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Introduction: Translation initiation and termination are critical regulatory 
checkpoints in protein synthesis, yet accurate computational prediction of their 
sites remains challenging due to training data biases and the complexity of 
full-length transcripts.
Methods: To address these limitations, we present TRANSAID (TRANSlation AI for 
Detection), a novel deep learning framework that accurately and simultaneously 
predicts translation initiation (TIS) and termination (TTS) sites from complete 
transcript sequences. TRANSAID’s hierarchical architecture efficiently processes 
long transcripts, capturing both local motifs and long-range dependencies. 
Crucially, the model was trained on a human transcriptome dataset that was 
rigorously partitioned at the gene level to prevent data leakage and included 
both protein-coding (NM) and non-coding (NR) transcripts.
Results: This mixed-training strategy enables TRANSAID to achieve high fidelity, 
correctly identifying 73.61% of NR transcripts as non-coding. Performance is 
further enhanced by an integrated biological scoring system, improving “perfect 
ORF prediction” for coding sequences to 94.94% and “correct non-coding 
prediction” to 82.00%. The human-trained model demonstrates remarkable 
cross-species applicability, maintaining high accuracy on organisms from 
mammals to yeast. Beyond annotation, TRANSAID serves as a powerful 
discovery tool for novel coding events. When applied to long-read sequencing 
data, it accurately identified previously unannotated protein isoforms validated 
by mass spectrometry (76.28% validation rate). Furthermore, homology searches 
of high-scoring ORFs predicted within NR transcripts suggest a strong potential 
for identifying cryptic translation events. 
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Discussion: As a fully documented open-source tool with a user-friendly web 
server, TRANSAID provides a powerful and accessible resource for improving 
transcriptome annotation and proteomic discovery.

KEYWORDS

translation site prediction, deep learning, open reading frame, integrated scoring 
system, cross-species analysis, transcriptome annotation 

1 Introduction

Translation initiation and termination represent critical 
regulatory checkpoints in protein synthesis, fundamentally 
determining both the quantity and diversity of the cellular proteome 
(Sonenberg and Hinnebusch, 2009; Jackson et al., 2010). The 
dysregulation of translation is implicated in a wide array of 
human pathologies, including cancer (Jiang et al., 2021; Truitt 
and Ruggero, 2016), neurodegenerative disorders (Skariah and 
Todd, 2021), and viral infections (Garcia‐Moreno et al., 2018). 
Consequently, the translation machinery has emerged as a 
promising target for therapeutic intervention, with inhibitors 
targeting initiation factors showing potential as anticancer agents 
(Andreev et al., 2012). Furthermore, the discovery of cryptic 
translation events, which produce immunogenic peptides from 
previously unannotated regions, has opened new avenues for cancer 
immunotherapy (Li et al., 2024). Aberrant transcripts in cancer can 
serve as a rich source of tumor neoantigens; however, identifying 
their protein products is a significant bottleneck, necessitating 
high-accuracy prediction algorithms to bridge the gap between 
transcriptomic data and proteomic validation (Ji et al., 2025).

The precise identification of translation initiation sites 
(TIS) and termination sites (TTS) is therefore essential for 
elucidating gene expression mechanisms and characterizing 
the full complexity of cellular proteomes (Ingolia et al., 2009). 
Recent advancements in long-read sequencing technologies, 
such as those from Pacific Biosciences and Oxford Nanopore, 
have significantly enhanced our ability to capture full-length 
transcript sequences (Wenger et al., 2019; Workman et al., 2019). 
While these technologies provide an unprecedented view of the 
transcriptome’s diversity, they also highlight a critical challenge: 
accurately identifying functional translation sites within novel 
transcripts that lack established annotations (Chen et al., 2020). The 
ever-expanding repository of transcript data thus demands robust 
and scalable computational approaches that can reliably predict 
translation sites de novo.

The regulation of translation in eukaryotes presents multiple 
layers of complexity. While the classical scanning model 
proposes that initiation typically occurs at the first AUG codon 
encountered by the ribosome (Kozak, 1986), mounting evidence 
reveals widespread use of alternative initiation codons and the 
functional importance of upstream open reading frames (uORFs), 
which significantly modulate the expression of primary ORFs 
(Starck et al., 2016; Spealman et al., 2018). Translation initiation 
is a highly context-dependent process, profoundly influenced by 
sequence motifs like the Kozak consensus sequence and intricate 
RNA secondary structures within the 5′ untranslated region 
(Hinnebusch et al., 2016; Kozak, 2005). Further complicating this 

landscape is the recent discovery of functional micropeptides 
translated from transcripts previously classified as non-coding 
RNAs (ncRNAs), challenging the conventional binary distinction 
between coding and non-coding genes (van Heesch et al., 2019). 
This biological complexity is compounded by epitranscriptomic 
modifications, such as N6-methyladenosine (m6A), which create a 
dynamic regulatory network that fine-tunes translation efficiency in 
response to cellular cues (Tian et al., 2021).

Computational approaches to translation prediction have 
evolved substantially to address these challenges. Early methods 
relied on statistical models and sequence-based features, such 
as the position weight matrices used by NetStart (Pedersen 
and Nielsen, 1997) and ATGpr (Salamov et al., 1998). 
Subsequent machine learning approaches, including support vector 
machines used in tools like StartCodon (Liu and Wong, 2003) 
and TISRover (Saeys et al., 2007), integrated a broader range 
of features but often faced scalability limitations with large 
transcriptomic datasets.

More recently, deep learning has emerged as a powerful 
paradigm for this task (Wang et al., 2025). Tools such as 
TITER employ sophisticated architectures, like a combination 
of convolutional and recurrent neural networks (CNN-BiLSTM), 
to achieve high precision in scoring candidate TIS locations 
(Zhang et al., 2017). However, as a specialized TIS predictor, TITER 
does not identify the corresponding TTS, and thus cannot predict 
the full ORF or its protein product. On the other end of the 
spectrum, statistical model-based tools like GeneMarkS-T utilize 
Hidden semi-Markov Models (HSMMs) with an unsupervised self-
training strategy to parse full transcripts into coding and non-
coding regions (Tang et al., 2015). While robust, these models 
may not capture the complex, non-linear sequence patterns that 
deep learning architectures excel at. The more recent deep learning 
framework, TranslationAI, utilizes a CNN to predict TIS-TTS pairs 
from full-length transcripts (Fan et al., 2025). However, a critical 
limitation of many existing methods, including TranslationAI, is 
their insufficient training on non-coding (NR) transcripts. This 
biases the models toward overpredicting translation events, resulting 
in a high rate of false positives when analyzing the vast non-coding 
transcriptome.

Despite these advances, current approaches often exhibit one 
or more significant limitations: a persistent bias towards protein-
coding sequences, the independent prediction of TIS and TTS 
without enforcing biological constraints, substantial computational 
demands, struggles with processing full-length transcripts without 
truncation, and inadequate integration of known biological features.

To address these limitations, we present TRANSAID, a 
comprehensive deep learning framework for the simultaneous 
prediction of TIS and TTS pairs from full-length eukaryotic 
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transcripts. TRANSAID employs a hierarchical architecture 
combining embedding layers with dilated convolutions and residual 
connections, enabling efficient and accurate processing of complete 
transcripts while capturing both local motifs and long-range 
dependencies. Crucially, by training on a balanced dataset of both 
coding (NM) and non-coding (NR) transcripts and implementing 
a novel biologically-informed scoring system, TRANSAID 
significantly reduces false positive predictions and improves overall 
accuracy. In this study, we demonstrate TRANSAID’s superior 
performance, its ability to generalize across species, its capacity 
to learn fundamental biological rules, and its practical application 
in novel protein discovery. 

2 Materials and methods

2.1 Dataset preparation and splitting

Data Source and Initial Processing: All transcript sequences 
and annotations used in this study were sourced from the 
UCSC Genome Browser database. We downloaded the human 
reference transcripts FASTA file (GRCh38_latest_rna.fna) and 
the corresponding comprehensive gene annotation file (GRCh38_
latest_rna.gbff), which are based on the GRCh38/hg38 assembly. 
This curated dataset utilizes RefSeq identifiers (e.g., NM_, NR_) 
while employing the chr chromosome naming convention.

From the annotation file, we parsed and extracted essential 
information for each transcript, including its unique identifier 
(without the version suffix), the corresponding gene symbol, and, 
for protein-coding transcripts, the start and end coordinates of its 
primary coding sequence (CDS).

Transcript Classification and Dataset Splitting: Transcripts were 
classified into two primary categories based on their RefSeq 
identifier prefix: protein-coding (transcripts with NM_ prefixes) 
and non-coding (transcripts with NR_ prefixes). It is noteworthy 
that some transcripts annotated as non-coding may contain 
functional small open reading frames (sORFs). While we did 
not exclude these potential sORF-containing transcripts from 
the non-coding set during training, we address this biological 
complexity through a dedicated downstream analysis presented in 
the Results section (Supplementary Table S1).

To ensure a rigorous and unbiased evaluation of our model’s 
generalization capability, the entire dataset was partitioned at the 
gene level. All transcript isoforms belonging to a single gene 
were exclusively assigned to only one of the data splits. This 
strict partitioning prevents data leakage between the training and 
evaluation sets, a critical step for validating model performance 
on unseen genes rather than merely on unseen isoforms. The 
dataset was split into a training set (80% of genes) and a 
held-out validation/test set (20% of genes). This 80:20 split 
was chosen to maximize the amount of data available for 
model training while retaining a substantial, independent set for 
robust performance assessment. All final performance metrics and 
comparisons reported in this study were evaluated on this 20% 
held-out set.

Data Encoding and Representation: For model input, RNA 
sequences were transformed into numerical format using integer 
encoding, where A, C, G, T/U were mapped to 1, 2, 3, and 

4, respectively. Ambiguous nucleotides (N) and padding were 
mapped to 0. When combined with an embedding layer, this 
integer encoding, is generally considered to offer computational 
and memory efficiency benefits over traditional one-hot encoding, 
especially for long sequences. This approach transforms sparse, 
high-dimensional representations into dense, lower-dimensional 
vectors that are often more computationally tractable and capable 
of capturing relevant sequence patterns (Mikolov et al., 2013; Asgari 
and Mofrad, 2015; Yue and Wang, 2018).

Output labels were represented as three-dimensional one-
hot vectors for each nucleotide position, corresponding to three 
mutually exclusive classes: translation initiation site (TIS) as [1,0,0], 
translation termination site (TTS) as [0,1,0], and non-special 
positions as [0,0,1]. This encoding scheme ensures that there 
is no ordinal relationship between the classes. To accommodate 
the varying lengths of transcripts, a maximum sequence length 
was determined based on the 99.9th percentile of the human 
transcriptome length distribution (27,112 nt). Shorter sequences 
were padded with the 0 value to this length, while longer sequences 
were truncated. 

2.2 TRANSAID model architecture

The TRANSAID model implements a hierarchical deep learning 
architecture that integrates a neural network for sequence analysis 
with a downstream biological feature scoring system (Figure 1A). 
The deep learning component is composed of four main 
modules, designed to efficiently process full-length transcripts and 
capture both local and global sequence features. The architecture 
is based on the TRANSAID_Embedding model from our
training scripts. 

1. Sequence Embedding Layer: This initial module maps the 
discrete integer-encoded input sequence into a continuous, 
high-dimensional vector space. It consists of an embedding 
layer that transforms each nucleotide integer (0–4) into a 
128-dimensional vector representation. The padding_idx = 0 
parameter ensures that all padded positions have a zero vector 
representation. Preventing them from contributing to the 
gradient during training. The 128-dimensional embedding 
vectors for each nucleotide (A, C, G, T/U) are initially 
randomly generated. These vectors are then iteratively 
learned and optimized through backpropagation during the 
model training process, allowing them to capture nuanced 
biochemical and structural properties relevant to translation 
initiation and termination.

2. Local Feature Extraction Module: This initial module is 
designed to extract fundamental local sequence features from 
the high-dimensional nucleotide embeddings. It consists of 
a single 1D convolutional layer (self.conv1) with an input 
channel dimension of 128 (from the embedding layer) and an 
output of 32 filters, using a kernel width of 3 and padding = 
“same”. The output of this convolutional layer is then subjected 
to Batch Normalization (self.bn1) and a ReLU activation 
function (self.relu). This sequential process transforms the 
128-dimensional embedding into a 32-dimensional feature 
map, capturing basic, short-range local sequence patterns (e.g., 
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specific nucleotide triplets or signals) and introducing non-
linearity.

3. Global Feature Interaction Module: To capture long-range 
dependencies across the entire transcript, this module 
employs a deep stack of residual blocks with dilated 
convolutions (Supplementary Figure S1). The architecture 
consists of three sequential stages, each comprising four 
ResidualBlock units.

Stage 1: This stage takes the 32-dimensional feature map 
from the Local Feature Extraction Module. It comprises four 
ResidualBlock units, each utilizing 1D convolutions with a kernel 
width of 26 and a dilation rate of 1.

Dimension Expansion 1: Following Stage 1, a 1x1 convolutional 
layer (self.conv2) is applied, which increases the feature map 
dimensionality from 32 to 64. This operation is immediately 
succeeded by Batch Normalization (self.bn2) and a ReLU activation.

Stage 2: The 64-dimensional feature map from the previous 
expansion then feeds into this stage. It also consists of four 
ResidualBlock units, but here, the 1D convolutions use a kernel 
width of 26 and a progressively increased dilation rate of 2.

Dimension Expansion 2: After Stage 2, another 1x1 
convolutional layer (self.conv3) is used to further increase the 
feature map dimensionality from 64 to 128. This is also followed 
by Batch Normalization (self.bn3) and a ReLU activation.

Stage 3: The highest-dimensional feature map (128-
dimensional) enters this final stage. It contains four ResidualBlock 
units, where the 1D convolutions use an even larger kernel width of 
36 and the highest dilation rate of 5.

Within each ResidualBlock unit (detailed in Supplementary 
Figure S1), residual connections facilitate effective gradient flow 
during training. The progressively increasing dilation rates (1, 
2, 5) within the stages, combined with large kernel widths 
(26 and 36), exponentially expand the receptive field without 
increasing computational cost, enabling the model to learn complex 
relationships between distant TIS and TTS signals across the entire 
RNA transcript. The intermittent 1x1 convolutions serve to increase 
the feature channel depth between stages (32 → 64 → 128), enhancing 
the model’s capacity to represent richer, more abstract long-range 
features. 

4. Output Decoding Module: The final module maps the 
high-level 128-dimensional feature representations back to 
the three-class prediction space. It consists of two 1x1 
convolutional layers that reduce the feature dimensionality 
(128 → 32 → 3), with a ReLU activation in between. The 
final output is a tensor of shape (batch_size, seq_len, 3), 
representing the logits for the TIS, TTS, and non-special 
classes for each nucleotide position.

2.3 Model training

Model training was conducted on an NVIDIA H100 GPU. We 
trained two main models for our analyses: a TrainNMonly model 
trained exclusively on protein-coding (NM) transcripts, and the final 
TRANSAID model trained on a mixed dataset of both NM and non-
coding (NR) transcripts. All hyperparameters were kept consistent 
between the two training runs.

The model was trained for a maximum of 50 epochs with a 
batch size of 4. We used the Adam optimizer with an initial learning 
rate of 0.001. A learning rate decay scheduler was implemented to 
reduce the learning rate by a factor of 0.5 if the validation loss did 
not improve for 3 consecutive epochs. To prevent overfitting, an 
early stopping mechanism was employed, terminating the training 
process if the validation loss on the 20% held-out set did not improve 
for 5 consecutive epochs. The loss function was a standard cross-
entropy loss applied to the three output classes. The model state from 
the epoch with the lowest validation loss was saved as the final best 
model for all subsequent evaluations. 

2.4 Integrated scoring system

While the deep learning model provides nucleotide-level 
probabilities, translating these into the single, most biologically 
significant Open Reading Frame (ORF) per transcript is a non-trivial 
challenge that requires an additional layer of logic. To address this, 
we developed an integrated scoring system that first identifies all 
potential ORFs satisfying hard biological constraints (e.g., triplet 
codon structure) and then scores these candidates by combining 
model-derived probabilities with established biological heuristics. 
This system serves as a probabilistic ranking function to select the 
most plausible ORF. For each potential ORF, an Integrated_Score is 
calculated from five components, each normalized to a 0–1 scale. 

2.4.1 Feature components
1. TIS Probability (TISprob): The raw probability for the start 

codon as predicted by the TRANSAID deep learning model.
2. TTS Probability (TTSprob): The raw probability for the stop 

codon as predicted by the TRANSAID deep learning model.
3. Kozak Sequence Score (Kozak_score): The Kozak sequence is 

evaluated across specified positions relative to the start codon 
using a position weight matrix (PWM). Each position’s score 
is calculated as the probability of the base being present at 
that position, derived from human genomic sequences with 
effective translation initiation sites.

Kozakscore = ΠP(basei|positioni) × 10000

  kozak_pwm = {
 −6: {‘A’: 0.22, ‘C’: 0.28, ‘G’: 0.32, ‘T’: 0.18},
 −5: {‘A’: 0.20, ‘C’: 0.30, ‘G’: 0.30, ‘T’: 0.20},
 −4: {‘A’: 0.18, ‘C’: 0.32, ‘G’: 0.30, ‘T’: 0.20},
 −3: {‘A’: 0.25, ‘C’: 0.15, ‘G’: 0.45, ‘T’: 0.15},
 −2: {‘A’: 0.20, ‘C’: 0.35, ‘G’: 0.25, ‘T’: 0.20},
 −1: {‘A’: 0.20, ‘C’: 0.35, ‘G’: 0.25, ‘T’: 0.20},
 0: {‘A’: 1.00, ‘C’: 0.00, ‘G’: 0.00, ‘T’: 0.00}, # A of ATG
 1: {‘A’: 0.00, ‘C’: 0.00, ‘G’: 0.00, ‘T’: 1.00}, #T of ATG
 2: {‘A’: 0.00, ‘C’: 0.00, ‘G’: 1.00, ‘T’: 0.00}, #G of ATG
 3: {‘A’: 0.20, ‘C’: 0.20, ‘G’: 0.40, ‘T’: 0.20}
 }
Here, signifies the product over each base, and P(basei|positioni)

represents the probability of base at position. For example, 
P( ″A″| − 6) = 0.22 indicates a 0.22 probability of an ‘A’ being at 
position −6. 
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FIGURE 1
TRANSAID Architecture and Performance on Human Transcripts. (A) Schematic of the TRANSAID framework. The model processes RNA sequences 
through an embedding layer and a hybrid convolutional neural network (CNN) with residual blocks. The output probabilities are integrated with 
biological scores (Kozak context, CAI) through a weighted system to predict final ORFs. (B) Position-level performance of the TrainNMonly model, 
showing high F1-scores for TIS and TTS identification. (C,D) ORF-level performance of the TrainNMonly model on protein-coding (NM) and 
non-coding (NR) transcripts, respectively. The model achieves 93.06% “Perfect ORF” prediction on NM transcripts but correctly identifies only 49.09% 
of NR transcripts as non-coding. (E,F) Performance of the Train (NM + NR) model, which shows a slight decrease in “Perfect ORF” prediction (90.25%) 
but a substantial improvement in “Correct Non-coding” classification (73.61%). (G) Comparison of training strategies, demonstrating the superior 
overall and balanced accuracy of the mixed Train (NM + NR) model.
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4. Codon Adaptation Index (CAIscore): CAI provides a measure 
of codon usage bias relative to a set of highly expressed genes 
and is calculated via:

CAIscore = (
L

∏
i=1

wi)

1
L

Here, L represents the total number of codons in the identified 
Open Reading Frame (ORF), and wi is the relative adaptiveness 
value for the i-th codon. Steps include ORF identification, division 
into codons, looking up relative adaptiveness values for each codon, 
calculating geometric means, and normalizing the score. 

5. GC Content Score (GCscore): GC content is evaluated by 
determining the proportion of G and C nucleotides within a 
potential ORF sequence:

GCscore = 2× e−0.5×((GCcontent−0.42)/0.2)2 − 1

This scoring uses a Gaussian model to convert GC content rates 
into normalized scores. 

2.4.2 Integrated score calculation
The Integrated Score for each ORF is calculated by combining 

feature scores with predefined weights, following:

Integratedscore = wTIS ×TISprob +wTTS ×TTSprob

+wKozak ×Kozakscore

+wCAI ×CAIscore +wGC ×GCscore
 

2.4.3 Data-driven weight optimization
To ensure the robustness and objectivity of the scoring 

system, the weights (w) and the final decision threshold were 
not set arbitrarily but were optimized through a data-driven 
approach. We performed an extensive grid search on the 
independent validation set (20% of genes) to identify the parameter 
combination that maximized the standard accuracy. This process 
systematically evaluated over 160,000 unique parameter sets. 
The results of this optimization confirmed that the model’s 
TIS/TTS probabilities are the most influential features and 
validated the contribution of the biological heuristics. A sensitivity 
analysis demonstrated that the system’s performance is stable 
across a plateau of near-optimal parameter values, underscoring 
its robustness (Supplementary Figure S2). The final, optimized 
parameters (wTIS = 0.30, wTTS = 0.50, wKozak = 0.04, wCAI = 0.04, 
wGC = 0.00, and a threshold of 0.635) were used for all subsequent 
analyses presented in this study.

The final Integrated Score for each ORF is calculated by 
combining the four impactful feature scores with their data-driven 
weights, following the refined formula:

Integratedscore = 0.3×TISprob + 0.5×TTSprob + 0.04

×Kozakscore + 0.04×CAIscore
 

2.5 Performance evaluation and 
benchmarking

The performance of all models was evaluated on the 
independent 20% test set of human genes. We defined a 
comprehensive set of metrics at the ORF level for both coding 
and non-coding transcripts, including Perfect ORF (defined as the 
precise rightly identification of both the 3-nucleotide TIS and TTS 
codons), Correct TIS incorrect TTS, Correct TTS incorrect TIS, 
Other Errors, Correct Non-coding, and False ORF.

To contextualize TRANSAID’s performance, we benchmarked 
it against three state-of-the-art tools: TranslationAI, GeneMarkS-T, 
and TITER. To ensure a fair and direct comparison, all tools were 
run with their default parameters on the same evaluation datasets. 
For the six non-human species, the complete set of NM and NR 
transcripts was used for evaluation. For the human benchmark, a 
special test set was created for each tool by excluding any transcripts 
that were part of its original training dataset, thus guaranteeing 
that each model was evaluated on data it had not seen before. 
Performance was primarily evaluated using the “Perfect ORF” 
(defined as a prediction where the final ORF, after adjustment by the 
integrated scoring system, correctly matches the annotated TIS and 
TTS.) and “Correct Non-coding” metrics. 

2.6 Cross-species and experimental 
validation

To evaluate the cross-species applicability of the human-trained 
TRANSAID model, we collected comprehensive transcriptomic 
data from six additional model organisms spanning a wide 
evolutionary range. All data were downloaded from the NCBI 
Reference Sequence (RefSeq) database. For each species, we 
obtained the full set of curated transcript sequences (rna.fna.gz) 
and their corresponding annotations (rna.gbff.gz). The species and 
specific assemblies included in our analysis were: 

1. Mus musculus (Mouse) - GRCm39 assembly
2. Danio rerio (Zebrafish) - GRCz11 assembly
3. Drosophila melanogaster (Fruit Fly) - Release 6 plus ISO1 

MT assembly
4. Caenorhabditis elegans (Nematode) - WBcel235 assembly
5. Arabidopsis thaliana (Thale Cress) - TAIR10.1 assembly
6. Saccharomyces cerevisiae (Yeast) - R64 assembly

For each species, transcripts were classified as protein-coding 
(NM) or non-coding (NR) based on their RefSeq annotations and 
processed through the TRANSAID prediction pipeline. 

2.7 Experimental validation with 
proteomics data

To validate TRANSAID’s utility in novel protein discovery, we 
analyzed publicly available PacBio Iso-Seq and mass spectrometry 
(MS) data from Jurkat T-cells (Miller et al., 2022). Full-length 
transcript sequences were processed by TRANSAID using an 
Integrated_Score cutoff of 0.50 to predict a non-redundant set 
of 17,046 protein sequences. These predicted proteins were then 
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used as a custom reference database. We subsequently mapped 
the experimentally identified MS peptides from the original study 
against this database to determine the validation rate, assessing 
the percentage of our predicted proteins supported by direct 
peptide evidence. 

2.8 Code and data availability

The TRANSAID software, including source code, trained 
models, and usage documentation, is freely available on GitHub 
at https://github.com/wuzengding/TRANSAID. For complete 
reproducibility of our study, the TRANSAID_training_latest branch 
contains all scripts used for model training, performance evaluation, 
data analysis, and figure generation. A user-friendly web server for 
online prediction is accessible at http://58.242.248.157:6005/. 

3 Results

3.1 TRANSAID achieves high accuracy on 
human transcripts through mixed training 
and integrated scoring

3.1.1 Training strategy and performance on 
human transcripts

The development of TRANSAID began with a meticulously 
prepared human transcriptome dataset sourced from the UCSC 
Genome Browser, ensuring a robust foundation for model 
training and evaluation. This dataset comprised both manually 
curated protein-coding (NM) and non-coding (NR) transcripts, 
meticulously partitioned at the gene level into distinct training 
(80%) and held-out validation/test (20%) sets to prevent data 
leakage and enable unbiased performance assessment. Prior to 
training, transcript sequences were integer-encoded and labeled 
with three-dimensional one-hot vectors for TIS, TTS, and non-
special positions, accommodating transcript length variations 
up to 27,112 nucleotides (99.9th percentile) through padding or 
truncation (Supplementary Figure S3A).

Initial model training focused exclusively on protein-coding 
transcripts (NM class), resulting in the TrainNMonly version 
of TRANSAID. This model demonstrated strong classification 
capabilities at the nucleotide level. A confusion matrix analysis of 
its performance on 13,415 human NM test transcripts revealed 
exceptionally high F1-scores of 96.34% for TIS, 98.54% for TTS, 
and nearly 99.99% for non-translation sites (Figure 1B). Converting 
these nucleotide-level metrics to an Open Reading Frame (ORF) 
level assessment provided a more holistic view of translation 
prediction accuracy. The TrainNMonly model achieved a “Perfect 
ORF Prediction” (defined as the precise right identification of both 
the 3-nucleotide TIS and TTS codons) rate of 93.06% for NM 
transcripts, indicating complete agreement between predicted and 
actual TIS/TTS positions across the entire transcript. Furthermore, 
0.83% of transcripts exhibited “Near-Perfect ORF Prediction” 
(minimal errors with single nucleotide deviations), while 0.98% 
had correctly predicted TIS only, and 3.67% had correctly 
predicted TTS only (Figure 1C).

However, a critical limitation emerged when this TrainNMonly 
model was applied to predict ORFs in human non-coding 
(NR) transcripts. We observed a significantly elevated false 
positive rate at the nucleotide level, where numerous non-
special sites were misclassified as TIS or TTS, resulting in poor 
prediction metrics (Supplementary Figures S3c,d). This substantial 
overprediction suggested a fundamental bias inherent in training 
exclusively on protein-coding data. This underlying misclassification 
at the nucleotide level led to a significantly elevated false positive 
rate at the ORF level, with only 49.09% of NR transcripts 
correctly identified as non-coding (Figure 1D). Alarmingly, 24.31% 
of NR transcripts were erroneously predicted to contain complete 
ORFs (False ORF), while 11.31% were incorrectly predicted 
to contain only TTS, and 4.81% only TIS. This substantial 
overprediction of translation events in non-coding sequences 
suggested a fundamental bias inherent in training exclusively 
on protein-coding data. Such a model, lacking exposure to the 
diverse characteristics of non-coding transcripts during training, 
struggles to accurately distinguish genuine translation signals from 
spurious motifs in non-coding contexts, leading to artificially 
inflated translation predictions.

To address this limitation and improve the model’s ability to 
differentiate between truly coding and non-coding sequences, we 
subsequently trained the Train (NM + NR) model. This version 
integrated 18,462 NR transcripts into the training dataset alongside 
NM transcripts, ensuring both types were proportionally distributed 
across each training batch. Re-evaluation of the Train (NM + NR) 
model’s performance confirmed the effectiveness of this mixed 
training strategy. While the “Perfect ORF Prediction” rate for NM 
test data marginally decreased from 93.06% to 90.25% (Figure 1E), 
this slight reduction in coding accuracy was offset by a substantial 
improvement in non-coding classification. The proportion of NR 
transcripts correctly identified as non-coding dramatically increased 
from 49.09% to 73.61% (Figure 1F). When combining both NM 
and NR test data, the model’s overall accuracy improved from 
82.42% to 86.94%. Furthermore, to account for the inherent 
class imbalance in the test set (where NM transcripts are more 
numerous), we constructed a balanced test set with equal numbers 
of NM and NR samples. On this balanced set, the Train (NM 
+ NR) model’s Balanced Accuracy improved by 11.08%, from 
71.49% to 82.57% (Figure 1G), unequivocally demonstrating the 
critical importance of incorporating both coding and non-coding 
transcripts during the training phase to develop a robust and 
accurate translation site prediction model. 

3.1.2 Optimizing ORF selection with an 
integrated scoring system

Despite the significant overall performance enhancement 
achieved by the Train (NM + NR) model, approximately 10% of 
transcripts still presented incorrect classifications. To further refine 
our predictions and address these residual errors, we developed an 
integrated scoring system. This system leverages an additional layer 
of biological logic to enhance accuracy, moving beyond a simple 
maximum-probability selection. 

3.1.2.1 Analysis of prediction errors
A detailed analysis revealed that the nature and severity of 

these prediction errors varied. For instance, in “Near-Perfect ORF 
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Predictions” for protein-coding (NM) transcripts, only 1-2 out of 
6 nucleotide positions might be incorrect, while the remaining 4-
5 positions were correctly identified. Such minor deviations, often 
correctable using prior biological knowledge of codon structure, 
differ fundamentally from Correct TIS, incorrect TTS Prediction or 
Correct TTS, incorrect TIS Prediction errors. Similarly, Incorrect 
TIS-only Prediction errors in non-coding (NR) transcripts might 
involve only 2-3 nucleotides incorrectly predicted as TIS without 
corresponding TTS sites – errors that could potentially be filtered 
using the biological constraint that functional ORFs require a 
termination codon. To develop comprehensive validation and 
filtering rules, we performed a detailed error pattern analysis at the 
nucleotide level.

We extracted and quantified the most frequent error patterns 
observed in both incorrectly predicted NM and NR transcripts 
(Figures 2A,B). For NM transcripts, the top 10 error patterns 
included instances where no positions were predicted as TIS/TTS 
(−), or partial predictions like ATG- (TIS predicted, no TTS). The 
most frequent pattern (−), accounting for 16.90% of all errors, 
represented transcripts where no positions were predicted as 
TIS/TTS. Upon examining the probability distributions at each 
position for these transcripts, we frequently found significantly 
elevated probabilities at true TIS/TTS sites compared to surrounding 
regions (Supplementary Figure S4A,B). For example, in transcript 
NM_001003684 (Figure 2A; Table 1), positions 30–32 showed 
ProbTIS values of 0.03–0.06, and positions 216–218 showed 
ProbTTS values of 0.13–0.9, both significantly higher than 
surrounding regions.

However, these positions were ultimately classified as non-
TIS/TTS due to the softmax operation’s tendency to inflate Probnon-
TIS/TTS values, often exacerbated by class imbalance in the training 
data. Case-by-case examination (detailed in Supplementary File A) 
revealed that such false negatives in NM transcripts primarily 
resulted from the softmax operation’s stringent maximum-value 
selection criterion.

For NR transcripts, the top error pattern was ATG-
TGA-, representing 23.81% of errors, indicating frequent 
erroneous prediction of a complete ORF. Detailed examination 
(as shown in Supplementary Figure S4C–F, and further 
summarized in Supplementary File B) revealed that many apparent 
TIS-TTS pairs in non-coding transcripts did not form valid triplet 
codons, suggesting that a simple codon structure verification could 
effectively filter numerous false positives. 

3.1.2.2 Developing the integrated scoring system
These observations highlighted the need for a more 

sophisticated post-prediction filtering approach, beyond a simple 
maximum-probability selection. To refine ORF prediction and 
enhance overall accuracy, we developed an integrated scoring system 
leveraging multiple biologically-informed metrics. This system 
assigns a quantitative “Integrated_Score” to each candidate ORF, 
allowing for straightforward ranking and selection of the most 
plausible translation events based on a combined assessment of 
deep learning predictions and established biological heuristics. 
To visualize the probability distributions, we plotted the three 
probability values for positions with ProbTIS >0.001 and ProbTTS 
>0.001 (Figures 2C–E). Both distributions exhibited an initial 
plateau for probabilities <0.01, followed by rapid growth between 

0.01–0.75, and another plateau above 0.75. The presence of a 
“gray zone” in the 0.01–0.75 range indicated the need for more 
sophisticated thresholding approaches.

We incorporated additional biologically-informed metrics 
into our prediction framework. The Kozak sequence context 
is crucial for authentic TIS identification (Kozak, 2005), with 
specific scoring methods established (Grzegorski et al., 2014). The 
Codon Adaptation Index (CAI) reflects codon usage bias related to 
translation efficiency (Sharp and Li, 1987), with genuine protein-
coding sequences exhibiting species-specific CAI distributions. 
Additionally, GC content and CDS length provide discriminative 
power, as functional coding sequences generally maintain species-
appropriate GC content and exceed minimum length thresholds 
(Pozzoli et al., 2008; Swinburne et al., 2006). We compared 
the distributions of these metrics between true positive ORFs 
(in NM transcripts) and false positive ORFs (predicted in NR 
transcripts) (Figures 2F–K), observing significant differences, 
especially in TIS/TTS probabilities, Kozak score, CAI, and GC 
content, which provided the empirical basis for our integrated 
scoring system. 

3.1.2.3 Application and performance improvement
The Integrated_Score is calculated as a weighted sum of the 

model’s predicted TIS and TTS probabilities, along with Kozak 
score, CAI score, and GC content score. Each component is 
normalized to a 0–1 scale before integration (Section 2.4). We 
constructed ROC curves to determine the optimal threshold 
for filtering ORF candidates, which validated against annotated 
ORFs across both NM and NR transcripts (Figure 2L). Analysis 
revealed an optimal cutoff value of 0.5. Applying this recommended 
cutoff significantly improved performance compared to the raw 
softmax-derived approach. For NM transcripts, “Perfect ORF 
Prediction” increased from 90.25% to 94.94%, while for NR 
transcripts, “Correct Non-coding Prediction” improved from 
73.61% to 82.00% (Figures 2M,N). These results unequivocally 
demonstrate that our integrated biological feature scoring system 
effectively leverages both model predictions and biological 
knowledge to enhance ORF identification accuracy, particularly 
in reducing false positives among non-coding sequences. 

3.2 Perturbation experiments reveal 
TRANSAID has learned fundamental 
principles of translation

To ascertain whether TRANSAID’s predictive power stems 
from a deep understanding of biological principles or merely 
from learning superficial sequence patterns, we conducted a series 
of systematic perturbation experiments. By introducing targeted 
modifications into different regions of both protein-coding (NM) 
and non-coding (NR) transcripts from the human test set, we could 
assess the model’s sensitivity to changes that either respect or violate 
fundamental rules of translation. To isolate the direct effects of 
sequence alterations on the neural network’s learning, all evaluations 
in this section were performed using the raw model output, prior to 
the application of the integrated scoring system. These experiments 
provide compelling insights into the features the model has learned 
to recognize as critical for defining a functional open reading frame 
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FIGURE 2
Error Analysis and Performance Optimization with Integrated Scoring. (A,B) Frequency distribution of error patterns in incorrectly predicted NM and NR 
transcripts. (C–E) Probability distributions for TIS, TTS, and non-TIS/TTS states across all nucleotide positions with a signal probability >0.001. The 
overlapping distributions highlight the limitations of a maximum-value selection approach. (F–K) Comparative distributions of key biological metrics 
between true positive ORFs (in NM transcripts) and false positive ORFs (predicted in NR transcripts), providing the basis for the integrated scoring 
system. (L) ROC curve analysis of the final Integrated_Score on the validation set, demonstrating its strong discriminatory power (AUC = 0.957). The 
optimal threshold determined by maximizing Youden’s J is marked. (M,N) The integrated scoring system with an optimized threshold (0.52) significantly 
boosts “Perfect ORF Prediction” on NM transcripts from 90.25% to 94.94% and “Correct Non-coding Prediction” on NR transcripts from 
73.61% to 82.00%.

3.2.1 Effects of UTR mutations on protein-coding 
transcript prediction

We first investigated the model’s response to alterations within 
the untranslated regions (UTRs) of NM transcripts. We introduced 

random 1, 2, and 3 base-pair insertions and deletions at arbitrary 
positions within the 5′UTR and 3′UTR. The results revealed a 
distinct differential sensitivity. Modifications within the 3′UTR had 
a negligible impact on the model’s performance; the “Perfect ORF 
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TABLE 1  Probability matrix for NM_001003684 at key positions.

Pos[PrabTIS,  PrabTIS,   Prabnon−TIS/TTS ]

30 [3.314e− 02,1.099e− 04,9.667e− 01]

31 [6.293e− 02,1.729e− 04,9.368e− 01]

32 [4.755e− 02,1.027e− 04,9.523e− 01]

216 [1.005e− 05,1.334e− 01,8.666e− 01]

217 [1.341e− 04,9.223e− 02,9.076e− 01]

218 [3.026e− 05,1.171e− 01,8.827e− 01]

Prediction” rate remained exceptionally stable at approximately 
90.24%, nearly identical to the baseline performance on unmodified 
sequences (Figure 3A, compare with Figure 1E). This robustness 
suggests that the model correctly learned that the precise nucleotide 
sequence of the 3′UTR, barring major structural changes, has 
minimal direct influence on the definition of the primary ORF’s 
boundaries.

In stark contrast, the model exhibited higher sensitivity to 
changes in the 5′UTR. While 1 bp alterations had a modest effect, 
2 and 3 bp insertions led to a discernible, albeit slight, reduction 
in “Perfect ORF Prediction” accuracy to 89.93% (Figure 3B). This 
heightened sensitivity aligns perfectly with established biological 
knowledge: the 5′UTR is a critical regulatory region containing 
essential elements for translation initiation, including the Kozak 
consensus sequence and binding sites for initiation factors, which 
guide the ribosome to the correct start codon. The model’s response 
indicates that it has learned to recognize the importance of sequence 
integrity in this region.

To further probe the significance of nucleotide arrangement 
versus mere composition, we performed more substantial 
perturbation experiments involving complete shuffling of the UTR 
sequences while preserving their GC content. Shuffling the entire 
3′UTR sequence resulted in a moderate decrease in prediction 
accuracy to 87.45%. However, shuffling the 5′UTR sequence 
caused a dramatic drop in “Perfect ORF Prediction” to just 74.31% 
(Figure 3D). This nearly 16-percentage-point decrease upon 5′UTR 
shuffling provides unequivocal evidence that TRANSAID has 
learned to recognize specific, position-dependent sequence motifs 
and structural contexts within the 5′UTR that are indispensable for 
proper TIS identification, a finding consistent with the known roles 
of elements like uORFs and IRESs (Hinnebusch et al., 2016). 

3.2.2 Extreme sensitivity to frameshift mutations 
in the CDS

Next, we assessed the model’s sensitivity to mutations within 
the coding sequence (CDS) itself. The results of this experiment 
were striking and provided the strongest evidence that TRANSAID 
has internalized the triplet nature of the genetic code. When 1 
or 2 base-pair insertions or deletions were introduced—mutations 
that cause a frameshift—the model’s performance was severely 
compromised. “Perfect ORF Prediction” rates plummeted to a mere 
15.67%–16.45% from the original 90.25% (Figure 3C). This extreme 
sensitivity demonstrates that the model recognizes that frameshift 

mutations lead to a catastrophic alteration of the downstream amino 
acid sequence, typically resulting in premature stop codons and 
non-functional protein products.

Conversely, when in-frame 3 bp insertions or deletions 
were introduced, the model displayed remarkable robustness. 
Performance remained high, with “Perfect ORF Prediction” rates 
of 85.14% and 88.78%, respectively (Figure 3C). This tolerance 
to in-frame mutations shows that the model understands that 
such changes correspond to the insertion or deletion of a single 
amino acid, a modification that often preserves the integrity of the 
overall protein structure and function. This differential response 
to in-frame versus out-of-frame mutations strongly mirrors their 
biological consequences (Singh and Jain, 2015) and serves as 
powerful validation that TRANSAID’s learning extends beyond 
simple pattern matching to encompass the fundamental logic of the 
genetic code. 

3.2.3 Robustness of non-coding transcript 
classification

Finally, we applied similar perturbations to non-coding (NR) 
transcripts to test whether random sequence alterations could 
induce erroneous ORF predictions. For these transcripts, which 
lack defined UTR and CDS regions, we designated the terminal 
5% of the sequence as “5′UTR-like,” the middle 90% as “CDS-
like,” and the terminal 5% as “3′UTR-like.” Across nearly all 
experiments, including small insertions/deletions and complete 
shuffling of the UTR-like regions, the model’s performance was 
virtually unaffected. The “Correct Non-coding Prediction” rate 
remained stable at approximately 73.60%, matching the baseline 
performance (Figures 3E–H, compare with Figure 1F). Only minor 
reductions in accuracy were observed for 3 bp modifications in the 
“CDS-like” region and shuffling of the “3′UTR-like” region.

This stability is highly significant. It demonstrates that 
TRANSAID’s classification of a transcript as non-coding is not 
based on the mere absence of start/stop codon patterns, but on 
a more holistic assessment of whether the sequence possesses 
the genuine, complex features compatible with translation. The 
fact that random mutations do not easily convert a non-coding 
transcript into a coding one in the model’s view reflects biological 
reality and highlights the sophistication of the features learned by 
TRANSAID. Collectively, these perturbation experiments confirm 
that TRANSAID has captured several fundamental principles of 
translation machinery, including the triplet codon architecture, the 
regulatory importance of the 5′UTR, and the contextual features 
that robustly distinguish translatable from non-translatable RNA 
molecules. 

3.3 TRANSAID demonstrates robust 
cross-species generalization

A critical measure of a predictive model’s utility is its 
ability to generalize beyond the data it was trained on. To 
assess the extent to which our human-trained TRANSAID model 
learned evolutionarily conserved principles of translation, we 
evaluated its performance on the transcriptomes of six additional 
eukaryotic species, spanning a wide evolutionary divergence from 
humans: Mus musculus, Danio rerio, Drosophila melanogaster, 
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FIGURE 3
Exploring TRANSAID’s Learned Translation Features via Sequence Perturbation. (A,B) Performance on NM transcripts after introducing 1-3 bp insertions 
and deletions into 3′UTR and 5′UTR regions. Modifications to the 3′UTR had a negligible effect, while 5′UTR alterations caused a slight reduction in 
accuracy. (C) Performance after CDS region modifications. Single and double base-pair alterations causing frameshifts dramatically reduced accuracy 
to ∼16%, whereas in-frame 3 bp alterations maintained high performance (∼85%). (D) Shuffling the 5′UTR caused a more significant performance drop 
(74.31% “Perfect ORF”) compared to shuffling the 3′UTR (87.45%), underscoring the importance of 5′UTR sequence motifs. (E–H) Performance on NR 
transcripts remained stable across most perturbation experiments, demonstrating the model’s robustness in correctly identifying non-coding 
sequences.

Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces 
cerevisiae. The comprehensive results of this cross-species analysis 
are summarized in Figure 4.

For the prediction of protein-coding (NM) transcripts, 
TRANSAID demonstrated remarkable and robust performance, 
underscoring the deep conservation of the core translation 
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FIGURE 4
Comprehensive cross-species performance of TRANSAID. A heatmap summarizing the performance of the human-trained TRANSAID model across six 
additional eukaryotic species, ordered by decreasing evolutionary relatedness to humans. Performance is stratified into protein-coding (NM, left panel) 
and non-coding (NR, right panel) transcripts. For NM transcripts, the “Correct ORF” metric demonstrates robust accuracy across vertebrates with a 
gradual decline in distant species. Conversely, for NR transcripts, the “Correct Non-coding” accuracy improves significantly as species diverge from 
humans. Numerical values represent the percentage of transcripts in each category, with color intensity corresponding to the percentage value.

machinery across eukaryotes. The model achieved a “Correct ORF” 
(defined as a prediction where the final ORF, after adjustment by 
the integrated scoring system, correctly matches the annotated 
TIS and TTS) prediction rate of 92.1% in Mus musculus, a 
performance nearly on par with that observed in humans (94.9%). 
As expected, this accuracy exhibited a gradual and modest decline 
with increasing evolutionary distance, remaining high in Danio rerio
(91.9%) and Drosophila melanogaster (86.9%), and still maintaining 
strong performance in the highly divergent Caenorhabditis elegans
(84.6%), Arabidopsis thaliana (87.6%), and Saccharomyces cerevisiae
(90.5%) species. This trend reflects the subtle divergence in species-
specific translation regulatory mechanisms, such as codon usage 
bias and local sequence motifs, yet affirms that the fundamental 
features learned by TRANSAID are largely universal across the 
eukaryotic domain.

Intriguingly, the model’s performance on non-coding (NR) 
transcripts revealed an inverse trend. The accuracy of “Correct 
Non-coding” prediction, a measure of the model’s ability to 
correctly reject non-translatable sequences, improved significantly 
with increasing evolutionary distance from humans (Figure 4, right 
panel). While the accuracy for the closely related Mus musculus
was 79.2%, it rose to 90.2% in Danio rerio, 93.4% in Drosophila 

melanogaster, and peaked at over 97% in the most distant species, 
Caenorhabditis elegans (98.1%), Arabidopsis thaliana (97.6%), and 
Saccharomyces cerevisiae (98.5%).

This seemingly counterintuitive pattern provides a key insight 
into the model’s learning process. The human-trained model has 
learned to distinguish human coding sequences from human non-
coding sequences. As species diverge, their non-coding RNAs tend 
to evolve much more rapidly in sequence and structure than 
their protein-coding genes (Ulitsky, 2016). Consequently, the non-
coding transcripts of distant species like Saccharomyces cerevisiae
become increasingly dissimilar to the complex, signal-rich patterns 
of human protein-coding transcripts. For the model, these highly 
divergent NR sequences present a less ambiguous negative signal, 
making them easier to classify correctly as non-coding. Conversely, 
the NR transcripts of closer relatives like Mus musculus may 
retain more sequence artifacts or conserved non-coding elements 
that superficially resemble features of human coding regions, thus 
posing a more difficult classification challenge. This robust cross-
species performance not only highlights TRANSAID’s powerful 
generalization capabilities but also underscores its sophisticated 
capture of evolutionarily conserved features of the translation 
machinery. 
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3.4 TRANSAID outperforms 
state-of-the-art tools in key aspects

To rigorously assess TRANSAID’s performance in the context 
of existing technologies, we conducted a comprehensive benchmark 
against three state-of-the-art tools: TranslationAI, a contemporary 
deep learning framework; GeneMarkS-T, a widely-used statistical 
method based on Hidden semi-Markov Models; and TITER, a 
specialized deep learning tool for TIS prediction. We first performed 
a qualitative comparison of their functional capabilities, followed by 
a quantitative performance evaluation on the same independent test 
set across all seven eukaryotic species.

The functional comparison, summarized in Figure 5A, 
highlights significant differences in the scope and utility of each tool. 
While all methods are capable of predicting TIS, their end-to-end 
capabilities vary substantially. Specialized tools like TITER focus 
exclusively on TIS identification and do not provide predictions for 
TTS or the full ORF. In contrast, TRANSAID, TranslationAI, and 
GeneMarkS-T are all designed to predict complete ORFs. However, 
among these, only TRANSAID and GeneMarkS-T are designed 
for local execution on large datasets, as TranslationAI’s web server 
limits batch processing. Critically, TRANSAID is the only tool in this 
comparison that provides a comprehensive, end-to-end workflow, 
integrating a user-friendly web server for both single and batch 
analysis with the direct output of translated protein products, a 
feature essential for downstream proteomic analyses.

Quantitative benchmarking on the independent test set 
further revealed TRANSAID’s superior performance in key 
areas (Figure 5B). For the task of predicting ORFs in protein-
coding (NM) transcripts, we measured the percentage of “Perfect 
ORF” predictions, where both the TIS and TTS must be 
identified with single-nucleotide precision. The results, shown 
in the top panel of Figure 5B, demonstrate a clear performance 
advantage for deep learning-based methods. Both TRANSAID 
and TranslationAI consistently and significantly outperformed the 
statistical model-based GeneMarkS-T across all seven species. For 
instance, in Homo sapiens, TRANSAID achieved a “Perfect ORF” 
rate of 94.9%, comparable to TranslationAI’s 95.4%, while both were 
substantially higher than GeneMarkS-T’s 66.0%. This trend holds 
across the evolutionary spectrum, underscoring the power of deep 
learning architectures to capture the complex sequence patterns 
governing translation boundaries more effectively than traditional 
probabilistic models.

The most striking performance difference was observed in the 
critical task of correctly identifying non-coding (NR) transcripts, a 
known challenge for translation prediction tools. As shown in the 
bottom panel of Figure 5B, TRANSAID demonstrated consistently 
superior accuracy in this domain. In Homo sapiens, TRANSAID 
correctly classified 82.0% of NR transcripts as non-coding, 
outperforming both TranslationAI (66.5%) and GeneMarkS-T 
(42.3%). This advantage was also in the closely related Mus musculus, 
where TRANSAID’s accuracy (79.2%) was significantly higher than 
that of TranslationAI (65.9%) and GeneMarkS-T (45.8%). While the 
performance gap narrowed in more evolutionarily distant species 
where NR sequences are more distinct, TRANSAID maintained 
a competitive or leading edge across the board. This superior 
specificity in distinguishing non-coding transcripts is a direct 
result of TRANSAID’s mixed-training strategy and robust feature 

learning, positioning it as a more reliable tool for transcriptome-
wide annotation, particularly in complex vertebrate genomes where 
the potential for false positive ORF predictions is high. 

3.5 Experimental validation and discovery 
of novel coding events

Beyond computational benchmarks, a crucial test of a 
prediction tool’s real-world utility is its ability to identify translated 
products that can be validated by experimental evidence. To assess 
TRANSAID’s performance in this capacity, we applied it to two 
distinct discovery-oriented tasks: identifying proteins from novel, 
long-read transcript isoforms and exploring the cryptic coding 
potential of annotated non-coding (NR) transcripts.

First, we evaluated TRANSAID’s ability to annotate the 
proteome from a complex, experimentally derived transcriptome. 
We used a publicly available dataset from Jurkat T-cells comprising 
both PacBio Iso-Seq full-length transcripts and corresponding high-
resolution mass spectrometry (MS) data (Miller et al., 2022). After 
processing the novel transcripts with TRANSAID and performing 
redundancy removal, we generated a custom database of 17,046 
predicted protein sequences. We then mapped the experimentally 
identified MS peptides from the original study against this database. 
The results showed a strong validation rate: a significant 76.28% 
(13,002 out of 17,046) of our predicted proteins were supported by 
direct peptide evidence. Conversely, 91.13% of all experimentally 
identified peptides mapped back to our predicted protein set, 
indicating high coverage (Figure 6A). Furthermore, the integrated 
scores of the MS-validated proteins were significantly higher than 
those of the unvalidated proteins, suggesting our scoring system 
effectively prioritizes true positives (Figure 6B).

This validation extended to the discovery of novel protein 
isoforms. For example, TRANSAID successfully predicted protein 
sequences for three novel isoforms of the APEH gene that 
were not present in the UniProt database. These isoforms 
contained a unique amino acid sequence derived from a retained 
intron. Critically, we identified a peptide in the MS data that 
mapped uniquely to this novel intron-derived region, providing 
direct experimental confirmation of a previously unannotated 
translation event (Figure 6C). This demonstrates TRANSAID’s 
power in augmenting proteomic databases by accurately translating 
novel isoforms discovered through long-read sequencing.

Second, we investigated the model’s potential to uncover novel 
coding events from transcripts conventionally considered non-
coding. To move beyond sequence similarity and provide a more 
stringent validation, we implemented a genomic coordinate-based 
analysis. We intersected the genomic coordinates of high-confidence 
ORFs predicted by TRANSAID within NR transcripts with those 
of experimentally validated small proteins from the SmProt2 High-
Confidence database.

The results, summarized in the revised Supplementary Table S1, 
confirm that a subset of these predictions corresponds to bona fide, 
annotated sORFs. In Homo sapiens, we identified 114 predicted NR-
ORFs that directly overlap with known sORF entries, corresponding 
to a 7.42% validation rate against the comprehensive SmProt 
human dataset. In Mus musculus, 8 such events were confirmed 
(0.60% validation rate). The lower validation rate in mouse and the 
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FIGURE 5
Comparative Analysis of ORF Prediction Tools. (A) A feature comparison of TRANSAID against leading ORF prediction tools. Capabilities are evaluated 
across methodology and functional outputs. Checkmarks (✔) indicate full support, while crosses (✘) indicate a lack of support. (B) Quantitative 
performance comparison of TRANSAID, TranslationAI, and GeneMarkS-T across seven eukaryotic species. The top panel measures “Correct ORF” 
prediction accuracy on NM transcripts, where both deep learning models (TRANSAID and TranslationAI) significantly outperform the statistical 
model-based GeneMarkS-T. The bottom panel measures “Correct Non-coding” accuracy on NR transcripts, where TRANSAID demonstrates 
consistently superior performance, particularly in vertebrates.
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FIGURE 6
Validation of TRANSAID Predictions with Proteomic Evidence. (A) Coverage analysis of TRANSAID’s predictions on novel Jurkat T-cell transcripts 
against mass spectrometry (MS) data. 76.28% of the non-redundant proteins predicted by TRANSAID were supported by peptide evidence (“References 
Covered”), and 91.13% of all experimentally identified peptides mapped to our predicted protein set (“Queries Mapped”). (B) Distribution of 
Integrated_Score values for MS-validated (“Mapped”) versus unvalidated (“Unmapped”) proteins, demonstrating that our scoring system effectively 
prioritizes true positives. (C) A case study of novel isoform discovery for the APEH gene. TRANSAID correctly predicted a protein isoform containing a 
unique sequence from a retained intron (middle panel), which was subsequently confirmed by a unique peptide identified in the MS data (bottom 
panel). (D,E) Validation of cryptic sORF predictions from non-coding (NR) transcripts via genomic coordinate analysis. Representative multiple 
sequence alignments show that protein sequences translated from TRANSAID-predicted ORFs in human (D) and mouse (E) NR transcripts exhibit high 
identity to experimentally validated small proteins from the SmProt database that are annotated at the same genomic loci.
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absence of matches in species like Drosophila melanogaster are likely 
attributable to the significantly smaller number of curated sORFs 
available in SmProt for these organisms (383 for mouse and only 
11 for fruit fly, compared to 8,654 for human), rather than a lack of 
model performance.

To visually confirm the validity of these coordinate-based 
matches, we performed multiple sequence alignments of the 
translated protein sequences. As shown in representative examples 
for both Homo sapiens (Figure 6D) and Mus musculus (Figure 6E), 
the amino acid sequences predicted by TRANSAID show perfect 
or near-perfect identity to the curated SmProt entries, providing 
unequivocal evidence of correct predictions. The complete list of 
all 122 validated NR transcripts is available in Supplementary File 2 
(SmProt2_matched_NR.transcripts.xlsx).

This rigorous, location-aware analysis reframes a significant 
portion of the model’s apparent “false positives” as valuable and 
validated discoveries. It highlights TRANSAID’s capability as a 
powerful tool for exploring the cryptic coding landscape of the non-
coding genome, moving beyond annotation to genuine discovery. 

4 Discussion

In this study, we introduced TRANSAID, a novel deep 
learning framework that addresses several persistent challenges 
in computational translation prediction. Our comprehensive 
evaluations demonstrate that TRANSAID achieves exceptional 
performance in identifying translation sites across diverse 
transcript types and species. Through a combination of a robust 
model architecture, a strategic mixed-training approach, and a 
sophisticated integrated scoring system, whose parameters were 
systematically optimized in a data-driven manner, TRANSAID 
offers significant advantages over existing methods.

A key innovation of TRANSAID is its ability to process 
full-length transcripts in an end-to-end manner, simultaneously 
predicting both TIS and TTS pairs while enforcing biological 
constraints. This holistic approach contrasts with specialized 
tools like TITER, which focus solely on TIS identification, and 
circumvents the limitations of window-based methods that may 
fail to capture long-range dependencies. Furthermore, the strategic 
inclusion of both protein-coding (NM) and non-coding (NR) 
transcripts during training proved to be a critical decision. As our 
results show (Figure 5B), this mixed-training strategy substantially 
improves the model’s ability to distinguish genuine translation 
events from spurious sequence patterns, leading to a marked 
reduction in false positive predictions on NR transcripts compared 
to both TranslationAI and the statistical model-based GeneMarkS-
T. This enhanced specificity is crucial for accurate transcriptome-
wide annotation, particularly in complex genomes with vast non-
coding regions.

Our sequence perturbation experiments provided compelling 
insights into the model’s inner workings, revealing that TRANSAID 
has learned fundamental principles of translation beyond superficial 
pattern matching (Figure 3). The model’s extreme sensitivity to 
frameshift mutations, contrasted with its tolerance for in-frame 
modifications, demonstrates its implicit understanding of the 
triplet genetic code. Similarly, the differential impact of 5′UTR 
versus 3′UTR modifications aligns with the established biological 

understanding that 5′UTR regions contain critical regulatory 
elements for translation initiation (Hinnebusch et al., 2016). These 
findings suggest that TRANSAID has developed a sophisticated, 
context-aware representation of translation-compatible features. 
This learned knowledge base likely contributes to its strong 
cross-species generalization. Despite being trained primarily on 
human data, the model maintained robust performance across 
organisms from mammals to fungi (Figure 4), This indicates that 
TRANSAID has captured deeply conserved, fundamental features 
of the translation machinery that are shared across a vast range of 
eukaryotic life (Merrick and Pavitt, 2018).

Perhaps one of the most significant applications of TRANSAID 
is its potential as a discovery engine for novel coding events. 
The synergy between long-read sequencing and accurate de novo
translation prediction opens new frontiers for proteogenomics. Our 
analysis of experimental data from Jurkat T-cells demonstrated 
this capability, where TRANSAID not only validated a high 
percentage (76.28%) of its predictions with mass spectrometry 
evidence but also successfully identified previously unannotated 
protein isoforms arising from events like intron retention (Figure 6). 
Moreover, our investigation into the ORFs predicted within NR 
transcripts provides intriguing, albeit preliminary, evidence for 
the discovery of cryptic sORFs. The finding that a substantial 
fraction (7.42% in humans) of these predicted micropeptides show 
homology to proteins in SmProt (Supplementary Table S1) suggests 
that many of the model’s apparent “false positives” may in fact be 
biologically significant, unannotated coding events. While further 
experimental validation is required, this highlights TRANSAID’s 
potential to systematically mine the non-coding transcriptome 
for novel functional elements, a task of growing importance in 
functional genomics (Ruiz-Orera and Albà, 2019).

Despite its strong performance, TRANSAID has several 
limitations that represent avenues for future development. First, 
the current model is primarily trained to recognize canonical 
AUG start codons. While it can identify some alternative initiation 
events, its sensitivity could be enhanced through explicit training on 
experimentally verified non-AUG TIS and re-initiation sites, such as 
those cataloged from ribosome profiling studies (Kahles et al., 2018). 
Second, our framework does not yet explicitly model complex 
translation phenomena like programmed ribosomal frameshifting 
or stop-codon read-through, which contribute to proteome 
diversity. Incorporating models of these events would be a valuable 
future enhancement. Third, our data-driven optimization revealed 
that some canonical biological features like GC content become 
redundant when paired with a powerful deep learning model. 
This suggests that future work could focus on incorporating 
more complex, orthogonal information, such as predicted RNA 
secondary structures (Lin et al., 2022),which may provide novel 
predictive power. Finally, its application to prokaryotic systems 
would require modifications to account for distinct mechanisms 
like Shine-Dalgarno sequence-based initiation.

In conclusion, TRANSAID represents a significant advance in 
computational translation prediction. By addressing the critical 
limitations of existing approaches—including training data bias, the 
inability to process full-length transcripts, and a lack of integrated 
biological constraints—TRANSAID provides a powerful, accurate, 
and versatile tool for the scientific community. Its demonstrated 
high accuracy, robust cross-species applicability, and potential for
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discovering novel coding events from both alternative isoforms 
and the non-coding genome underscore its value in advancing 
our understanding of translation regulation and discovering novel 
protein products in diverse biological contexts.
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