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Deep learning (DL) enables automated bone segmentation in micro-CT datasets 
but can struggle to generalize across developmental stages, anatomical regions, 
and imaging conditions. We present BP-2D-03, which is a revised 2D Bone-
Pores segmentation model. It was fitted to a dataset comprising 20 micro-
CT scans spanning five mammalian species and 142,960 image patches. To 
manage the substantially larger and more varied dataset, we developed a 
DL software interface with modules for training (“BONe DLFit”), prediction 
(“BONe DLPred”), and evaluation (“BONe IoU”). These tools resolve prior issues 
such as slice-level data leakage, high memory usage, and limited multi-GPU 
support. Model performance was evaluated through three analyses. First, 5-
fold cross-validation with three seeds per fold evaluated baseline robustness 
and stability. The model showed generally high mean Intersection-over-
Union (IoU) with minimal variation across seeds, but performance varied 
more across folds related to differences in scan composition. These findings 
show that the baseline model is stable overall but that predictivity can 
decline for atypical scans. Second, 30 benchmarking experiments tested how 
model architecture, encoder backbone, and patch size influence segmentation 
IoU and computational efficiency. U-Net and UNet++ architectures with 
simple convolutional backbones (e.g., ResNet-18) achieved the highest IoU 
values, approaching 0.97. Third, cross-platform experiments confirmed that 
results are consistent across hardware configurations, operating systems, 
and implementations (Avizo 3D and standalone). Together, these analyses 
demonstrate that the BONe DL software delivers robust baseline performance 
and reproducible results across platforms.
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1 Introduction

Deep learning (DL) models have emerged as powerful tools 
for automating bone segmentation in high-resolution micro-CT 
scans (e.g., Yu et al., 2022; Lee et al., 2025; Masuda et al., 2025). 
In a previous study, we demonstrated the utility of 2D and 3D 
convolutional neural networks as implemented in the commercial 
software Avizo 3D for distinguishing bone and medullary pores 
in long bones of North American river otters (Lontra canadensis) 
(Lee et al., 2025). Our results showed that both 2D and 3D models 
could achieve high segmentation performance when applied to 
skeletally mature bones, with mean Intersection over Union (IoU) 
scores exceeding 0.95 for bone and 0.94 for medullary pores. 
However, that study also highlighted three key limitations with the 
DL pipeline. First, it relied on a memory-intensive concatenation 
process to assemble the dataset, which limited scalability due 
to high system memory usage. Second, it performed slice-level 
rather than scan-level data partitioning, which introduced data 
leakage (i.e., adjacent slices from the same scan appeared in 
both training and validation sets). This likely led to optimistically 
biased estimates of performance and generalization because the 
models were partially evaluated on data that were not truly 
independent. Finally, the study did not implement a formal cross-
validation framework (e.g., Bradshaw et al., 2023). Instead of 
repeatedly evaluating the model across several randomized scan-
level partitions, performance was assessed on a single train-
validation-test split. Consequently, the consistency and robustness 
of the model generalization across different subsets of the data 
remain unquantified.

Here, we address those limitations with updated deep learning 
software and present a revised 2D Bone-Pores (BP) segmentation 
model. We prioritized 2D models in this follow-up study because 
they showed slightly better segmentation performance (i.e., IoU 
score) and required less computational resources [i.e., system 
memory (RAM) and graphics processing unit memory (GPU 
VRAM)] than their 3D counterparts (e.g., Crespi et al., 2022; 
Lee et al., 2025). This software also enabled us to increase the size 
and variety of the deep learning dataset. In addition to 11 scans 
from the river otter sample that were used by Lee et al. (2025), we 
added nine scans from capybara, leopard, sea otter, and laboratory 
mouse (Table 1). The increased dataset covered a broad range 
of scanning resolution, imaging quality, and skeletal variation 
(Figure 1). Moreover, the inclusion of mouse bones to the dataset 
enabled the model to learn how to segment epiphyseal (growth) 
plates, which in mice are retained well into adulthood despite 
cessation of longitudinal bone growth (Roach et al., 2003).

The software was written in Python to support streamlined 
model fitting and prediction (inference) while overcoming the 
memory inefficiencies of the previous pipeline. Furthermore, it 
enabled a systematic evaluation of three key model fitting choices: 
model architecture, encoder backbone, and patch size. Prior work 
has shown that these factors substantially influence segmentation 
quality across diverse biomedical applications (e.g., Yu et al., 2022; 
Ahmad et al., 2023; Masuda et al., 2025).

We examined four widely used architectures for semantic 
segmentation: U-Net (Ronneberger et al., 2015), UNet++ 
(Zhou et al., 2018), DeepLabV3+ (Chen et al., 2018), and 
SegFormer (Xie et al., 2021). These models differ in their strategies 

for balancing spatial resolution and feature abstraction. For example, 
U-Net and UNet++ rely on encoder-decoder designs with skip 
connections to preserve image details, whereas DeepLabV3+ uses 
atrous convolutions and a lightweight decoder to analyze features 
at multiple scales. SegFormer, in contrast, uses transformer-based 
attention mechanisms to capture long-range spatial dependencies.

To further explore how feature extraction affects segmentation 
IoU, we paired each architecture with one of four encoder 
backbones: ResNet-18, ResNet-50 (He et al., 2016), EfficientNet-
B3 (Tan and Le, 2019), and MiT-B1 (Xie et al., 2021). These 
backbones vary in depth, GPU utilization, and ability to capture 
contextual information: ResNet encoders rely on convolutional 
residual blocks; EfficientNet-B3 employs compound scaling; and 
MiT-B1 uses attention-based operations derived from transformer
networks.

Finally, we compared two patch sizes (256 px and 512 px) to 
evaluate the tradeoff between local detail and broad spatial context. 
Our previous 2D model used 256-px patches (Lee et al., 2025), 
which provided a sufficient receptive field for identifying most 
boundaries between bone and medullary pores. However, a larger 
field of view could be important when distinguishing pores from 
background space between tightly-packed bones (Figure 2). By 
incorporating larger patches in the current study, we tested whether 
giving the model access to a wider receptive field improves 
model predictivity, while still maintaining reasonable computational
costs.

This study aims to advance bone segmentation from micro-CT 
data by optimizing deep learning architectures, encoder backbones, 
and patch sizes for mammalian long bones. To support this effort, 
we developed an accessible, flexible, and memory-efficient software 
interface for model training, prediction, and evaluation. Designed 
for scalability, the pipeline is broadly applicable to skeletal imaging 
datasets and enables reproducible, high-quality segmentation across 
anatomical and biomedical research. 

2 Materials and methods

2.1 Dataset collection

The deep learning dataset was assembled from three sources 
(Table 1). First, we included 11 micro-CT scans of long bones from 
the North American river otter (Lontra canadensis) (Figure 3) 
that were previously analyzed by Lee et al. (2025). Second, we 
downloaded three scans of long bones from capybara (Hydrochoerus 
hydrochaeris; AMNH:Mammals:M-206440), leopard (Panthera 
pardus; AMNH:Mammals:M-89009), and sea otter (Enhydra lutris; 
ZMB:Mam:30740) from MorphoSource (Figure 4). Third, we 
collected six micro-CT scans from a sample of laboratory mouse 
(Mus musculus) that are described below.

Forty male C57BL/6 mice (4-week old) were purchased 
from Charles River Laboratory (Wilmington, MA, United States) 
and maintained for 25 weeks. The mice were euthanized via 
asphyxiation in 100% atmospheric CO2, immediately followed 
by surgical thoracotomy to induce pneumothorax. All animal 
care was conducted in accordance with established guidelines, 
and all protocols used were approved by Midwestern University's 
Institutional Animal Care and Use Committee (IACUC #AZ-4205).
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TABLE 1  Properties of scans included in the deep learning sample.

Scan ID Bones 2D Tiles Voxel size (µm) Source

1R 1U HF 1,792 11.3

1

2R 2U HF 2,112 9.1

5R 5U HF 2,048 9.1

7R 7U HF 2,048 9.1

12R 12U HF 2,048 9.1

19R 19U HF 1,920 9.1

AMNH:Mammals:M-89009 H 4,250 66.8 2

AMNH:Mammals:M-206440 Mixed 1,672 120.7 3

OMNH:Mammals:44262 HRU 1,662 50.0

4

OMNH:Mammals:53994 FTFi 2,216 50.0

OMNH:Mammals:53994 HRU 1,809 50.0

UAM:Mamm:24789 FTFi 2,098 50.0

UAM:Mamm:67696 HF 1,623 50.0

UAM:Mamm:67696 TFiRU 2,321 50.0

UF:Mammals:23593
UF:Mammals:24550

HF 1,755 50.0

UF:Mammals:31151 HRU 1,660 50.0

UWBM:Mamm:78743 FTFi 2,150 50.0

UWBM:Mamm:81969 FTFi 2,195 50.0

UWBM:Mamm:81969 HRU 1,995 50.0

ZMB:Mam:30740 HRU 3,609 30.0 5

Bone abbreviations: F = femur; Fi = fibula; H = humerus; R = radius; T = tibia; U = ulna.
Museum abbreviations: AMNH, American Museum of Natural History; OMNH, Sam Noble Oklahoma Museum of Natural History; UAM, University of Alaska Museum of the North; UF, 
Florida Museum of Natural History; UWBM, University of Washington, Burke Museum; ZMB, Museum für Naturkunde.
Source abbreviations: 1 = doi. org/10.5061/dryad.4j0zpc8qq; 2 = ark:/87602/m4/430024; 3 = ark:/87602/m4/598442; 4 = doi. org/10.5061/dryad.b2rbnzsq4; 5 = ark:/87602/m4/M70721.

Following surgical dissection of internal organs, skin, and 
subcutaneous tissues, the fore- and hindlimbs were removed from 
the axial skeleton at the glenohumeral and acetabulofemoral joints, 
respectively. The limbs from each mouse were fixed in 10% 
neutral buffered formalin for 24 h. After fixation, the limbs were 
grossly debulked of skin and muscles. Further dissection of the 
limbs was performed under illuminated magnification to mitigate 
unintentional cuts to the osteochondral surfaces. Radiocarpal and 
tibiotarsal joints were cut to detach the manus and pes, respectively. 
The remaining long bones (humeri, radii, ulnae, femora, tibiae, and 
fibulae) were isolated by severing residual ligamentous attachments. 
Any remaining non-skeletal tissue was gently removed with 
fine dissection tools. Dissected bone elements were rinsed with 
deionized (DI) water and stored in 70% ethanol.

A subset of elements was selected for micro-CT scanning. 
The left humerus and femur from each mouse were rinsed with 
DI water and wrapped with melamine foam (Mr. Clean Magic 
Eraser, Procter and Gamble, Cincinnati, OH, United States). 
Twenty 1.5-mL microcentrifuge tubes (Thermo Fisher Scientific, 
Waltham, MA, United States) were prepared, and the bones 
from two mice were inserted into each tube. Micro-CT scanning 
was performed on a Nikon XT H 225 ST (Nikon Metrology 
Inc., Brighton, MI, United States) with settings at 120–160 kV, 
58–112 μA, and 9.1–11.3 µm isotropic voxel size (Table 1). Only 
six out of the 20 scans were included in the current deep learning 
dataset. Because each scan contained the left humerus and femur 
from two individuals, this subset represents a total of 12 mice
(Figure 5).
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FIGURE 1
Variation in micro-CT scan quality and specimen condition of deep learning sample. Fully hydrated humeri and femora as seen in longitudinal (A) and 
transverse (C) views of mouse scan “1R_1U_HF.” An unanticipated delay in scanning of the rest of mouse sample resulted in dehydrated humeri and 
femora with contracted bone marrow as seen in longitudinal (B) and transverse (D) views of mouse scan “7R_7U_HF.” (E) River otter scan 
“UF_Mammals_31151_HRU” shows a humerus with deep artificial drill holes in the proximal and distal ends that were made by museum preparators to 
expedite degreasing. (F) Another river otter scan “UF_Mammals_23593–24550_HF” contains a humerus with a broken humeral head with exposed 
trabecular bone. Additionally, there are beam-hardening artifacts at the proximal and distal ends. (G) The leopard scan “AMNH_Mammals_M-89009_F” 
is three-part composite micro-CT scan with arrows highlighting the transitions between intensity domains. (H) The sea otter scan “ZMB_Mam_30740_
HRU” is extremely dim with reduced contrast between bone and background. (I) The capybara scan “AMNH_Mammals_M-206440” contains limb, 
girdle and vertebral elements and was acquired at 8-bit instead of 16-bit depth, limiting how well subtle details can be distinguished.
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FIGURE 2
Trade-offs in patch size. Smaller patches (256 × 256 px) require less computation but may limit a model's receptive field. The model may miss the full 
bone profile (green) and mislabel the background between closely-packed bones as medullary pores (blue). Larger patches (512 × 512 px) increase 
computational cost but expand the receptive field and may allow the model to learn broader structural patterns. The asterisks illustrate the relative 
centers from which the receptive field of each patch extends.

2.2 Preparing the reference masks

The micro-CT scans were imported into Avizo 3D 2024.2 
(Thermo Fisher Scientific, Waltham, MA, United States). Bone-
pores (BP) reference masks for these scans were segmented 
by the lead author following a previously published protocol 
(Lee et al., 2025). Briefly, bone tissue was initially segmented 
using the “Auto Thresholding” module followed by manual 
correction. Thin trabeculae that were not captured by thresholding 
were recovered using the “white top hat” filter. Cortical and 
medullary pores were segmented using the “Compute Ambient 
Occlusion” module. Note: the ambient occlusion algorithm 
tended to mislabel background voxels as pore voxels in deep 
concavities such the coronoid, olecranon, and intertrochanteric 
fossae (Bab et al., 2007b; 2007a) and required manual correction. 
For those areas, we used a standard thresholding value of 0.95 to 
ensure that deep concavities were segmented consistently across 
reference masks. 

2.3 Three deep learning modules for Avizo

2.3.1 “BONe DLFit”
We developed a module to fit 2D deep learning (DL) models in 

Avizo 3D 2024.2 (Figure 6A) that overcomes several limitations of 
Avizo's built-in “DL - Segmentation 2D” module. First, the built-in 
module only enables a single pair of scan-mask connection ports. 
To train the computer on multiple pairs, users must concatenate 
all scans into one large volume and all masks into another, 
which requires padding them to the same XY dimensions, greatly 
increasing memory demands and limiting sample size. Our custom 
module supports up to 20 scan-mask pairs via connection ports, 
eliminating the need for concatenation or padding. Note: the source 
code may be altered to support more than 20 pairs of input ports. 
However, this necessitates additional scrolling in the graphical 
interface. Second, the built-in module allows data leakage between 
the training and validation set, resulting in optimistically biased 
model performance. The custom module addressed the data leakage 
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FIGURE 3
Volume rendering of scans from the North American river otter (Lontra canadensis). (A) OMNH_Mammals_44262_HRU: right humerus, left radius, and 
left ulna. (B) OMNH_Mammals_53994_FTFi: left femur, fibula, and tibia. (C) OMNH_Mammals_53994_HRU: left humerus, right radius, and right ulna.
(D) UAM_Mamm_24789_FTFi: right femur, fibula, and tibia. (E) UAM_Mamm_67696_HF: left femur and humerus. (F) UAM_Mamm_67696_TFiRU: left 
fibula, radius, tibia, and ulna. (G) UF_Mammals_23593_HF and UF_Mammals_24550_HF: left femur and humerus. (H) UF_Mammals_31151_HRU: right 
humerus, radius, and ulna. (I) UWBM_Mamm_78743_FTFi: right femur, left fibula, and left tibia. (J) UWBM_Mamm_81969_FTFi: right femur, left fibula, 
and left tibia. (K) UWBM_Mamm_81969_HRU: left humerus, right radius, and right ulna. Abbreviations defined in Table 1. Not to scale.
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FIGURE 4
Volume rendering of scans from the leopard (Panthera pardus), capybara (Hydrochoerus hydrochaeris), and sea otter (Enhydra lutris). (A)
AMNH_Mammals_M-89009_F: left femur of leopard. (B) AMNH_Mammals_M-206440_mixed: atlas; left calcaneus, femur, humerus, scapula, talus, 
and tibia; right calcaneus, radius, scapula, talus, and ulna. (C) ZMB_Mamm_30740_HRU: right humerus, radius, and ulna. Abbreviations 
defined in Table 1. Not to scale.

problem by performing the training-validation split at the scan-
level. Third, the built-in module is limited to a single GPU, which 
restricts batch size and parallelization. The custom module gives 
the user the option to use multiple CUDA-compatible GPUs if 
available via PyTorch's “DataParallel” library (version 2.8.0+cu129: 
Paszke et al., 2019). Fourth, the built-in module only supports the U-
Net architecture (Ronneberger et al., 2015) with three pre-defined 
backbones. In contrast, our module allows users to select from 
nine model architectures and 58 backbones via the “segmentation_
models_pytorch” library (version 0.5.0: Iakubovskii, 2019). Finally, 
the built-in module is difficult to customize because the core code 
is compiled. The custom module is uncompiled, and advanced users 
are free to further customize and extend it.

“BONe DLFit” features a graphical frontend with a point-and-
click interface (Figure 6A), making DL model fitting accessible to 
non-expert users. The backend uses PyTorch (Paszke et al., 2019) 
for efficient training and evaluation of deep learning models, which 
consists of a pipeline with three major stages: (1) collecting user 
options, (2) initialization of the DL pipeline, and (3) the model 
fitting loop.

In the first stage, “BONe DLFit” records the user-specified 
configuration to define the data handling, model architecture, and 
training procedure (Figure 7). These options include:

• Input source(s): supports up to 20 scan-mask input pairs.
• Reproducibility mode: fixes random seeds and enables 

deterministic algorithms.
• GPU mode: toggles single or multi-GPU support.
• Fitting mode: toggles support for 2D, 2.5D, or 3D models.
• Patch cropping: alters the patch size, number of random 

patches to crop per tile (tile is defined as a 2D slice or 3D slab), 
and maximum patch overlap.

• Data augmentation: toggles random transformations 
(e.g., flips, rotation in multiples of 90°, brightness, and 
contrast) on tiles.

• Normalization: toggles between Z-score and min-
max normalization.

• Training/validation split: sets the fraction of whole scans 
used for training, while the remaining scans are reserved for 
validation to assess model performance.

• Model architecture: specifies the design of the neural network 
(e.g., U-Net, UNet++, DeepLabV3+, SegFormer).

• Backbone: defines the pattern extracting portion of the 
architecture (e.g., ResNet-18, EfficientNet-B3, MiT-B1).

• Initial weights: defines starting values of the model's 
learnable parameters, which are either randomly initialized 
or transferred from a previously trained model (ImageNet-
trained or user-provided).

• Hyperparameters: control speed and stability of training, 
specifically the number of epochs (i.e., the number of full 
passes through the training dataset), global learning rate (i.e., 
the step size used to update model weights), and batch size (i.e., 
the number of patches processed together in each update).

• Save location: saves the model and log files onto 
computer storage.

In the second stage, “BONe DLFit” calculates normalization 
statistics, initializes the user-specified model, and configures 
the DL pipeline (Figure 7). The statistics used for image 
normalization are pre-computed using CPU-based multiprocessing, 
which reduces wall time. Because multiprocessing inside Avizo 
unintentionally triggers additional license usage, the statistics are 
pre-computed using an external standalone Python interpreter 
(version 3.12.11), allowing worker processes to run independently 
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FIGURE 5
Volume rendering of scans from 12 adult laboratory mice (Mus 
musculus). (A–F) Scans: 1R_1U_HF; 2R_2U_HF; 5R_5U_HF; 
7R_7U_HF; 12R_12U_HF; and 19R_19U_HF. Abbreviations 
defined in Table 1. Not to scale.

FIGURE 6
Graphical interface of deep learning modules in Avizo 3D 2024.2. (A)
“BONe DLFit” provides point-and-click fields for up to 20 scan-mask 
pairs, along with additional options for fitting segmentation models. (B)
“BONe DLPred” applies the selected PyTorch model to an input scan 
and allows users to set the chunk size. This does not alter the model's 
receptive field; instead, it divides a large scan into smaller chunks that 
are more easily fit into GPU memory. (C) “BONe IoU” calculates 
class-wise and mean IoU between reference and prediction masks.
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FIGURE 7
Schematic of the model fitting pipeline implemented by “BONe DLFit.” (Left) User options. (Center) The module collects user options, calculates 
normalization statistics, splits the dataset at the scan-level, initializes the fitting loop, profiles model complexity, and launches a GPU monitor. (Right) 
Training proceeds in batches with image augmentation, forward pass, loss computation (Jaccard loss), backpropagation, and weight updates. 
Validation proceeds similarly but without augmentation. Metrics such as loss and Intersection-over-Union (IoU) are accumulated and logged. Model 
weights are saved when validation performance improves, and the global learning rate is adjusted via cosine annealing.

of Avizo and without drawing extra licenses. Immediately 
following the calculation of normalization statistics, the scans 
are randomized and split at the scan-level into training and 
validation sets as closely as possible to the user-specified ratio. 
The selected architecture, backbone, and Jaccard loss function 
are imported from “segmentation_models_pytorch”, and the 
Jaccard index (Jaccard, 1912) (also known as Intersection-over-
Union or IoU) is imported from “torchmetrics” (version 1.8.2: 
Detlefsen et al., 2022). User-specified initial weights are loaded 
onto the model. Depending on user choice, the model is prepared 
for single- or multi-GPU training using “DataParallel”. The Adam 
optimizer (Kingma and Ba, 2015) is configured with the user-
defined global learning rate followed by the initialization of a single-
cycle cosine annealing scheduler without restarts (e.g., Loshchilov 
and Hutter, 2017; He et al., 2019) to stabilize convergence. Automatic 
mixed precision is enabled via PyTorch's “autocast” to switch 
automatically between less precise float16 and more precise 
float32 calculations for efficient memory usage (He et al., 2019). 
Model complexity is estimated based on counts of floating-point 
operations (FLOPs) and parameters via “FlopCountAnalysis” 
and “parameter_count_table” from the fvcore library (version 
0.1.5. post20221221). Lastly, a GPU monitor is launched to 

track peak VRAM usage and GPU utilization during the fitting
loop.

In the final stage, “BONe DLFit” enters the fitting loop, 
which repeats for each epoch (Figure 7). The training dataset is 
processed first. Matching 2D tiles from each scan-mask pair are 
randomly sampled without replacement. Optional augmentation 
is applied based on the following probabilities: horizontal flip 
(16.6%), vertical flip (16.6%), 90°, 180°, or 270° rotation (50%), 
or no augmentation (16.8%). Rotation is implemented in 90°
increments to avoid introducing aliasing artifacts when augmenting 
the reference mask (Stone et al., 2003). Random patches are cropped 
from each scan-mask pair. After cropping, the scan patches are 
normalized using scan-specific statistics (either Z-score or min-
max normalization). If augmentation is enabled, the normalized 
patches undergo intensity augmentation in which global brightness 
shifting and contrast rescaling are applied with independent 
probabilities (each 40%). Consequently, either augmentation may 
occur alone, both may occur together, or neither may occur. When 
selected, a single random shift value (uniformly sampled from −0.15 
to 0.15) and a single random scaling factor (sampled from 0.75 
to 1.25) are applied to all scan patches. These operations simulate 
variability in scanner calibration, illumination, or tissue contrast 
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across datasets. Afterward, intensities are clipped to remain within 
the expected dynamic range of the chosen normalization mode. The 
resulting patches are assembled into batches and passed to the model 
for forward and backward propagation during training.

For each batch, Jaccard loss and gradients are computed, and 
model weights are updated immediately. Jaccard loss and IoU 
scores are then aggregated across all batches within an epoch to 
produce stable and representative epoch-level measurements of 
model performance.

Once all the training data are processed, the model switches to 
validation mode, wherein the module assembles cropped patches 
from the validation data into batches without augmentation before 
passing them to the model for evaluation. Validation loss and IoU 
are computed, and accumulated results are updated. Each epoch 
concludes with three steps: (1) updating the log file, (2) saving 
model weights in PTH file format upon improvement in validation 
performance compared to the previous epoch, and (3) reducing the 
global learning rate following a cosine-curve scheduler to allow for 
smoother convergence. 

2.3.2 “BONE DLPred”
Avizo includes a built-in inference module (“Deep Learning 

Prediction”), but it does not support models formatted for PyTorch. 
Therefore, we developed a module called “BONe DLPred”. The 
graphical frontend of the module accepts several input fields: (1) 
the input scan to segment, (2) the option for single- or multi-GPU 
inference, (3) the weights PTH file, (4) the chunk size for prediction, 
and (5) the confidence threshold (Figure 6B). After recording the 
user options, the backend loads the weights PTH file, which includes 
embedded information (metadata) about the model such as model 
type (2D, 2.5D, or 3D), architecture, backbone, hyperparameters, 
and method of image normalization used during model fitting. 
RAM and GPU monitors are launched for benchmarking purposes. 
Lastly before entering the prediction loop, the module estimates the 
number of tiles to process in parallel (Figure 8).

The module then enters the prediction loop, which processes 
the input scan in batches of tiles rather than one tile at a time. For 
each batch, overlapping chunks are extracted using a customized 
routine based on “empatches” (version 0.2.3: Ilyas, 2023). This 
customization supports 2D, 2.5D, and 3D inputs, and for 3D inputs, 
allows chunk depth to differ from chunk width and height. The 
chunks are normalized, passed through the model, and subsequently 
reassembled into a full-resolution probability map using overlap-
aware merging. Class labels are assigned by selecting the maximum-
probability class at each voxel, with user-defined confidence-based 
background reassignment. The reconstructed tiles are accumulated 
sequentially to form the final multi-class segmentation mask. 
Finally, confidence statistics and performance benchmarks are 
displayed (Figure 8). 

2.3.3 “BONe IoU”
Previously, we developed a tool command language (TCL) script 

within Avizo to calculate IoU Score, which quantifies the overlap 
between predicted and reference segmentation (Lee et al., 2025). 
Although functional, the script had several drawbacks. It computed 
IoU score one class at a time, did not automatically calculate the 
mean IoU score, cluttered the Avizo Project View with temporary 
data objects, and was relatively slow. To address these issues, 

FIGURE 8
Schematic of the prediction (inference) pipeline implemented by 
“BONe DLPred.” The module accepts user inputs including the scan to 
segment, model weights file, GPU mode, chunk size, and confidence 
threshold. After loading the model and applying the same 
normalization used during fitting, the input scan is divided into 
user-specified overlapping chunks. The chunks are processed by the 
model in batches, then reassembled by averaging probabilities in 
overlapping regions. Voxels are classified based on maximum class 
probability, with low-confidence areas suppressed via thresholding. 
Finally, performance benchmarks and the segmentation output are 
displayed.

we developed a Python module, “BONe IoU”, which automated 
the calculation of both class-wise and mean IoU scores with 
substantially improved speed and efficiency (Figure 6C).

After loading the user-specified reference and predicted 
segmentation masks, “BONe IoU” checks for the presence of a 
CUDA-compatible GPU. If one is available, it performs the IoU 
calculation using PyTorch tensors on the GPU. If not, the calculation 
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TABLE 2  Hardware configurations.

Workstation “Jarvis” “Hopper” “Friday”

OS Dual boot:
Ubuntu 22.04 LTS Windows 11 Pro

Dual boot:
Ubuntu 22.04 LTS Windows 11 Pro

Windows 10 Pro

CPU AMD Threadripper PRO 5965WX AMD Threadripper PRO 7995WX Intel i9-10900X

RAM 512 GB DDR4 3200 MT/s 512 GB DDR5 5200 MT/s 256 GB DDR4 2666 MT/s

GPU 2x Nvidia RTX PRO 6000 Blackwell Max-Q 
96 GB

2x Nvidia RTX 6000 Ada 48 GB Nvidia Quadro P6000 24 GB

Main storage Samsung 990 2 TB M.2 NVMe PCIe 4.0 Kingston NV3 2 TB M.2 NVMe PCIe 4.0 Samsung 970 EVO 500 GB M.2 NVMe PCIe 3.0

Vendor Author-assembled Puget Systems Titan Computers

Price (year) $25,500 (2025) $31,100 (2024) $7,500 (2020)

defaults to using NumPy (version 1.23.5: Harris et al., 2020) arrays 
on the CPU. 

2.3.4 Standalone versions of “BONe DLFit”, 
“BONe DLPred”, and “BONe IoU”

To ensure accessibility for users without Avizo 3D, we 
developed standalone Python versions of all three modules. 
These versions preserve the names, graphical interfaces, and core 
functionality of their Avizo counterparts but run entirely outside 
the Avizo environment. Each module is packaged with an updated 
Python (3.12.11) and NumPy (2.3.4) backend while retaining 
the same PyTorch version (2.8.0+cu129) used by the Avizo 3D 
implementation. From the user's perspective, the standalone apps 
operate nearly identically to the Avizo modules with the difference 
being the organization and format of the input scans and masks 
being folders of TIFF files. Nevertheless, models are interchangeable 
between them. Versioning is clearly indicated in the log files and 
weights files (e.g., “1.0.0. avizo” or “1.0.0. standalone”). 

2.4 Computation

2.4.1 Hardware specifications
Deep learning experiments were conducted on three 

workstations with varying performance capabilities to demonstrate 
that the Avizo 3D and standalone versions of the BONe 
apps function across both high-end and older hardware 
configurations (Table 2). “Jarvis” and “Hopper” are high-end 
workstations with the former configured with twice as much VRAM. 
Both are capable of dual-boot operation in Ubuntu 22.04 LTS 
(Canonical Ltd., London, England, United Kingdom) and Windows 
11 Pro (Microsoft, Redmond, WA, United States). “Friday” is 
a more modest configuration running Windows 10 Pro. It was 
only used for prediction given its limited RAM and slow GPU
performance.

2.4.2 Performance comparison across platforms
To assess the reproducibility and stability of the BONe versions 

across different hardware and operating systems, we evaluated 

both fitting and prediction performance on the three workstation 
configurations described above (Table 2). For comparability, 
all platforms used the same dataset composition and model 
configuration.

Fitting performance was assessed using Training/Validation 
Pool 1 (Table 3) and a fixed random seed (seed 42). All experiments 
used the same baseline model configuration: U-Net with a 
ResNet-18 backbone, 2D fitting mode, and 256-px patch size. 
Each 2D tile (slice) produced four random patches, resulting 
in 120,520 training patches and 22,440 validation patches per 
epoch (scan-level split of 81.25:18.75). Data augmentation was 
enabled and included random flips, rotations in 90° increments, 
crops, and domain-shift transformations. Z-score normalization 
was performed on the patches. The model was initialized with 
ImageNet-trained weights, following common practice in medical 
imaging segmentation (e.g., Deng et al., 2009; Iglovikov and 
Shvets, 2018; Alzubaidi et al., 2021; Lösel et al., 2023). Training 
proceeded for 25 epochs using a batch size of 64, an initial global 
learning rate of 0.001 with cosine-annealing scheduling, Adam 
optimizer, Jaccard loss as the optimization objective, and IoU as the 
evaluation metric. Single and dual GPU operation was compared. 
Model fitting performance (e.g., GPU utilization, fitting time, 
and wall time) was recorded in Table 4 for each combination 
of workstation, operating system, BONe version, and GPU
count.

Prediction performance was evaluated using a standardized 
model (BP-2D-03) that was fitted on the “Jarvis” workstation 
running Linux Avizo 3D 2024.2. The model was applied to mouse 
scan “2R_2U_HF,” which was one of the Test Fold 1 scans and 
not seen during training and validation. The chunk size was 
increased to 512 px to reduce visible seam lines during reassembly 
of the full-size output. Default confidence thresholding of 0.5 
was applied so that low-confidence voxels were reassigned to 
background. Prediction-stage resource usage (GPU utilization, peak 
VRAM, peak RAM, and wall time) was recorded for each platform
(Table 5).
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TABLE 3  Overview of the 20 scans used for 5-fold cross-validation. The 
scans were first randomized and then placed into a fixed order prior to 
partitioning into test fold sets. For each Test Fold, the Training/Validation 
Pool comprised the remaining 16 scans in sequence order (e.g., 
Training/Validation Pool 1 consisted of scan number 5–20).

Order Scan ID Test fold

1 UF_Mammals_31151_HRU

1
2 OMNH_Mammals_44262_HRU

3 2R_2U_HF

4 OMNH_Mammals_53994_HRU

5 UWBM_Mamm_81969_HRU

2
6 UWBM_Mamm_78743_FTFi

7 12R_12U_HF

8 AMNH_Mammals_M-206440_mixed

9 OMNH_Mammals_53994_FTFi

3
10 UWBM_Mamm_81969_FTFi

11 UF_Mammals_23593–24550_HF

12 UAM_Mamm_67696_HF

13 19R_19U_HF

4
14 1R_1U_HF

15 AMNH_Mammals_M-89009_F

16 7R_7U_HF

17 UAM_Mamm_24789_FTFi

5
18 5R_5U_HF

19 ZMB_Mam_30740_HRU

20 UAM_Mamm_67696_TFiRU

2.5 Model evaluation

2.5.1 Cross-validation to assess model 
generalization and stability

Cross-validation experiments were performed on the “Jarvis” 
workstation, operating in dual-GPU mode in Linux Avizo 3D. We 
conducted 5-fold cross-validation using the 20 scans listed in Table 3. 
The scans were first randomized and assigned a fixed order prior 
to partitioning into five test-fold sets with each fold containing 
four scans and the remaining scans (in sequence order) forming 
a training/validation pool. To assess the stability of the results, we 
repeated the full 5-fold partitioning using three random seeds (42, 
1701, and 1864), yielding a total of 15 models.

Model fitting was performed using the baseline configuration 
described in Section 2.4.2. The resulting model was applied to 
each of the four scans in the corresponding test fold, and mIoU 

scores were averaged (Supplementary Table S1). Cross-validation 
performance was summarized as grand mIoU across all folds 
and replicates (Table 6), which also reports the corresponding 
mDice values. A conversion of scan-level mIoU scores to mDice is 
provided in Supplementary Table S2.

2.5.2 Assessing the effect of model architecture, 
backbone, and patch size

Subsequent experiments evaluating the effects of architecture, 
backbone, and patch size were performed on the “Jarvis” 
workstation with Training/Validation Pool 1 (seed 42). This dataset 
provided the most favorable balance of high mIoU (0.9731) 
and low variability (SD = 0.0099), making it the most stable 
and representative among the available cross-validation splits. 
In total, we tested 30 combinations of architecture, backbone, 
and patch size (Supplementary Table S3). Training conditions 
were kept as consistent as possible across these combinations 
and followed the settings used in section 2.4.2. However, some 
UNet++, SegFormer, and MiT-B1 models required more VRAM 
than was available, so batch size was reduced from 64 to 32 
(Supplementary Table S3). In addition, models with the MiT-
B1 backbone and 512-px patches failed to converge under the 
default settings and therefore required the learning rate to 
be lowered from 1e-3 to 1e-4 (Supplementary Table S3). For 
completeness, Supplementary Table S4 reports the corresponding 
Dice scores (mean, bone, and pores) converted from the IoU values. 

2.5.3 Weighted scoring and ranking of models
For each of the 30 model combinations, mean, bone, and 

pores IoU scores were averaged, respectively, across the four 
scans of Test Fold 1 (Supplementary Table S3). To evaluate the 
trade-off between performance and computational efficiency, we 
calculated a weighted score for each model using the following 
normalized metrics:

mIoUnorm =
mIoU −mIoUmin

mIoUmax −mIoUmin
,

Bnorm =
B−Bmin

Bmax −Bmin
,

Unorm =
U −Umin

Umax −Umin
,

Fnorm = 1−
F − Fmin

Fmax − Fmin
,

Pnorm = 1−
P −Pmin

Pmax −Pmin
,

Vnorm = 1−
V −Vmin

Vmax −Vmin
,

Tnorm = 1−
T −Tmin

Tmax −Tmin
.

Here, mIoU denotes mean IoU from Test Fold 1, B is the batch 
size; U is average GPU utilization; F is the total number of floating-
point operations (FLOPs) executed on a one-batch sample from the 
training set during a single forward pass of the network; P is the 
parameter count; V is the GPU VRAM consumed during fitting; and 
T is the time spent in the fitting loop. Higher values are preferrable 
for mean IoU, batch size, and GPU utilization, whereas lower values 
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TABLE 4  Model fitting performance of “BONe DLFit” compared across platforms. Dataset used was Training/Validation Pool 1 with a random seed of 42.

Workstation OS BONe 
version

GPU # GPU usage 
(%)

Peak VRAM 
(GB)

Peak RAM 
(GB)

Val. mIoU Val. mDice Wall Time 
(s)

“Jarvis” L S 2 84.0 22.5 419.8 0.9775 0.9886 9,140

L A 2 83.0 22.5 446.0 0.9790 0.9894 9,303

L S 1 99.4 23.1 440.2 0.9774 0.9886 14,852

L A 1 99.3 23.3 442.1 0.9778 0.9888 14,944

“Hopper” L A 2 89.5 22.7 446.8 0.9778 0.9888 9,862

L S 2 89.1 22.5 412.7 0.9774 0.9886 9,975

L A 1 99.5 20.0 447.0 0.9775 0.9886 17,289

L S 1 99.6 19.8 426.0 0.9783 0.9890 17,374

W S 2 38.6 22.7 366.1 0.9769 0.9883 22,796

W A 2 42.1 22.7 351.9 0.9760 0.9879 27,058

W S 1 58.7 20.0 367.7 0.9758 0.9878 28,871

W A 1 65.1 20.1 355.8 0.9736 0.9866 33,341

Abbreviations: A = Avizo 2024.2; S=Standalone; L = Ubuntu 22.04 LTS; W=Windows 11 Pro; Val = Validation.

TABLE 5  Cross-platform performance of “BONe DLPred” when segmenting scan “2R_2U_HF” using model BP-2D-03.

Workstation OS BONe 
version

GPU 
#

GPU 
usage 

(%)

Peak 
VRAM 
(GB)

Peak 
RAM 
(GB)

mIoU mDice Wall 
Time 

(s)

“Jarvis” L A 2 43.7 72.4 41.3 0.9829 0.9914 55

L A 1 60.5 42.9 43.3 0.9829 0.9914 60

L S 2 33.6 77.0 39.6 0.9829 0.9914 68

L S 1 53.8 41.0 42.3 0.9829 0.9914 75

“Hopper” L A 2 66.7 28.8 39.7 0.9829 0.9914 59

L S 2 36.3 28.1 37.1 0.9829 0.9914 62

L A 1 83.2 16.3 40.9 0.9829 0.9914 68

L S 1 63.8 14.6 37.6 0.9829 0.9914 71

W S 1 55.0 15.2 62.3 0.9829 0.9914 85

W S 2 39.9 28.2 60.0 0.9829 0.9914 85

W A 2 57.5 28.7 48.9 0.9829 0.9914 95

W A 1 72.0 13.8 50.6 0.9829 0.9914 102

“Friday” W A 1 79.8 12.0 37.5 0.9829 0.9914 277

Abbreviations: L = Ubuntu 22.04 LTS; W=Windows 10/11 Pro.
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TABLE 6  Summary of 5-fold cross-validation results. Each test fold was evaluated under three random seeds (42, 1701, 1864), with performance 
reported as mean Intersection over Union (mIoU ±SD). The grand mean IoU ±SD aggregated across folds and seeds is bolded and shown in the 
lower-right cell. Bracketed values are the mIoU results converted to mDice.

Test fold mIoU (seed 42) mIoU (seed 1701) mIoU (seed 1864) Mean ± SD across 
seeds

1 0.9731 ± 0.0099
[0.9864 ± 0.0051]

0.9738 ± 0.0106
[0.9867 ± 0.0054]

0.9723 ± 0.0099
[0.9860 ± 0.0051]

0.9731 ± 0.0092
[0.9863 ± 0.0047]

2 0.8463 ± 0.2501
[0.8992 ± 0.1724]

0.8533 ± 0.2287
[0.9066 ± 0.1538]

0.8523 ± 0.2309
[0.9057 ± 0.1557]

0.8506 ± 0.2142
[0.9038 ± 0.1455]

3 0.9420 ± 0.0376
[0.9699 ± 0.0201]

0.9301 ± 0.0497
[0.9633 ± 0.0270]

0.9456 ± 0.0298
[0.9719 ± 0.0158]

0.9393 ± 0.0367
[0.9683 ± 0.0198]

4 0.8883 ± 0.1438
[0.9358 ± 0.0875]

0.8913 ± 0.1488
[0.9372 ± 0.0907]

0.8508 ± 0.1740
[0.9115 ± 0.1121]

0.8768 ± 0.1425
[0.9282 ± 0.0889]

5 0.9542 ± 0.0395
[0.9763 ± 0.0211]

0.9264 ± 0.0939
[0.9599 ± 0.0533]

0.8995 ± 0.1492
[0.9418 ± 0.0902]

0.9267 ± 0.0972
[0.9593 ± 0.0577]

Mean ± SD across folds 0.9208 ± 0.0522
[0.9535 ± 0.0358]

0.9150 ± 0.0452
[0.9507 ± 0.0303]

0.9041 ± 0.0546
[0.9434 ± 0.0356]

0.9133 ± 0.0476
[0.9492 ± 0.0318]

are preferrable for FLOPs, parameters, VRAM consumption, and 
fitting time. The weighted score of each model was then calculated as:

weighted score = 0.85mIoUnorm + 0.025Bnorm + 0.025Unorm

+0.025Fnorm + 0.025Pnorm + 0.025Vnorm + 0.025Tnorm.

The values of the weighting coefficients were selected to place 
a strong emphasis on model predictivity (weight = 0.85) while 
allocating the remaining 0.15 equally across the six complementary 
efficiency-related metrics. To assess the robustness of this scoring 
framework, we performed a sensitivity sweep by varying the relative 
weight assigned to mean IoU (Table 7). Across the tested weightings, 
top-ranked models remained largely consistent, indicating that the 
ranking procedure is stable with respect to reasonable changes in the 
weighting scheme.

3 Results

3.1 Cross-validation demonstrates high 
overall segmentation predictivity and 
moderate stability

The revised Bone-Pores (BP) segmentation model achieved 
consistently high predictivity across the 15 cross-validation runs. 
Mean IoU across five folds and three seeds was 0.9133 ± 0.0476 
[mean Dice: 0.9492 ± 0.0318] (Table 6). Predictivity was highest 
in Test Fold 1, which consisted of scans from the river otter 
and mouse samples (Figures 3A,C,H, 5B); mean IoU was 0.9731 
± 0.0092 across seeds [mean Dice: 0.9863 ± 0.0047]. Test Folds 
3 and 5 also showed good predictivity, with mean IoU values 
of 0.9393 ± 0.0367 [mean Dice: 0.9683 ± 0.0198] and 0.9267 
± 0.0972 [mean Dice: 0.9593 ± 0.0577], respectively. Test Folds 
2 and 4 displayed greater variability related to the inclusion of 

scans with challenging morphology such as “AMNH_Mammals_
M-89009_F” (Figures 1G, 4A) and “AMNH_Mammals_M-206440_
mixed” (Figures 1I, 4B). Even so, mean IoU values across seeds 
remained above 0.85 (Supplementary Table S1) and above 0.90 when 
converted to mean Dice (Supplementary Table S2). Taken together, 
these results suggest that the scan-level partitioning removed the 
optimistic bias associated with slice-level data leakage in the 
previous BP-2D-02a model (Lee et al., 2025).

Because Test Fold 1 (seed 42) showed a good balance between 
high mean IoU (0.9731) and low variability (SD = 0.0099) [mean 
Dice: 0.9864 ± 0.0051], its training/validation pool was used as the 
baseline dataset for subsequent benchmarking experiments. 

3.2 Reproducible performance across 
platforms

Fitting performance for the baseline model (BP-2D-03) 
was highly similar across the two high-end workstations and 
across both BONe implementations (Avizo and standalone). 
Validation mIoU ranged from 0.9736 to 0.9790 [Validation Dice: 
0.9866–0.9894] across all combinations of workstation, operating 
system, BONe implementation, and GPU count (Table 4). Dual-
GPU configurations reduced wall time substantially relative to 
single-GPU runs, although validation mIoU remained nearly 
identical. Implementations of “BONe DLFit” operating in 
Linux completed fitting substantially faster than their Windows 
counterparts, which likely stemmed from OS-level differences in 
GPU utilization (Table 4). Regardless of operating system, “BONe 
DLFit” produced nearly identical validation mIoU values.

Prediction performance of “BONE DLPred” was stable across 
platforms when applying model BP-2D-03 to scan “2R_2U_HF” 
from Test Fold 1 with a 2D chunk size of 512 px x 512 px 
(Table 5). Peak VRAM ranged from 12.0 GB on the low-end “Friday” 
workstation to 72.4 GB on “Jarvis” in dual-GPU mode. These 
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TABLE 7  Sensitivity of model rankings to changes in performance–efficiency weighting.

mIoU weight Efficiency weight per metrica Top 3 models (weighted score)

1.00 0 1. UNet++ | EfficientNet-B3 | 256 px (1.0000)
2. U-Net | EfficientNet-B3 | 256 px (0.9994)
3. U-Net | ResNet-18 | 256 px (0.9934)

0.95 ≈0.008 1. U-Net | ResNet-18 | 256 px (0.9913)
2. UNet++ | ResNet-18 | 256 px (0.9865)
3. UNet++ | EfficientNet-B3 | 256 px (0.9861)

0.90 ≈0.017 1. U-Net | ResNet-18 | 256 px (0.9893)
2. UNet++ | ResNet-18 | 256 px (0.9833)
3. U-Net | ResNet-18 | 512 px (0.9730)

0.85 0.025 1. U-Net | ResNet-18 | 256 px (0.9873)
2. UNet++ | ResNet-18 | 256 px (0.9802)
3. U-Net | ResNet-18 | 512 px (0.9686)

0.80 ≈0.033 1. U-Net | ResNet-18 | 256 px (0.9853)
2. UNet++ | ResNet-18 | 256 px (0.9770)
3. U-Net | ResNet-18 | 512 px (0.9641)

0.75 ≈0.042 1. U-Net | ResNet-18 | 256 px (0.9833)
2. UNet++ | ResNet-18 | 256 px (0.9739)
3. U-Net | ResNet-18 | 512 px (0.9597)

0.70 0.050 1. U-Net | ResNet-18 | 256 px (0.9812)
2. UNet++ | ResNet-18 | 256 px (0.9707)
3. U-Net | ResNet-18 | 512 px (0.9552)

aCalculated as (1 – mIoU Weight)/6.

differences reflect adaptive batch-size estimation during prediction, 
which scales the number of concurrently processed tiles to fit 
within the free GPU memory of each system. Both high- and low-
end systems produced visually consistent segmentations (described 
below with “BONe IoU”), and wall times scaled predictably with 
hardware performance (Table 5).

“BONe IoU” was compared across platforms by comparing the 
predictions described in the preceding paragraph with the reference 
segmentation of scan “2R_2U_HF” from Test Fold 1. Identical IoU 
values were produced across platforms (Table 5). Put together, these 
results suggest that “BONe DLFit”, “BONe DLPred”, and “BONe 
IoU” are stable across a variety of computer configurations and 
behave reproducibly. 

3.3 Effects of model architecture, 
backbone, and patch size

3.3.1 U-Net and UNet++ showed the highest 
segmentation IoU

Across the 30 evaluated configurations, U-Net and UNet++ 
architectures consistently outperformed DeepLabV3+ and 
SegFormer (Supplementary Tables S3, S4). The top-performing 
U-Net and UNet++ models achieved mean IoU values of 
0.9726–0.9740 [mean Dice: 0.9861–0.9868] with 256-px patches 
and simpler backbones (ResNet-18 or EfficientNet-B3). In contrast, 
the best-performing DeepLabV3+ and SegFormer models achieved 
mean IoU values of 0.9160 and 0.9174 [mean Dice: 0.9562–0.9569], 
respectively.

These findings indicate that architectures designed to preserve 
fine-scale spatial information through skip connections remain the 
most effective for distinguishing bone tissue vs. medullary pores 
in closely adjacent bony elements. Transformer-based models and 
atrous-convolution models benefited from a larger receptive window 
but did not match the fine-grained boundary detection achieved by 
U-Net and UNet++. 

3.3.2 Simpler backbones offered the best 
trade-off between mIoU and efficiency

ResNet-18 and EfficientNet-B3 backbones generally produced 
the strongest results across architectures (Supplementary Table S3). 
EfficientNet-B3 achieved among the highest mIoU values 
when paired with U-Net or UNet++. However, it consistently 
required substantially longer fitting times than other backbones, 
ironically related to less efficient use of available GPUs 
(Supplementary Table S3). In contrast, ResNet-18 provided 
high IoU with comparatively low computational cost, making 
it the most balanced backbone in terms of predictivity 
and efficiency. ResNet-50 increased parameter count and 
computational cost without consistently improving segmentation 
performance (Supplementary Table S3). MiT-B1 yielded 
competitive results but only when paired with U-Net and UNet++ 
architectures (Supplementary Table S3). 

3.3.3 Effects of patch size depended on 
architecture

Patch size influenced mIoU in architecture-specific ways. For 
U-Net and UNet++, 256-px patches consistently produced the 
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highest mean IoU and the highest weighted scores. Increasing 
patch size to 512 px did not improve mIoU and resulted in 
substantial increases in VRAM usage, floating-point operations, and 
fitting time (Supplementary Table S3). These architectures appear to 
extract sufficient contextual information from smaller patches while 
maintaining sharp boundary localization.

In contrast, both DeepLabV3+ and SegFormer improved 
substantially when patch size increased from 256 px to 512 px. 
DeepLabV3+ models gained 0.02 to 0.07 mIoU [0.01–0.04 mDice], 
and SegFormer models gained approximately 0.02–0.04 mIoU 
[0.01–0.02 mDice] (Supplementary Tables S3S,S4). These increases 
reflect the importance of broader spatial context for models that rely 
on dilated convolutions or attention mechanisms. However, even 
with larger patches, neither architecture matched the segmentation 
performance achieved by U-Net or UNet++. Larger patches also 
incurred higher computational costs, especially for transformer-
based models, which reduced their overall weighted scores and 
performance-efficiency ranking. 

3.3.4 Model rankings were stable under different 
performance-efficiency weighting schemes

Weighted scores were used to evaluate the joint effects 
of mIoU performance and computational efficiency. Across all 
weighting schemes tested, the U-Net architecture with ResNet-18 
backbone and 256-px patch size (receptive window) remained the 
highest-ranked configuration or within the top three (Table 7). 
UNet++ with ResNet-18 also consistently ranked among the top 
models. Although the highest-mIoU model under a performance-
only weighting was UNet++ with EfficientNet-B3 and 256-px 
patch size (Table 7), this configuration showed a combination of 
extremely long fitting time, high VRAM usage, and low GPU 
utilization (Supplementary Table S3) that substantially reduced its 
rank when efficiency metrics were included. 

4 Discussion

This study introduces BP-2D-03 as the revised Bone-
Pores segmentation model, replacing the earlier BP-2D-
02a (Lee et al., 2025). The revised model was trained by an 
updated software pipeline that fixes key limitations of the 
previous workflow by removing slice-level data leakage, reducing 
memory demands, and supporting a larger and more varied 
dataset. These improvements allow the model to learn more 
stable and general features across diverse imaging conditions. 
Benchmarking experiments showed that the three parts of the 
software (“BONe DLFit”, “BONe DLPred”, and “BONe IoU”) 
perform reliably across a broad range of architectures, backbones, 
and patch sizes, and that results are stable across a variety of 
computer platforms. By evaluating 30 model combinations, we 
identified consistent strengths and limitations that translate into 
practical recommendations for users and clear directions for future 
development.

A notable outcome of the benchmarking experiments is the 
overall performance among architectures paired with convolution-
based backbones (pattern-extractors or encoders). Both U-Net 
and UNet++ produced consistently high mean IoU values with 
relatively low variability, reflecting the well-documented strength 

of convolutional encoder–decoder design and skip connections 
in preserving fine spatial detail (Ronneberger et al., 2015; 
Zhou et al., 2018). Similar observations appear in recent hybrid 
convolution-transformer studies, which emphasize the importance 
of convolutional localization when improving transformer-based 
architectures (Chen et al., 2021; Tragakis et al., 2023). In contrast, 
transformer-based and atrous-convolution architectures such 
as SegFormer and DeepLabV3+ showed greater sensitivity to 
the spatial context provided by larger patches. This pattern 
is consistent with work demonstrating that transformer and 
dilated-convolution models benefit from wider receptive fields 
that capture long-range spatial dependencies (Chen et al., 2018; 
Xie et al., 2021). However, even with larger patches, these models 
did not consistently match the ability of U-Net or UNet++ to 
delineate high-resolution boundaries of bone and medullary pores. 
The analysis of backbones further supports this conclusion. ResNet-
18 consistently provided a strong balance between predictivity 
and efficiency. In contrast, EfficientNet-B3, despite occasionally 
producing the highest mIoU scores, required substantially longer 
fitting times, likely caused by consistently low GPU utilization in our 
experiments. Although EfficientNet backbones achieve favorable 
theoretical FLOPs-to-segmentation trade-offs (Tan and Le, 2019), 
empirical efficiency depends strongly on hardware and software 
implementation (Prajwal et al., 2025), which may have contributed 
to the poor use of available GPUs observed here. Collectively, 
these results indicate that models with moderate architectural 
complexity and strong localization ability provide the best trade-
off between quality and resource demands for segmentation of bone 
in micro-CT scans.

The weighted ranking framework jointly evaluates segmentation 
quality and computational efficiency, offering a more comprehensive 
assessment of model suitability than one based solely on 
performance. Across all weighting schemes, the U-Net with a 
ResNet-18 backbone and 256-px patches remained among the 
highest-ranked configurations, demonstrating that the ranking 
was robust to reasonable shifts in weighting emphasis. The 
performance-only emphasis identified UNet++ with EfficientNet-
B3 and 256-px patches as the top model. However, its rank 
decreased substantially once fitting time, VRAM usage, and 
GPU utilization were considered. We chose a performance-to-
efficiency weighting of 0.85:0.15 to reflect the primary importance 
of segmentation mIoU while recognizing that highly inefficient 
models are impractical for iterative experimentation. Long fitting 
times and poor GPU utilization reduce the feasibility of conducting 
replicate runs and limit scalability. These considerations align 
with a growing body of work arguing that model selection should 
balance predictivity with computational cost (e.g., Naser, 2023; 
Li et al., 2025; Prajwal et al., 2025). The ranking results therefore 
highlight the importance of evaluating model suitability not only in 
terms of mIoU but also in terms of the time and resources required 
to achieve that performance.

The cross-platform experiments demonstrated that BONe is 
robust to variation in operating system, hardware configuration, 
and implementation (Avizo 3D vs. standalone). In particular, 
“BONe DLFit” includes a reproducibility mode that produces 
bitwise-identical results when rerun on the same workstation, 
operating system, and implementation. This follows established 
recommendations for enforcing reproducible deep learning 
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FIGURE 9
Performance of model BP-2D-03 on unseen validation and testing scans. (A) 3D view of predicted bone (green) and pores (blue) segmentation of 
validation scan “1R_1U_HF” with substantial mislabeled background (mIoU = 0.9593; mDice = 0.9792). Cross-sectional view of predicted segmentation
(B) and corresponding reference (C) showing mislabeled background as bone (yellow arrows) and mislabeled pore overflowing into the 
intertrochanteric fossa of femur (magenta arrow). (D) 3D view of predicted segmentation of testing scan “2R_2U_HF” with few segmentation errors in 
the background (mIoU = 0.9829; mDice = 0.9914). Cross-sectional view of predicted segmentation (E) and corresponding reference (F) showing 
mislabeled background as bone (yellow arrow) and mislabeled growth plate pores as background (magenta arrow).

results by controlling random number generator states (e.g., in 
Python, NumPy, and PyTorch), enabling deterministic cuDNN 
GPU kernels, and deploying deterministic multiprocessing 
workers (e.g., Nagarajan et al., 2019; Chen et al., 2022; 
Heumos et al., 2023). However, as prior studies have shown, 
identical code and seeds cannot guarantee identical results across 
platforms because OS-level libraries and parallel execution can 
introduce small numerical differences (Glatard et al., 2015; 
Gundersen et al., 2022). We observed the same phenomenon, in 
which validation mIoU and mDice varied slightly across operating 
systems, implementations of “BONe DLFit”, and workstations
(Table 4).

This phenomenon is specific to model fitting. Both “BONe 
DLPred” and “BONe IoU” perform inference and metric 
computation using algorithms that do not rely on randomness, 
GPU nondeterministic kernels, or parallel-reduction shortcuts 
known to introduce cross-platform variation (e.g., Chen et al., 2022; 
Gundersen et al., 2022; Heumos et al., 2023). As a result, these 
components produce exact, bitwise-identical outputs across 
repeated runs, and any observed differences in VRAM usage or 
wall time reflect hardware characteristics rather than algorithmic 
nondeterminism. Across experiments, segmentation outputs 
remained identical, and the shorter wall times observed in Linux 
likely reflect differences in GPU scheduling and background process 
management rather than BONe-specific behavior (Table 5). In 
summary, although “BONe DLFit” exhibits the well-documented 
sensitivity of deep learning training pipelines to underlying 
computational environments, the overall BONe workflow remains 

reliable and robust across different laboratory settings and is strictly 
reproducible under controlled ones.

The results also inform several directions for future development 
of the BONe software. The need to support both new and 
experienced users motivates the creation of two complementary 
interfaces. Although the current design philosophy is to limit the 
number of exposed hyperparameters, the interface can still be 
intimidating for beginners. An “Easy Mode” that automatically 
applies tested model settings and conservative defaults will help 
new users obtain strong results without navigating extensive 
configuration options. An “Advanced Mode” will expose even 
more parameters (e.g., model architecture, backbone, optimizer, 
scheduler, and augmentation settings) to better support exploratory 
or highly customized studies. The addition of customizable 
augmentation pipelines will allow users to tune image transforms 
and probabilities based on the variability and scale of their datasets. 
Expanding the set of available loss functions may help with datasets 
containing more complex segmentation classes. For example, a 
recent survey highlighted the robustness of the Focal Tversky loss 
function for segmentation tasks involving class imbalance or subtle 
boundaries (Azad et al., 2023). Additional optimizers and learning 
rate scheduling options may provide flexibility to tackle a broader 
range of segmentation tasks. Stochastic Gradient Descent (SGD) 
with momentum is an alternative optimizer that remains widely 
used in biomedical image segmentation because it often provides 
strong generalization and stable convergence when paired with 
an appropriate learning rate schedule (Nagendram et al., 2023). 
AdamW is another popular choice because it handles weight 
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decay separately from gradient update and can reduce overfitting 
(Loshchilov and Hutter, 2019). Offering a multi-cycle option for 
cosine annealing (Loshchilov and Hutter, 2017) may support better 
exploration of the loss landscape.

The model fitting workloads indicate that our current multi-
GPU implementation is limited by inter-GPU communication 
overhead. PyTorch's “DataParallel” library offers a convenient 
mechanism for distributing batches across devices, but it centralizes 
gradient aggregation on a single GPU (PyTorch Contributors, 2025). 
This creates a communication bottleneck that caps scaling efficiency, 
which is evident in the reduced utilization observed in dual-GPU 
runs (Table 4). Transitioning to PyTorch's Distributed Data Parallel 
(DDP), which distributes gradient synchronization across all GPUs 
(e.g., Aach et al., 2023), is expected to yield substantially better 
multi-GPU speedups. These gains matter most for model fitting 
because prediction workloads showed only minor improvements 
with two GPUs. Prediction involves only forward passes and 
lacks the gradient synchronization, so the overhead of splitting 
inputs and aggregating outputs across devices largely offsets any 
potential gains (Table 5). For this reason, efforts to integrate DDP 
will focus on improving fitting performance, where multi-GPU 
scaling has the greatest impact on wall time.

The cross-validation results provide insight into how dataset 
composition influences model robustness and highlight directions 
for future dataset design. Using the U-Net | ResNet-18 | 256-px 
patch configuration, model predictivity was high with a grand mIoU 
across folds and seeds exceeding 0.91 [mDice: 0.94]. Variability 
across random seeds was extremely small, indicating that the 
model fitting is not overly sensitive to stochastic differences in 
initialization or data shuffling. In contrast, performance varied 
more substantially across folds, reflecting heterogeneity in the 
underlying data rather than instability in the fitting procedure. 
Two test folds contained rare or challenging scans, namely, the 
composite scan (“AMNH_Mammals_M-89009_F”: Figures 1G, 4A) 
in Test Fold 2 and the low-resolution scan (“AMNH_Mammals_M-
206440_mixed”: Figures 1I, 4B) in Test Fold 4. These observations 
suggest that although the model is stable overall, its performance 
can decrease for atypical or difficult scans in the validation pool or 
test fold (Figure 9). To guard against such outliers, future datasets 
should include multiple examples of each challenging type of scan 
to better capture the full spectrum of data variability.

The performance patterns observed here point to broader 
opportunities for incorporating additional spatial context into 
BONe models. Architectures that benefit from wider receptive fields, 
such as DeepLabV3+ and SegFormer, improved with larger 2D 
patches, which suggests that 2.5D representations may provide a 
more effective strategy for capturing cross-slice structure. Both 
implementations of BONe already support 2.5D models by using 
a number of adjacent slices as input to predict the center slice, 
and this shallow volumetric context may help reduce ambiguity 
with more complex segmentation tasks. Recent work further 
supports this direction. Avesta et al. (2023) found that 3D models 
provided the highest segmentation predictivity and maintained 
strong performance with limited training data, although they 
required 20 times more GPU memory than 2.5D and 2D approaches. 
However, other studies have shown that 3D models do not always 
outperform lower-dimensional alternatives. Crespi et al. (2022) 
and Zhang et al. (2022) reported cases in which 2.5D or 2D 

methods matched or exceeded 3D performance. Although the 
methods used in Lee et al. (2025) contained a data-leakage issue 
that has been addressed in the present study, the overall conclusion 
that 2D models can outperform 3D models under certain dataset 
and sampling conditions remains well supported. These findings 
indicate that the optimal dimensionality is strongly dependent on 
the characteristics of the imaging dataset. A systematic comparison 
of 2D, 2.5D, and 3D training strategies on the same dataset will 
therefore be an important direction for future development and is 
the focus of a dedicated follow-up study.

Taken together, the results of this benchmarking study establish 
BONe as a flexible, reproducible, and computationally efficient 
framework for micro-CT bone segmentation. The findings provide 
practical guidance for both new and advanced users. BONe supports 
two clear workflows. Users working with scans like those used in 
this study can apply the revised model BP-2D-03 directly. This 
workflow requires no additional training and only involves running 
“BONe DLPred” to generate segmentations and “BONe IoU” for 
optional quantitative evaluation. Users working with datasets that 
differ in imaging characteristics, anatomical structure, or noise 
profile can perform transfer learning. In this workflow, “BONe 
DLFit” is used to fine-tune BP-2D-03 (or another compatible pre-
trained model) on a modest sample of representative scans, after 
which “BONe DLPred” and “BONe IoU” are used for deployment 
and evaluation. Either way, BONe offers a practical foundation 
for both routine analysis and methodological research in bone
imaging. 

5 Conclusion

This study introduces BONe, a flexible and reproducible deep 
learning software interface for segmenting bone and medullary 
pores in micro-CT scans. We evaluated its performance across 
a diverse set of architectures, backbones, patch sizes, and 
computational environments. By addressing the limitations of 
earlier workflows, including data leakage, memory inefficiency, and 
limited evaluation of model robustness, BONe provides a strong 
foundation for both routine segmentation and methodological 
research. The revised 2D model, BP-2D-03, offers strong predictivity 
across varied imaging conditions albeit with room for improvement. 
The software enables users to either deploy this model directly 
or fine-tune it to new datasets through transfer learning. Future 
developments, including expanded hyperparameter control, 
improved multi-GPU scaling, and systematic evaluation of 2D, 
2.5D, and 3D approaches, will further enhance BONe's flexibility. 
Collectively, these advances support scalable, reproducible, and 
high-quality bone segmentation for anatomical and biomedical 
applications.
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