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Introduction: Translation initiation and termination are critical regulatory
checkpoints in protein synthesis, yet accurate computational prediction of their
sites remains challenging due to training data biases and the complexity of
full-length transcripts.

Methods: To address these limitations, we present TRANSAID (TRANSlation Al for
Detection), a novel deep learning framework that accurately and simultaneously
predicts translation initiation (TIS) and termination (TTS) sites from complete
transcript sequences. TRANSAID's hierarchical architecture efficiently processes
long transcripts, capturing both local motifs and long-range dependencies.
Crucially, the model was trained on a human transcriptome dataset that was
rigorously partitioned at the gene level to prevent data leakage and included
both protein-coding (NM) and non-coding (NR) transcripts.

Results: This mixed-training strategy enables TRANSAID to achieve high fidelity,
correctly identifying 73.61% of NR transcripts as non-coding. Performance is
further enhanced by an integrated biological scoring system, improving “perfect
ORF prediction” for coding sequences to 94.94% and “correct non-coding
prediction” to 82.00%. The human-trained model demonstrates remarkable
cross-species applicability, maintaining high accuracy on organisms from
mammals to yeast. Beyond annotation, TRANSAID serves as a powerful
discovery tool for novel coding events. When applied to long-read sequencing
data, it accurately identified previously unannotated protein isoforms validated
by mass spectrometry (76.28% validation rate). Furthermore, homology searches
of high-scoring ORFs predicted within NR transcripts suggest a strong potential
for identifying cryptic translation events.

01 frontiersin.org


https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1676149
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1676149&domain=pdf&date_stamp=
2026-01-16
mailto:liyan0551@163.com
mailto:liyan0551@163.com
mailto:wuzengding@therarna.cn
mailto:wuzengding@therarna.cn
https://doi.org/10.3389/fbinf.2025.1676149
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1676149/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1676149/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1676149/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1676149/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1676149/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Li et al.

10.3389/fbinf.2025.1676149

Discussion: As a fully documented open-source tool with a user-friendly web
server, TRANSAID provides a powerful and accessible resource for improving
transcriptome annotation and proteomic discovery.

KEYWORDS

translation site prediction, deep learning, open reading frame, integrated scoring
system, cross-species analysis, transcriptome annotation

1 Introduction

Translation initiation and termination represent critical
regulatory checkpoints in protein synthesis, fundamentally
determining both the quantity and diversity of the cellular proteome
(Sonenberg and Hinnebusch, 2009; Jackson et al, 2010). The
dysregulation of translation is implicated in a wide array of
human pathologies, including cancer (Jiang et al, 2021; Truitt
and Ruggero, 2016), neurodegenerative disorders (Skariah and
Todd, 2021), and viral infections (Garcia-Moreno et al., 2018).
Consequently, the translation machinery has emerged as a
promising target for therapeutic intervention, with inhibitors
targeting initiation factors showing potential as anticancer agents
(Andreev et al, 2012). Furthermore, the discovery of cryptic
translation events, which produce immunogenic peptides from
previously unannotated regions, has opened new avenues for cancer
immunotherapy (Li et al., 2024). Aberrant transcripts in cancer can
serve as a rich source of tumor neoantigens; however, identifying
their protein products is a significant bottleneck, necessitating
high-accuracy prediction algorithms to bridge the gap between
transcriptomic data and proteomic validation (Ji et al., 2025).

The precise identification of translation initiation sites
(TIS) and termination sites (TTS) is therefore essential for
elucidating gene expression mechanisms and characterizing
the full complexity of cellular proteomes (Ingolia et al., 2009).
Recent advancements in long-read sequencing technologies,
such as those from Pacific Biosciences and Oxford Nanopore,
have significantly enhanced our ability to capture full-length
transcript sequences (Wenger et al., 2019; Workman et al., 2019).
While these technologies provide an unprecedented view of the
transcriptome’s diversity, they also highlight a critical challenge:
accurately identifying functional translation sites within novel
transcripts that lack established annotations (Chen et al., 2020). The
ever-expanding repository of transcript data thus demands robust
and scalable computational approaches that can reliably predict
translation sites de novo.

The regulation of translation in eukaryotes presents multiple
layers of complexity. While the classical scanning model
proposes that initiation typically occurs at the first AUG codon
encountered by the ribosome (Kozak, 1986), mounting evidence
reveals widespread use of alternative initiation codons and the
functional importance of upstream open reading frames (uORFs),
which significantly modulate the expression of primary ORFs
(Starck et al., 2016; Spealman et al., 2018). Translation initiation
is a highly context-dependent process, profoundly influenced by
sequence motifs like the Kozak consensus sequence and intricate
RNA secondary structures within the 5’ untranslated region
(Hinnebusch et al., 2016; Kozak, 2005). Further complicating this
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landscape is the recent discovery of functional micropeptides
translated from transcripts previously classified as non-coding
RNAs (ncRNAs), challenging the conventional binary distinction
between coding and non-coding genes (van Heesch et al., 2019).
This biological complexity is compounded by epitranscriptomic
modifications, such as N6-methyladenosine (m6A), which create a
dynamic regulatory network that fine-tunes translation efficiency in
response to cellular cues (Tian et al., 2021).

Computational approaches to translation prediction have
evolved substantially to address these challenges. Early methods
relied on statistical models and sequence-based features, such
as the position weight matrices used by NetStart (Pedersen
1997) and ATGpr 1998).
Subsequent machine learning approaches, including support vector
machines used in tools like StartCodon (Liu and Wong, 2003)
and TISRover (Saeys et al., 2007), integrated a broader range

and Nielsen, (Salamov et al,

of features but often faced scalability limitations with large
transcriptomic datasets.

More recently, deep learning has emerged as a powerful
paradigm for this task (Wang et al, 2025). Tools such as
TITER employ sophisticated architectures, like a combination
of convolutional and recurrent neural networks (CNN-BiLSTM),
to achieve high precision in scoring candidate TIS locations
(Zhang et al., 2017). However, as a specialized TIS predictor, TITER
does not identify the corresponding TTS, and thus cannot predict
the full ORF or its protein product. On the other end of the
spectrum, statistical model-based tools like GeneMarkS-T utilize
Hidden semi-Markov Models (HSMMs) with an unsupervised self-
training strategy to parse full transcripts into coding and non-
coding regions (Tang et al, 2015). While robust, these models
may not capture the complex, non-linear sequence patterns that
deep learning architectures excel at. The more recent deep learning
framework, TranslationAl, utilizes a CNN to predict TIS-T'TS pairs
from full-length transcripts (Fan et al., 2025). However, a critical
limitation of many existing methods, including TranslationAl, is
their insufficient training on non-coding (NR) transcripts. This
biases the models toward overpredicting translation events, resulting
in a high rate of false positives when analyzing the vast non-coding
transcriptome.

Despite these advances, current approaches often exhibit one
or more significant limitations: a persistent bias towards protein-
coding sequences, the independent prediction of TIS and TTS
without enforcing biological constraints, substantial computational
demands, struggles with processing full-length transcripts without
truncation, and inadequate integration of known biological features.

To address these limitations, we present TRANSAID, a
comprehensive deep learning framework for the simultaneous
prediction of TIS and TTS pairs from full-length eukaryotic
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transcripts. TRANSAID employs a hierarchical architecture
combining embedding layers with dilated convolutions and residual
connections, enabling efficient and accurate processing of complete
transcripts while capturing both local motifs and long-range
dependencies. Crucially, by training on a balanced dataset of both
coding (NM) and non-coding (NR) transcripts and implementing
a novel biologically-informed system, TRANSAID
significantly reduces false positive predictions and improves overall

scoring

accuracy. In this study, we demonstrate TRANSAID’s superior
performance, its ability to generalize across species, its capacity
to learn fundamental biological rules, and its practical application
in novel protein discovery.

2 Materials and methods
2.1 Dataset preparation and splitting

Data Source and Initial Processing: All transcript sequences
and annotations used in this study were sourced from the
UCSC Genome Browser database. We downloaded the human
reference transcripts FASTA file (GRCh38_latest_rna.fna) and
the corresponding comprehensive gene annotation file (GRCh38_
latest_rna.gbff), which are based on the GRCh38/hg38 assembly.
This curated dataset utilizes RefSeq identifiers (e.g., NM_, NR_)
while employing the chr chromosome naming convention.

From the annotation file, we parsed and extracted essential
information for each transcript, including its unique identifier
(without the version suffix), the corresponding gene symbol, and,
for protein-coding transcripts, the start and end coordinates of its
primary coding sequence (CDS).

Transcript Classification and Dataset Splitting: Transcripts were
classified into two primary categories based on their RefSeq
identifier prefix: protein-coding (transcripts with NM_ prefixes)
and non-coding (transcripts with NR_ prefixes). It is noteworthy
that some transcripts annotated as non-coding may contain
functional small open reading frames (sORFs). While we did
not exclude these potential sORF-containing transcripts from
the non-coding set during training, we address this biological
complexity through a dedicated downstream analysis presented in
the Results section (Supplementary Table S1).

To ensure a rigorous and unbiased evaluation of our models
generalization capability, the entire dataset was partitioned at the
gene level. All transcript isoforms belonging to a single gene
were exclusively assigned to only one of the data splits. This
strict partitioning prevents data leakage between the training and
evaluation sets, a critical step for validating model performance
on unseen genes rather than merely on unseen isoforms. The
dataset was split into a training set (80% of genes) and a
held-out validation/test set (20% of genes). This 80:20 split
was chosen to maximize the amount of data available for
model training while retaining a substantial, independent set for
robust performance assessment. All final performance metrics and
comparisons reported in this study were evaluated on this 20%
held-out set.

Data Encoding and Representation: For model input, RNA
sequences were transformed into numerical format using integer
encoding, where A, C, G, T/U were mapped to 1, 2, 3, and
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4, respectively. Ambiguous nucleotides (N) and padding were
mapped to 0. When combined with an embedding layer, this
integer encoding, is generally considered to offer computational
and memory efficiency benefits over traditional one-hot encoding,
especially for long sequences. This approach transforms sparse,
high-dimensional representations into dense, lower-dimensional
vectors that are often more computationally tractable and capable
of capturing relevant sequence patterns (Mikolov et al., 2013; Asgari
and Mofrad, 2015; Yue and Wang, 2018).

Output labels were represented as three-dimensional one-
hot vectors for each nucleotide position, corresponding to three
mutually exclusive classes: translation initiation site (TIS) as [1,0,0],
translation termination site (TTS) as [0,1,0], and non-special
positions as [0,0,1]. This encoding scheme ensures that there
is no ordinal relationship between the classes. To accommodate
the varying lengths of transcripts, a maximum sequence length
was determined based on the 99.9th percentile of the human
transcriptome length distribution (27,112 nt). Shorter sequences
were padded with the 0 value to this length, while longer sequences
were truncated.

2.2 TRANSAID model architecture

The TRANSAID model implements a hierarchical deep learning
architecture that integrates a neural network for sequence analysis
with a downstream biological feature scoring system (Figure 1A).
The deep learning component is composed of four main
modules, designed to efficiently process full-length transcripts and
capture both local and global sequence features. The architecture
is based on the TRANSAID_Embedding model from our
training scripts.

1. Sequence Embedding Layer: This initial module maps the
discrete integer-encoded input sequence into a continuous,
high-dimensional vector space. It consists of an embedding
layer that transforms each nucleotide integer (0-4) into a
128-dimensional vector representation. The padding_idx = 0
parameter ensures that all padded positions have a zero vector
representation. Preventing them from contributing to the
gradient during training. The 128-dimensional embedding
vectors for each nucleotide (A, C, G, T/U) are initially
randomly generated. These vectors are then iteratively
learned and optimized through backpropagation during the
model training process, allowing them to capture nuanced
biochemical and structural properties relevant to translation
initiation and termination.

Local Feature Extraction Module: This initial module is
designed to extract fundamental local sequence features from
the high-dimensional nucleotide embeddings. It consists of
a single 1D convolutional layer (self.convl) with an input
channel dimension of 128 (from the embedding layer) and an
output of 32 filters, using a kernel width of 3 and padding =
“same”. The output of this convolutional layer is then subjected
to Batch Normalization (self.bnl) and a ReLU activation
function (self.relu). This sequential process transforms the
128-dimensional embedding into a 32-dimensional feature
map, capturing basic, short-range local sequence patterns (e.g.,

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1676149
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Li et al.

specific nucleotide triplets or signals) and introducing non-
linearity.

3. Global Feature Interaction Module: To capture long-range
dependencies across the entire transcript, this module
employs a deep stack of residual blocks with dilated
convolutions (Supplementary Figure S1). The architecture
consists of three sequential stages, each comprising four
ResidualBlock units.

Stage 1: This stage takes the 32-dimensional feature map
from the Local Feature Extraction Module. It comprises four
ResidualBlock units, each utilizing 1D convolutions with a kernel
width of 26 and a dilation rate of 1.

Dimension Expansion 1: Following Stage 1, a 1x1 convolutional
layer (self.conv2) is applied, which increases the feature map
dimensionality from 32 to 64. This operation is immediately
succeeded by Batch Normalization (self.bn2) and a ReLU activation.

Stage 2: The 64-dimensional feature map from the previous
expansion then feeds into this stage. It also consists of four
ResidualBlock units, but here, the 1D convolutions use a kernel
width of 26 and a progressively increased dilation rate of 2.

Dimension Expansion 2: After Stage 2, another 1x1
convolutional layer (self.conv3) is used to further increase the
feature map dimensionality from 64 to 128. This is also followed
by Batch Normalization (self.bn3) and a ReLU activation.

Stage 3: The highest-dimensional map (128-

dimensional) enters this final stage. It contains four ResidualBlock

feature

units, where the 1D convolutions use an even larger kernel width of
36 and the highest dilation rate of 5.

Within each ResidualBlock unit (detailed in Supplementary
Figure S1), residual connections facilitate effective gradient flow
during training. The progressively increasing dilation rates (1,
2, 5) within the stages, combined with large kernel widths
(26 and 36), exponentially expand the receptive field without
increasing computational cost, enabling the model to learn complex
relationships between distant TIS and TTS signals across the entire
RNA transcript. The intermittent 1x1 convolutions serve to increase
the feature channel depth between stages (32 > 64 > 128), enhancing
the model’s capacity to represent richer, more abstract long-range
features.

4. Output Decoding Module: The final module maps the
high-level 128-dimensional feature representations back to
the three-class prediction space. It consists of two 1x1
convolutional layers that reduce the feature dimensionality
(128 > 32 > 3), with a ReLU activation in between. The
final output is a tensor of shape (batch_size, seq_len, 3),
representing the logits for the TIS, TTS, and non-special
classes for each nucleotide position.

2.3 Model training

Model training was conducted on an NVIDIA H100 GPU. We
trained two main models for our analyses: a TrainNMonly model
trained exclusively on protein-coding (NM) transcripts, and the final
TRANSAID model trained on a mixed dataset of both NM and non-
coding (NR) transcripts. All hyperparameters were kept consistent
between the two training runs.
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The model was trained for a maximum of 50 epochs with a
batch size of 4. We used the Adam optimizer with an initial learning
rate of 0.001. A learning rate decay scheduler was implemented to
reduce the learning rate by a factor of 0.5 if the validation loss did
not improve for 3 consecutive epochs. To prevent overfitting, an
early stopping mechanism was employed, terminating the training
process if the validation loss on the 20% held-out set did not improve
for 5 consecutive epochs. The loss function was a standard cross-
entropy loss applied to the three output classes. The model state from
the epoch with the lowest validation loss was saved as the final best
model for all subsequent evaluations.

2.4 Integrated scoring system

While the deep learning model provides nucleotide-level
probabilities, translating these into the single, most biologically
significant Open Reading Frame (ORF) per transcript is a non-trivial
challenge that requires an additional layer of logic. To address this,
we developed an integrated scoring system that first identifies all
potential ORFs satisfying hard biological constraints (e.g., triplet
codon structure) and then scores these candidates by combining
model-derived probabilities with established biological heuristics.
This system serves as a probabilistic ranking function to select the
most plausible ORF. For each potential ORF, an Integrated_Score is
calculated from five components, each normalized to a 0-1 scale.

2.4.1 Feature components
1. TIS Probability (TIS,,): The raw probability for the start
codon as predicted by the TRANSAID deep learning model.
2. TTS Probability (TTS,,): The raw probability for the stop
codon as predicted by the TRANSAID deep learning model.

3. Kozak Sequence Score (Kozak_,..): The Kozak sequence is

-Score
evaluated across specified positions relative to the start codon
using a position weight matrix (PWM). Each position’s score
is calculated as the probability of the base being present at
that position, derived from human genomic sequences with

effective translation initiation sites.

Kozak

score

= I1P( base;|position;) x 10000

kozak_pwm = {
—6: {A:0.22,°C: 0.28, ‘G 0.32, ‘“T": 0.18},
—-5: {A: 0.20, ‘C: 0.30, ‘G 0.30, ‘“T’: 0.20},
—4: {A: 0.18, ‘C: 0.32, ‘G 0.30, “T’: 0.20},
—3: {A: 0.25, ‘C: 0.15, ‘G’: 0.45, “T”: 0.15},
—2: {A:0.20, ‘C: 0.35, ‘G’: 0.25, “T”: 0.20},
—1: {A: 0.20, ‘C: 0.35, ‘G 0.25, “T’: 0.20},
0: {A: 1.00, ‘C’: 0.00, ‘G 0.00, “T”: 0.00}, # A of ATG
1: {A: 0.00, ‘C’: 0.00, ‘G: 0.00, ‘T’: 1.00}, #T of ATG
2: {A: 0.00, ‘C: 0.00, ‘G 1.00, ‘T’: 0.00}, #G of ATG
3: {A: 0.20, ‘C: 0.20, ‘G 0.40, “T’: 0.20}
}

Here, signifies the product over each base, and P( base;|position;)
represents the probability of base at position. For example,
P("A"|-6) = 0.22 indicates a 0.22 probability of an ‘A’ being at
position —6.
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FIGURE 1
TRANSAID Architecture and Performance on Human Transcripts. (A) Schematic of the TRANSAID framework. The model processes RNA sequences

through an embedding layer and a hybrid convolutional neural network (CNN) with residual blocks. The output probabilities are integrated with
biological scores (Kozak context, CAl) through a weighted system to predict final ORFs. (B) Position-level performance of the TrainNMonly model,
showing high F1-scores for TIS and TTS identification. (C,D) ORF-level performance of the TrainNMonly model on protein-coding (NM) and
non-coding (NR) transcripts, respectively. The model achieves 93.06% "Perfect ORF" prediction on NM transcripts but correctly identifies only 49.09%
of NR transcripts as non-coding. (E,F) Performance of the Train (NM + NR) model, which shows a slight decrease in "Perfect ORF" prediction (90.25%)
but a substantial improvement in “Correct Non-coding” classification (73.61%). (G) Comparison of training strategies, demonstrating the superior
overall and balanced accuracy of the mixed Train (NM + NR) model.
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4. Codon Adaptation Index (CAI
of codon usage bias relative to a set of highly expressed genes

score): CAI provides a measure

and is calculated via:

1

L T
CALyp, = <1_[ Wi)
i=1

Here, L represents the total number of codons in the identified
Open Reading Frame (ORF), and w; is the relative adaptiveness
value for the i-th codon. Steps include ORF identification, division
into codons, looking up relative adaptiveness values for each codon,
calculating geometric means, and normalizing the score.

5. GC Content Score (GC
determining the proportion of G and C nucleotides within a

): GC content is evaluated by

score

potential ORF sequence:

~0.5X((GCppen—0-42)/0.2)* _ 1

GC

score = 2 xe

This scoring uses a Gaussian model to convert GC content rates
into normalized scores.

2.4.2 Integrated score calculation
The Integrated Score for each ORF is calculated by combining
feature scores with predefined weights, following:

Integrated

score

= Wrys X TISprop + Wrps X TTSp )

*+ Wkozak X Kozakscore

+weyy X CAIL,,, + Wge X GC

core score

2.4.3 Data-driven weight optimization

To ensure the robustness and objectivity of the scoring
system, the weights (w) and the final decision threshold were
not set arbitrarily but were optimized through a data-driven
approach. We performed an extensive grid search on the
independent validation set (20% of genes) to identify the parameter
combination that maximized the standard accuracy. This process
systematically evaluated over 160,000 unique parameter sets.
The results of this optimization confirmed that the model’s
TIS/TTS probabilities are the most influential features and
validated the contribution of the biological heuristics. A sensitivity
analysis demonstrated that the system’s performance is stable
across a plateau of near-optimal parameter values, underscoring
its robustness (Supplementary Figure S2). The final, optimized
parameters (wpg = 0.30, Wppg = 0.50, Wio.or = 0.04, weyp = 0.04,
wge = 0.00, and a threshold of 0.635) were used for all subsequent
analyses presented in this study.

The final Integrated Score for each ORF is calculated by
combining the four impactful feature scores with their data-driven
weights, following the refined formula:

Integrated.,,, = 0.3 X TIS,,,,), + 0.5 X TTS,,, ), +0.04
x Kozak,,, +0.04 x CAI

score score
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2.5 Performance evaluation and
benchmarking

The performance of all models was evaluated on the
independent 20% test set of human genes. We defined a
comprehensive set of metrics at the ORF level for both coding
and non-coding transcripts, including Perfect ORF (defined as the
precise rightly identification of both the 3-nucleotide TIS and TTS
codons), Correct TIS incorrect TTS, Correct TTS incorrect TIS,
Other Errors, Correct Non-coding, and False ORE.

To contextualize TRANSAID’s performance, we benchmarked
it against three state-of-the-art tools: TranslationAI, GeneMarkS-T,
and TITER. To ensure a fair and direct comparison, all tools were
run with their default parameters on the same evaluation datasets.
For the six non-human species, the complete set of NM and NR
transcripts was used for evaluation. For the human benchmark, a
special test set was created for each tool by excluding any transcripts
that were part of its original training dataset, thus guaranteeing
that each model was evaluated on data it had not seen before.
Performance was primarily evaluated using the “Perfect ORF”
(defined as a prediction where the final ORE, after adjustment by the
integrated scoring system, correctly matches the annotated TIS and
TTS.) and “Correct Non-coding” metrics.

2.6 Cross-species and experimental
validation

To evaluate the cross-species applicability of the human-trained
TRANSAID model, we collected comprehensive transcriptomic
data from six additional model organisms spanning a wide
evolutionary range. All data were downloaded from the NCBI
Reference Sequence (RefSeq) database. For each species, we
obtained the full set of curated transcript sequences (rna.fna.gz)
and their corresponding annotations (rna.gbff.gz). The species and
specific assemblies included in our analysis were:

1. Mus musculus (Mouse) - GRCm39 assembly

2. Danio rerio (Zebrafish) - GRCz11 assembly

3. Drosophila melanogaster (Fruit Fly) - Release 6 plus ISO1
MT assembly

4. Caenorhabditis elegans (Nematode) - WBcel235 assembly

5. Arabidopsis thaliana (Thale Cress) - TAIR10.1 assembly

6. Saccharomyces cerevisiae (Yeast) - R64 assembly

For each species, transcripts were classified as protein-coding
(NM) or non-coding (NR) based on their RefSeq annotations and
processed through the TRANSAID prediction pipeline.

2.7 Experimental validation with
proteomics data

To validate TRANSAID’s utility in novel protein discovery, we
analyzed publicly available PacBio Iso-Seq and mass spectrometry
(MS) data from Jurkat T-cells (Miller et al., 2022). Full-length
transcript sequences were processed by TRANSAID using an
Integrated_Score cutoff of 0.50 to predict a non-redundant set
of 17,046 protein sequences. These predicted proteins were then
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used as a custom reference database. We subsequently mapped
the experimentally identified MS peptides from the original study
against this database to determine the validation rate, assessing
the percentage of our predicted proteins supported by direct
peptide evidence.

2.8 Code and data availability

The TRANSAID software, including source code, trained
models, and usage documentation, is freely available on GitHub
at  https://github.com/wuzengding/TRANSAID. For complete
reproducibility of our study, the TRANSAID_training_latest branch
contains all scripts used for model training, performance evaluation,
data analysis, and figure generation. A user-friendly web server for
online prediction is accessible at http://58.242.248.157:6005/.

3 Results

3.1 TRANSAID achieves high accuracy on
human transcripts through mixed training
and integrated scoring

3.1.1 Training strategy and performance on
human transcripts

The development of TRANSAID began with a meticulously
prepared human transcriptome dataset sourced from the UCSC
Genome Browser, ensuring a robust foundation for model
training and evaluation. This dataset comprised both manually
curated protein-coding (NM) and non-coding (NR) transcripts,
meticulously partitioned at the gene level into distinct training
(80%) and held-out validation/test (20%) sets to prevent data
leakage and enable unbiased performance assessment. Prior to
training, transcript sequences were integer-encoded and labeled
with three-dimensional one-hot vectors for TIS, TTS, and non-
special positions, accommodating transcript length variations
up to 27,112 nucleotides (99.9th percentile) through padding or
truncation (Supplementary Figure S3A).

Initial model training focused exclusively on protein-coding
transcripts (NM class), resulting in the TrainNMonly version
of TRANSAID. This model demonstrated strong classification
capabilities at the nucleotide level. A confusion matrix analysis of
its performance on 13,415 human NM test transcripts revealed
exceptionally high Fl-scores of 96.34% for TIS, 98.54% for TTS,
and nearly 99.99% for non-translation sites (Figure 1B). Converting
these nucleotide-level metrics to an Open Reading Frame (ORF)
level assessment provided a more holistic view of translation
prediction accuracy. The TrainNMonly model achieved a “Perfect
OREF Prediction” (defined as the precise right identification of both
the 3-nucleotide TIS and TTS codons) rate of 93.06% for NM
transcripts, indicating complete agreement between predicted and
actual TIS/TTS positions across the entire transcript. Furthermore,
0.83% of transcripts exhibited “Near-Perfect ORF Prediction”
(minimal errors with single nucleotide deviations), while 0.98%
had correctly predicted TIS only, and 3.67% had correctly
predicted TTS only (Figure 1C).
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However, a critical limitation emerged when this TrainNMonly
model was applied to predict ORFs in human non-coding
(NR) transcripts. We observed a significantly elevated false
positive rate at the nucleotide level, where numerous non-
special sites were misclassified as TIS or TTS, resulting in poor
prediction metrics (Supplementary Figures S3c,d). This substantial
overprediction suggested a fundamental bias inherent in training
exclusively on protein-coding data. This underlying misclassification
at the nucleotide level led to a significantly elevated false positive
rate at the ORF level, with only 49.09% of NR transcripts
correctly identified as non-coding (Figure 1D). Alarmingly, 24.31%
of NR transcripts were erroneously predicted to contain complete
ORFs (False ORF), while 11.31% were incorrectly predicted
to contain only TTS, and 4.81% only TIS. This substantial
overprediction of translation events in non-coding sequences
suggested a fundamental bias inherent in training exclusively
on protein-coding data. Such a model, lacking exposure to the
diverse characteristics of non-coding transcripts during training,
struggles to accurately distinguish genuine translation signals from
spurious motifs in non-coding contexts, leading to artificially
inflated translation predictions.

To address this limitation and improve the model’s ability to
differentiate between truly coding and non-coding sequences, we
subsequently trained the Train (NM + NR) model. This version
integrated 18,462 NR transcripts into the training dataset alongside
NM transcripts, ensuring both types were proportionally distributed
across each training batch. Re-evaluation of the Train (NM + NR)
model’s performance confirmed the effectiveness of this mixed
training strategy. While the “Perfect ORF Prediction” rate for NM
test data marginally decreased from 93.06% to 90.25% (Figure 1E),
this slight reduction in coding accuracy was offset by a substantial
improvement in non-coding classification. The proportion of NR
transcripts correctly identified as non-coding dramatically increased
from 49.09% to 73.61% (Figure 1F). When combining both NM
and NR test data, the models overall accuracy improved from
82.42% to 86.94%. Furthermore, to account for the inherent
class imbalance in the test set (where NM transcripts are more
numerous), we constructed a balanced test set with equal numbers
of NM and NR samples. On this balanced set, the Train (NM
+ NR) models Balanced Accuracy improved by 11.08%, from
71.49% to 82.57% (Figure 1G), unequivocally demonstrating the
critical importance of incorporating both coding and non-coding
transcripts during the training phase to develop a robust and
accurate translation site prediction model.

3.1.2 Optimizing ORF selection with an
integrated scoring system

Despite the significant overall performance enhancement
achieved by the Train (NM + NR) model, approximately 10% of
transcripts still presented incorrect classifications. To further refine
our predictions and address these residual errors, we developed an
integrated scoring system. This system leverages an additional layer
of biological logic to enhance accuracy, moving beyond a simple
maximum-probability selection.

3.1.2.1 Analysis of prediction errors

A detailed analysis revealed that the nature and severity of
these prediction errors varied. For instance, in “Near-Perfect ORF
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Predictions” for protein-coding (NM) transcripts, only 1-2 out of
6 nucleotide positions might be incorrect, while the remaining 4-
5 positions were correctly identified. Such minor deviations, often
correctable using prior biological knowledge of codon structure,
differ fundamentally from Correct TIS, incorrect TTS Prediction or
Correct TTS, incorrect TIS Prediction errors. Similarly, Incorrect
TIS-only Prediction errors in non-coding (NR) transcripts might
involve only 2-3 nucleotides incorrectly predicted as TIS without
corresponding TTS sites — errors that could potentially be filtered
using the biological constraint that functional ORFs require a
termination codon. To develop comprehensive validation and
filtering rules, we performed a detailed error pattern analysis at the
nucleotide level.

We extracted and quantified the most frequent error patterns
observed in both incorrectly predicted NM and NR transcripts
(Figures 2A,B). For NM transcripts, the top 10 error patterns
included instances where no positions were predicted as TIS/TTS
(), or partial predictions like ATG- (TIS predicted, no TTS). The
most frequent pattern (-), accounting for 16.90% of all errors,
represented transcripts where no positions were predicted as
TIS/TTS. Upon examining the probability distributions at each
position for these transcripts, we frequently found significantly
elevated probabilities at true TIS/TTS sites compared to surrounding
regions (Supplementary Figure S4A,B). For example, in transcript
NM_001003684 (Figure 2A; Table 1), positions 30-32 showed
ProbTIS values of 0.03-0.06, and positions 216-218 showed
ProbTTS values of 0.13-0.9, both significantly higher than
surrounding regions.

However, these positions were ultimately classified as non-
TIS/TTS due to the softmax operation’s tendency to inflate Probnon-
TIS/TTS values, often exacerbated by class imbalance in the training
data. Case-by-case examination (detailed in Supplementary File A)
revealed that such false negatives in NM transcripts primarily
resulted from the softmax operations stringent maximum-value
selection criterion.

For NR transcripts, the top error pattern was ATG-
TGA-,
erroneous prediction of a complete ORFE. Detailed examination
and  further
summarized in Supplementary File B) revealed that many apparent

representing 23.81% of errors, indicating frequent

(as  shown in Supplementary Figure S4C-F,
TIS-TTS pairs in non-coding transcripts did not form valid triplet
codons, suggesting that a simple codon structure verification could

effectively filter numerous false positives.

3.1.2.2 Developing the integrated scoring system

These observations highlighted the need for a more
sophisticated post-prediction filtering approach, beyond a simple
maximum-probability selection. To refine ORF prediction and
enhance overall accuracy, we developed an integrated scoring system
leveraging multiple biologically-informed metrics. This system
assigns a quantitative “Integrated_Score” to each candidate ORE
allowing for straightforward ranking and selection of the most
plausible translation events based on a combined assessment of
deep learning predictions and established biological heuristics.
To visualize the probability distributions, we plotted the three
probability values for positions with ProbTIS >0.001 and ProbTTS
>0.001 (Figures 2C-E). Both distributions exhibited an initial
plateau for probabilities <0.01, followed by rapid growth between
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0.01-0.75, and another plateau above 0.75. The presence of a
“gray zone” in the 0.01-0.75 range indicated the need for more
sophisticated thresholding approaches.

We incorporated additional biologically-informed metrics
into our prediction framework. The Kozak sequence context
is crucial for authentic TIS identification (Kozak, 2005), with
specific scoring methods established (Grzegorski et al., 2014). The
Codon Adaptation Index (CAI) reflects codon usage bias related to
translation efficiency (Sharp and Li, 1987), with genuine protein-
coding sequences exhibiting species-specific CAI distributions.
Additionally, GC content and CDS length provide discriminative
power, as functional coding sequences generally maintain species-
appropriate GC content and exceed minimum length thresholds
(Pozzoli et al., 2008; Swinburne et al, 2006). We compared
the distributions of these metrics between true positive ORFs
(in NM transcripts) and false positive ORFs (predicted in NR
transcripts) (Figures 2F-K), observing significant differences,
especially in TIS/TTS probabilities, Kozak score, CAI, and GC
content, which provided the empirical basis for our integrated
scoring system.

3.1.2.3 Application and performance improvement
The Integrated_Score is calculated as a weighted sum of the

model’s predicted TIS and TTS probabilities, along with Kozak
score, CAI score, and GC content score. Each component is
normalized to a 0-1 scale before integration (Section 2.4). We
constructed ROC curves to determine the optimal threshold
for filtering ORF candidates, which validated against annotated
ORFs across both NM and NR transcripts (Figure 2L). Analysis
revealed an optimal cutoff value of 0.5. Applying this recommended
cutoff significantly improved performance compared to the raw
softmax-derived approach. For NM transcripts, “Perfect ORF
Prediction” increased from 90.25% to 94.94%, while for NR
transcripts, “Correct Non-coding Prediction” improved from
73.61% to 82.00% (Figures 2M,N). These results unequivocally
demonstrate that our integrated biological feature scoring system
effectively leverages both model predictions and biological
knowledge to enhance ORF identification accuracy, particularly
in reducing false positives among non-coding sequences.

3.2 Perturbation experiments reveal
TRANSAID has learned fundamental
principles of translation

To ascertain whether TRANSAID’s predictive power stems
from a deep understanding of biological principles or merely
from learning superficial sequence patterns, we conducted a series
of systematic perturbation experiments. By introducing targeted
modifications into different regions of both protein-coding (NM)
and non-coding (NR) transcripts from the human test set, we could
assess the model’s sensitivity to changes that either respect or violate
fundamental rules of translation. To isolate the direct effects of
sequence alterations on the neural network’s learning, all evaluations
in this section were performed using the raw model output, prior to
the application of the integrated scoring system. These experiments
provide compelling insights into the features the model has learned
to recognize as critical for defining a functional open reading frame
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FIGURE 2
Error Analysis and Performance Optimization with Integrated Scoring. (A,B) Frequency distribution of error patterns in incorrectly predicted NM and NR
transcripts. (C—E) Probability distributions for TIS, TTS, and non-TIS/TTS states across all nucleotide positions with a signal probability >0.001. The
overlapping distributions highlight the limitations of a maximum-value selection approach. (F-K) Comparative distributions of key biological metrics
between true positive ORFs (in NM transcripts) and false positive ORFs (predicted in NR transcripts), providing the basis for the integrated scoring
system. (L) ROC curve analysis of the final Integrated_Score on the validation set, demonstrating its strong discriminatory power (AUC = 0.957). The
optimal threshold determined by maximizing Youden's J is marked. (M,N) The integrated scoring system with an optimized threshold (0.52) significantly
boosts “Perfect ORF Prediction” on NM transcripts from 90.25% to 94.94% and "Correct Non-coding Prediction” on NR transcripts from
73.61% to 82.00%.

3.2.1 Effects of UTR mutations on protein-coding
transcript prediction

We first investigated the model’s response to alterations within
the untranslated regions (UTRs) of NM transcripts. We introduced
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random 1, 2, and 3 base-pair insertions and deletions at arbitrary
positions within the 5'UTR and 3'UTR. The results revealed a
distinct differential sensitivity. Modifications within the 3’ UTR had
a negligible impact on the model’s performance; the “Perfect ORF
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TABLE 1 Probability matrix for NM_001003684 at key positions.

Pos [PrabT,s, Prabqys, Prab,,o,,_ns/rrs]

30(3.314e - 02,1.099¢ - 04,9.667¢ — 01]

31[6.293¢ —02,1.729¢ — 04,9.368¢ — 01]

32[4.755¢-02,1.027e - 04,9.523e - 01]

216[1.005¢ - 05,1.334e — 01,8.666¢ — 01]

217[1.341e - 04,9.223¢ - 02,9.076e — 01]

218([3.026¢ - 05,1.171e—01,8.827¢ - 01]

Prediction” rate remained exceptionally stable at approximately
90.24%, nearly identical to the baseline performance on unmodified
sequences (Figure 3A, compare with Figure 1E). This robustness
suggests that the model correctly learned that the precise nucleotide
sequence of the 3'UTR, barring major structural changes, has
minimal direct influence on the definition of the primary ORF’s
boundaries.

In stark contrast, the model exhibited higher sensitivity to
changes in the 5'UTR. While 1 bp alterations had a modest effect,
2 and 3 bp insertions led to a discernible, albeit slight, reduction
in “Perfect ORF Prediction” accuracy to 89.93% (Figure 3B). This
heightened sensitivity aligns perfectly with established biological
knowledge: the 5'UTR is a critical regulatory region containing
essential elements for translation initiation, including the Kozak
consensus sequence and binding sites for initiation factors, which
guide the ribosome to the correct start codon. The model’s response
indicates that it has learned to recognize the importance of sequence
integrity in this region.

To further probe the significance of nucleotide arrangement
versus mere composition, we performed more substantial
perturbation experiments involving complete shuffling of the UTR
sequences while preserving their GC content. Shuffling the entire
3'UTR sequence resulted in a moderate decrease in prediction
accuracy to 87.45%. However, shuffling the 5'UTR sequence
caused a dramatic drop in “Perfect ORF Prediction” to just 74.31%
(Figure 3D). This nearly 16-percentage-point decrease upon 5'UTR
shuffling provides unequivocal evidence that TRANSAID has
learned to recognize specific, position-dependent sequence motifs
and structural contexts within the 5'UTR that are indispensable for
proper TIS identification, a finding consistent with the known roles
of elements like uORFs and IRESs (Hinnebusch et al., 2016).

3.2.2 Extreme sensitivity to frameshift mutations
in the CDS

Next, we assessed the model’s sensitivity to mutations within
the coding sequence (CDS) itself. The results of this experiment
were striking and provided the strongest evidence that TRANSAID
has internalized the triplet nature of the genetic code. When 1
or 2 base-pair insertions or deletions were introduced—mutations
that cause a frameshift—the model’s performance was severely
compromised. “Perfect ORF Prediction” rates plummeted to a mere
15.67%-16.45% from the original 90.25% (Figure 3C). This extreme
sensitivity demonstrates that the model recognizes that frameshift
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mutations lead to a catastrophic alteration of the downstream amino
acid sequence, typically resulting in premature stop codons and
non-functional protein products.

Conversely, when in-frame 3bp insertions or deletions
were introduced, the model displayed remarkable robustness.
Performance remained high, with “Perfect ORF Prediction” rates
of 85.14% and 88.78%, respectively (Figure 3C). This tolerance
to in-frame mutations shows that the model understands that
such changes correspond to the insertion or deletion of a single
amino acid, a modification that often preserves the integrity of the
overall protein structure and function. This differential response
to in-frame versus out-of-frame mutations strongly mirrors their
biological consequences (Singh and Jain, 2015) and serves as
powerful validation that TRANSAID’s learning extends beyond
simple pattern matching to encompass the fundamental logic of the
genetic code.

3.2.3 Robustness of non-coding transcript
classification

Finally, we applied similar perturbations to non-coding (NR)
transcripts to test whether random sequence alterations could
induce erroneous ORF predictions. For these transcripts, which
lack defined UTR and CDS regions, we designated the terminal
5% of the sequence as “5'UTR-like,” the middle 90% as “CDS-
like, and the terminal 5% as “3'UTR-like” Across nearly all
experiments, including small insertions/deletions and complete
shuffling of the UTR-like regions, the model’s performance was
virtually unaffected. The “Correct Non-coding Prediction” rate
remained stable at approximately 73.60%, matching the baseline
performance (Figures 3E-H, compare with Figure 1F). Only minor
reductions in accuracy were observed for 3 bp modifications in the
“CDS-like” region and shuffling of the “3'UTR-like” region.

This stability is highly significant. It demonstrates that
TRANSAID’s classification of a transcript as non-coding is not
based on the mere absence of start/stop codon patterns, but on
a more holistic assessment of whether the sequence possesses
the genuine, complex features compatible with translation. The
fact that random mutations do not easily convert a non-coding
transcript into a coding one in the model’s view reflects biological
reality and highlights the sophistication of the features learned by
TRANSAID. Collectively, these perturbation experiments confirm
that TRANSAID has captured several fundamental principles of
translation machinery, including the triplet codon architecture, the
regulatory importance of the 5'UTR, and the contextual features
that robustly distinguish translatable from non-translatable RNA
molecules.

3.3 TRANSAID demonstrates robust
cross-species generalization

A critical measure of a predictive model’s utility is its
ability to generalize beyond the data it was trained on. To
assess the extent to which our human-trained TRANSAID model
learned evolutionarily conserved principles of translation, we
evaluated its performance on the transcriptomes of six additional
eukaryotic species, spanning a wide evolutionary divergence from
humans: Mus musculus, Danio rerio, Drosophila melanogaster,
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Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces
cerevisiae. The comprehensive results of this cross-species analysis

are summarized in Figure 4.
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For the prediction of protein-coding (NM) transcripts,

TRANSAID demonstrated remarkable and robust performance,
underscoring the deep conservation of the core translation
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Comprehensive cross-species performance of TRANSAID. A heatmap summarizing the performance of the human-trained TRANSAID model across six
additional eukaryotic species, ordered by decreasing evolutionary relatedness to humans. Performance is stratified into protein-coding (NM, left panel)
and non-coding (NR, right panel) transcripts. For NM transcripts, the “Correct ORF” metric demonstrates robust accuracy across vertebrates with a
gradual decline in distant species. Conversely, for NR transcripts, the “Correct Non-coding” accuracy improves significantly as species diverge from
humans. Numerical values represent the percentage of transcripts in each category, with color intensity corresponding to the percentage value.

machinery across eukaryotes. The model achieved a “Correct ORF”
(defined as a prediction where the final ORE, after adjustment by
the integrated scoring system, correctly matches the annotated
TIS and TTS) prediction rate of 92.1% in Mus musculus, a
performance nearly on par with that observed in humans (94.9%).
As expected, this accuracy exhibited a gradual and modest decline
with increasing evolutionary distance, remaining high in Danio rerio
(91.9%) and Drosophila melanogaster (86.9%), and still maintaining
strong performance in the highly divergent Caenorhabditis elegans
(84.6%), Arabidopsis thaliana (87.6%), and Saccharomyces cerevisiae
(90.5%) species. This trend reflects the subtle divergence in species-
specific translation regulatory mechanisms, such as codon usage
bias and local sequence motifs, yet affirms that the fundamental
features learned by TRANSAID are largely universal across the
eukaryotic domain.

Intriguingly, the model’s performance on non-coding (NR)
transcripts revealed an inverse trend. The accuracy of “Correct
Non-coding” prediction, a measure of the model’s ability to
correctly reject non-translatable sequences, improved significantly
with increasing evolutionary distance from humans (Figure 4, right
panel). While the accuracy for the closely related Mus musculus
was 79.2%, it rose to 90.2% in Danio rerio, 93.4% in Drosophila
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melanogaster, and peaked at over 97% in the most distant species,
Caenorhabditis elegans (98.1%), Arabidopsis thaliana (97.6%), and
Saccharomyces cerevisiae (98.5%).

This seemingly counterintuitive pattern provides a key insight
into the model’s learning process. The human-trained model has
learned to distinguish human coding sequences from human non-
coding sequences. As species diverge, their non-coding RNAs tend
to evolve much more rapidly in sequence and structure than
their protein-coding genes (Ulitsky, 2016). Consequently, the non-
coding transcripts of distant species like Saccharomyces cerevisiae
become increasingly dissimilar to the complex, signal-rich patterns
of human protein-coding transcripts. For the model, these highly
divergent NR sequences present a less ambiguous negative signal,
making them easier to classify correctly as non-coding. Conversely,
the NR transcripts of closer relatives like Mus musculus may
retain more sequence artifacts or conserved non-coding elements
that superficially resemble features of human coding regions, thus
posing a more difficult classification challenge. This robust cross-
species performance not only highlights TRANSAID’s powerful
generalization capabilities but also underscores its sophisticated
capture of evolutionarily conserved features of the translation
machinery.
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3.4 TRANSAID outperforms
state-of-the-art tools in key aspects

To rigorously assess TRANSAID’s performance in the context
of existing technologies, we conducted a comprehensive benchmark
against three state-of-the-art tools: TranslationAl, a contemporary
deep learning framework; GeneMarkS-T, a widely-used statistical
method based on Hidden semi-Markov Models; and TITER, a
specialized deep learning tool for TIS prediction. We first performed
a qualitative comparison of their functional capabilities, followed by
a quantitative performance evaluation on the same independent test
set across all seven eukaryotic species.

The functional comparison, summarized in Figure 5A,
highlights significant differences in the scope and utility of each tool.
While all methods are capable of predicting TIS, their end-to-end
capabilities vary substantially. Specialized tools like TITER focus
exclusively on TIS identification and do not provide predictions for
TTS or the full ORE In contrast, TRANSAID, TranslationAl, and
GeneMarkS-T are all designed to predict complete ORFs. However,
among these, only TRANSAID and GeneMarkS-T are designed
for local execution on large datasets, as TranslationAT's web server
limits batch processing. Critically, TRANSAID is the only tool in this
comparison that provides a comprehensive, end-to-end workflow,
integrating a user-friendly web server for both single and batch
analysis with the direct output of translated protein products, a
feature essential for downstream proteomic analyses.

Quantitative benchmarking on the independent test set
further revealed TRANSAID’s superior performance in key
areas (Figure 5B). For the task of predicting ORFs in protein-
coding (NM) transcripts, we measured the percentage of “Perfect
ORF” predictions, where both the TIS and TTS must be
identified with single-nucleotide precision. The results, shown
in the top panel of Figure 5B, demonstrate a clear performance
advantage for deep learning-based methods. Both TRANSAID
and TranslationAl consistently and significantly outperformed the
statistical model-based GeneMarkS-T across all seven species. For
instance, in Homo sapiens, TRANSAID achieved a “Perfect ORF”
rate of 94.9%, comparable to TranslationAT’s 95.4%, while both were
substantially higher than GeneMarkS-T’s 66.0%. This trend holds
across the evolutionary spectrum, underscoring the power of deep
learning architectures to capture the complex sequence patterns
governing translation boundaries more effectively than traditional
probabilistic models.

The most striking performance difference was observed in the
critical task of correctly identifying non-coding (NR) transcripts, a
known challenge for translation prediction tools. As shown in the
bottom panel of Figure 5B, TRANSAID demonstrated consistently
superior accuracy in this domain. In Homo sapiens, TRANSAID
correctly classified 82.0% of NR transcripts as non-coding,
outperforming both TranslationAI (66.5%) and GeneMarkS-T
(42.3%). This advantage was also in the closely related Mus musculus,
where TRANSAID’s accuracy (79.2%) was significantly higher than
that of TranslationAI (65.9%) and GeneMarkS-T (45.8%). While the
performance gap narrowed in more evolutionarily distant species
where NR sequences are more distinct, TRANSAID maintained
a competitive or leading edge across the board. This superior
specificity in distinguishing non-coding transcripts is a direct
result of TRANSAID’s mixed-training strategy and robust feature
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learning, positioning it as a more reliable tool for transcriptome-
wide annotation, particularly in complex vertebrate genomes where
the potential for false positive ORF predictions is high.

3.5 Experimental validation and discovery
of novel coding events

Beyond computational benchmarks, a crucial test of a
prediction tool’s real-world utility is its ability to identify translated
products that can be validated by experimental evidence. To assess
TRANSAID’s performance in this capacity, we applied it to two
distinct discovery-oriented tasks: identifying proteins from novel,
long-read transcript isoforms and exploring the cryptic coding
potential of annotated non-coding (NR) transcripts.

First, we evaluated TRANSAID’s ability to annotate the
proteome from a complex, experimentally derived transcriptome.
We used a publicly available dataset from Jurkat T-cells comprising
both PacBio Iso-Seq full-length transcripts and corresponding high-
resolution mass spectrometry (MS) data (Miller et al., 2022). After
processing the novel transcripts with TRANSAID and performing
redundancy removal, we generated a custom database of 17,046
predicted protein sequences. We then mapped the experimentally
identified MS peptides from the original study against this database.
The results showed a strong validation rate: a significant 76.28%
(13,002 out of 17,046) of our predicted proteins were supported by
direct peptide evidence. Conversely, 91.13% of all experimentally
identified peptides mapped back to our predicted protein set,
indicating high coverage (Figure 6A). Furthermore, the integrated
scores of the MS-validated proteins were significantly higher than
those of the unvalidated proteins, suggesting our scoring system
effectively prioritizes true positives (Figure 6B).

This validation extended to the discovery of novel protein
isoforms. For example, TRANSAID successfully predicted protein
sequences for three novel isoforms of the APEH gene that
were not present in the UniProt database. These isoforms
contained a unique amino acid sequence derived from a retained
intron. Critically, we identified a peptide in the MS data that
mapped uniquely to this novel intron-derived region, providing
direct experimental confirmation of a previously unannotated
translation event (Figure 6C). This demonstrates TRANSAID’s
power in augmenting proteomic databases by accurately translating
novel isoforms discovered through long-read sequencing.

Second, we investigated the model’s potential to uncover novel
coding events from transcripts conventionally considered non-
coding. To move beyond sequence similarity and provide a more
stringent validation, we implemented a genomic coordinate-based
analysis. We intersected the genomic coordinates of high-confidence
ORFs predicted by TRANSAID within NR transcripts with those
of experimentally validated small proteins from the SmProt2 High-
Confidence database.

The results, summarized in the revised Supplementary Table S1,
confirm that a subset of these predictions corresponds to bona fide,
annotated sORFs. In Homo sapiens, we identified 114 predicted NR-
ORFs that directly overlap with known sORF entries, corresponding
to a 7.42% validation rate against the comprehensive SmProt
human dataset. In Mus musculus, 8 such events were confirmed
(0.60% validation rate). The lower validation rate in mouse and the
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Comparative Analysis of ORF Prediction Tools. (A) A feature comparison of TRANSAID against leading ORF prediction tools. Capabilities are evaluated
across methodology and functional outputs. Checkmarks (¢) indicate full support, while crosses (X) indicate a lack of support. (B) Quantitative
performance comparison of TRANSAID, TranslationAl, and GeneMarkS-T across seven eukaryotic species. The top panel measures “Correct ORF”
prediction accuracy on NM transcripts, where both deep learning models (TRANSAID and TranslationAl) significantly outperform the statistical
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consistently superior performance, particularly in vertebrates.
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absence of matches in species like Drosophila melanogaster are likely
attributable to the significantly smaller number of curated sORFs
available in SmProt for these organisms (383 for mouse and only
11 for fruit fly, compared to 8,654 for human), rather than a lack of
model performance.

To visually confirm the validity of these coordinate-based
matches, we performed multiple sequence alignments of the
translated protein sequences. As shown in representative examples
for both Homo sapiens (Figure 6D) and Mus musculus (Figure 6E),
the amino acid sequences predicted by TRANSAID show perfect
or near-perfect identity to the curated SmProt entries, providing
unequivocal evidence of correct predictions. The complete list of
all 122 validated NR transcripts is available in Supplementary File 2
(SmProt2_matched_NR.transcripts.xlsx).

This rigorous, location-aware analysis reframes a significant
portion of the model’s apparent “false positives” as valuable and
validated discoveries. It highlights TRANSAID’s capability as a
powerful tool for exploring the cryptic coding landscape of the non-
coding genome, moving beyond annotation to genuine discovery.

4 Discussion

In this study, we introduced TRANSAID, a novel deep
learning framework that addresses several persistent challenges
in computational translation prediction. Our comprehensive
evaluations demonstrate that TRANSAID achieves exceptional
performance in identifying translation sites across diverse
transcript types and species. Through a combination of a robust
model architecture, a strategic mixed-training approach, and a
sophisticated integrated scoring system, whose parameters were
systematically optimized in a data-driven manner, TRANSAID
offers significant advantages over existing methods.

A key innovation of TRANSAID is its ability to process
full-length transcripts in an end-to-end manner, simultaneously
predicting both TIS and TTS pairs while enforcing biological
constraints. This holistic approach contrasts with specialized
tools like TITER, which focus solely on TIS identification, and
circumvents the limitations of window-based methods that may
fail to capture long-range dependencies. Furthermore, the strategic
inclusion of both protein-coding (NM) and non-coding (NR)
transcripts during training proved to be a critical decision. As our
results show (Figure 5B), this mixed-training strategy substantially
improves the model’s ability to distinguish genuine translation
events from spurious sequence patterns, leading to a marked
reduction in false positive predictions on NR transcripts compared
to both TranslationAl and the statistical model-based GeneMarkS-
T. This enhanced specificity is crucial for accurate transcriptome-
wide annotation, particularly in complex genomes with vast non-
coding regions.

Our sequence perturbation experiments provided compelling
insights into the model’s inner workings, revealing that TRANSAID
has learned fundamental principles of translation beyond superficial
pattern matching (Figure 3). The model’s extreme sensitivity to
frameshift mutations, contrasted with its tolerance for in-frame
modifications, demonstrates its implicit understanding of the
triplet genetic code. Similarly, the differential impact of 5'UTR
versus 3'UTR modifications aligns with the established biological
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understanding that 5'UTR regions contain critical regulatory
elements for translation initiation (Hinnebusch et al., 2016). These
findings suggest that TRANSAID has developed a sophisticated,
context-aware representation of translation-compatible features.
This learned knowledge base likely contributes to its strong
cross-species generalization. Despite being trained primarily on
human data, the model maintained robust performance across
organisms from mammals to fungi (Figure 4), This indicates that
TRANSAID has captured deeply conserved, fundamental features
of the translation machinery that are shared across a vast range of
eukaryotic life (Merrick and Pavitt, 2018).

Perhaps one of the most significant applications of TRANSAID
is its potential as a discovery engine for novel coding events.
The synergy between long-read sequencing and accurate de novo
translation prediction opens new frontiers for proteogenomics. Our
analysis of experimental data from Jurkat T-cells demonstrated
this capability, where TRANSAID not only validated a high
percentage (76.28%) of its predictions with mass spectrometry
evidence but also successfully identified previously unannotated
protein isoforms arising from events like intron retention (Figure 6).
Moreover, our investigation into the ORFs predicted within NR
transcripts provides intriguing, albeit preliminary, evidence for
the discovery of cryptic sORFs. The finding that a substantial
fraction (7.42% in humans) of these predicted micropeptides show
homology to proteins in SmProt (Supplementary Table S1) suggests
that many of the model’s apparent “false positives” may in fact be
biologically significant, unannotated coding events. While further
experimental validation is required, this highlights TRANSAID’s
potential to systematically mine the non-coding transcriptome
for novel functional elements, a task of growing importance in
functional genomics (Ruiz-Orera and Alba, 2019).

Despite its strong performance, TRANSAID has several
limitations that represent avenues for future development. First,
the current model is primarily trained to recognize canonical
AUG start codons. While it can identify some alternative initiation
events, its sensitivity could be enhanced through explicit training on
experimentally verified non-AUG TIS and re-initiation sites, such as
those cataloged from ribosome profiling studies (Kahles et al., 2018).
Second, our framework does not yet explicitly model complex
translation phenomena like programmed ribosomal frameshifting
or stop-codon read-through, which contribute to proteome
diversity. Incorporating models of these events would be a valuable
future enhancement. Third, our data-driven optimization revealed
that some canonical biological features like GC content become
redundant when paired with a powerful deep learning model.
This suggests that future work could focus on incorporating
more complex, orthogonal information, such as predicted RNA
secondary structures (Lin et al., 2022),which may provide novel
predictive power. Finally, its application to prokaryotic systems
would require modifications to account for distinct mechanisms
like Shine-Dalgarno sequence-based initiation.

In conclusion, TRANSAID represents a significant advance in
computational translation prediction. By addressing the critical
limitations of existing approaches—including training data bias, the
inability to process full-length transcripts, and a lack of integrated
biological constraints—TRANSAID provides a powerful, accurate,
and versatile tool for the scientific community. Its demonstrated
high accuracy, robust cross-species applicability, and potential for
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discovering novel coding events from both alternative isoforms
and the non-coding genome underscore its value in advancing
our understanding of translation regulation and discovering novel
protein products in diverse biological contexts.
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