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Introduction: Colon cancer is a common disease, treated with few
chemotherapeutic agents with similar treatment sequencing despite its
heterogeneity. A significant proportion of patients are diagnosed with
metastasis, and resistance to antineoplastic drugs is associated with
disease progression and therapeutic failure. It is known that the tumor
microenvironment plays an essential role in cancer progression, contributing to
processes that may be associated with therapeutic resistance mechanisms in
colon cancer. In this study, we aim to identify a gene expression signature and
its relationship with immune cell infiltration in colon cancer, contributing to the
identification of potential resistance biomarkers.

Methods: An in silico study was conducted using RNA-seq data from The Cancer
Genome Atlas Program (TCGA) samples, subdivided into two groups (treatment-
resistant and non-resistant), taking into account the molecular subgroups
(CMS1, CMS2, CMS3, and CMS4). The following algorithms were used: i. Limma
was applied to identify differentially expressed genes; ii. WGCNA was applied to
construct co-expression networks; iii. CIBERSORT was applied to estimate the
proportion of infiltrating immune cells; and iv. TIMER was applied to explore the
relationship between core genes and immune cell content.

Results: Twenty differentially expressed genes (DEGs) were found, with
18 related to the group considered resistant to oncologic treatment and
presenting poorer overall survival. T CD4 memory resting cells and MO and
M2 macrophages were found in more significant proportions in the analyzed
samples and more infiltrated in the tumor microenvironment, the higher the
expression of some of these resistance DEGs. Additionally, these genes correlate
with biological aspects of neuronal differentiation, axogenesis, and synaptic
transmission.

Conclusion: The gene expression signature suggests the presence of
differentially expressed synaptic membrane genes, which may be involved in
neuronal pathways that influence the tumor microenvironment, potentially

01 frontiersin.org


https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1674179
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1674179&domain=pdf&date_stamp=
2025-10-26
mailto:givieiraroch@gmail.com
mailto:givieiraroch@gmail.com
mailto:clarissa.gurgel@fiocruz.br
mailto:clarissa.gurgel@fiocruz.br
https://doi.org/10.3389/fbinf.2025.1674179
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1674179/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1674179/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1674179/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1674179/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Doria et al.

10.3389/fbinf.2025.1674179

serving as future biomarkers. Furthermore, the presence of MO and M2
macrophages and T CD4 memory resting cells suggests a potential interaction
that may play a role in therapeutic resistance.
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computational biology, tumor microenvironment

1 Introduction

Colon cancer is the third most common cancer and the
second leading cause of cancer-related death worldwide, with
approximately 30% of patients diagnosed at an advanced stage
and up to 50% developing metastatic disease, even when
diagnosed at earlier stages (Sung et al., 2021; Malvezzi et al,
2018; Cervantes et al., 2023). Most patients with advanced disease
have a median overall survival of approximately 37 months in
the best prognostic scenario and a median progression-free
survival of 10-13 months in first-line treatment and 4 months
in second-line treatment, highlighting the impact of therapeutic
resistance (Douillard et al, 2014; Heinemann et al, 2014;
Cervantes et al., 2023; Shinozaki et al., 2021; Sobrero et al., 2008;
Grothey et al,, 2013; Mayer et al., 2015). It is widely recognised
that colon tumors exhibit significant heterogeneity, both intra and
intertumorally, as well as temporally and across metastatic sites
(Morris and Strickler, 2021; Chen et al.,, 2023). Despite of this,
most patients receive similar treatment sequences. Currently, no
biomarkers are available in clinical practice to predict chemotherapy
resistance.
are associated with resistance to

Several mechanisms

anticancer drugs, which may be linked to genetic alterations

in tumor cells and patient-specific characteristics. These
mechanisms range from poor drug absorption, rapid
metabolism, and treatment intolerance to specificities of
the tumor microenvironment, such as drug metabolism

by non-tumor cells, blood supply, neovascularization, and
how tumor cells interact (Pluen et al., 2001; Green, Frankel,
and Kerbel, 1999; Gottesman, 2002). To date, research has
predominantly focused on tumor cells in the search for
biomarkers. However, tumors are influenced by molecular
interactions with immunomodulatory functions within the tumor
This dynamically
regulated by cell-to-cell interactions, soluble factors secreted by

microenvironment. immunomodulation is
cells, extracellular matrix-mediated and microbiome interactions,
all of which foster a pro-tumoral niche (Plundrich et al,
2022). Gene expression can be assessed through transcriptomic
analyses of tumor samples to understand these processes better
and identify potential strategies to block pro-tumoral stimuli
(Hoadley et al., 2014).

Between 2012 and 2014, six groups proposed molecular
subclassifications of colorectal cancer based on public gene
expression databases, such as TCGA and GEO (Marisa et al.,
2013; Sadanandam et al., 2013; Schlicker et al., 2012; Sousa et al.,
2013; Budinska et al, 2013; Roepman et al., 2014). These
efforts were unified in 2015, resulting in the consensus of
four molecular subtypes: CMS1 (immune), CMS2 (canonical),
CMS3 (metabolic), and CMS4 (mesenchymal) (Guinney et al.,
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2015). However, this subclassification is not yet used in clinical
practice due to high costs, overlapping characteristics between
subgroups, and the lack of direct correlation between each
subgroup and treatment response patterns (Cohen et al,
2020). Therefore, it is valuable to explore the transcriptomic
characteristics of these subtypes, considering patterns of resistance
or sensitivity to chemotherapy, to translate the knowledge of
CMS subgroups into more practical clinical markers, such as
immunohistochemical or NGS-based markers. Furthermore, it
is essential to identify specific treatment responses or resistance
patterns.

This study aims to evaluate the gene expression profile and
immune cell populations in colon cancer, considering treatment
progression and molecular subgroups, to contribute to the
identification of potential biomarkers of therapeutic resistance.

2 Materials and methods

The flowchart of the study steps is presented in Figure 1.

2.1 Data collection

Gene expression profiles and clinical data of patients with colon
cancer were downloaded from the cBioPortal website (https://
www.cbioportal.org). The following criteria were defined in the
database selection tool: age >18, metastatic disease, available data
on time to progression at first-line treatment, and molecular data
with transcriptomics. (Supplementary Table S1). The data reflected
the period of TCGASs collection, during which standard first-
line treatment was based solely on 5-FU-based chemotherapy,
with limited variability in median progression-free survival,
even with the addition of anti-EGFR or anti-VEGF agents.
The 9-month cutoff was chosen to classify patients into non-
resistant or resistant subgroups, based on the median progression-
free survival reported in several pivotal trials of metastatic
colorectal cancer treatment (Douillard et al., 2010; Douillard et al.,

2014; Heinemann et al., 2014; Heinemann et al, 2021;

Van Cutsem et al., 2009).

2.2 CMS subtype classification and

deconvolution of immune cell profiles
RNA-seq data from 111 colorectal cancer samples,

obtained from Bioconductor, were normalized using FPKM
and mapped with the hgl33plus2.db annotation, considering
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FIGURE 1
Flowchart of the in silico study methods.
only protein-coding genes. Sample classification into CMS  we performed correlation analyses using two complementary

subtypes was performed using the CMScaller tool (version 2.0.1)
(Eide et al., 2017).

Immune cell subtype characterization was conducted using
CIBERSORT-X (cibersortx.stanford.edu) (Steen et al., 2020),
which employs the LM22 gene signature matrix, consisting of
547 genes that accurately distinguish 22 immune cell types. After
RNA-seq data normalization, immune profiles were obtained
by calculating absolute scores. The Wilcoxon rank-sum test was
used to compare immune cell proportions between resistant and
non-resistant groups. To evaluate the association between DEG
expression levels and immune cell infiltration, we used the TIMER
platform, which is limited to data from the overall TCGA cohort
and does not provide information restricted to metastatic cases.
We considered that exploring these correlations in the entire
TCGA dataset would provide a more biologically representative
landscape, as a larger sample size increases the robustness of the
analysis and may better capture the interactions between gene
expression and the tumor microenvironment across different
biological contexts of colorectal cancer. To assess the relationship
between immune cell proportions and the expression of the most
relevant DEGs, and to validate the findings obtained from TIMER,
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statistical methods: Spearman’s and Kendall's correlation

coefficients.

2.3 ldentification of differentially expressed
genes (DEGs)

Raw count and gene expression data were accessed using
the R package TCGABiolinks (version 2.28.3) (installed through
https://www.bioconductor.org). Genes in the matrix were annotated
using information from the Affymetrix Human Genome U133 Plus
2.0 Array annotation data. We remove genes without annotation,
and only those classified as protein-coding were retained for
analysis. For genes with multiple spots, the one with the highest
variance was selected. Differential gene expression analysis was
performed by constructing a summarized object using the edgeR
package (version 3.42.4). To ensure the inclusion of only relevantly
expressed genes, those with counts per million (CPM) below the
cutoff value (cutoff = 1) were excluded. The Limma-voom package
(version 3.56.2) was used to analyze gene expression differences
between non-resistant and resistant samples (Ritchie et al., 2015).
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Upregulated and downregulated DEGs were identified by filtering
genes with an adjusted p-value <0.05 and |log2| fold change
[LEC|] > 1.5.

2.4 Weighted gene co-expression network
analysis

A co-expression network was built to investigate the correlation
between expression and clinical outcomes of interest. DEGs
were selected for weighted gene co-expression network analysis
using the R package WGCNA (version 1.73) (Langfelder and
Horvath, 2008). The gene expression matrix was converted to an
adjacent matrix using Pearson’s correlation coefficient. The soft-
thresholding power was determined using the PickSoftThreshold
function to ensure a scale-free network. Then, the topological
overlap matrix was calculated according to the corresponding
soft-thresholding power (B = 3) (Supplementary Figure S1A).
Hierarchical clustering was performed to identify the modules
of densely interconnected genes (Supplementary Figure S1B).
The correlation between the module eigengene (ME), which
represents the first principal component of the module, and the
clinical traits of breast cancer was calculated to identify clinically
significant modules. Individual genes’ module membership
(MM) values were used to screen for hub genes. Module
membership (MM) was defined as the correlation between
individual gene expression profiles and the ME of a given module.
The initial gene validation comprised a comparative analysis of
tumoral and non-tumoral relative gene expression and a survival
investigation.

2.5 Pathway and functional enrichment
analysis

The functions of the biological gene modules were investigated
using Gene Ontology (GO) enrichment analysis. Functional
annotation was complemented by the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database, which included genomic, chemical,
functional, and metabolic information (Kanehisa et al., 2010). GO
and KEGG analyses were performed using the DAVID (https://
david-d. ncifcrf.gov/) database. The p < 0.05 value was estimated
to consider the GO and the statistically significant functional
enrichment.

2.6 Survival analysis

Initial survival analysis was performed using the R package for
each DEG in the selected TCGA bank data.

Kaplan-Meier survival curves were generated to estimate overall
survival in treatment-resistant and non-resistant groups. The log-
rank test was used to assess differences between the survival
distributions of these groups. The analysis was performed in the
R programming environment, using the survival packages (version
3.8.3) to create and visualize the survival curves. Survival times were
measured in months, and a p-value <0.05 was considered statistically
significant.
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3 Results

3.1 Identification of differentially expressed
genes

For this study, the public database TCGA Firehose Legacy
(COADREAD/20160128) and PanCancer Atlas available on
cBioPortal were analyzed (Gao et al., 2013; Cerami et al., 2012),
which included 1,232 patients with colon cancer. After excluding
participants with missing data or duplicates, 111 patients with
metastatic colon cancer remained for analysis. They were subdivided
as follows: 73 patients were classified as non-resistant (disease
progression after 9 months of initial treatment), and 38 were
classified as resistant (disease progression within 9 months of initial
treatment). Regarding CMS classification, 14, 30, 18, and 32 patients
were included in CMS1, CMS2, CMS3, and CMS4, respectively
(Figure 2A). These data were not available for 17 patients. No
statistically significant difference between the proportion of
resistant/non-resistant patient samples and the CMS groups was
identified (Figure 2B). Still, higher percentage of resistant patients
was observed in the CMS1 (42,9%) and CMS4 (37,5%) subgroups.
The gene set analysis for each subgroup confirmed previously known
characteristics: CMS1 was enriched for alterations in DNA repair
pathways/microsatellite instability, MYC, and cell cycle pathways;
CMS2 showed upregulation of MYC and cell cycle pathways and
downregulation of microsatellite instability; CMS3 exhibited more
significant upregulation of cellular differentiation and fatty acid
pathways; and CMS4 was enriched for TGF-beta signaling pathways,
TEM, and showed poor enrichment for differentiation pathways,
cell cycle, MYC, and MSI (Figure 2C). In the Kaplan-Meier analysis,
we observed a statistically significant difference in overall survival
between the resistant and non-resistant patient groups (Figure 2D).

Through  differential
transcriptome data from RNA sequencing of the 111 samples

gene expression analysis using
described above, 20 differentially expressed genes were identified
(Figures 3A,B) and a difference in gene expression profiles between
the Resistant and Non-Resistant groups: 18 genes were upregulated
in the therapeutic resistance group (CREG2, LRFNI, ANKRDI,
GRIK4, CFAP61, NRCAM, CST2, SP9, VAX2, EPHX3, GPC5,
CRABP2,RAMPI1, LMX1B, CGA, TMPRSS11E, GSG1L, HOXC13),
and two genes were upregulated in the treatment response group

(MYRIP and LGALS9C) (Figure 3A).

3.2 Co-expression gene modules
identification

The WGCNA algorithm was used to determine the DEGs
co-expression gene network. The soft-threshold power (B) was
set to three to ensure a scale-free network and the power
fit index reached was 0.89 (Langfelder and Horvath, 2008).
Gene co-expression network analysis resulted in eight modules,
represented by green, black, red, yellow, turquoise, blue, brown,
and gray colors (Figure 3C). The gene co-expression modules
were correlated, and the molecular characteristics were classified
according to resistance or non-resistance phenotypes and CMS
subgroups: two modules (turquoise and red) were associated with
the resistance phenotype. In contrast, one module (green) was more
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FIGURE 2
Distribution and characteristics of the study population sample. (A) Baseline distribution of consensus molecular subtypes (CMS1-CMS4) in the cohort
(B) Proportion of patients classified as resistant (progression within 9 months of treatment) and non-resistant (progression after 9 months of treatment)
within each CMS group, with values normalized to 100% across all subtypes. (C) Heatmap showing the results of gene set analysis based on mRNA
sequencing, confirming the known characteristics of each CMS group. Color spectrum: red indicates upregulation, and blue indicates downregulation.
(D) KM survival curve for overall survival between resistant and non-resistant groups. MSI, microsatellite instability; HNF4A, hepatocyte nuclear factor 4
alpha; MSS, microsatellite stability; MYC, pathway related to the c-Myc proto-oncogene; WNT, pathway related to the WNT protein-coding gene;
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associated with the non-resistance phenotype. The turquoise module
was more closely associated with CMS1 and CMS4 subgroups,
whereas the green module was associated with CMS2 and CMS3
(Figure 3D).

3.3 Co-expression network and DEGs

After describing the most relevant communities in each
phenotypic group, differentially expressed genes in the modules
of interest for resistance and non-resistance were identified,
and their connections to these modules were evaluated. Gene
significance and MM aid in this connectivity assessment. As
represented in Figures 3E-G, RAMP1, CRABP2, NRCAM, CST2,
EPHX3, GPC5, LRFN1, CGA, VAX2, TMPRSS11E, HOXC13,
CREG2 and CFAP61 correlates in the turquoise module, and
GSGI1L, LMX1B, and SP9 correlate in the red module, while MYRIP
is found in the green module.
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Moreover, some of these genes exhibit greater intramodular
connectivity with the module. For example, RAMP1 showed a
module membership value closest to 1 among the other identified
DEGs, while ANKRDI1 showed greater gene significance for
resistance in the turquoise module (Figure 3E). Similarly, GSGIL
has the highest module membership among the identified DEGs
in the red module, and the DEGs found in the red module and
the green module exhibit greater gene significance for resistance
and non-resistance, respectively, compared to the other genes in
the modules (Figures 3EG).

Similarly, DEGs in the modules of interest about the CMS
subtypes were sought. DEGs from the resistance group (CRABP2,
RAMP1, VAX2, CREG2, NRCAM, ANKRD1, EPHX3, CST2, CGA,
LRFN1, CFAP61, TMPRSS11E, HOXC13, GPC5, GRIK4) were
observed in the turquoise module related to CMSI and CMS4,
while the non-resistance DEG (MYRIP) was found in the green
module for CMS2 and CMS3, as represented in Figures 3H,I. The
gene LGALS9C, more highly expressed in our non-resistant group,
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Co-expression network and DEGs. (A) Volcano plot highlighting the identified DEGs, comparing Resistant (left) and Non-Resistant (right) groups, logfFC
>2 and pValue <0.05. (B) Heatmap showing the identified DEGs and their relationship across groups (Non-Resistant, Resistant, and CMS1, CMS2, CMS3,
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was found in the turquoise module associated with CMS1-CMS4;
however, it had a low module membership value and low gene
significance (Figure 3H).

3.4 Biological aspects related to gene
communities (gene ontology)

The turquoise and red modules were analyzed about the
biological systems associated with the genes due to their
characteristics linked to the therapeutic resistance profile. In both
cases, the biological processes with statistical significance (p <
0.05) and the presence of resistance-related DEGs were more
associated with neuronal differentiation, axogenesis, synaptic
transmission, transcriptional regulatory genes, calcium ion
transport, and cellular response to IL-1 (Figures4A,B). The
biochemical activities (molecular functions) were also linked to
ion channel activities involved in regulating pre-and post-synaptic
membrane potential, ionotropic glutamate receptor activity, RNA
polymerase II transcription factor activities, specific DNA binding,
and protein binding involved in cell-cell adhesion (Figures 4C,D).
Additionally, in the turquoise module, several relevant cellular
components (the cellular locations where the related DEGs act)
were identified, such as the plasma membrane, pre- and post-
synaptic membrane, glutamatergic synapse, neuronal projection,
extracellular region, axon, and extracellular space. We also found
two pathways associated with the glutamatergic synapse and GnRH
secretion (Figures 4E,F).

When analyzing the biological aspects related explicitly to
the resistance-associated DEGs, an association with biological
processes was observed, such as transcription regulation via
RNA polymerase II promoter and cellular response to hormonal
stimuli, with molecular functions related to double-stranded DNA
sequence-specific binding and with cellular components such as the
postsynaptic membrane (Figure 4G).

3.5 Analysis of cellular components, based
on gene expression profile

The proportion of immune cells in the studied population (all
metastatic patients included, regardless of resistance profile) was
predicted using the CIBERSORT tool, with the most relevant cells
in the sample: resting memory CD4" T cells, MO macrophages, and
M2 macrophages (Figure 5A). These described cell fractions were
present in significantly higher proportions in both the resistant and
non-resistant groups (Figures 5B-G).

No difference was observed in the proportion of immune
cells between the resistant and non-resistant groups. However,
when studying the correlation between the cell fractions separately
in the resistant and non-resistant groups, it was noted that
there is a difference in the pattern of cellular interaction in the
microenvironment of each group (Supplementary Figures S2A,B).
In the non-resistant group, resting memory CD4" T cells positively
correlate with M1 macrophages and M2 macrophages; MO
macrophages positively correlate with gamma delta T cells, M2
macrophages, and activated mast cells; and M2 macrophages
positively correlate with resting NK cells, resting memory CD4 T

Frontiers in Bioinformatics

07

10.3389/fbinf.2025.1674179

cells, MO macrophages, M1 macrophages, and neutrophils, while
negatively correlating with activated dendritic cells (p < 0.05).
In the resistant group, resting memory CD4* T cells positively
correlate with naive B cells, activated memory CD4* T cells, naive
CD4" T cells, and to a lesser extent with resting dendritic cells,
while negatively correlating with activated NK cells, eosinophils, and
monocytes; MO macrophages positively correlate with gamma delta
T cells, M2 macrophages, and negatively correlate with monocytes;
and M2 macrophages positively correlate with gamma delta T
cells, MO macrophages, and M1 macrophages, and negatively
correlate with memory B cells and resting NK cells (p < 0.05).
Overall, these results indicate that the immune cell correlation
networks differ between resistant and non-resistant tumors,
suggesting variations in the organization of the tumor immune
microenvironment.

3.6 Relationship between the expression of
differentially expressed genes (DEGs) and
immune cells and survival

To analyze the possible relationship between the expression
levels of DEGs and immune cells, TIMER platform was used
(data related to the total TCGA population, not only the patients
with metastatic disease included in this study’s sample, as we
considered that using the broader cohort could better represent
the biological heterogeneity and immune context of colorectal
cancer). A positive correlation was observed between RAMPI1
expression levels and the infiltration of M0 and M2 macrophages,
and a negative correlation with CD4" T cells. Higher RAMPI
expression was associated with increased infiltration of MO (p
= 0.00011) and M2 macrophages (p = 0.019), and decreased
infiltration of CD4" T cells (p = 2.9 x 1077) (Figure 5H). The
correlations were further evaluated using Kendall methods, which
showed consistent results (p = 1 x 107, p = 0.024, and p = 3.4 x
1077) (Supplementary Figure S3). Similarly, a statistically significant
positive correlation was found between M0 and M2 macrophages
and higher expression levels of other resistance-related DEGs of
interest, while a negative correlation was observed with resting
memory CD4" T cells (Supplementary Figure S4). In the analysis
restricted to metastatic samples, a similar pattern was observed
for macrophages, with higher RAMP1 expression correlating with
increased infiltration of MO macrophages in both resistant (p =
0.021) and non-resistant (p = 4.4 x 107°) groups, and of M2
macrophages in resistant (p = 0.021) and non-resistant (p = 1.1
x 1077) groups. A positive trend between RAMPI1 expression and
CD4* T cells infiltration was noted in the metastatic cohort, but
without statistical signiﬁcance (resistant: p = 0.18; non-resistant:
p = 0.25) (Supplementary Figure S5).

When analyzing the overall survival curves related to the
expressed resistance-associated genes (DEGs)
identified in the study cohort, the overexpression of RAMPI was

differentially

associated with worse survival outcomes (Figure 5I), as were other
DEGs such as SP9, LMX1B, HOXC13, GSG1L, GPC5, EPHX3, CGA,
CFAP61, and ANKRDI1 (Supplementary Figures S6A-I). Additional
Kaplan—Meier curves for the remaining resistance-related DEGs are
presented in (Supplementary Figures 7A-H).
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4 Discussion

Gene expression profile and its relationship with immune
cells in colon cancer tumor microenvironment was evaluated in
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this study to identify potential treatment resistance biomarkers.
Our findings suggest that resistance-associated DEGs such as
RAMPI, GSGIL, and GRIK4 may contribute to shaping the
tumor microenvironment through interactions with MO0/M2
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macrophages and resting CD4" memory T cells. The enrichment
of biological processes related to neuronal differentiation,
axonogenesis, and synaptic transmission further points to a role
for altered cell-cell signaling and communication pathways in
treatment resistance. Our results highlight molecular and cellular
features that may underlie differential therapeutic responses in
colon cancer.

Some of the identified DEGs are particularly relevant due
to their roles in connectivity within interactive and coexpression
networks, as well as their associated biological aspects and
related functions. Genes such as RAMP1, LMX1B, GSGIL,
HOXC13, CGA, ANKRDI1 stand out. Among these, RAMP1
is particularly notable considering its involvement in biological
processes and recent evidence highlighting its relationship with
neuronal signaling and pro-tumor stimuli in the microenvironment
(Xie et al., 2013; Balood et al., 2022).

High expression of RAMPI, that encodes the receptor for
protein activity-modifying protein 1 (a coreceptor for certain G
protein-coupled receptors on the plasma membrane), is associated
with poorer oncological outcomes in osteosarcoma, likely as a
secondary effect of alterations in the tumor microenvironment
(L. Xie et al, 2023). Furthermore, studies suggest RAMPI as a
biomarker for tumorigenesis, impacting the MAP2KI (MEKI)
signaling pathway (mitogen-activated protein kinase signaling
pathway 2) (Logan et al., 2013) and its association with neuronal
nociceptors and cancer disease progression (Balood et al., 2022).
In our analysis, RAMP1 was differentially expressed in the
chemotherapy-resistant group, interacting in a characteristic
co-expression module for resistance (turquoise module) and
related to the biological process of cellular response to hormonal
stimuli. Higher levels of its expression correlate with decreased
infiltration of CD4" T cells and increased infiltration of MO and
M2 macrophages (considering colon adenocarcinoma samples
regardless of clinical stage). In the analysis restricted to metastatic
samples, no significant differences were observed in the interaction
patterns between immune cells and DEGs. However, we observed
potential differences in immune cell interactions suggesting that the
tumor microenvironment of resistant tumors may be characterized
by a less coordinated and potentially immunosuppressive cellular
network, whereas non-resistant tumors display more balanced
and possibly anti-tumor immune interactions. This observation
reinforces the notion that resistance mechanisms may involve
not only intrinsic tumor alterations but also distinct patterns
of immune cell communication within the microenvironment.
On the other hand, the absence of significant associations
between immune cells and DEGs in the metastatic cohort may
be related to the limited number of metastatic cases available,
which could have reduced the statistical power to detect subtle
immune-gene interactions. Moreover, the immune landscape
within the tumor microenvironment is inherently heterogeneous,
and such complexity is more accurately captured in analyses
including a larger number of samples.

T cell activation requires three signals: the interaction
between T cell receptors and antigens presented by antigen-
presenting cells through MHC proteins; antigen-independent
costimulatory signals derived from the interaction between
CD28 on T cells and B7 family proteins (CD80) on antigen-
presenting cells; and stimulatory cytokines concentrated at the
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immune synapse (Meissner et al., 2017; Sadelain et al., 2003).
The formation of immune synapses facilitates tight intercellular
communication, enhancing cytokine-mediated signaling (Dustin,
2014; Xie et al, 2013). M2 macrophages are typically anti-
inflammatory, characterized by a poor capacity to present antigens,
which leads to immunosuppressive effects and promotes cell
proliferation, tissue repair, angiogenesis, and the release of
immunosuppressive molecules in the tumor microenvironment,
such as IL-10, TGF-B, and HLA-G (Allavena et al, 2008;
Komohara et al.,, 2016). Moreover, tumor-associated macrophages
(particularly the M2 subtype) have been shown to express
higher levels of glial cell line-derived neurotrophic factor in
pancreatic cancer compared to other macrophage subtypes
(Cavel et al, 2012), and M2 macrophages express molecules
that influence neoplastic proliferation through fibroblast growth
factors (FGF) and epidermal growth factors (EGF) (P Allavena
and Mantovani, 2012; Mitsudomi and Yatabe, 2010; Turner and
Grose, 2010).

The colon has both intrinsic autonomic innervation (enteric
nervous system) and extrinsic innervation (fibers from the
vagus nerve and splanchnic nervous system). Preclinical studies
have demonstrated that denervation of the enteric nervous
system decreases neoplastic proliferation (Kannen et al., 2015;
Vesptcio et al., 2008). Additionally, neurotrophic factors activate
the MAPK/ERK signaling pathway,
(Lei et al, 2022). This pathway is known to be implicated

promoting metastasis

in the pathophysiology of colorectal cancer with the BRAF
V600E mutation. Furthermore, most cells present in the tumor
microenvironment, such as cancerous cells, endothelial cells,
fibroblasts, and immune cells, have receptors for neurotransmitters
and are found around tumor microenvironment innervation
(Wang et al., 2024). Therefore, interactions among a variety of
cell types near tumor-associated nerves interfere with the local
response to sympathetic or parasympathetic stimuli, as well as
to neurotransmitters such as catecholamines and acetylcholine,
respectively (Boilly et al, 2017; Zahalka and Frenette, 2020).
The numerous interactions between tumor cells and the various
cells and molecules in the tumor microenvironment are likely
responsible for the complexity of oncological processes. In
our study, several differentially expressed genes identified have
neuronal functions and are localized to synaptic membranes
or axons. Synaptic structures regulate cell-cell communication,
information processing, and storage, potentially mediating
interactions between molecular targets and influencing responses
to targeted therapies or even immunotherapy (Alekseenko et al.,
2020). Collectively, this literature supports the concept that
neural systems may interact with local immune cells and, in
line with our analysis, may contribute to therapeutic resistance
in colorectal cancer. Nevertheless, our study is based on omics
analyses and highlights potential associations rather than definitive
mechanistic pathways.

In conclusion, we conducted an integrated in silico analysis
to identify differentially expressed genes involved in a therapeutic
resistance profile in samples from patients with metastatic colon
cancer. A gene signature was identified with nine genes (RAMP],
LMX1B, GSGI1L, HOXC13, CGA, ANKRDI, GRIK4, NRCAM
e LRFNI1) that suggests an association with neuronal pathway
processes, influencing the tumor microenvironment and conferring
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therapeutic resistance, with particular emphasis on gene RAMPI.
This signature may prove to be prognostically useful and with
potential therapeutic targets in precision medicine. Further
validation studies are necessary, focusing on investigating biological
functions and biomarkers with practical applications.
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