage of RNA sequencing k-mers that match

with the Rat transcriptomic reference (Rattus norvegicus) or the Human transcriptomic reference (Hhomo sapiens). The x-axis indicates the percentage
of k-mers that are unique to Rat, Human, Both, Neither, or are Ambiguous. More samples are present in the Armanville study than in previous analyses
because we did not restrict to HMC3 lines. (B) Fraction of rRNA detected in reads that aligned to both Human and Rat in the Baek et al. samples.

secretory responsiveness compared to primary and iPSC-derived =~ and ATCC-validated vial of HMC3 cells, provide an important
microglia—more closely resembling pericytes than cells of myeloid ~ biological complement to our transcriptomic findings. In addition
lineage. These findings, derived from an independently sourced  to validating the classifier on independent primary-cell datasets
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(Masuda et al., 2019; Schirmer et al., 2019), we applied the model
to independent HMC3 datasets (Armanville et al,, 2025; Baek
and Yoo, 2021). While these latter datasets are not used to
validate cross-cell-type performance, they provide out-of-sample
replication of our central finding that HMC3 aligns more closely
with astrocytic than microglial signatures. These independent
testing sets consistently supported our findings. The convergence
of computational and experimental evidence strengthens the
robustness and generalizability of our conclusion that HMC3 does
not represent a valid microglial model.

It is critical to accurately determine the origin of HMC3 cell
lines, as they are widely used in key research on Alzheimer’s
disease (Russo et al., 2018). Microglial recruitment in the brain
and central nervous system plays a vital role in supporting
brain health and resilience in the face of neurodegenerative
diseases, due to microglias regulation of several essential immune
functions (Miao et al., 2023). This motivated our investigation into
the HMCS3 line, which we found cannot be accurately classified as
microglia. As a result, findings from studies that substitute HMC3
for microglia may be compromised or misleading.

Future studies with larger datasets could provide greater
statistical power to detect cell-type-specific expression differences,
strengthening confidence in our conclusions. Further analysis
should identify the genes that most effectively distinguish
astrocytes and microglia from other cell types, and evaluate
whether HMC3 has any valid, limited applications. Additionally,
to the power of data integration between bulk-RNA and
single-cell RNA experiments, we believe this strategy for data
integration may help boost power as new tools seek to use AI
to identify novel drug targets (Zhao et al., 2022). This will be
increasingly important as higher-resolution data emerges across
the spectrum of human diseases and the cells that drive their
expression.

Our that
HMC3 is not a true human microglial model of myeloid

computational  findings strongly indicate
origin and call into question its use in prior research,
urging caution in continuing to use HMC3 as a proxy for

microglia.
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