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Introduction: Colon cancer is a common disease, treated with few 
chemotherapeutic agents with similar treatment sequencing despite its 
heterogeneity. A significant proportion of patients are diagnosed with 
metastasis, and resistance to antineoplastic drugs is associated with 
disease progression and therapeutic failure. It is known that the tumor 
microenvironment plays an essential role in cancer progression, contributing to 
processes that may be associated with therapeutic resistance mechanisms in 
colon cancer. In this study, we aim to identify a gene expression signature and 
its relationship with immune cell infiltration in colon cancer, contributing to the 
identification of potential resistance biomarkers.
Methods: An in silico study was conducted using RNA-seq data from The Cancer 
Genome Atlas Program (TCGA) samples, subdivided into two groups (treatment-
resistant and non-resistant), taking into account the molecular subgroups 
(CMS1, CMS2, CMS3, and CMS4). The following algorithms were used: i. Limma
was applied to identify differentially expressed genes; ii. WGCNA was applied to 
construct co-expression networks; iii. CIBERSORT was applied to estimate the 
proportion of infiltrating immune cells; and iv. TIMER was applied to explore the 
relationship between core genes and immune cell content.
Results: Twenty differentially expressed genes (DEGs) were found, with 
18 related to the group considered resistant to oncologic treatment and 
presenting poorer overall survival. T CD4 memory resting cells and M0 and 
M2 macrophages were found in more significant proportions in the analyzed 
samples and more infiltrated in the tumor microenvironment, the higher the 
expression of some of these resistance DEGs. Additionally, these genes correlate 
with biological aspects of neuronal differentiation, axogenesis, and synaptic 
transmission.
Conclusion: The gene expression signature suggests the presence of 
differentially expressed synaptic membrane genes, which may be involved in 
neuronal pathways that influence the tumor microenvironment, potentially
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serving as future biomarkers. Furthermore, the presence of M0 and M2 
macrophages and T CD4 memory resting cells suggests a potential interaction 
that may play a role in therapeutic resistance.

KEYWORDS

colon cancer, therapeutic resistance, gene expression profile, prognosis, biomarkers, 
computational biology, tumor microenvironment 

1 Introduction

Colon cancer is the third most common cancer and the 
second leading cause of cancer-related death worldwide, with 
approximately 30% of patients diagnosed at an advanced stage 
and up to 50% developing metastatic disease, even when 
diagnosed at earlier stages (Sung et al., 2021; Malvezzi et al., 
2018; Cervantes et al., 2023). Most patients with advanced disease 
have a median overall survival of approximately 37 months in 
the best prognostic scenario and a median progression-free 
survival of 10–13 months in first-line treatment and 4 months 
in second-line treatment, highlighting the impact of therapeutic 
resistance (Douillard et al., 2014; Heinemann et al., 2014; 
Cervantes et al., 2023; Shinozaki et al., 2021; Sobrero et al., 2008; 
Grothey et al., 2013; Mayer et al., 2015). It is widely recognised 
that colon tumors exhibit significant heterogeneity, both intra and 
intertumorally, as well as temporally and across metastatic sites 
(Morris and Strickler, 2021; Chen et al., 2023). Despite of this, 
most patients receive similar treatment sequences. Currently, no 
biomarkers are available in clinical practice to predict chemotherapy
resistance.

Several mechanisms are associated with resistance to 
anticancer drugs, which may be linked to genetic alterations 
in tumor cells and patient-specific characteristics. These 
mechanisms range from poor drug absorption, rapid 
metabolism, and treatment intolerance to specificities of 
the tumor microenvironment, such as drug metabolism 
by non-tumor cells, blood supply, neovascularization, and 
how tumor cells interact (Pluen et al., 2001; Green, Frankel, 
and Kerbel, 1999; Gottesman, 2002). To date, research has 
predominantly focused on tumor cells in the search for 
biomarkers. However, tumors are influenced by molecular 
interactions with immunomodulatory functions within the tumor 
microenvironment. This immunomodulation is dynamically 
regulated by cell-to-cell interactions, soluble factors secreted by 
cells, extracellular matrix-mediated and microbiome interactions, 
all of which foster a pro-tumoral niche (Plundrich et al., 
2022). Gene expression can be assessed through transcriptomic 
analyses of tumor samples to understand these processes better 
and identify potential strategies to block pro-tumoral stimuli
(Hoadley et al., 2014).

Between 2012 and 2014, six groups proposed molecular 
subclassifications of colorectal cancer based on public gene 
expression databases, such as TCGA and GEO (Marisa et al., 
2013; Sadanandam et al., 2013; Schlicker et al., 2012; Sousa et al., 
2013; Budinska et al., 2013; Roepman et al., 2014). These 
efforts were unified in 2015, resulting in the consensus of 
four molecular subtypes: CMS1 (immune), CMS2 (canonical), 
CMS3 (metabolic), and CMS4 (mesenchymal) (Guinney et al., 

2015). However, this subclassification is not yet used in clinical 
practice due to high costs, overlapping characteristics between 
subgroups, and the lack of direct correlation between each 
subgroup and treatment response patterns (Cohen et al., 
2020). Therefore, it is valuable to explore the transcriptomic 
characteristics of these subtypes, considering patterns of resistance 
or sensitivity to chemotherapy, to translate the knowledge of 
CMS subgroups into more practical clinical markers, such as 
immunohistochemical or NGS-based markers. Furthermore, it 
is essential to identify specific treatment responses or resistance
patterns.

This study aims to evaluate the gene expression profile and 
immune cell populations in colon cancer, considering treatment 
progression and molecular subgroups, to contribute to the 
identification of potential biomarkers of therapeutic resistance. 

2 Materials and methods

The flowchart of the study steps is presented in Figure 1.

2.1 Data collection

Gene expression profiles and clinical data of patients with colon 
cancer were downloaded from the cBioPortal website (https://
www.cbioportal.org). The following criteria were defined in the 
database selection tool: age >18, metastatic disease, available data 
on time to progression at first-line treatment, and molecular data 
with transcriptomics. (Supplementary Table S1). The data reflected 
the period of TCGA’s collection, during which standard first-
line treatment was based solely on 5-FU–based chemotherapy, 
with limited variability in median progression-free survival, 
even with the addition of anti-EGFR or anti-VEGF agents. 
The 9-month cutoff was chosen to classify patients into non-
resistant or resistant subgroups, based on the median progression-
free survival reported in several pivotal trials of metastatic 
colorectal cancer treatment (Douillard et al., 2010; Douillard et al., 
2014; Heinemann et al., 2014; Heinemann et al., 2021;
Van Cutsem et al., 2009). 

2.2 CMS subtype classification and 
deconvolution of immune cell profiles

RNA-seq data from 111 colorectal cancer samples, 
obtained from Bioconductor, were normalized using FPKM 
and mapped with the hg133plus2.db annotation, considering 
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FIGURE 1
Flowchart of the in silico study methods.

only protein-coding genes. Sample classification into CMS 
subtypes was performed using the CMScaller tool (version 2.0.1)
(Eide et al., 2017).

Immune cell subtype characterization was conducted using 
CIBERSORT-X (cibersortx.stanford.edu) (Steen et al., 2020), 
which employs the LM22 gene signature matrix, consisting of 
547 genes that accurately distinguish 22 immune cell types. After 
RNA-seq data normalization, immune profiles were obtained 
by calculating absolute scores. The Wilcoxon rank-sum test was 
used to compare immune cell proportions between resistant and 
non-resistant groups. To evaluate the association between DEG 
expression levels and immune cell infiltration, we used the TIMER 
platform, which is limited to data from the overall TCGA cohort 
and does not provide information restricted to metastatic cases. 
We considered that exploring these correlations in the entire 
TCGA dataset would provide a more biologically representative 
landscape, as a larger sample size increases the robustness of the 
analysis and may better capture the interactions between gene 
expression and the tumor microenvironment across different 
biological contexts of colorectal cancer. To assess the relationship 
between immune cell proportions and the expression of the most 
relevant DEGs, and to validate the findings obtained from TIMER, 

we performed correlation analyses using two complementary 
statistical methods: Spearman’s and Kendall’s correlation
coefficients. 

2.3 Identification of differentially expressed 
genes (DEGs)

Raw count and gene expression data were accessed using 
the R package TCGABiolinks (version 2.28.3) (installed through 
https://www.bioconductor.org). Genes in the matrix were annotated 
using information from the Affymetrix Human Genome U133 Plus 
2.0 Array annotation data. We remove genes without annotation, 
and only those classified as protein-coding were retained for 
analysis. For genes with multiple spots, the one with the highest 
variance was selected. Differential gene expression analysis was 
performed by constructing a summarized object using the edgeR 
package (version 3.42.4). To ensure the inclusion of only relevantly 
expressed genes, those with counts per million (CPM) below the 
cutoff value (cutoff = 1) were excluded. The Limma-voom package 
(version 3.56.2) was used to analyze gene expression differences 
between non-resistant and resistant samples (Ritchie et al., 2015). 
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Upregulated and downregulated DEGs were identified by filtering 
genes with an adjusted p-value <0.05 and |log2| fold change 
[LFC|] > 1.5. 

2.4 Weighted gene co-expression network 
analysis

A co-expression network was built to investigate the correlation 
between expression and clinical outcomes of interest. DEGs 
were selected for weighted gene co-expression network analysis 
using the R package WGCNA (version 1.73) (Langfelder and 
Horvath, 2008). The gene expression matrix was converted to an 
adjacent matrix using Pearson’s correlation coefficient. The soft-
thresholding power was determined using the PickSoftThreshold
function to ensure a scale-free network. Then, the topological 
overlap matrix was calculated according to the corresponding 
soft-thresholding power (β = 3) (Supplementary Figure S1A). 
Hierarchical clustering was performed to identify the modules 
of densely interconnected genes (Supplementary Figure S1B). 
The correlation between the module eigengene (ME), which 
represents the first principal component of the module, and the 
clinical traits of breast cancer was calculated to identify clinically 
significant modules. Individual genes’ module membership 
(MM) values were used to screen for hub genes. Module 
membership (MM) was defined as the correlation between 
individual gene expression profiles and the ME of a given module. 
The initial gene validation comprised a comparative analysis of 
tumoral and non-tumoral relative gene expression and a survival 
investigation. 

2.5 Pathway and functional enrichment 
analysis

The functions of the biological gene modules were investigated 
using Gene Ontology (GO) enrichment analysis. Functional 
annotation was complemented by the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database, which included genomic, chemical, 
functional, and metabolic information (Kanehisa et al., 2010). GO 
and KEGG analyses were performed using the DAVID (https://
david-d. ncifcrf.gov/) database. The p < 0.05 value was estimated 
to consider the GO and the statistically significant functional 
enrichment. 

2.6 Survival analysis

Initial survival analysis was performed using the R package for 
each DEG in the selected TCGA bank data.

Kaplan-Meier survival curves were generated to estimate overall 
survival in treatment-resistant and non-resistant groups. The log-
rank test was used to assess differences between the survival 
distributions of these groups. The analysis was performed in the 
R programming environment, using the survival packages (version 
3.8.3) to create and visualize the survival curves. Survival times were 
measured in months, and a p-value <0.05 was considered statistically 
significant. 

3 Results

3.1 Identification of differentially expressed 
genes

For this study, the public database TCGA Firehose Legacy 
(COADREAD/20160128) and PanCancer Atlas available on 
cBioPortal were analyzed (Gao et al., 2013; Cerami et al., 2012), 
which included 1,232 patients with colon cancer. After excluding 
participants with missing data or duplicates, 111 patients with 
metastatic colon cancer remained for analysis. They were subdivided 
as follows: 73 patients were classified as non-resistant (disease 
progression after 9 months of initial treatment), and 38 were 
classified as resistant (disease progression within 9 months of initial 
treatment). Regarding CMS classification, 14, 30, 18, and 32 patients 
were included in CMS1, CMS2, CMS3, and CMS4, respectively 
(Figure 2A). These data were not available for 17 patients. No 
statistically significant difference between the proportion of 
resistant/non-resistant patient samples and the CMS groups was 
identified (Figure 2B). Still, higher percentage of resistant patients 
was observed in the CMS1 (42,9%) and CMS4 (37,5%) subgroups. 
The gene set analysis for each subgroup confirmed previously known 
characteristics: CMS1 was enriched for alterations in DNA repair 
pathways/microsatellite instability, MYC, and cell cycle pathways; 
CMS2 showed upregulation of MYC and cell cycle pathways and 
downregulation of microsatellite instability; CMS3 exhibited more 
significant upregulation of cellular differentiation and fatty acid 
pathways; and CMS4 was enriched for TGF-beta signaling pathways, 
TEM, and showed poor enrichment for differentiation pathways, 
cell cycle, MYC, and MSI (Figure 2C). In the Kaplan-Meier analysis, 
we observed a statistically significant difference in overall survival 
between the resistant and non-resistant patient groups (Figure 2D).

Through differential gene expression analysis using 
transcriptome data from RNA sequencing of the 111 samples 
described above, 20 differentially expressed genes were identified 
(Figures 3A,B) and a difference in gene expression profiles between 
the Resistant and Non-Resistant groups: 18 genes were upregulated 
in the therapeutic resistance group (CREG2, LRFN1, ANKRD1, 
GRIK4, CFAP61, NRCAM, CST2, SP9, VAX2, EPHX3, GPC5, 
CRABP2, RAMP1, LMX1B, CGA, TMPRSS11E, GSG1L, HOXC13), 
and two genes were upregulated in the treatment response group 
(MYRIP and LGALS9C) (Figure 3A).

3.2 Co-expression gene modules 
identification

The WGCNA algorithm was used to determine the DEGs 
co-expression gene network. The soft-threshold power (β) was 
set to three to ensure a scale-free network and the power 
fit index reached was 0.89 (Langfelder and Horvath, 2008). 
Gene co-expression network analysis resulted in eight modules, 
represented by green, black, red, yellow, turquoise, blue, brown, 
and gray colors (Figure 3C). The gene co-expression modules 
were correlated, and the molecular characteristics were classified 
according to resistance or non-resistance phenotypes and CMS 
subgroups: two modules (turquoise and red) were associated with 
the resistance phenotype. In contrast, one module (green) was more 
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FIGURE 2
Distribution and characteristics of the study population sample. (A) Baseline distribution of consensus molecular subtypes (CMS1–CMS4) in the cohort
(B) Proportion of patients classified as resistant (progression within 9 months of treatment) and non-resistant (progression after 9 months of treatment) 
within each CMS group, with values normalized to 100% across all subtypes. (C) Heatmap showing the results of gene set analysis based on mRNA 
sequencing, confirming the known characteristics of each CMS group. Color spectrum: red indicates upregulation, and blue indicates downregulation.
(D) KM survival curve for overall survival between resistant and non-resistant groups. MSI, microsatellite instability; HNF4A, hepatocyte nuclear factor 4 
alpha; MSS, microsatellite stability; MYC, pathway related to the c-Myc proto-oncogene; WNT, pathway related to the WNT protein-coding gene; 
CDX2, caudal-type homeobox 2; LGR5, leucine-rich repeat-containing G-protein coupled receptor 5; TGF-β, transforming growth factor beta; EMT, 
epithelial-mesenchymal transition.

associated with the non-resistance phenotype. The turquoise module 
was more closely associated with CMS1 and CMS4 subgroups, 
whereas the green module was associated with CMS2 and CMS3
(Figure 3D). 

3.3 Co-expression network and DEGs

After describing the most relevant communities in each 
phenotypic group, differentially expressed genes in the modules 
of interest for resistance and non-resistance were identified, 
and their connections to these modules were evaluated. Gene 
significance and MM aid in this connectivity assessment. As 
represented in Figures 3E–G, RAMP1, CRABP2, NRCAM, CST2, 
EPHX3, GPC5, LRFN1, CGA, VAX2, TMPRSS11E, HOXC13, 
CREG2 and CFAP61 correlates in the turquoise module, and 
GSG1L, LMX1B, and SP9 correlate in the red module, while MYRIP 
is found in the green module.

Moreover, some of these genes exhibit greater intramodular 
connectivity with the module. For example, RAMP1 showed a 
module membership value closest to 1 among the other identified 
DEGs, while ANKRD1 showed greater gene significance for 
resistance in the turquoise module (Figure 3E). Similarly, GSG1L 
has the highest module membership among the identified DEGs 
in the red module, and the DEGs found in the red module and 
the green module exhibit greater gene significance for resistance 
and non-resistance, respectively, compared to the other genes in 
the modules (Figures 3F,G).

Similarly, DEGs in the modules of interest about the CMS 
subtypes were sought. DEGs from the resistance group (CRABP2, 
RAMP1, VAX2, CREG2, NRCAM, ANKRD1, EPHX3, CST2, CGA, 
LRFN1, CFAP61, TMPRSS11E, HOXC13, GPC5, GRIK4) were 
observed in the turquoise module related to CMS1 and CMS4, 
while the non-resistance DEG (MYRIP) was found in the green 
module for CMS2 and CMS3, as represented in Figures 3H,I. The 
gene LGALS9C, more highly expressed in our non-resistant group, 
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FIGURE 3
Co-expression network and DEGs. (A) Volcano plot highlighting the identified DEGs, comparing Resistant (left) and Non-Resistant (right) groups, logFC 
>2 and pValue <0.05. (B) Heatmap showing the identified DEGs and their relationship across groups (Non-Resistant, Resistant, and CMS1, CMS2, CMS3, 
CMS4); positively regulated genes are shown in red, and negatively regulated genes in blue. (C) Dendrogram of gene distribution in co-expression 
modules. (D) Heatmap representing the correlation strength between gene co-expression modules and the analysis categories. (E) Turquoise module 
about the resistance phenotype. (F) Red module about the resistance phenotype. (G) Green module about the non-resistant phenotype. (H) Turquoise 
module about the CMS4 phenotype. (I) Green module about the CMS2-CMS3 phenotype. The DEGs found in each community are highlighted in 
orange as potential cellular markers. DEG, differentially expressed gene; ME, Module eigengenes.
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was found in the turquoise module associated with CMS1-CMS4; 
however, it had a low module membership value and low gene 
significance (Figure 3H). 

3.4 Biological aspects related to gene 
communities (gene ontology)

The turquoise and red modules were analyzed about the 
biological systems associated with the genes due to their 
characteristics linked to the therapeutic resistance profile. In both 
cases, the biological processes with statistical significance (p < 
0.05) and the presence of resistance-related DEGs were more 
associated with neuronal differentiation, axogenesis, synaptic 
transmission, transcriptional regulatory genes, calcium ion 
transport, and cellular response to IL-1 (Figures 4A,B). The 
biochemical activities (molecular functions) were also linked to 
ion channel activities involved in regulating pre-and post-synaptic 
membrane potential, ionotropic glutamate receptor activity, RNA 
polymerase II transcription factor activities, specific DNA binding, 
and protein binding involved in cell-cell adhesion (Figures 4C,D). 
Additionally, in the turquoise module, several relevant cellular 
components (the cellular locations where the related DEGs act) 
were identified, such as the plasma membrane, pre- and post-
synaptic membrane, glutamatergic synapse, neuronal projection, 
extracellular region, axon, and extracellular space. We also found 
two pathways associated with the glutamatergic synapse and GnRH 
secretion (Figures 4E,F).

When analyzing the biological aspects related explicitly to 
the resistance-associated DEGs, an association with biological 
processes was observed, such as transcription regulation via 
RNA polymerase II promoter and cellular response to hormonal 
stimuli, with molecular functions related to double-stranded DNA 
sequence-specific binding and with cellular components such as the 
postsynaptic membrane (Figure 4G). 

3.5 Analysis of cellular components, based 
on gene expression profile

The proportion of immune cells in the studied population (all 
metastatic patients included, regardless of resistance profile) was 
predicted using the CIBERSORT tool, with the most relevant cells 
in the sample: resting memory CD4+ T cells, M0 macrophages, and 
M2 macrophages (Figure 5A). These described cell fractions were 
present in significantly higher proportions in both the resistant and 
non-resistant groups (Figures 5B–G).

No difference was observed in the proportion of immune 
cells between the resistant and non-resistant groups. However, 
when studying the correlation between the cell fractions separately 
in the resistant and non-resistant groups, it was noted that 
there is a difference in the pattern of cellular interaction in the 
microenvironment of each group (Supplementary Figures S2A,B). 
In the non-resistant group, resting memory CD4+ T cells positively 
correlate with M1 macrophages and M2 macrophages; M0 
macrophages positively correlate with gamma delta T cells, M2 
macrophages, and activated mast cells; and M2 macrophages 
positively correlate with resting NK cells, resting memory CD4 T 

cells, M0 macrophages, M1 macrophages, and neutrophils, while 
negatively correlating with activated dendritic cells (p < 0.05). 
In the resistant group, resting memory CD4+ T cells positively 
correlate with naive B cells, activated memory CD4+ T cells, naive 
CD4+ T cells, and to a lesser extent with resting dendritic cells, 
while negatively correlating with activated NK cells, eosinophils, and 
monocytes; M0 macrophages positively correlate with gamma delta 
T cells, M2 macrophages, and negatively correlate with monocytes; 
and M2 macrophages positively correlate with gamma delta T 
cells, M0 macrophages, and M1 macrophages, and negatively 
correlate with memory B cells and resting NK cells (p < 0.05). 
Overall, these results indicate that the immune cell correlation 
networks differ between resistant and non-resistant tumors, 
suggesting variations in the organization of the tumor immune
microenvironment. 

3.6 Relationship between the expression of 
differentially expressed genes (DEGs) and 
immune cells and survival

To analyze the possible relationship between the expression 
levels of DEGs and immune cells, TIMER platform was used 
(data related to the total TCGA population, not only the patients 
with metastatic disease included in this study’s sample, as we 
considered that using the broader cohort could better represent 
the biological heterogeneity and immune context of colorectal 
cancer). A positive correlation was observed between RAMP1 
expression levels and the infiltration of M0 and M2 macrophages, 
and a negative correlation with CD4+ T cells. Higher RAMP1 
expression was associated with increased infiltration of M0 (p 
= 0.00011) and M2 macrophages (p = 0.019), and decreased 
infiltration of CD4+ T cells (p = 2.9 × 10−7) (Figure 5H). The 
correlations were further evaluated using Kendall methods, which 
showed consistent results (p = 1 × 10−4, p = 0.024, and p = 3.4 × 
10−7) (Supplementary Figure S3). Similarly, a statistically significant 
positive correlation was found between M0 and M2 macrophages 
and higher expression levels of other resistance-related DEGs of 
interest, while a negative correlation was observed with resting 
memory CD4+ T cells (Supplementary Figure S4). In the analysis 
restricted to metastatic samples, a similar pattern was observed 
for macrophages, with higher RAMP1 expression correlating with 
increased infiltration of M0 macrophages in both resistant (p = 
0.021) and non-resistant (p = 4.4 × 10−5) groups, and of M2 
macrophages in resistant (p = 0.021) and non-resistant (p = 1.1 
× 10−7) groups. A positive trend between RAMP1 expression and 
CD4+ T cells infiltration was noted in the metastatic cohort, but 
without statistical significance (resistant: p = 0.18; non-resistant: 
p = 0.25) (Supplementary Figure S5).

When analyzing the overall survival curves related to the 
differentially expressed resistance-associated genes (DEGs) 
identified in the study cohort, the overexpression of RAMP1 was 
associated with worse survival outcomes (Figure 5I), as were other 
DEGs such as SP9, LMX1B, HOXC13, GSG1L, GPC5, EPHX3, CGA, 
CFAP61, and ANKRD1 (Supplementary Figures S6A–I). Additional 
Kaplan–Meier curves for the remaining resistance-related DEGs are 
presented in (Supplementary Figures 7A–H). 
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FIGURE 4
Main biological aspects related to the group of differentially expressed resistance genes. (A) Biological processes of the turquoise community. (B)
Biological processes of the red community. (C) Molecular functions of the turquoise community. (D) Molecular functions of the red community. (E)
Cellular components related to the resistance gene group of the turquoise community. (F) Key enriched pathways related to the resistance gene group 
of the turquoise community. (G) Biological aspects related to the differentially expressed (DEGs) resistance gene group.

4 Discussion

Gene expression profile and its relationship with immune 
cells in colon cancer tumor microenvironment was evaluated in 

this study to identify potential treatment resistance biomarkers. 
Our findings suggest that resistance-associated DEGs such as 
RAMP1, GSG1L, and GRIK4 may contribute to shaping the 
tumor microenvironment through interactions with M0/M2 
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FIGURE 5
Proportion of immune cells in the studied population (A) Proportion and distribution of immune cell subtypes in the total studied population. (B) The 
proportion of M0 macrophages in the resistant patient group (red bars). (C) The proportion of M2 macrophages in the resistant patient group (red bars).
(D) The proportion of resting memory CD4+ T cells in the resistant patient group (red bars). (E) The proportion of M0 macrophages in the non-resistant 
patient group (green bars). (F) The proportion of M2 macrophages in the non-resistant patient group (green bars). (G) The proportion of resting 
memory CD4+ T cells in the non-resistant patient group (green bars). (H) Relationship between the infiltration levels of M0 macrophages, M2 
macrophages, and CD4+ T cells and the expression level of RAMP1 (a resistance-related differentially expressed gene), considering the entire TCGA 
dataset for colon adenocarcinoma (and not only metastatic samples), with statistical correlation calculated using the Spearman method. (I)
Kaplan-Meier curve of overall survival about the expression level of RAMP1 (resistance-related differentially expressed gene). ∗∗∗: p < 0.0001.
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macrophages and resting CD4+ memory T cells. The enrichment 
of biological processes related to neuronal differentiation, 
axonogenesis, and synaptic transmission further points to a role 
for altered cell–cell signaling and communication pathways in 
treatment resistance. Our results highlight molecular and cellular 
features that may underlie differential therapeutic responses in 
colon cancer.

Some of the identified DEGs are particularly relevant due 
to their roles in connectivity within interactive and coexpression 
networks, as well as their associated biological aspects and 
related functions. Genes such as RAMP1, LMX1B, GSG1L, 
HOXC13, CGA, ANKRD1 stand out. Among these, RAMP1 
is particularly notable considering its involvement in biological 
processes and recent evidence highlighting its relationship with 
neuronal signaling and pro-tumor stimuli in the microenvironment 
(Xie et al., 2013; Balood et al., 2022).

High expression of RAMP1, that encodes the receptor for 
protein activity-modifying protein 1 (a coreceptor for certain G 
protein-coupled receptors on the plasma membrane), is associated 
with poorer oncological outcomes in osteosarcoma, likely as a 
secondary effect of alterations in the tumor microenvironment 
(L. Xie et al., 2023). Furthermore, studies suggest RAMP1 as a 
biomarker for tumorigenesis, impacting the MAP2KI (MEK1) 
signaling pathway (mitogen-activated protein kinase signaling 
pathway 2) (Logan et al., 2013) and its association with neuronal 
nociceptors and cancer disease progression (Balood et al., 2022). 
In our analysis, RAMP1 was differentially expressed in the 
chemotherapy-resistant group, interacting in a characteristic 
co-expression module for resistance (turquoise module) and 
related to the biological process of cellular response to hormonal 
stimuli. Higher levels of its expression correlate with decreased 
infiltration of CD4+ T cells and increased infiltration of M0 and 
M2 macrophages (considering colon adenocarcinoma samples 
regardless of clinical stage). In the analysis restricted to metastatic 
samples, no significant differences were observed in the interaction 
patterns between immune cells and DEGs. However, we observed 
potential differences in immune cell interactions suggesting that the 
tumor microenvironment of resistant tumors may be characterized 
by a less coordinated and potentially immunosuppressive cellular 
network, whereas non-resistant tumors display more balanced 
and possibly anti-tumor immune interactions. This observation 
reinforces the notion that resistance mechanisms may involve 
not only intrinsic tumor alterations but also distinct patterns 
of immune cell communication within the microenvironment. 
On the other hand, the absence of significant associations 
between immune cells and DEGs in the metastatic cohort may 
be related to the limited number of metastatic cases available, 
which could have reduced the statistical power to detect subtle 
immune–gene interactions. Moreover, the immune landscape 
within the tumor microenvironment is inherently heterogeneous, 
and such complexity is more accurately captured in analyses 
including a larger number of samples.

T cell activation requires three signals: the interaction 
between T cell receptors and antigens presented by antigen-
presenting cells through MHC proteins; antigen-independent 
costimulatory signals derived from the interaction between 
CD28 on T cells and B7 family proteins (CD80) on antigen-
presenting cells; and stimulatory cytokines concentrated at the 

immune synapse (Meissner et al., 2017; Sadelain et al., 2003). 
The formation of immune synapses facilitates tight intercellular 
communication, enhancing cytokine-mediated signaling (Dustin, 
2014; Xie et al., 2013). M2 macrophages are typically anti-
inflammatory, characterized by a poor capacity to present antigens, 
which leads to immunosuppressive effects and promotes cell 
proliferation, tissue repair, angiogenesis, and the release of 
immunosuppressive molecules in the tumor microenvironment, 
such as IL-10, TGF-β, and HLA-G (Allavena et al., 2008; 
Komohara et al., 2016). Moreover, tumor-associated macrophages 
(particularly the M2 subtype) have been shown to express 
higher levels of glial cell line–derived neurotrophic factor in 
pancreatic cancer compared to other macrophage subtypes 
(Cavel et al., 2012), and M2 macrophages express molecules 
that influence neoplastic proliferation through fibroblast growth 
factors (FGF) and epidermal growth factors (EGF) (P Allavena 
and Mantovani, 2012; Mitsudomi and Yatabe, 2010; Turner and 
Grose, 2010).

The colon has both intrinsic autonomic innervation (enteric 
nervous system) and extrinsic innervation (fibers from the 
vagus nerve and splanchnic nervous system). Preclinical studies 
have demonstrated that denervation of the enteric nervous 
system decreases neoplastic proliferation (Kannen et al., 2015; 
Vespúcio et al., 2008). Additionally, neurotrophic factors activate 
the MAPK/ERK signaling pathway, promoting metastasis 
(Lei et al., 2022). This pathway is known to be implicated 
in the pathophysiology of colorectal cancer with the BRAF 
V600E mutation. Furthermore, most cells present in the tumor 
microenvironment, such as cancerous cells, endothelial cells, 
fibroblasts, and immune cells, have receptors for neurotransmitters 
and are found around tumor microenvironment innervation 
(Wang et al., 2024). Therefore, interactions among a variety of 
cell types near tumor-associated nerves interfere with the local 
response to sympathetic or parasympathetic stimuli, as well as 
to neurotransmitters such as catecholamines and acetylcholine, 
respectively (Boilly et al., 2017; Zahalka and Frenette, 2020). 
The numerous interactions between tumor cells and the various 
cells and molecules in the tumor microenvironment are likely 
responsible for the complexity of oncological processes. In 
our study, several differentially expressed genes identified have 
neuronal functions and are localized to synaptic membranes 
or axons. Synaptic structures regulate cell–cell communication, 
information processing, and storage, potentially mediating 
interactions between molecular targets and influencing responses 
to targeted therapies or even immunotherapy (Alekseenko et al., 
2020). Collectively, this literature supports the concept that 
neural systems may interact with local immune cells and, in 
line with our analysis, may contribute to therapeutic resistance 
in colorectal cancer. Nevertheless, our study is based on omics 
analyses and highlights potential associations rather than definitive 
mechanistic pathways.

In conclusion, we conducted an integrated in silico analysis 
to identify differentially expressed genes involved in a therapeutic 
resistance profile in samples from patients with metastatic colon 
cancer. A gene signature was identified with nine genes (RAMP1, 
LMX1B, GSG1L, HOXC13, CGA, ANKRD1, GRIK4, NRCAM 
e LRFN1) that suggests an association with neuronal pathway 
processes, influencing the tumor microenvironment and conferring
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therapeutic resistance, with particular emphasis on gene RAMP1. 
This signature may prove to be prognostically useful and with 
potential therapeutic targets in precision medicine. Further 
validation studies are necessary, focusing on investigating biological 
functions and biomarkers with practical applications.
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