a-frontiers | Frontiers in Bioinformatics

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Wei Ouyang,
Royal Institute of Technology, Sweden

REVIEWED BY
Mansoor Hayat,

University of Manitoba, Canada
Amine Lagzouli,

Queensland University of
Technology, Australia

*CORRESPONDENCE
Andrew H. Lee,
alee712@gmail.com

"These authors have contributed equally
to this work

These authors share last authorship

RECEIVED 01 August 2025
REVISED 11 December 2025
ACCEPTED 15 December 2025
PUBLISHED 21 January 2026

CITATION

Lee AH, Talluri G, Damani M, Covarrubias BV,
Hanna H, Chavez J, Moore JM, Baradarian J,
Molgaard M, Nielson B, Walden K,

Broderick TL and Al-Nakkash L (2026) Deep
learning software and revised 2D model to
segment bone in micro-CT scans.

Front. Bioinform. 5:1677527.

doi: 10.3389/fbinf.2025.1677527

COPYRIGHT

© 2026 Lee, Talluri, Damani, Covarrubias,
Hanna, Chavez, Moore, Baradarian, Molgaard,
Nielson, Walden, Broderick and Al-Nakkash.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Bioinformatics

TvPE Technology and Code
PUBLISHED 21 January 2026
pol 10.3389/fbinf.2025.1677527

Deep learning software and
revised 2D model to segment
bone in micro-CT scans

Andrew H. Lee'?***, Ganesh Talluri®>, Manan Damani*,
Brandon Vera Covarrubias®, Helena Hanna?, Jeremy Chavez?,
Julian M. Moore?, Jacob Baradarian®, Michael Molgaard?,
Beau Nielson?, Kalah Walden?, Thomas L. Broderick®®* and
Layla Al-Nakkash?¢!

'Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ, United
States, ?Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States,
*College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States, “Core
Facilities-Glendale, Midwestern University, Glendale, AZ, United States, *BASIS Peoria, Peoria, AZ,
United States, ®Department of Physiology, College of Graduate Studies, Midwestern University,
Glendale, AZ, United States

Deep learning (DL) enables automated bone segmentation in micro-CT datasets
but can struggle to generalize across developmental stages, anatomical regions,
and imaging conditions. We present BP-2D-03, which is a revised 2D Bone-
Pores segmentation model. It was fitted to a dataset comprising 20 micro-
CT scans spanning five mammalian species and 142,960 image patches. To
manage the substantially larger and more varied dataset, we developed a
DL software interface with modules for training ("BONe DLFit"), prediction
("BONe DLPred"), and evaluation ("BONe loU"). These tools resolve prior issues
such as slice-level data leakage, high memory usage, and limited multi-GPU
support. Model performance was evaluated through three analyses. First, 5-
fold cross-validation with three seeds per fold evaluated baseline robustness
and stability. The model showed generally high mean Intersection-over-
Union (loU) with minimal variation across seeds, but performance varied
more across folds related to differences in scan composition. These findings
show that the baseline model is stable overall but that predictivity can
decline for atypical scans. Second, 30 benchmarking experiments tested how
model architecture, encoder backbone, and patch size influence segmentation
loU and computational efficiency. U-Net and UNet++ architectures with
simple convolutional backbones (e.g., ResNet-18) achieved the highest loU
values, approaching 0.97. Third, cross-platform experiments confirmed that
results are consistent across hardware configurations, operating systems,
and implementations (Avizo 3D and standalone). Together, these analyses
demonstrate that the BONe DL software delivers robust baseline performance
and reproducible results across platforms.

KEYWORDS

artificial intelligence, avizo, bone, bone marrow, mammal, semantic segmentation

01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1677527
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1677527&domain=pdf&date_stamp=
2026-01-17
mailto:alee712@gmail.com
mailto:alee712@gmail.com
https://doi.org/10.3389/fbinf.2025.1677527
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1677527/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1677527/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1677527/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

1 Introduction

Deep learning (DL) models have emerged as powerful tools
for automating bone segmentation in high-resolution micro-CT
scans (e.g., Yu et al., 2022; Lee et al., 2025; Masuda et al., 2025).
In a previous study, we demonstrated the utility of 2D and 3D
convolutional neural networks as implemented in the commercial
software Avizo 3D for distinguishing bone and medullary pores
in long bones of North American river otters (Lontra canadensis)
(Lee et al., 2025). Our results showed that both 2D and 3D models
could achieve high segmentation performance when applied to
skeletally mature bones, with mean Intersection over Union (IoU)
scores exceeding 0.95 for bone and 0.94 for medullary pores.
However, that study also highlighted three key limitations with the
DL pipeline. First, it relied on a memory-intensive concatenation
process to assemble the dataset, which limited scalability due
to high system memory usage. Second, it performed slice-level
rather than scan-level data partitioning, which introduced data
leakage (i.e., adjacent slices from the same scan appeared in
both training and validation sets). This likely led to optimistically
biased estimates of performance and generalization because the
models were partially evaluated on data that were not truly
independent. Finally, the study did not implement a formal cross-
validation framework (e.g., Bradshaw et al, 2023). Instead of
repeatedly evaluating the model across several randomized scan-
level partitions, performance was assessed on a single train-
validation-test split. Consequently, the consistency and robustness
of the model generalization across different subsets of the data
remain unquantified.

Here, we address those limitations with updated deep learning
software and present a revised 2D Bone-Pores (BP) segmentation
model. We prioritized 2D models in this follow-up study because
they showed slightly better segmentation performance (i.e., IoU
score) and required less computational resources [i.e., system
memory (RAM) and graphics processing unit memory (GPU
VRAM)] than their 3D counterparts (e.g., Crespi et al., 2022;
Lee et al., 2025). This software also enabled us to increase the size
and variety of the deep learning dataset. In addition to 11 scans
from the river otter sample that were used by Lee et al. (2025), we
added nine scans from capybara, leopard, sea otter, and laboratory
mouse (Table 1). The increased dataset covered a broad range
of scanning resolution, imaging quality, and skeletal variation
(Figure 1). Moreover, the inclusion of mouse bones to the dataset
enabled the model to learn how to segment epiphyseal (growth)
plates, which in mice are retained well into adulthood despite
cessation of longitudinal bone growth (Roach et al., 2003).

The software was written in Python to support streamlined
model fitting and prediction (inference) while overcoming the
memory inefficiencies of the previous pipeline. Furthermore, it
enabled a systematic evaluation of three key model fitting choices:
model architecture, encoder backbone, and patch size. Prior work
has shown that these factors substantially influence segmentation
quality across diverse biomedical applications (e.g., Yu et al., 2022;
Ahmad et al., 2023; Masuda et al., 2025).

We examined four widely used architectures for semantic
segmentation: U-Net (Ronneberger et al, 2015), UNet++
(Zhou et al, 2018), DeepLabV3+ (Chen et al., 2018), and
SegFormer (Xie et al., 2021). These models differ in their strategies

Frontiers in Bioinformatics

02

10.3389/fbinf.2025.1677527

for balancing spatial resolution and feature abstraction. For example,
U-Net and UNet++ rely on encoder-decoder designs with skip
connections to preserve image details, whereas DeepLabV3+ uses
atrous convolutions and a lightweight decoder to analyze features
at multiple scales. SegFormer, in contrast, uses transformer-based
attention mechanisms to capture long-range spatial dependencies.

To further explore how feature extraction affects segmentation
IoU, we paired each architecture with one of four encoder
backbones: ResNet-18, ResNet-50 (He et al.,, 2016), EfficientNet-
B3 (Tan and Le, 2019), and MiT-B1 (Xie et al., 2021). These
backbones vary in depth, GPU utilization, and ability to capture
contextual information: ResNet encoders rely on convolutional
residual blocks; EfficientNet-B3 employs compound scaling; and
MiT-BI1 uses attention-based operations derived from transformer
networks.

Finally, we compared two patch sizes (256 px and 512 px) to
evaluate the tradeoff between local detail and broad spatial context.
Our previous 2D model used 256-px patches (Lee et al., 2025),
which provided a sufficient receptive field for identifying most
boundaries between bone and medullary pores. However, a larger
field of view could be important when distinguishing pores from
background space between tightly-packed bones (Figure 2). By
incorporating larger patches in the current study, we tested whether
giving the model access to a wider receptive field improves
model predictivity, while still maintaining reasonable computational
costs.

This study aims to advance bone segmentation from micro-CT
data by optimizing deep learning architectures, encoder backbones,
and patch sizes for mammalian long bones. To support this effort,
we developed an accessible, flexible, and memory-efficient software
interface for model training, prediction, and evaluation. Designed
for scalability, the pipeline is broadly applicable to skeletal imaging
datasets and enables reproducible, high-quality segmentation across
anatomical and biomedical research.

2 Materials and methods
2.1 Dataset collection

The deep learning dataset was assembled from three sources
(Table 1). First, we included 11 micro-CT scans of long bones from
the North American river otter (Lontra canadensis) (Figure 3)
that were previously analyzed by Lee et al. (2025). Second, we
downloaded three scans of long bones from capybara (Hydrochoerus
hydrochaeris; AMNH:Mammals:M-206440), leopard (Panthera
pardus; AMNH:Mammals:M-89009), and sea otter (Enhydra lutris;
ZMB:Mam:30740) from MorphoSource (Figure 4). Third, we
collected six micro-CT scans from a sample of laboratory mouse
(Mus musculus) that are described below.

Forty male C57BL/6 mice (4-week old) were purchased
from Charles River Laboratory (Wilmington, MA, United States)
and maintained for 25 weeks. The mice were euthanized via
asphyxiation in 100% atmospheric CO,, immediately followed
by surgical thoracotomy to induce pneumothorax. All animal
care was conducted in accordance with established guidelines,
and all protocols used were approved by Midwestern University's
Institutional Animal Care and Use Committee (JACUC #AZ-4205).

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

TABLE 1 Properties of scans included in the deep learning sample.

Scan ID

Bones 2D Tiles Voxel size (um) Source

10.3389/fbinf.2025.1677527

1R 1U HF 1,792 11.3
2R2U HF 2,112 9.1
5R5U HF 2,048 9.1
1
7R7U HF 2,048 9.1
12R 12U HF 2,048 9.1
19R 19U HF 1,920 9.1
AMNH:Mammals:M-89009 H 4,250 66.8 2
AMNH:Mammals:M-206440 Mixed 1,672 120.7 3
OMNH:Mammals:44262 HRU 1,662 50.0
OMNH:Mammals:53994 FTFi 2,216 50.0
OMNH:Mammals:53994 HRU 1,809 50.0
UAM:Mamm:24789 FTFi 2,098 50.0
UAM:Mamm:67696 HF 1,623 50.0
UAM:Mamm:67696 TFiRU 2,321 50.0 4
UF:Mammals:23593 HF 1,755 50.0
UF:Mammals:24550
UF:Mammals:31151 HRU 1,660 50.0
UWBM:Mamm:78743 FTFi 2,150 50.0
UWBM:Mamm:81969 FTFi 2,195 50.0
UWBM:Mamm:81969 HRU 1,995 50.0
ZMB:Mam:30740 HRU 3,609 30.0 5

Bone abbreviations: F = femur; Fi = fibula; H = humerus; R = radius; T = tibia; U = ulna.

Museum abbreviations: AMNH, American Museum of Natural History; OMNH, Sam Noble Oklahoma Museum of Natural History; UAM, University of Alaska Museum of the North; UF,
Florida Museum of Natural History; UWBM, University of Washington, Burke Museum; ZMB, Museum fiir Naturkunde.
Source abbreviations: 1 = doi. org/10.5061/dryad.4j0zpc8qq; 2 = ark:/87602/m4/430024; 3 = ark:/87602/m4/598442; 4 = doi. org/10.5061/dryad.b2rbnzsq4; 5 = ark:/87602/m4/M70721.

Following surgical dissection of internal organs, skin, and
subcutaneous tissues, the fore- and hindlimbs were removed from
the axial skeleton at the glenohumeral and acetabulofemoral joints,
respectively. The limbs from each mouse were fixed in 10%
neutral buffered formalin for 24 h. After fixation, the limbs were
grossly debulked of skin and muscles. Further dissection of the
limbs was performed under illuminated magnification to mitigate
unintentional cuts to the osteochondral surfaces. Radiocarpal and
tibiotarsal joints were cut to detach the manus and pes, respectively.
The remaining long bones (humeri, radii, ulnae, femora, tibiae, and
fibulae) were isolated by severing residual ligamentous attachments.
Any remaining non-skeletal tissue was gently removed with
fine dissection tools. Dissected bone elements were rinsed with
deionized (DI) water and stored in 70% ethanol.

Frontiers in Bioinformatics

03

A subset of elements was selected for micro-CT scanning.
The left humerus and femur from each mouse were rinsed with
DI water and wrapped with melamine foam (Mr. Clean Magic
Eraser, Procter and Gamble, Cincinnati, OH, United States).
Twenty 1.5-mL microcentrifuge tubes (Thermo Fisher Scientific,
Waltham, MA, United States) were prepared, and the bones
from two mice were inserted into each tube. Micro-CT scanning
was performed on a Nikon XT H 225 ST (Nikon Metrology
Inc., Brighton, MI, United States) with settings at 120-160 kV,
58-112 pA, and 9.1-11.3 um isotropic voxel size (Table 1). Only
six out of the 20 scans were included in the current deep learning
dataset. Because each scan contained the left humerus and femur
from two individuals, this subset represents a total of 12 mice
(Figure 5).

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al. 10.3389/fbinf.2025.1677527

Microcentrifuge ===
tube

(F)

Beam-
hardening

Beam-
hardening

FIGURE 1
Variation in micro-CT scan quality and specimen condition of deep learning sample. Fully hydrated humeri and femora as seen in longitudinal (A) and

transverse (C) views of mouse scan “1R_1U_HF." An unanticipated delay in scanning of the rest of mouse sample resulted in dehydrated humeri and
femora with contracted bone marrow as seen in longitudinal (B) and transverse (D) views of mouse scan “7R_7U_HF.” (E) River otter scan
“UF_Mammals_31151_HRU" shows a humerus with deep artificial drill holes in the proximal and distal ends that were made by museum preparators to
expedite degreasing. (F) Another river otter scan "UF_Mammals_23593-24550_HF" contains a humerus with a broken humeral head with exposed
trabecular bone. Additionally, there are beam-hardening artifacts at the proximal and distal ends. (G) The leopard scan "AMNH_Mammals_M-89009_F"
is three-part composite micro-CT scan with arrows highlighting the transitions between intensity domains. (H) The sea otter scan “ZMB_Mam_30740_
HRU" is extremely dim with reduced contrast between bone and background. (I) The capybara scan "AMNH_Mammals_M-206440" contains limb,
girdle and vertebral elements and was acquired at 8-bit instead of 16-bit depth, limiting how well subtle details can be distinguished

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

10.3389/fbinf.2025.1677527

FIGURE 2

Trade-offs in patch size. Smaller patches (256 X 256 px) require less computation but may limit a model's receptive field. The model may miss the full
bone profile (green) and mislabel the background between closely-packed bones as medullary pores (blue). Larger patches (512 x 512 px) increase
computational cost but expand the receptive field and may allow the model to learn broader structural patterns. The asterisks illustrate the relative

centers from which the receptive field of each patch extends.

2.2 Preparing the reference masks

The micro-CT scans were imported into Avizo 3D 2024.2
(Thermo Fisher Scientific, Waltham, MA, United States). Bone-
pores (BP) reference masks for these scans were segmented
by the lead author following a previously published protocol
(Lee et al., 2025). Briefly, bone tissue was initially segmented
using the “Auto Thresholding” module followed by manual
correction. Thin trabeculae that were not captured by thresholding
were recovered using the “white top hat” filter. Cortical and
medullary pores were segmented using the “Compute Ambient
Occlusion” module. Note: the ambient occlusion algorithm
tended to mislabel background voxels as pore voxels in deep
concavities such the coronoid, olecranon, and intertrochanteric
fossae (Bab et al., 2007b; 2007a) and required manual correction.
For those areas, we used a standard thresholding value of 0.95 to
ensure that deep concavities were segmented consistently across
reference masks.

Frontiers in Bioinformatics

05

2.3 Three deep learning modules for Avizo

2.3.1 "BONe DLFit"

We developed a module to fit 2D deep learning (DL) models in
Avizo 3D 2024.2 (Figure 6A) that overcomes several limitations of
Avizo's built-in “DL - Segmentation 2D” module. First, the built-in
module only enables a single pair of scan-mask connection ports.
To train the computer on multiple pairs, users must concatenate
all scans into one large volume and all masks into another,
which requires padding them to the same XY dimensions, greatly
increasing memory demands and limiting sample size. Our custom
module supports up to 20 scan-mask pairs via connection ports,
eliminating the need for concatenation or padding. Note: the source
code may be altered to support more than 20 pairs of input ports.
However, this necessitates additional scrolling in the graphical
interface. Second, the built-in module allows data leakage between
the training and validation set, resulting in optimistically biased
model performance. The custom module addressed the data leakage

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al. 10.3389/binf.2025.1677527

1100
A

(H)l (1) Iﬁ (J) i i ‘

Volume rendering of scans from the North American river otter (Lontra canadensis). (A) OMNH_Mammals_44262_HRU: right humerus, left radius, and
left ulna. (B) OMNH_Mammals_53994_FTFi: left femur, fibula, and tibia. (C) OMNH_Mammals_53994_HRU: left humerus, right radius, and right ulna.
(D) UAM_Mamm_24789_FTFi: right femur, fibula, and tibia. (E) UAM_Mamm_67696_HF: left femur and humerus. (F) UAM_Mamm_67696_TFiRU: left
fibula, radius, tibia, and ulna. (G) UF_Mammals_23593_HF and UF_Mammals_24550_HF: left femur and humerus. (H) UF_Mammals_31151_HRU: right
humerus, radius, and ulna. (1) UWBM_Mamm_78743_FTFi: right femur, left fibula, and left tibia. (J) UWBM_Mamm_81969_FTFi: right femur, left fibula,
and left tibia. (K) UWBM_Mamm_81969_HRU: left humerus, right radius, and right ulna. Abbreviations defined in Table 1. Not to scale.

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

10.3389/binf.2025.1677527

FIGURE 4

defined in Table 1. Not to scale.

Volume rendering of scans from the leopard (Panthera pardus), capybara (Hydrochoerus hydrochaeris), and sea otter (Enhydra lutris). (A)
AMNH_Mammals_M-89009_F: left femur of leopard. (B) AMNH_Mammals_M-206440_mixed: atlas; left calcaneus, femur, humerus, scapula, talus,
and tibia; right calcaneus, radius, scapula, talus, and ulna. (C) ZMB_Mamm_30740_HRU: right humerus, radius, and ulna. Abbreviations

problem by performing the training-validation split at the scan-
level. Third, the built-in module is limited to a single GPU, which
restricts batch size and parallelization. The custom module gives
the user the option to use multiple CUDA-compatible GPUs if
available via PyTorch's “DataParallel” library (version 2.8.0+cul29:
Paszke et al., 2019). Fourth, the built-in module only supports the U-
Net architecture (Ronneberger et al., 2015) with three pre-defined
backbones. In contrast, our module allows users to select from
nine model architectures and 58 backbones via the “segmentation_
models_pytorch” library (version 0.5.0: Takubovskii, 2019). Finally,
the built-in module is difficult to customize because the core code
is compiled. The custom module is uncompiled, and advanced users
are free to further customize and extend it.

“BONe DLFit” features a graphical frontend with a point-and-
click interface (Figure 6A), making DL model fitting accessible to
non-expert users. The backend uses PyTorch (Paszke et al., 2019)
for efficient training and evaluation of deep learning models, which
consists of a pipeline with three major stages: (1) collecting user
options, (2) initialization of the DL pipeline, and (3) the model
fitting loop.

In the first stage, “BONe DLFit” records the user-specified
configuration to define the data handling, model architecture, and
training procedure (Figure 7). These options include:

Input source(s): supports up to 20 scan-mask input pairs.

Reproducibility mode: fixes random seeds and enables
deterministic algorithms.

o GPU mode: toggles single or multi-GPU support.

Fitting mode: toggles support for 2D, 2.5D, or 3D models.

o Patch cropping: alters the patch size, number of random
patches to crop per tile (tile is defined as a 2D slice or 3D slab),
and maximum patch overlap.

Frontiers in Bioinformatics

07

o Data toggles random transformations
(e.g., flips, rotation in multiples of 90° brightness, and
contrast) on tiles.

o Normalization:

augmentation:

toggles between Z-score and min-

max normalization.

Training/validation split: sets the fraction of whole scans
used for training, while the remaining scans are reserved for
validation to assess model performance.

o Model architecture: specifies the design of the neural network

(e.g., U-Net, UNet++, DeepLabV3+, SegFormer).

o Backbone: defines the pattern extracting portion of the
architecture (e.g., ResNet-18, EfficientNet-B3, MiT-B1).
Initial weights: defines starting values of the model's

learnable parameters, which are either randomly initialized
or transferred from a previously trained model (ImageNet-
trained or user-provided).

o Hyperparameters: control speed and stability of training,
specifically the number of epochs (i.e., the number of full
passes through the training dataset), global learning rate (i.e.,
the step size used to update model weights), and batch size (i.e.,
the number of patches processed together in each update).

o Save location: the model and onto

saves log files

computer storage.

In the second stage, “BONe DLFit” calculates normalization
statistics, initializes the user-specified model, and configures
the DL pipeline (Figure 7). The statistics used for image
normalization are pre-computed using CPU-based multiprocessing,
which reduces wall time. Because multiprocessing inside Avizo
unintentionally triggers additional license usage, the statistics are
pre-computed using an external standalone Python interpreter
(version 3.12.11), allowing worker processes to run independently

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

12U ™S
12RH 12UF

FIGURE 5

Volume rendering of scans from 12 adult laboratory mice (Mus
musculus). (A—F) Scans: 1R_1U_HF; 2R_2U_HF; 5SR_5U_HF;
7R_7U_HF; 12R_12U_HF; and 19R_19U_HF. Abbreviations

defined in Table 1. Not to scale.

Frontiers in Bioinformatics

08

(A)

10.3389/fbinf.2025.1677527

BONe DLFit

Input 1:
Mask 1:
Input 2:
Mask 2:
Input 3:
Mask 3:

Console:

Num of add. input-mask...

Reproducibility Mode:
Random seed:

GPU Mode:

Fitting Mode:

Patch Size [px]:

Patches per tile:
Max. patch overlap:

Augmentations:
Normalization:

Train/Val Split:

2D/2.5D Model architect...

Backbone:
Weights:

Num. of epochs:
Learning rate:
Batch size:

Loss function:

Save Directory:

Model Filename:

(B)

Input:

Console:

GPU Mode:

Load PTH weights:
Chunk size [px]:
Custom chunk size [px]:

Probability threshold:

(C)

1R_1U_HF-cropped.am

1R_1U_HF-cropped_bone-pores-label.am

2R_2U_HF-cropped.am

2R_2U_HF-cropped_bone-pores-label.am

5R_5U_HF-cropped.am

5R_5U_HF-cropped_bone-pores-label.am
Show

9

42

® Single GPU
® 20 2.5D 3D

« (
4

[]

off ® on

® 7Score minMax

® o3
U-Net v

resnet18 v

L 2R 20 28 2B 2 4

Randominit. @ imagenet Custom weights

25
[J
2

® Jaccard

5R_5U_HF-cropped.am

Show

® Single GPU

Default ® Custom
< ®
()

BONe IoU

Ref. mask:

Pred. mask:

Console:

FIGURE 6

Graphical interface of deep learning modules in Avizo 3D 2024.2. (A)

5R_5U_HF-cropped_bone-pores-label.am
Label-Field

Show

v

v

“BONe DLFit" provides point-and-click fields for up to 20 scan-mask
pairs, along with additional options for fitting segmentation models. (B)
“BONe DLPred” applies the selected PyTorch model to an input scan
and allows users to set the chunk size. This does not alter the model's
receptive field; instead, it divides a large scan into smaller chunks that
are more easily fit into GPU memory. (C) "BONe loU" calculates
class-wise and mean loU between reference and prediction masks.

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

10.3389/fbinf.2025.1677527

= Scan-mask pair(s)

= Reproducibility mode
* GPU Mode

= Fitting Mode

= Patch size (px)

= Number of patches per tile E

= Max. patch overlap % @

® Training/Validation split

U-Net, UNet++,
DeepLabV3+, Segformer

= Architecture

Collect user options

Calculate normalization
statistics

Perform training/validation
split at scan-level

Construct model and
initialize with weights

Move model to GPU(s)

Setup Adam optimizer with
cosine annealing scheduler

= Random augmentations Setup Automatic Mixed loss and loU
Precision {}
= Normalization | ZScore, minMax

Perform FLOP profiling of
model

\ Start GPU monitor /

%3 Pre-process patches
_Eowvard pass t?get raw output
(logits)
Compute training loss
Backpropagate gradients

Update weights

Convert logits to class
predictions

ﬂ=4 Training loop (per batch)

Update running totals of training

€3 Pre-process patches
(no augmentation)

Forward pass to get raw output
(Logits)

ResNet-18, ResNet-50,
EfficientNet-B3, MiT-b1

= Backbone

Compute validation loss

» . Randot ageN
- |n|t|alwelghts

= Number of epochs
= Global learning rate
= Batchsize

= Outputfolder and
model name

(& Propmesessing

Fetch random tile

Apply random
augmentation

Crop random patches

/ \ Normalize patches) k

Convert logits to class
predictions

Val. loop (per batch)

Update running totals of
validation loss and loU

Update log file

Save model

J

FIGURE 7

Schematic of the model fitting pipeline implemented by “BONe DLFit."” (Left) User options. (Center) The module collects user options, calculates
normalization statistics, splits the dataset at the scan-level, initializes the fitting loop, profiles model complexity, and launches a GPU monitor. (Right)
Training proceeds in batches with image augmentation, forward pass, loss computation (Jaccard loss), backpropagation, and weight updates.
Validation proceeds similarly but without augmentation. Metrics such as loss and Intersection-over-Union (loU) are accumulated and logged. Model
weights are saved when validation performance improves, and the global learning rate is adjusted via cosine annealing.

of Avizo and without drawing extra licenses. Immediately
following the calculation of normalization statistics, the scans
are randomized and split at the scan-level into training and
validation sets as closely as possible to the user-specified ratio.
The selected architecture, backbone, and Jaccard loss function
are imported from “segmentation_models_pytorch’ and the
Jaccard index (Jaccard, 1912) (also known as Intersection-over-
Union or IoU) is imported from “torchmetrics” (version 1.8.2:
Detlefsen et al., 2022). User-specified initial weights are loaded
onto the model. Depending on user choice, the model is prepared
for single- or multi-GPU training using “DataParallel”. The Adam
optimizer (Kingma and Ba, 2015) is configured with the user-
defined global learning rate followed by the initialization of a single-
cycle cosine annealing scheduler without restarts (e.g., Loshchilov
and Hutter, 2017; He et al., 2019) to stabilize convergence. Automatic
mixed precision is enabled via PyTorch's “autocast” to switch
automatically between less precise floatl6 and more precise
float32 calculations for efficient memory usage (He et al., 2019).
Model complexity is estimated based on counts of floating-point
operations (FLOPs) and parameters via “FlopCountAnalysis”
and “parameter_count_table” from the fvcore library (version
0.1.5. post20221221). Lastly, a GPU monitor is launched to

Frontiers in Bioinformatics

track peak VRAM usage and GPU utilization during the fitting
loop.

In the final stage, “BONe DLFit” enters the fitting loop,
which repeats for each epoch (Figure 7). The training dataset is
processed first. Matching 2D tiles from each scan-mask pair are
randomly sampled without replacement. Optional augmentation
is applied based on the following probabilities: horizontal flip
(16.6%), vertical flip (16.6%), 90°, 180° or 270° rotation (50%),
or no augmentation (16.8%). Rotation is implemented in 90°
increments to avoid introducing aliasing artifacts when augmenting
the reference mask (Stone et al., 2003). Random patches are cropped
from each scan-mask pair. After cropping, the scan patches are
normalized using scan-specific statistics (either Z-score or min-
max normalization). If augmentation is enabled, the normalized
patches undergo intensity augmentation in which global brightness
shifting and contrast rescaling are applied with independent
probabilities (each 40%). Consequently, either augmentation may
occur alone, both may occur together, or neither may occur. When
selected, a single random shift value (uniformly sampled from —0.15
to 0.15) and a single random scaling factor (sampled from 0.75
to 1.25) are applied to all scan patches. These operations simulate
variability in scanner calibration, illumination, or tissue contrast

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

across datasets. Afterward, intensities are clipped to remain within
the expected dynamic range of the chosen normalization mode. The
resulting patches are assembled into batches and passed to the model
for forward and backward propagation during training.

For each batch, Jaccard loss and gradients are computed, and
model weights are updated immediately. Jaccard loss and IoU
scores are then aggregated across all batches within an epoch to
produce stable and representative epoch-level measurements of
model performance.

Once all the training data are processed, the model switches to
validation mode, wherein the module assembles cropped patches
from the validation data into batches without augmentation before
passing them to the model for evaluation. Validation loss and IoU
are computed, and accumulated results are updated. Each epoch
concludes with three steps: (1) updating the log file, (2) saving
model weights in PTH file format upon improvement in validation
performance compared to the previous epoch, and (3) reducing the
global learning rate following a cosine-curve scheduler to allow for
smoother convergence.

2.3.2 "BONE DLPred”

Avizo includes a built-in inference module (“Deep Learning
Prediction”), but it does not support models formatted for PyTorch.
Therefore, we developed a module called “BONe DLPred” The
graphical frontend of the module accepts several input fields: (1)
the input scan to segment, (2) the option for single- or multi-GPU
inference, (3) the weights PTH file, (4) the chunk size for prediction,
and (5) the confidence threshold (Figure 6B). After recording the
user options, the backend loads the weights PTH file, which includes
embedded information (metadata) about the model such as model
type (2D, 2.5D, or 3D), architecture, backbone, hyperparameters,
and method of image normalization used during model fitting.
RAM and GPU monitors are launched for benchmarking purposes.
Lastly before entering the prediction loop, the module estimates the
number of tiles to process in parallel (Figure 8).

The module then enters the prediction loop, which processes
the input scan in batches of tiles rather than one tile at a time. For
each batch, overlapping chunks are extracted using a customized
routine based on “empatches” (version 0.2.3: Ilyas, 2023). This
customization supports 2D, 2.5D, and 3D inputs, and for 3D inputs,
allows chunk depth to differ from chunk width and height. The
chunks are normalized, passed through the model, and subsequently
reassembled into a full-resolution probability map using overlap-
aware merging. Class labels are assigned by selecting the maximum-
probability class at each voxel, with user-defined confidence-based
background reassignment. The reconstructed tiles are accumulated
sequentially to form the final multi-class segmentation mask.
Finally, confidence statistics and performance benchmarks are
displayed (Figure 8).

2.3.3 "BONe loU”

Previously, we developed a tool command language (TCL) script
within Avizo to calculate IoU Score, which quantifies the overlap
between predicted and reference segmentation (Lee et al., 2025).
Although functional, the script had several drawbacks. It computed
IoU score one class at a time, did not automatically calculate the
mean IoU score, cluttered the Avizo Project View with temporary
data objects, and was relatively slow. To address these issues,

Frontiers in Bioinformatics

10

10.3389/fbinf.2025.1677527

Connectinput scan
Load model file (PTH)

Collect user options

Y

Apply same normalization method used during
fitting to input scan

Y

Start RAM and GPU monitors

Y

Estimate number of tiles to process in parallel

Divide tile into overlapping chunks

Forward pass on chunks (logits)

Convert logits to per-class probabilities

For each class, remerge chunks into tile,
averaging probabilities in overlapping areas

Stack classes, and classify each voxel based
on maximum class probability

Y

Suppress low probability regions with
confidence thresholding

O

Store predictions and probabilities for
eachtile

Prediction loop (per tile)

Calculate performance benchmarks

Display predicted segmentation

FIGURE 8

Schematic of the prediction (inference) pipeline implemented by
"BONe DLPred.” The module accepts user inputs including the scan to
segment, model weights file, GPU mode, chunk size, and confidence
threshold. After loading the model and applying the same
normalization used during fitting, the input scan is divided into
user-specified overlapping chunks. The chunks are processed by the
model in batches, then reassembled by averaging probabilities in
overlapping regions. Voxels are classified based on maximum class
probability, with low-confidence areas suppressed via thresholding.
Finally, performance benchmarks and the segmentation output are
displayed.

we developed a Python module, “BONe IoU”, which automated
the calculation of both class-wise and mean IoU scores with
substantially improved speed and efficiency (Figure 6C).

After loading the user-specified reference and predicted
segmentation masks, “BONe IoU” checks for the presence of a
CUDA-compatible GPU. If one is available, it performs the IoU
calculation using PyTorch tensors on the GPU. If not, the calculation

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

TABLE 2 Hardware configurations.

Workstation

10.3389/fbinf.2025.1677527

“Hopper”

96 GB

oS Dual boot: Dual boot: Windows 10 Pro
Ubuntu 22.04 LTS Windows 11 Pro Ubuntu 22.04 LTS Windows 11 Pro

CPU AMD Threadripper PRO 5965WX AMD Threadripper PRO 7995WX Intel i9-10900X

RAM 512 GB DDR4 3200 MT/s 512 GB DDR5 5200 MT/s 256 GB DDR4 2666 MT/s

GPU 2x Nvidia RTX PRO 6000 Blackwell Max-Q 2x Nvidia RTX 6000 Ada 48 GB Nvidia Quadro P6000 24 GB

Main storage Samsung 990 2 TB M.2 NVMe PCle 4.0

Kingston NV3 2 TB M.2 NVMe PCle 4.0

Samsung 970 EVO 500 GB M.2 NVMe PCle 3.0

Vendor Author-assembled

Puget Systems Titan Computers

$25,500 (2025)

Price (year)

$31,100 (2024) $7,500 (2020)

defaults to using NumPy (version 1.23.5: Harris et al., 2020) arrays
on the CPU.

2.3.4 Standalone versions of “BONe DLFit",
“BONe DLPred”, and “BONe loU”

To ensure accessibility for users without Avizo 3D, we
developed standalone Python versions of all three modules.
These versions preserve the names, graphical interfaces, and core
functionality of their Avizo counterparts but run entirely outside
the Avizo environment. Each module is packaged with an updated
Python (3.12.11) and NumPy (2.3.4) backend while retaining
the same PyTorch version (2.8.0+cul29) used by the Avizo 3D
implementation. From the user's perspective, the standalone apps
operate nearly identically to the Avizo modules with the difference
being the organization and format of the input scans and masks
being folders of TIFF files. Nevertheless, models are interchangeable
between them. Versioning is clearly indicated in the log files and
weights files (e.g., “1.0.0. avizo” or “1.0.0. standalone”).

2.4 Computation

2.4.1 Hardware specifications

Deep learning experiments were conducted on three
workstations with varying performance capabilities to demonstrate
that the Avizo 3D and standalone versions of the BONe
apps function across both high-end and older hardware
configurations (Table 2). “Jarvis” and “Hopper” are high-end
workstations with the former configured with twice as much VRAM.
Both are capable of dual-boot operation in Ubuntu 22.04 LTS
(Canonical Ltd., London, England, United Kingdom) and Windows
11 Pro (Microsoft, Redmond, WA, United States). “Friday” is
a more modest configuration running Windows 10 Pro. It was
only used for prediction given its limited RAM and slow GPU
performance.

2.4.2 Performance comparison across platforms

To assess the reproducibility and stability of the BONe versions
across different hardware and operating systems, we evaluated

Frontiers in Bioinformatics

11

both fitting and prediction performance on the three workstation
configurations described above (Table 2). For comparability,
all platforms used the same dataset composition and model
configuration.

Fitting performance was assessed using Training/Validation
Pool 1 (Table 3) and a fixed random seed (seed 42). All experiments
used the same baseline model configuration: U-Net with a
ResNet-18 backbone, 2D fitting mode, and 256-px patch size.
Each 2D tile (slice) produced four random patches, resulting
in 120,520 training patches and 22,440 validation patches per
epoch (scan-level split of 81.25:18.75). Data augmentation was
enabled and included random flips, rotations in 90° increments,
crops, and domain-shift transformations. Z-score normalization
was performed on the patches. The model was initialized with
ImageNet-trained weights, following common practice in medical
imaging segmentation (e.g., Deng et al, 2009; Iglovikov and
Shvets, 2018; Alzubaidi et al., 2021; Losel et al., 2023). Training
proceeded for 25 epochs using a batch size of 64, an initial global
learning rate of 0.001 with cosine-annealing scheduling, Adam
optimizer, Jaccard loss as the optimization objective, and IoU as the
evaluation metric. Single and dual GPU operation was compared.
Model fitting performance (e.g., GPU utilization, fitting time,
and wall time) was recorded in Table 4 for each combination
of workstation, operating system, BONe version, and GPU
count.

Prediction performance was evaluated using a standardized
model (BP-2D-03) that was fitted on the “Jarvis” workstation
running Linux Avizo 3D 2024.2. The model was applied to mouse
scan “2R_2U_HE’ which was one of the Test Fold 1 scans and
not seen during training and validation. The chunk size was
increased to 512 px to reduce visible seam lines during reassembly
of the full-size output. Default confidence thresholding of 0.5
was applied so that low-confidence voxels were reassigned to
background. Prediction-stage resource usage (GPU utilization, peak
VRAM, peak RAM, and wall time) was recorded for each platform
(Table 5).

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

TABLE 3 Overview of the 20 scans used for 5-fold cross-validation. The
scans were first randomized and then placed into a fixed order prior to
partitioning into test fold sets. For each Test Fold, the Training/Validation
Pool comprised the remaining 16 scans in sequence order (e.g.,
Training/Validation Pool 1 consisted of scan number 5-20).

Order ’ Scan ID Test fold
1 UF_Mammals_31151_HRU
2 OMNH_Mammals_44262_HRU
1
3 2R_2U_HF
4 OMNH_Mammals_53994_HRU
5 UWBM_Mamm_81969_HRU
6 UWBM_Mamm_78743_FTFi
2
7 12R_12U_HF
8 AMNH_Mammals_M-206440_mixed
9 OMNH_Mammals_53994_FTFi
10 UWBM_Mamm_81969_FTFi
3
11 UF_Mammals_23593-24550_HF
12 UAM_Mamm_67696_HF
13 19R_19U_HF
14 1R_1U_HF
4
15 AMNH_Mammals_M-89009_F
16 7R_7U_HF
17 UAM_Mamm_24789_FTFi
18 5R_5U_HF
5
19 ZMB_Mam_30740_HRU
20 UAM_Mamm_67696_TFiRU

2.5 Model evaluation

2.5.1 Cross-validation to assess model
generalization and stability

Cross-validation experiments were performed on the “Jarvis”
workstation, operating in dual-GPU mode in Linux Avizo 3D. We
conducted 5-fold cross-validation using the 20 scans listed in Table 3.
The scans were first randomized and assigned a fixed order prior
to partitioning into five test-fold sets with each fold containing
four scans and the remaining scans (in sequence order) forming
a training/validation pool. To assess the stability of the results, we
repeated the full 5-fold partitioning using three random seeds (42,
1701, and 1864), yielding a total of 15 models.

Model fitting was performed using the baseline configuration
described in Section 2.4.2. The resulting model was applied to
each of the four scans in the corresponding test fold, and mIoU

Frontiers in Bioinformatics

12

10.3389/fbinf.2025.1677527

scores were averaged (Supplementary Table S1). Cross-validation
performance was summarized as grand mloU across all folds
and replicates (Table 6), which also reports the corresponding
mDice values. A conversion of scan-level mIoU scores to mDice is
provided in Supplementary Table S2.

2.5.2 Assessing the effect of model architecture,
backbone, and patch size

Subsequent experiments evaluating the effects of architecture,
backbone, and patch size were performed on the “Jarvis”
workstation with Training/Validation Pool 1 (seed 42). This dataset
provided the most favorable balance of high mlIoU (0.9731)
and low variability (SD = 0.0099), making it the most stable
and representative among the available cross-validation splits.
In total, we tested 30 combinations of architecture, backbone,
and patch size (Supplementary Table S3). Training conditions
were kept as consistent as possible across these combinations
and followed the settings used in section 2.4.2. However, some
UNet++, SegFormer, and MiT-B1 models required more VRAM
than was available, so batch size was reduced from 64 to 32
(Supplementary Table S3). In addition, models with the MiT-
Bl backbone and 512-px patches failed to converge under the
default settings and therefore required the learning rate to
be lowered from le-3 to le-4 (Supplementary Table S3). For
completeness, Supplementary Table S4 reports the corresponding
Dice scores (mean, bone, and pores) converted from the IoU values.

2.5.3 Weighted scoring and ranking of models

For each of the 30 model combinations, mean, bone, and
pores IoU scores were averaged, respectively, across the four
scans of Test Fold 1 (Supplementary Table S3). To evaluate the
trade-off between performance and computational efficiency, we
calculated a weighted score for each model using the following
normalized metrics:

mloU - mloU,,;,
mloU,,,. —mloU
B-B,,,
Byiax ~Buuin
U-U,.
Unax = Unnin’
_ F-Fu
I
P-P,,

mloU

norm — >

min

B

norm —

U

norm

F

norm

p 1-

norm = Pmax _Pmin,

1- = Vmin
Vsas — Viin
T- Tmin

Tmax - Tmin

\%4

norm —
min

Tnorm =1-

Here, mIoU denotes mean IoU from Test Fold 1, B is the batch
size; U is average GPU utilization; F is the total number of floating-
point operations (FLOPs) executed on a one-batch sample from the
training set during a single forward pass of the network; P is the
parameter count; V is the GPU VRAM consumed during fitting; and
T is the time spent in the fitting loop. Higher values are preferrable
for mean IoU, batch size, and GPU utilization, whereas lower values

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al. 10.3389/binf.2025.1677527

TABLE 4 Model fitting performance of “BONe DLFit” compared across platforms. Dataset used was Training/Validation Pool 1 with a random seed of 42.

Workstation| OS BONe GPU # GPU usage | Peak VRAM | Peak RAM Val. mloU | Val. mDice | Wall Time

version (%) (e]3)) (e]3))]
“Jarvis® L S 2 84.0 225 4198 0.9775 0.9886 9,140
L A 2 83.0 225 446.0 0.9790 0.9894 9,303
L S 1 99.4 23.1 4402 0.9774 0.9886 14,852
L A 1 99.3 233 442.1 0.9778 0.9888 14,944
“Hopper” L A 2 89.5 27 446.8 0.9778 0.9888 9,862
L S 2 89.1 25 412.7 0.9774 0.9886 9,975
L A 1 99.5 20.0 447.0 0.9775 0.9886 17,289
L S 1 99.6 198 4260 0.9783 0.9890 17,374
w S 2 38.6 27 366.1 0.9769 0.9883 22,796
w A 2 421 27 3519 0.9760 0.9879 27,058
w S 1 58.7 20.0 367.7 0.9758 0.9878 28,871
w A 1 65.1 20.1 355.8 0.9736 0.9866 33,341

Abbreviations: A = Avizo 2024.2; S=Standalone; L = Ubuntu 22.04 LTS; W=Windows 11 Pro; Val = Validation.

TABLE 5 Cross-platform performance of “BONe DLPred” when segmenting scan “2R_2U_HF" using model BP-2D-03.

Workstation (O} BONe GPU GPU Peak Peak mioU mDice Wall
version # usage VRAM RAM Time

(VA ((e1:)] ((e1:)] (s)

“Jarvis” L A 2 437 724 413 0.9829 0.9914 55

L A 1 60.5 429 433 0.9829 0.9914 60

L S 2 336 77.0 39.6 0.9829 0.9914 68

L S 1 53.8 41.0 423 0.9829 0.9914 75

“Hopper” L A 2 66.7 28.8 39.7 0.9829 0.9914 59

L S 2 363 28.1 37.1 0.9829 0.9914 62

L A 1 832 16.3 40.9 0.9829 0.9914 68

L S 1 63.8 14.6 37.6 0.9829 0.9914 71

w S 1 55.0 15.2 623 0.9829 0.9914 85

w S 2 39.9 282 60.0 0.9829 0.9914 85

w A 2 575 287 48.9 0.9829 0.9914 95

w A 1 72.0 13.8 50.6 0.9829 0.9914 102

“Friday” w A 1 79.8 12.0 375 0.9829 0.9914 277

Abbreviations: L = Ubuntu 22.04 LTS; W=Windows 10/11 Pro.

Frontiers in Bioinformatics 13 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

10.3389/fbinf.2025.1677527

TABLE 6 Summary of 5-fold cross-validation results. Each test fold was evaluated under three random seeds (42, 1701, 1864), with performance
reported as mean Intersection over Union (mloU +SD). The grand mean loU +SD aggregated across folds and seeds is bolded and shown in the

lower-right cell. Bracketed values are the mloU results converted to mDice.

Test fold mloU (seed 42)

mloU (seed 1701)

mloU (seed 1864) Mean + SD across

seeds

[0.8992 + 0.1724]

1 0.9731 + 0.0099 0.9738 +0.0106 0.9723 + 0.0099 0.9731 + 0.0092
[0.9864 % 0.0051] [0.9867 + 0.0054] [0.9860 % 0.0051] [0.9863 % 0.0047]
2 0.8463 + 0.2501 0.8533 + 0.2287 0.8523 + 0.2309 0.8506 + 0.2142

[0.9066 + 0.1538]

[0.9057 + 0.1557] [0.9038 + 0.1455]

3 0.9420 £ 0.0376
[0.9699 + 0.0201]

0.9301 + 0.0497
[0.9633 +0.0270]

0.9456 +0.0298
[0.9719 £ 0.0158]

0.9393 +0.0367
[0.9683 + 0.0198]

4 0.8883 + 0.1438 0.8913 £ 0.1488 0.8508 + 0.1740 0.8768 £ 0.1425
[0.9358 + 0.0875] [0.9372 + 0.0907] [0.9115+0.1121] [0.9282 + 0.0889]

5 0.9542 + 0.0395 0.9264 + 0.0939 0.8995 + 0.1492 0.9267 £+ 0.0972
[0.9763 + 0.0211] [0.9599 + 0.0533] [0.9418 £ 0.0902] [0.9593 + 0.0577]

Mean + SD across folds 0.9208 + 0.0522 0.9150 + 0.0452 0.9041 + 0.0546 0.9133 + 0.0476
[0.9535 + 0.0358] [0.9507 + 0.0303] [0.9434 + 0.0356] [0.9492 + 0.0318]

are preferrable for FLOPs, parameters, VRAM consumption, and
fitting time. The weighted score of each model was then calculated as:

weightedscore = 0.85mlIoU,,,,, +0.025B,,,,,, +0.025U ...
+0.025 F, +0.025P, +0.025V +0.025T,

norm norm norm norm*

The values of the weighting coeflicients were selected to place
a strong emphasis on model predictivity (weight = 0.85) while
allocating the remaining 0.15 equally across the six complementary
efficiency-related metrics. To assess the robustness of this scoring
framework, we performed a sensitivity sweep by varying the relative
weight assigned to mean IoU (Table 7). Across the tested weightings,
top-ranked models remained largely consistent, indicating that the
ranking procedure is stable with respect to reasonable changes in the
weighting scheme.

3 Results

3.1 Cross-validation demonstrates high
overall segmentation predictivity and
moderate stability

The revised Bone-Pores (BP) segmentation model achieved
consistently high predictivity across the 15 cross-validation runs.
Mean IoU across five folds and three seeds was 0.9133 + 0.0476
[mean Dice: 0.9492 + 0.0318] (Table 6). Predictivity was highest
in Test Fold 1, which consisted of scans from the river otter
and mouse samples (Figures 3A,C,H, 5B); mean IoU was 0.9731
+ 0.0092 across seeds [mean Dice: 0.9863 + 0.0047]. Test Folds
3 and 5 also showed good predictivity, with mean IoU values
of 0.9393 + 0.0367 [mean Dice: 0.9683 + 0.0198] and 0.9267
+ 0.0972 [mean Dice: 0.9593 + 0.0577], respectively. Test Folds
2 and 4 displayed greater variability related to the inclusion of

Frontiers in Bioinformatics

scans with challenging morphology such as “AMNH_Mammals_
M-89009_F” (Figures 1G, 4A) and AMNH_Mammals_M-206440_
mixed” (Figures 11, 4B). Even so, mean IoU values across seeds
remained above 0.85 (Supplementary Table S1) and above 0.90 when
converted to mean Dice (Supplementary Table S2). Taken together,
these results suggest that the scan-level partitioning removed the
optimistic bias associated with slice-level data leakage in the
previous BP-2D-02a model (Lee et al., 2025).

Because Test Fold 1 (seed 42) showed a good balance between
high mean IoU (0.9731) and low variability (SD = 0.0099) [mean
Dice: 0.9864 * 0.0051], its training/validation pool was used as the
baseline dataset for subsequent benchmarking experiments.

3.2 Reproducible performance across
platforms

Fitting performance for the baseline model (BP-2D-03)
was highly similar across the two high-end workstations and
across both BONe implementations (Avizo and standalone).
Validation mIoU ranged from 0.9736 to 0.9790 [Validation Dice:
0.9866-0.9894] across all combinations of workstation, operating
system, BONe implementation, and GPU count (Table 4). Dual-
GPU configurations reduced wall time substantially relative to
single-GPU runs, although validation mloU remained nearly
identical. Implementations of “BONe DLFit” operating in
Linux completed fitting substantially faster than their Windows
counterparts, which likely stemmed from OS-level differences in
GPU utilization (Table 4). Regardless of operating system, “BONe
DLFit” produced nearly identical validation mIoU values.

Prediction performance of “BONE DLPred” was stable across
platforms when applying model BP-2D-03 to scan “2R_2U_HF”
from Test Fold 1 with a 2D chunk size of 512 px x 512 px
(Table 5). Peak VRAM ranged from 12.0 GB on the low-end “Friday”
workstation to 72.4 GB on “Jarvis” in dual-GPU mode. These

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

10.3389/fbinf.2025.1677527

TABLE 7 Sensitivity of model rankings to changes in performance-efficiency weighting.

mloU weight

Efficiency weight per metric®

Top 3 models (weighted score)

1. UNet++ | EfficientNet-B3 | 256 px (1.0000)
2. U-Net | EfficientNet-B3 | 256 px (0.9994)
3. U-Net | ResNet-18 | 256 px (0.9934)

0.95 =0.008

1. U-Net | ResNet-18 | 256 px (0.9913)
2. UNet++ | ResNet-18 | 256 px (0.9865)
3. UNet++ | EfficientNet-B3 | 256 px (0.9861)

0.90 =0.017

1. U-Net | ResNet-18 | 256 px (0.9893)
2. UNet++ | ResNet-18 | 256 px (0.9833)
3. U-Net | ResNet-18 | 512 px (0.9730)

0.85 0.025

1. U-Net | ResNet-18 | 256 px (0.9873)
2. UNet++ | ResNet-18 | 256 px (0.9802)
3. U-Net | ResNet-18 | 512 px (0.9686)

0.80 =0.033

1. U-Net | ResNet-18 | 256 px (0.9853)
2. UNet++ | ResNet-18 | 256 px (0.9770)
3. U-Net | ResNet-18 | 512 px (0.9641)

0.75 =0.042

1. U-Net | ResNet-18 | 256 px (0.9833)
2. UNet++ | ResNet-18 | 256 px (0.9739)
3. U-Net | ResNet-18 | 512 px (0.9597)

0.70 0.050

1. U-Net | ResNet-18 | 256 px (0.9812)
2. UNet++ | ResNet-18 | 256 px (0.9707)
3. U-Net | ResNet-18 | 512 px (0.9552)

“Calculated as (1 - mIoU Weight)/6.

differences reflect adaptive batch-size estimation during prediction,
which scales the number of concurrently processed tiles to fit
within the free GPU memory of each system. Both high- and low-
end systems produced visually consistent segmentations (described
below with “BONe IoU”), and wall times scaled predictably with
hardware performance (Table 5).

“BONe IoU” was compared across platforms by comparing the
predictions described in the preceding paragraph with the reference
segmentation of scan “2R_2U_HF” from Test Fold 1. Identical IoU
values were produced across platforms (Table 5). Put together, these
results suggest that “BONe DLFit’, “BONe DLPred”, and “BONe
IoU” are stable across a variety of computer configurations and
behave reproducibly.

3.3 Effects of model architecture,
backbone, and patch size

3.3.1 U-Net and UNet++ showed the highest
segmentation loU

Across the 30 evaluated configurations, U-Net and UNet++
architectures consistently outperformed DeepLabV3+ and
SegFormer (Supplementary Tables S3, S4). The top-performing
U-Net and UNet++ models achieved mean IoU wvalues of
0.9726-0.9740 [mean Dice: 0.9861-0.9868] with 256-px patches
and simpler backbones (ResNet-18 or EfficientNet-B3). In contrast,
the best-performing DeepLabV3+ and SegFormer models achieved
mean IoU values of 0.9160 and 0.9174 [mean Dice: 0.9562-0.9569],
respectively.

Frontiers in Bioinformatics

15

These findings indicate that architectures designed to preserve
fine-scale spatial information through skip connections remain the
most effective for distinguishing bone tissue vs. medullary pores
in closely adjacent bony elements. Transformer-based models and
atrous-convolution models benefited from a larger receptive window
but did not match the fine-grained boundary detection achieved by
U-Net and UNet++.

3.3.2 Simpler backbones offered the best
trade-off between mloU and efficiency

ResNet-18 and EfficientNet-B3 backbones generally produced
the strongest results across architectures (Supplementary Table S3).
EfficientNet-B3 achieved among the highest mloU values
when paired with U-Net or UNet++. However, it consistently
required substantially longer fitting times than other backbones,
ironically related to less efficient use of available GPUs
(Supplementary Table S3). contrast, ResNet-18 provided
high IoU with comparatively low computational cost, making
it the most balanced backbone in terms of predictivity
and efficiency. ResNet-50 increased parameter count and

In

computational cost without consistently improving segmentation
performance (Supplementary Table S3). MiT-B1 yielded
competitive results but only when paired with U-Net and UNet++
architectures (Supplementary Table S3).

3.3.3 Effects of patch size depended on
architecture

Patch size influenced mIoU in architecture-specific ways. For
U-Net and UNet++, 256-px patches consistently produced the

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

highest mean IoU and the highest weighted scores. Increasing
patch size to 512 px did not improve mloU and resulted in
substantial increases in VRAM usage, floating-point operations, and
fitting time (Supplementary Table S3). These architectures appear to
extract sufficient contextual information from smaller patches while
maintaining sharp boundary localization.

In contrast, both DeepLabV3+ and SegFormer improved
substantially when patch size increased from 256 px to 512 px.
DeepLabV3+ models gained 0.02 to 0.07 mIoU [0.01-0.04 mDice],
and SegFormer models gained approximately 0.02-0.04 mIoU
[0.01-0.02 mDice] (Supplementary Tables S3S,54). These increases
reflect the importance of broader spatial context for models that rely
on dilated convolutions or attention mechanisms. However, even
with larger patches, neither architecture matched the segmentation
performance achieved by U-Net or UNet++. Larger patches also
incurred higher computational costs, especially for transformer-
based models, which reduced their overall weighted scores and
performance-efficiency ranking.

3.3.4 Model rankings were stable under different
performance-efficiency weighting schemes

Weighted scores were used to evaluate the joint effects
of mIoU performance and computational efficiency. Across all
weighting schemes tested, the U-Net architecture with ResNet-18
backbone and 256-px patch size (receptive window) remained the
highest-ranked configuration or within the top three (Table 7).
UNet++ with ResNet-18 also consistently ranked among the top
models. Although the highest-mIoU model under a performance-
only weighting was UNet++ with EfficientNet-B3 and 256-px
patch size (Table 7), this configuration showed a combination of
extremely long fitting time, high VRAM usage, and low GPU
utilization (Supplementary Table S3) that substantially reduced its
rank when efficiency metrics were included.

4 Discussion

This study introduces BP-2D-03 as the revised Bone-
Pores segmentation model, replacing the earlier BP-2D-
02a (Lee et al, 2025). The revised model was trained by an
updated software pipeline that fixes key limitations of the
previous workflow by removing slice-level data leakage, reducing
memory demands, and supporting a larger and more varied
dataset. These improvements allow the model to learn more
stable and general features across diverse imaging conditions.
Benchmarking experiments showed that the three parts of the
software (“BONe DLFit’, “BONe DLPred”, and “BONe IoU”)
perform reliably across a broad range of architectures, backbones,
and patch sizes, and that results are stable across a variety of
computer platforms. By evaluating 30 model combinations, we
identified consistent strengths and limitations that translate into
practical recommendations for users and clear directions for future
development.

A notable outcome of the benchmarking experiments is the
overall performance among architectures paired with convolution-
based backbones (pattern-extractors or encoders). Both U-Net
and UNet++ produced consistently high mean IoU values with
relatively low variability, reflecting the well-documented strength

Frontiers in Bioinformatics

16

10.3389/fbinf.2025.1677527

of convolutional encoder-decoder design and skip connections
in preserving fine spatial detail (Ronneberger et al, 2015;
Zhou et al.,, 2018). Similar observations appear in recent hybrid
convolution-transformer studies, which emphasize the importance
of convolutional localization when improving transformer-based
architectures (Chen et al., 2021; Tragakis et al., 2023). In contrast,
transformer-based and atrous-convolution architectures such
as SegFormer and DeepLabV3+ showed greater sensitivity to
the spatial context provided by larger patches. This pattern
is consistent with work demonstrating that transformer and
dilated-convolution models benefit from wider receptive fields
that capture long-range spatial dependencies (Chen et al., 2018;
Xie et al., 2021). However, even with larger patches, these models
did not consistently match the ability of U-Net or UNet++ to
delineate high-resolution boundaries of bone and medullary pores.
The analysis of backbones further supports this conclusion. ResNet-
18 consistently provided a strong balance between predictivity
and efficiency. In contrast, EfficientNet-B3, despite occasionally
producing the highest mIoU scores, required substantially longer
fitting times, likely caused by consistently low GPU utilization in our
experiments. Although EfficientNet backbones achieve favorable
theoretical FLOPs-to-segmentation trade-offs (Tan and Le, 2019),
empirical efficiency depends strongly on hardware and software
implementation (Prajwal et al., 2025), which may have contributed
to the poor use of available GPUs observed here. Collectively,
these results indicate that models with moderate architectural
complexity and strong localization ability provide the best trade-
off between quality and resource demands for segmentation of bone
in micro-CT scans.

The weighted ranking framework jointly evaluates segmentation
quality and computational efficiency, offering a more comprehensive
assessment of model suitability than one based solely on
performance. Across all weighting schemes, the U-Net with a
ResNet-18 backbone and 256-px patches remained among the
highest-ranked configurations, demonstrating that the ranking
was robust to reasonable shifts in weighting emphasis. The
performance-only emphasis identified UNet++ with EfficientNet-
B3 and 256-px patches as the top model. However, its rank
decreased substantially once fitting time, VRAM usage, and
GPU utilization were considered. We chose a performance-to-
efficiency weighting of 0.85:0.15 to reflect the primary importance
of segmentation mIoU while recognizing that highly inefficient
models are impractical for iterative experimentation. Long fitting
times and poor GPU utilization reduce the feasibility of conducting
replicate runs and limit scalability. These considerations align
with a growing body of work arguing that model selection should
balance predictivity with computational cost (e.g., Naser, 2023;
Li et al., 2025; Prajwal et al., 2025). The ranking results therefore
highlight the importance of evaluating model suitability not only in
terms of mIoU but also in terms of the time and resources required
to achieve that performance.

The cross-platform experiments demonstrated that BONe is
robust to variation in operating system, hardware configuration,
and implementation (Avizo 3D vs. standalone). In particular,
“BONe DLFit” includes a reproducibility mode that produces
bitwise-identical results when rerun on the same workstation,
operating system, and implementation. This follows established
recommendations for enforcing reproducible deep learning

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

10.3389/fbinf.2025.1677527

FIGURE 9

Performance of model BP-2D-03 on unseen validation and testing scans. (A) 3D view of predicted bone (green) and pores (blue) segmentation of
validation scan "1R_1U_HF" with substantial mislabeled background (mloU = 0.9593; mDice = 0.9792). Cross-sectional view of predicted segmentation
(B) and corresponding reference (C) showing mislabeled background as bone (yellow arrows) and mislabeled pore overflowing into the
intertrochanteric fossa of femur (magenta arrow). (D) 3D view of predicted segmentation of testing scan “2R_2U_HF" with few segmentation errors in
the background (mloU = 0.9829; mDice = 0.9914). Cross-sectional view of predicted segmentation (E) and corresponding reference (F) showing
mislabeled background as bone (yellow arrow) and mislabeled growth plate pores as background (magenta arrow).

results by controlling random number generator states (e.g., in
Python, NumPy, and PyTorch), enabling deterministic cuDNN
GPU kernels,
workers (e.g., Nagarajan et al, 2019; Chen et al, 2022;

and deploying deterministic multiprocessing

Heumos et al., 2023). However, as prior studies have shown,
identical code and seeds cannot guarantee identical results across
platforms because OS-level libraries and parallel execution can
introduce small numerical differences (Glatard et al, 2015;
Gundersen et al., 2022). We observed the same phenomenon, in
which validation mIoU and mDice varied slightly across operating
systems, implementations of “BONe DLFit’, and workstations
(Table 4).

This phenomenon is specific to model fitting. Both “BONe
DLPred” and “BONe IoU” perform inference and metric
computation using algorithms that do not rely on randomness,
GPU nondeterministic kernels, or parallel-reduction shortcuts
known to introduce cross-platform variation (e.g., Chen et al., 2022;
Gundersen et al., 2022; Heumos et al., 2023). As a result, these
components produce exact, bitwise-identical outputs across
repeated runs, and any observed differences in VRAM usage or
wall time reflect hardware characteristics rather than algorithmic
nondeterminism. Across experiments, segmentation outputs
remained identical, and the shorter wall times observed in Linux
likely reflect differences in GPU scheduling and background process
management rather than BONe-specific behavior (Table 5). In
summary, although “BONe DLFit” exhibits the well-documented
sensitivity of deep learning training pipelines to underlying
computational environments, the overall BONe workflow remains

Frontiers in Bioinformatics

17

reliable and robust across different laboratory settings and is strictly
reproducible under controlled ones.

The results also inform several directions for future development
of the BONe software. The need to support both new and
experienced users motivates the creation of two complementary
interfaces. Although the current design philosophy is to limit the
number of exposed hyperparameters, the interface can still be
intimidating for beginners. An “Easy Mode” that automatically
applies tested model settings and conservative defaults will help
new users obtain strong results without navigating extensive
configuration options. An “Advanced Mode” will expose even
more parameters (e.g., model architecture, backbone, optimizer,
scheduler, and augmentation settings) to better support exploratory
or highly customized studies. The addition of customizable
augmentation pipelines will allow users to tune image transforms
and probabilities based on the variability and scale of their datasets.
Expanding the set of available loss functions may help with datasets
containing more complex segmentation classes. For example, a
recent survey highlighted the robustness of the Focal Tversky loss
function for segmentation tasks involving class imbalance or subtle
boundaries (Azad et al., 2023). Additional optimizers and learning
rate scheduling options may provide flexibility to tackle a broader
range of segmentation tasks. Stochastic Gradient Descent (SGD)
with momentum is an alternative optimizer that remains widely
used in biomedical image segmentation because it often provides
strong generalization and stable convergence when paired with
an appropriate learning rate schedule (Nagendram et al.,, 2023).
AdamW is another popular choice because it handles weight

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

decay separately from gradient update and can reduce overfitting
(Loshchilov and Hutter, 2019). Offering a multi-cycle option for
cosine annealing (Loshchilov and Hutter, 2017) may support better
exploration of the loss landscape.

The model fitting workloads indicate that our current multi-
GPU implementation is limited by inter-GPU communication
overhead. PyTorch's “DataParallel” library offers a convenient
mechanism for distributing batches across devices, but it centralizes
gradient aggregation on a single GPU (PyTorch Contributors, 2025).
This creates a communication bottleneck that caps scaling efficiency,
which is evident in the reduced utilization observed in dual-GPU
runs (Table 4). Transitioning to PyTorch's Distributed Data Parallel
(DDP), which distributes gradient synchronization across all GPUs
(e.g., Aach et al.,, 2023), is expected to yield substantially better
multi-GPU speedups. These gains matter most for model fitting
because prediction workloads showed only minor improvements
with two GPUs. Prediction involves only forward passes and
lacks the gradient synchronization, so the overhead of splitting
inputs and aggregating outputs across devices largely offsets any
potential gains (Table 5). For this reason, efforts to integrate DDP
will focus on improving fitting performance, where multi-GPU
scaling has the greatest impact on wall time.

The cross-validation results provide insight into how dataset
composition influences model robustness and highlight directions
for future dataset design. Using the U-Net | ResNet-18 | 256-px
patch configuration, model predictivity was high with a grand mIoU
across folds and seeds exceeding 0.91 [mDice: 0.94]. Variability
across random seeds was extremely small, indicating that the
model fitting is not overly sensitive to stochastic differences in
initialization or data shuffling. In contrast, performance varied
more substantially across folds, reflecting heterogeneity in the
underlying data rather than instability in the fitting procedure.
Two test folds contained rare or challenging scans, namely, the
composite scan (‘AMNH_Mammals_M-89009_F”: Figures 1G, 4A)
in Test Fold 2 and the low-resolution scan (“AMNH_Mammals_M-
206440_mixed”: Figures 11, 4B) in Test Fold 4. These observations
suggest that although the model is stable overall, its performance
can decrease for atypical or difficult scans in the validation pool or
test fold (Figure 9). To guard against such outliers, future datasets
should include multiple examples of each challenging type of scan
to better capture the full spectrum of data variability.

The performance patterns observed here point to broader
opportunities for incorporating additional spatial context into
BONe models. Architectures that benefit from wider receptive fields,
such as DeepLabV3+ and SegFormer, improved with larger 2D
patches, which suggests that 2.5D representations may provide a
more effective strategy for capturing cross-slice structure. Both
implementations of BONe already support 2.5D models by using
a number of adjacent slices as input to predict the center slice,
and this shallow volumetric context may help reduce ambiguity
with more complex segmentation tasks. Recent work further
supports this direction. Avesta et al. (2023) found that 3D models
provided the highest segmentation predictivity and maintained
strong performance with limited training data, although they
required 20 times more GPU memory than 2.5D and 2D approaches.
However, other studies have shown that 3D models do not always
outperform lower-dimensional alternatives. Crespi et al. (2022)
and Zhang et al. (2022) reported cases in which 2.5D or 2D

Frontiers in Bioinformatics

18

10.3389/fbinf.2025.1677527

methods matched or exceeded 3D performance. Although the
methods used in Lee et al. (2025) contained a data-leakage issue
that has been addressed in the present study, the overall conclusion
that 2D models can outperform 3D models under certain dataset
and sampling conditions remains well supported. These findings
indicate that the optimal dimensionality is strongly dependent on
the characteristics of the imaging dataset. A systematic comparison
of 2D, 2.5D, and 3D training strategies on the same dataset will
therefore be an important direction for future development and is
the focus of a dedicated follow-up study.

Taken together, the results of this benchmarking study establish
BONe as a flexible, reproducible, and computationally efficient
framework for micro-CT bone segmentation. The findings provide
practical guidance for both new and advanced users. BONe supports
two clear workflows. Users working with scans like those used in
this study can apply the revised model BP-2D-03 directly. This
workflow requires no additional training and only involves running
“BONe DLPred” to generate segmentations and “BONe IoU” for
optional quantitative evaluation. Users working with datasets that
differ in imaging characteristics, anatomical structure, or noise
profile can perform transfer learning. In this workflow, “BONe
DLFit” is used to fine-tune BP-2D-03 (or another compatible pre-
trained model) on a modest sample of representative scans, after
which “BONe DLPred” and “BONe IoU” are used for deployment
and evaluation. Either way, BONe offers a practical foundation
for both routine analysis and methodological research in bone
imaging.

5 Conclusion

This study introduces BONe, a flexible and reproducible deep
learning software interface for segmenting bone and medullary
pores in micro-CT scans. We evaluated its performance across
a diverse set of architectures, backbones, patch sizes, and
computational environments. By addressing the limitations of
earlier workflows, including data leakage, memory inefliciency, and
limited evaluation of model robustness, BONe provides a strong
foundation for both routine segmentation and methodological
research. The revised 2D model, BP-2D-03, offers strong predictivity
across varied imaging conditions albeit with room for improvement.
The software enables users to either deploy this model directly
or fine-tune it to new datasets through transfer learning. Future
developments, including expanded hyperparameter control,
improved multi-GPU scaling, and systematic evaluation of 2D,
2.5D, and 3D approaches, will further enhance BONe's flexibility.
Collectively, these advances support scalable, reproducible, and
high-quality bone segmentation for anatomical and biomedical

applications.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: Publication link (https://doi.org/
10.5061/dryad.4j0zpc8qq).

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://doi.org/10.5061/dryad.4j0zpc8qq
https://doi.org/10.5061/dryad.4j0zpc8qq
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

Ethics statement

The animal study was approved by Midwestern University's
Institutional Animal Care and Use Committee (IACUC #AZ-4205).
Forty male C57BL/6 mice (4-week old) were purchased from
Charles River Laboratory (Wilmington, MA, United States) and
maintained for 25 weeks. The mice were euthanized via asphyxiation
in 100% atmospheric CO,. A toe-pinch test was performed
prior to surgical thoracotomy, which induced pneumothorax.
All animal care was conducted in accordance with established
guidelines, and all protocols used were approved by Midwestern
University's Institutional Animal Care and Use Committee (IACUC
#AZ-4205). Note: CO,-based euthanasia is acceptable on small
rodents according to the AVMA guidelines (p. 61). The study was
conducted in accordance with the local legislation and institutional
requirements.

Author contributions

AL: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing — original draft, Writing - review and
editing. GT: Software, Writing - original draft, Writing — review
and editing. MD: Software, Supervision, Writing — original draft,
Writing - review and editing. BC: Data curation, Methodology,
Writing - original draft, Writing - review and editing. HH: Formal
Analysis, Validation, Writing - original draft, Writing - review
and editing. JC: Formal Analysis, Validation, Writing - original
draft, Writing - review and editing. JM: Investigation, Writing -
original draft, Writing — review and editing. JB: Formal Analysis,
Validation, Writing — original draft, Writing - review and editing.
MM: Formal Analysis, Validation, Writing - original draft, Writing -
review and editing. BN: Formal Analysis, Validation, Writing -
original draft, Writing - review and editing. KW: Data curation,
Investigation, Validation, Writing — original draft, Writing — review
and editing. TB: Funding acquisition, Investigation, Writing -
original draft, Writing - review and editing. LA-N: Funding
acquisition, Investigation, Writing — original draft, Writing - review
and editing.

Funding

The author(s) declared that financial support was received for
this work and/or its publication. The authors declare that this
study received funding from the Midwestern Arizona Alzheimer's
Consortium (LA and TLB). The funder was not involved in the study
design, collection, analysis, interpretation of data, writing of this
article, or decision to submit it for publication.

References

Aach, M., Inanc, E., Sarma, R., Riedel, M., and Lintermann, A. (2023). Large scale
performance analysis of distributed deep learning frameworks for convolutional neural
networks. J. Big Data 10, 96. d0i:10.1186/s40537-023-00765-w

Frontiers in Bioinformatics

19

10.3389/fbinf.2025.1677527

Acknowledgements

We thank Manon Wilson at MICRO (University of Arkansas) for
micro-CT scanning services and troubleshooting; the Midwestern
University Core Facility, Glendale AZ for access to Avizo 3D and
the shared deep learning workstation; and reviewers who provided
constructive feedback on this manuscript. The use of generative
AT (GPT-40, OpenAl, https://chatgpt.com/) is acknowledged for
debugging Python code. We reviewed the code for errors and take
full responsibility for it.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that generative AI was used in the
creation of this manuscript. The use of generative AI (GPT-
40, OpenAl, https://chatgpt.com/) is acknowledged for debugging
Python code. We reviewed the code for errors and take full
responsibility for it.

Any alternative text (alt text) provided alongside figures in this
article has been generated by the lead author with the support
of artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact the lead author.

Publisher's note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The this
found online at: https://www.frontiersin.org/articles/10.3389/
tbinf.2025.1677527/full#supplementary-material

Supplementary Material for article can Dbe

Ahmad, N, Strand, R., Sparresiter, B., Tarai, S., Lundstrém, E., Bergstrém, G., et al.
(2023). Automatic segmentation of large-scale CT image datasets for detailed body
composition analysis. BMC Bioinform 24, 346. doi:10.1186/s12859-023-05462-2

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://chatgpt.com/
https://chatgpt.com/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1677527/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1677527/full#supplementary-material
https://doi.org/10.1186/s40537-023-00765-w
https://doi.org/10.1186/s12859-023-05462-2
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lee et al.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al.
(2021). Review of deep learning: concepts, CNN architectures, challenges, applications,
future directions. J. Big Data 8, 53. doi:10.1186/s40537-021-00444-8

Avesta, A., Hossain, S., Lin, M., Aboian, M., Krumholz, H. M., and Aneja, S.
(2023). Comparing 3D, 2.5D, and 2D approaches to brain image auto-segmentation.
Bioengineering 10, 181. doi:10.3390/bioengineering10020181

Azad, R., Heidary, M., Yilmaz, K., Hiittemann, M., Karimijafarbigloo, S., Wu, Y,, et al.
(2023). Loss functions in the era of semantic segmentation: a survey and outlook. arXiv
2312, 05391. doi:10.48550/arXiv.2312.05391

Bab, L., Hajbi-Yonissi, C., Gabet, Y., and Miiller, R. (2007a). “Femur and hip joint,” in
Micro-tomographic atlas of the mouse skeleton. Editors I. Bab, C. Hajbi-Yonissi, Y. Gabet,
and R. Miiller (Boston, MA: Springer US), 161-169. doi:10.1007/978-0-387-39258-5_
15

Bab, 1., Hajbi-Yonissi, C., Gabet, Y., and Miiller, R. (2007b). “Humerus and shoulder
joint,” in Micro-tomographic atlas of the mouse skeleton. Editors I. Bab, C. Hajbi-Yonissi,
Y. Gabet, and R. Miiller (Boston, MA: Springer US), 123-130. d0i:10.1007/978-0-387-
39258-5_11

Bradshaw, T. J., Huemann, Z., Hu, J., and Rahmim, A. (2023). A guide to cross-
validation for artificial intelligence in medical imaging. Radiol. Artif. Intell. 5, €220232.
doi:10.1148/ryai.220232

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F, and Adam, H. (2018). Encoder-
decoder with atrous separable convolution for semantic image segmentation. arXiv
1802.02611, 833-851. doi:10.1007/978-3-030-01234-2_49

Chen, J., Lu, Y, Yu, Q, Luo, X,, Adeli, E., Wang, Y., et al. (2021). TransUNet:
transformers make strong encoders for medical image segmentation. arXiv 2102.04306.
doi:10.48550/arXiv.2102.04306

Chen, B., Wen, M., Shi, Y., Lin, D., Rajbahadur, G. K., and Jiang, Z. M. (2022).
Towards training reproducible deep learning models. arXiv 2202.02326, 2202-2214.
doi:10.48550/arXiv.2202.02326

Crespi, L., Loiacono, D., and Sartori, P. (2022). “Are 3D better than 2D
convolutional neural networks for medical imaging semantic segmentation?,” in 2022
International Joint Conference on Neural Networks (IJCNN) (Padua, Italy), 1-8.
doi:10.1109/IJCNN55064.2022.9892850

Deng, J., Dong, W, Socher, R., Li, L.-J.,, Li, K., and Li, E-F. (2009). “ImageNet: a large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 248-255. do0i:10.1109/CVPR.2009.5206848

Detlefsen, N. S., Borovec, J., Schock, J., Tha, A. H., Koker, T., Liello, L. D., et al. (2022).
TorchMetrics - measuring reproducibility in PyTorch. J. Open Source Softw. 7, 4101.
doi:10.21105/j0ss.04101

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C.,
etal. (2015). Reproducibility of neuroimaging analyses across operating systems. Front.
Neuroinform 9, 1-14. doi:10.3389/fninf.2015.00012

Gundersen, O. E., Shamsaliei, S., and Isdahl, R. J. (2022). Do machine
learning platforms provide out-of-the-box reproducibility? FGCS 126, 34-47.
doi:10.1016/j.future.2021.06.014

Harris, C. R., Millman, K.], Walt, S. J. van der, Gommers, R., Virtanen, P,
Cournapeau, D,, et al. (2020). Array programming with NumPy. Nature 585, 357-362.
doi:10.1038/541586-020-2649-2

He, K., Zhang, X, Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV: IEEE), 770-778. doi:10.1109/CVPR.2016.90

He, T, Zhang, Z., Zhang, H., Zhang, Z., Xie,], and Li, M. (2019). “Bag
of tricks for image classification with convolutional neural networks,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
558-567. doi:10.1109/CVPR.2019.00065

Heumos, L., Ehmele, P, Kuhn Cuellar, L., Menden, K., Miller, E., Lemke, S., et al.
(2023). mlf-core: a framework for deterministic machine learning. Bioinform 39, 1-8.
doi:10.1093/bioinformatics/btad 164

Takubovskii, P. (2019). Segmentation models pytorch. Available online at: https://
github.com/qubvel/segmentation_models.pytorch.

Iglovikov, V., and Shvets, A. (2018). TernausNet: U-net with VGGI1
encoder pre-trained on ImageNet for image segmentation. arXiv 1801.05746v1.
doi:10.48550/arXiv.1801.05746

Ilyas, T. (2023). Extract and merge image patches (EMPatches). Available online at:
https://github.com/Mr-Talhallyas/EMPatches.

Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytol. 11,
37-50. doi:10.111 l/j.1469—8137.1912&[}0561 1.x

Kingma, D., and Ba, J. (2015). “Adam: a method for stochastic optimization,”
in International Conference on Learning Representations (ICLR) (San Diego, CA).
Available online at: https://arxiv.org/pdf/1412.6980.

Frontiers in Bioinformatics

20

10.3389/fbinf.2025.1677527

Lee, A. H., Moore, J. M., Vera Covarrubias, B., and Lynch, L. M. (2025). Segmentation
of cortical bone, trabecular bone, and medullary pores from micro-CT images using 2D
and 3D deep learning models. Anat. Rec. 308, 1-23. doi:10.1002/ar.25633

Li, L., Ye, Y., Chen, Z., and Xia, Y. (2025). Unified start, personalized end:
progressive pruning for efficient 3D medical image segmentation. arXiv 2509.09267.
doi:10.48550/arXiv.2509.09267

Losel, P. D., Monchanin, C., Lebrun, R., Jayme, A., Relle, J.], Devaud, J.-
M., et al. (2023). Natural variability in bee brain size and symmetry revealed
by micro-CT imaging and deep learning. PLOS Comput. Biol. 19, €1011529.
doi:10.1371/journal.pcbi.1011529

Loshchilov, I, and Hutter, F. (2017). SGDR: stochastic gradient descent with warm
restarts. arXiv 1608.03983. doi:10.48550/arXiv.1608.03983

Loshchilov, I, and Hutter, E. (2019). Decoupled weight decay regularization. arXiv
1711.05101. doi:10.48550/arXiv.1711.05101

Masuda, N., Ono, K., Tawara, D., Matsuura, Y., and Sakabe, K. (2025). Data-
efficient bone segmentation using feature pyramid-based SegFormer. Sensors 25, 81.
doi:10.3390/525010081

Nagarajan, P., Warnell, G., and Stone, P. (2019). Deterministic implementations
for reproducibility in deep reinforcement learning. arXiv 1809.05676.
doi:10.48550/arXiv.1809.05676

Nagendram, S., Singh, A., Harish Babu, G., Joshi, R., Pande, S. D., Ahammad, S. K. H,,
etal. (2023). Stochastic gradient descent optimisation for convolutional neural network
for medical image segmentation. Open Life Sci. 18, 20220665. doi:10.1515/biol-2022-
0665

Naser, M. Z. (2023). Do we need exotic models? Engineering metrics to enable green
machine learning from tackling accuracy-energy trade-offs. J. Clean. Prod. 382, 135334.
doi:10.1016/j.jclepro.2022.135334

Paszke, A., Gross, S., Massa, E, Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“PyTorch: an imperative style, high-performance deep learning library;” in Proceedings
of the 33rd International Conference on Neural Information Processing Systems (Red
Hook, NY, United States: Curran Associates Inc.), 8026-8037. Available online at:
https://arxiv.org/abs/1912.01703.

Prajwal, R., Pawan, S. J., Nazarian, S., Heller, N., Weight, C. J., Duddalwar, V., et al.
(2025). A study on energy consumption in Al-driven medical image segmentation. J.
Imaging 11, 174. doi:10.3390/jimaging11060174

PyTorch Contributors (2025). DataParallel. Available online at: https://
docs.pytorch.org/docs/2.8/generated/torch.nn.DataParallel.html (Accessed November
27,2025).

Roach, H. I, Mehta, G., Oreffo, R. O. C,, Clarke, N. M. P, and Cooper, C.
(2003). Temporal analysis of rat growth plates: cessation of growth with age despite
presence of a physis. J. Histochem. Cytochem. 51, 373-383. doi:10.1177/002215540305
100312

Ronneberger, O., Fischer, P, and Brox, T. (2015). “U-Net: Convolutional networks
for biomedical image segmentation,” in Medical image computing and computer-assisted
intervention — MICCAI 2015. Editors N. Navab, J. Hornegger, W. M. Wells, and A. E
Frangi (Cham: Springer International Publishing), 234-241. doi:10.1007/978-3-319-
24574-4_28

Stone, H. S., Tao, B., and McGuire, M. (2003). Analysis of image registration noise
due to rotationally dependent aliasing. J. Vis. Commun. Image Represent. 14, 114-135.
doi:10.1016/S1047-3203(03)00002-6

Tan, M., and Le, Q. (2019). “EfficientNet: rethinking model scaling for convolutional
neural networks,” in International Conference on Machine Learning (Long Beach,
CA, United States: Proceedings of Machine Learning Research), 6105-6114.
doi:10.48550/arXiv.1905.11946

Tragakis, A., Kaul, C., Murray-Smith, R., and Husmeier, D. (2023). The fully
convolutional transformer for medical image segmentation. arXiv 2206.00566.
doi:10.48550/arXiv.2206.00566

Xie, E., Wang, W,, Yu, Z., Anandkumar, A., Alvarez, J. M., and Luo, P. (2021).
“SegFormer: simple and efficient design for semantic segmentation with transformers,”
in Proceedings of the 35th International Conference on Neural Information Processing
Systems (Red Hook, NY, USA: Curran Associates Inc.), 12077-12090.

Yu, C,, Qin, E, Li, Y., Qin, Z., and Norell, M. (2022). CT segmentation of dinosaur
fossils by deep learning. Front. Earth Sci. 9, 805271. doi:10.3389/feart.2021.805271

Zhang, Y., Liao, Q,, Ding, L., and Zhang, J. (2022). Bridging 2D and 3D segmentation
networks for computation-efficient volumetric medical image segmentation:
an empirical study of 2.5D solutions. Comput. Med. Imag. Grap 99, 102088.
doi:10.1016/j.compmedimag.2022.102088

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., and Liang, J. (2018). UNet++:
a nested U-Net architecture for medical image segmentation. Deep Learn Med. Image
Anal. Multimodal Learn Clin. Decis. Support 11045, 3-11. doi:10.1007/978-3-030-
00889-5_1

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1677527
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.3390/bioengineering10020181
https://doi.org/10.48550/arXiv.2312.05391
https://doi.org/10.1007/978-0-387-39258-5_15
https://doi.org/10.1007/978-0-387-39258-5_15
https://doi.org/10.1007/978-0-387-39258-5_11
https://doi.org/10.1007/978-0-387-39258-5_11
https://doi.org/10.1148/ryai.220232
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.48550/arXiv.2202.02326
https://doi.org/10.1109/IJCNN55064.2022.9892850
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.21105/joss.04101
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.1016/j.future.2021.06.014
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2019.00065
https://doi.org/10.1093/bioinformatics/btad164
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://doi.org/10.48550/arXiv.1801.05746
https://github.com/Mr-TalhaIlyas/EMPatches
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://arxiv.org/pdf/1412.6980
https://doi.org/10.1002/ar.25633
https://doi.org/10.48550/arXiv.2509.09267
https://doi.org/10.1371/journal.pcbi.1011529
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.3390/s25010081
https://doi.org/10.48550/arXiv.1809.05676
https://doi.org/10.1515/biol-2022-0665
https://doi.org/10.1515/biol-2022-0665
https://doi.org/10.1016/j.jclepro.2022.135334
https://arxiv.org/abs/1912.01703
https://doi.org/10.3390/jimaging11060174
https://docs.pytorch.org/docs/2.8/generated/torch.nn.DataParallel.html
https://docs.pytorch.org/docs/2.8/generated/torch.nn.DataParallel.html
https://doi.org/10.1177/002215540305100312
https://doi.org/10.1177/002215540305100312
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/S1047-3203(03)00002-6
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.2206.00566
https://doi.org/10.3389/feart.2021.805271
https://doi.org/10.1016/j.compmedimag.2022.102088
https://doi.org/10.1007/978-3-030-00889-5\string_1
https://doi.org/10.1007/978-3-030-00889-5\string_1
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Dataset collection
	2.2 Preparing the reference masks
	2.3 Three deep learning modules for Avizo
	2.3.1 “BONe DLFit”
	2.3.2 “BONE DLPred”
	2.3.3 “BONe IoU”
	2.3.4 Standalone versions of “BONe DLFit”, “BONe DLPred”, and “BONe IoU”

	2.4 Computation
	2.4.1 Hardware specifications
	2.4.2 Performance comparison across platforms

	2.5 Model evaluation
	2.5.1 Cross-validation to assess model generalization and stability
	2.5.2 Assessing the effect of model architecture, backbone, and patch size
	2.5.3 Weighted scoring and ranking of models

	3 Results
	3.1 Cross-validation demonstrates high overall segmentation predictivity and moderate stability
	3.2 Reproducible performance across platforms
	3.3 Effects of model architecture, backbone, and patch size
	3.3.1 U-Net and UNet++ showed the highest segmentation IoU
	3.3.2 Simpler backbones offered the best trade-off between mIoU and efficiency
	3.3.3 Effects of patch size depended on architecture
	3.3.4 Model rankings were stable under different performance-efficiency weighting schemes

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

