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Introduction: Drug repositioning—finding new therapeutic uses for existing 
drugs—can dramatically reduce development time and cost, but requires 
efficient computational frameworks to generate and validate repositioning 
hypotheses. Network-based methods can uncover drug communities with 
shared pharmacological properties, while molecular docking offers mechanistic 
insights by predicting drug–target binding.
Methods: We introduce an end-to-end, fully automated pipeline that (1) 
constructs a tripartite drug-gene-disease network from DrugBank and 
DisGeNET, (2) projects it into a drug-drug similarity network for community 
detection, (3) labels communities via Anatomical Therapeutic Chemical (ATC) 
codes to generate repositioning hints and identify relevant targets, (4) validates 
hints through automated literature searches, and (5) prioritizes candidates via
targeted molecular docking.
Results: After filtering for connectivity and size, 12 robust communities emerged 
from the initial 34 clusters. The pipeline correctly matched 53.4% of drugs to their 
ATC level 1 community label via database entries; literature validation confirmed 
an additional 20.2%, yielding 73.6% overall accuracy. The remaining 26.4% of 
drugs were flagged as repositioning candidates. To illustrate the advantages 
of our pipeline, molecular docking studies of chloramphenicol demonstrated 
stable binding and interaction profiles similar to those of known inhibitors, 
reinforcing its potential as an anticancer agent.
Conclusion: Our integrated pipeline effectively integrates network-based 
community analysis and automated ATC labeling with literature and docking 
analysis, narrowing the search space for in silico and experimental follow-
up. The chloramphenicol example illustrates its utility for uncovering 
non-obvious repositioning opportunities. Future work will extend similarity
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definitions (e.g., to higher-order network motifs) and incorporate wet-lab 
validation of top candidates.

KEYWORDS

drug repositioning, drug-disease network, drug-drug similarity network, ATC labeling, 
molecular docking 

1 Introduction

Traditional drug design is challenging, expensive, and time-
consuming Fetro and Scherman (2020). In this context, finding 
new indications for existing drugs—a process known as drug 
repositioning or repurposing—is an effective and promising 
strategy for discovering new therapies for both common and 
rare diseases Tian et al. (2018); Parvathaneni et al. (2019). 
Indeed, repositioning is an alternative strategy that enables the 
reuse of approved active pharmaceutical ingredients, significantly 
reducing development timelines and costs Pushpakom et al. 
(2019); it also offers greater safety predictability because it 
involves drugs with known pharmacokinetic profiles that have 
already undergone rigorous testing Parvathaneni et al. (2019); 
Pushpakom et al. (2019); Zhang et al. (2020).

Drug repositioning employs computational and experimental 
approaches, sometimes in combination, to harness the benefits of 
both Pushpakom et al. (2019); Morselli Gysi et al. (2021); Ko (2020). 
Computational models leverage data mining, machine learning, 
and network analysis to uncover interactions not detected during 
clinical trials, predict drug safety, and explore relationships between 
drug data and genomic, transcriptomic, and phenotypic data 
Pushpakom et al. (2019); Morselli Gysi et al. (2021); Udrescu et al. 
(2016), (2020). However, extracting relevant and meaningful 
information becomes difficult due to the exponential growth of 
biomedical data, requiring advanced algorithms and strong data 
curation Udrescu et al. (2023). Various effective repositioning 
methods have emerged by integrating information technology, 
including molecular modeling and data mining techniques, to 
address such provocation. In this way, refinements in data processing 
and computational methods have laid the foundation for structured 
drug repositioning protocols. For example, Jarada et al. (2020) set 
up a four-step protocol: selecting the strategy based on available 
datasets, identifying the appropriate computational method and 
building the model, validating the model, and delivering drug 
candidates for repositioning.

Network-based models are an important computational 
drug repositioning framework that integrates complex system 
theory, data mining, and machine learning; they represent 
biological systems as nodes (e.g., drugs, diseases, or proteins) 
interconnected by edges (e.g., the relationships between them). 
Network-based methods help uncover new drug targets Luo et al. 
(2017); Amiri Souri et al. (2022); Pham and Tran (2024) or 
pharmacological properties Udrescu et al. (2016); Udrescu and 
Udrescu (2019), thus supporting repositioning opportunities. 
Furthermore, network-based methods working at the macro-scale 
can uncover repositioning candidates that micro-scale approaches 
like molecular docking cannot identify Morselli Gysi et al. (2021). 
One practical approach, which we also use in this paper, is to 
employ unsupervised machine learning algorithms in network data 

representations to identify clusters or communities of nodes; these 
clusters can be labeled according to relevant properties and then 
serve as the basis for drug repositioning according to the rationale of 
guilt by association Udrescu et al. (2016), (2020); Groza et al. (2021).

Molecular docking is an in silico approach used to simulate 
drug-target interactions, predicting how a drug molecule binds to 
a biological target and calculating the binding affinity. Molecular 
docking can also identify off-target effects (i.e., unaccounted 
interactions with target proteins) that may indicate new therapeutic 
uses of existing drugs. However, molecular docking requires 
significant computational resources, and applying it on a large scale 
is cumbersome Bender et al. (2021). Therefore, a more efficient 
approach is to use other computational techniques (such as machine 
learning and network analysis) to reduce the vast search space of 
chemical drug-target interactions by identifying a specific list of 
selected targets for exploration and analysis via molecular docking. 
In this way, docking studies would provide robust hypotheses for 
further in vitro and in vivo experimental testing Udrescu et al. 
(2020); Alam et al. (2022); Sharma et al. (2021).

Computational pipelines for drug repositioning commonly 
integrate database aggregation, big-data analytics, machine learning, 
network analysis, and molecular docking (see our analysis of 
previous work in Section 2). While state-of-the-art multi-stage 
approaches are effective at prioritizing candidate drugs, they 
frequently yield only ranked lists of repositioning hypotheses 
without identifying the specific target activities or mechanisms 
of action. Consequently, follow-up validation—such as targeted 
molecular docking or biochemical assays—remains cumbersome 
and time-consuming in the absence of hinting specific targets and 
mechanisms of action.

This paper addresses the issue of delivering a drug repositioning 
hint list and related data that foster molecular docking analysis. 
To this end, we implement a fully automated computational drug 
repositioning pipeline that integrates computational network 
analysis (i.e., community detection in drug-drug similarity 
networks), community labeling based on the Anatomical 
Therapeutic Chemical (ATC) drug categorization system, literature-
based validation, and ATC level 4 drug-target interaction 
information, to generate drug repositioning hints along with the list 
of relevant targets to be further investigated by molecular docking.

Our work proposes the following original contributions to attain 
the above-stated objectives: 

• A drug-drug similarity network for drug repositioning 
built by projecting a tripartite drug-gene-disease network 
(with data from DrugBank Wishart et al. (2018) 
and DisGeNET Piñero et al. (2020));
• The fully automated computational drug repositioning 

pipeline that integrates drug-drug similarity network 
clustering, ATC cluster/community labeling, and literature 
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validation of drug repositioning hints (showing an 
accuracy of 73.6%);
• A methodology that uses level 4 ATC data to indicate 

suitable targets for drug repositioning validation with 
molecular docking;
• The illustration of our method’s advantages by performing 

molecular docking for the chloramphenicol repositioning in 
cancers driven by Bruton’s tyrosine kinase 1 (BTK1) and the 
phosphoinositide 3-kinase (PI3K) alpha, gamma, and delta 
isoforms; this case was predicted by our pipeline.

The remainder of this paper is organized as follows. Section 2 
presents the state-of-the-art in computer-automated pipelines for 
drug repositioning, Section 3 describes our repositioning pipeline, 
Section 4 presents the pipeline results, Section 5 shows how the 
results of our pipeline foster molecular docking analysis in the 
case of chloramphenicol repositioning in cancers, and Section 6 
discusses the relevant results and draws conclusions. 

2 Computational pipelines for drug 
repositioning hints

Since our paper proposes an automated pipeline for 
computational drug repositioning, this section provides a 
comparative overview of computational pipelines that predict new 
pharmacological properties of drugs and generate lists of candidate 
drugs for repositioning. Consequently, Table 1 summarizes 20 
articles (published between 2013 and 2024) that describe drug 
repositioning pipelines; for each pipeline, the table presents the 
computational method, its focus, source and data integration, 
pipeline automation/validation, and the most relevant outcome.

All pipelines presented in Table 1 have three essential 
components: data retrieval, data analysis/processing and inference, 
and validation. The data retrieved are integrated into specific 
structures and fed to the processing and inference stage. The 
inference component then produces a tentative drug repositioning 
list to be tested by the validation component; the validation outputs 
the final repositioning hint list.

The pipelines integrate data from large public datasets and are 
automated, although some do not integrate validation (see column 
Automation/Validation in Table 1). In addition, most pipelines 
are designed for a broad range of repositionings, while some 
are focused on specific diseases. However, the defining element 
of drug repositioning pipelines is the computational method 
for data processing and inference. In Table 1, we have pipelines 
based on computational network analysis Udrescu et al. (2016), 
Groza et al. (2021), Fiscon and Paci (2021), Fiscon et al. (2021a), 
(b), Conte et al. (2022), Paci et al. (2022), Minadakis et al. 
(2023), Udrescu and Sbarcea (2020), machine and deep learning 
Morselli Gysi et al. (2021); Mangione et al. (2020), (2022), 
Ahmed et al. (2022), Tuerkova and Zdrazil (2020), Lv et al. (2024), 
Liu et al. (2021), and expression-based and statistical approaches 
Brown et al. (2016), Traylor et al. (2021), Pacini et al. (2013), 
Shuey et al. (2023), Amadori et al. (2023).

Although, as mentioned, some existing pipelines filter their initial 
drug repositioning hint list by performing automated validation 
(with literature records or other tools), none integrate molecular 

docking analysis because that would entail substantial computational 
resources. Moreover, no existing pipeline facilitates validation with 
molecular docking by providing additional information, such as a list 
of potentially relevant targets for which the drug binding mode can be 
predicted and its binding affinity estimated. 

3 Proposed drug-repositioning 
pipeline

To foster the integration of molecular docking into the analysis 
and validation of drug repositioning hint lists, we propose a pipeline 
that has the following components: data retrieval and integration 
from DrugBank and DisGeNET, inference using computational 
network analysis (i.e., cluster/community detection), and drug 
repositioning hint validation by checking literature databases.

Figure 1 provides the overview of our project by indicating the 
information flow from the data sources (drug-gene interactions 
from DrugBank and DisGeNET gene-disease associations), going 
through data processing and inference through tripartite network 
projection and network community/cluster detection, then cluster 
labeling with level-1 ATC codes to produce the initial repositioning 
hint list and finding relevant targets using level 4 ATC codes, and 
finally to the literature-based testing that produces the validated 
drug repositioning hint list. In this way, for each hint validated 
by the literature search, we have an additional list of potentially 
relevant targets that can be investigated through molecular docking. 
Indeed, having information on the anatomical groups targeted by 
the repositionings and the relevant targets is a significant advantage 
for the docking process because it substantially narrows its search 
space. An additional component in our pipeline implementation 
is the Postgres Relational Database, which integrates all data 
retrieved from DrugBank and DisGeNET with data generated from 
community detection and ATC codes.

The following subsections describe the main features of 
our pipeline presented in Figure 1. We provide the pipeline 
implementation in our GitHub repository. 

3.1 Drug-drug similarity network (DDSN)

The component dedicated to data retrieval and integration 
extracts information on drug-drug similarity relationships. As such, 
it builds a drug-drug similarity network based on indirect drug-
disease relationships, using data from DrugBank Wishart et al. 
(2018) and DisGeNet Piñero et al. (2020). Indeed, neither database 
provides direct connections between drugs and diseases; therefore, 
we first combined DrugBank (containing data on drug-gene 
interactions) and DisGeNet (containing data on gene-disease 
relationships) to create a drug-gene-disease tripartite network. We 
used a Node. js script to import and process the data. Then we build 
the tripartite network as a graph G = (V,E), where V represents the 
set of vertices or nodes, and E the set of edges or links between 
the nodes. In our tripartite network, set V is the union of the three 
disjoint sets of vertices represented by drugs/medicines (Vm), genes 
(Vg), and diseases (Vd), with V = Vm ∪Vg ∪Vd. The set of edges E
is the union of the disjoint sets of drug-gene edges (Eg) and gene-
disease edges (Ed), E = Eg ∪Ed. The directed edges eg

ij ∈ Eg represent 
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the interaction between vm
i ∈ Vm and vg

j ∈ Vg (i.e., drugs and genes), 
and the directed edges ed

ij ∈ Ed represent the interaction between 
vg

i ∈ Vg and vd
j ∈ Vd (i.e., genes and diseases).

Next, we projected the tripartite network into a monopartite 
drug-drug similarity network Gs = (Vm,Es), where the vertices 
are medicines (Vm) linked by similarity edges (Es). A similarity 
undirected edge es

ij ∈ Es between vm
i  and vm

j ∈ Vm exists if there is 
at least one path between a drug/medicine vm

i  and a disease vd
k ∈ Vd

and at least one path between vm
j  and the same disease vd

k  in G. The 
similarity network Gs is weighted, with the weight of es

ij representing 
the number of w diseases vd

k ∈ Vd that are connected (via a path) to 
both vm

i  and vm
j  in the tripartite graph G. A connecting path between 

vm
i ∈ Vm and vd

j ∈ Vd exists in the tripartite graph G if we have a gene 
vg

k ∈ Vg such that ∃ two directed edges, eg
ik ∈ Eg from vm

i  to vg
k ∈ Vg

and ed
kj ∈ Ed from vg

k to vd
j ∈ Vd. According to the formal description 

above, the weight of a link/edge in the DDSN Gs (representing the 
similarity relationship between two drugs/medicines) is the number 
of diseases that can be reached via valid connecting paths in the 
tripartite graph from both drugs.

Figure 2 presents an example of tripartite (drug-gene-disease) 
graph projection onto a drug-drug similarity network according to 
the algorithm described in this section; the example uses a small 
subgraph extracted from G.

3.2 Network community detection, 
labeling, and target identification

Network community detection (also known as graph clustering) 
identifies groups of nodes/vertices that we call communities or 
clusters (C1,C2,…Cn, with C1 ∪C2 ∪…∪Cn = Vm), which are more 
densely connected internally than the rest of the graph. We perform 
network community detection in Wolfram Mathematica 13 Inc. 
(2023) using the FindGraphCommunities function with the 
‘Hierarchical’ method, based on vertex similarity and a dendrogram 
to represent nested community structures.

For each cluster Ci (i = 1.n), we automatically assign a cluster’s 
dominant level 1 ATC code as its label and add drugs deviating 
from the cluster label to the drug repositioning hint list. We do this 
by computing cluster Ci’s ATC code histogram ki = (ki

1,k
i
2,…ki

W)
(where W is the number of distinct ATC codes in Ci and ki

j the 
number of drugs in Ci that have ATC code j); as such, the dominant 
ATC code is j if max(ki

1,k
i
2,…ki

W) = ki
j. As a result, we add all drugs 

v ∈ Ci that do not have the dominant ATC level 1 code j (according 
to DrugBank) to the repositioning list as potentially having the 
property described by j.

DrugBank lists all associated level 4 ATC codes for each 
target; therefore, if we establish the dominant level 4 ATC codes 
in each cluster, we can identify the cluster’s targets of interest, 
which will subsequently foster the molecular docking validation 
efforts. Accordingly, for all drugs within the cluster labeled with the 
dominant level 1 ATC, we systematically compute the histograms 
corresponding to their levels 2, 3, and 4 of ATC and also identify the 
dominant level 4 ATC codes in each cluster, map them with their 
associated biological targets from DrugBank, and associate these 
targets with drug repositioning hints. Specifically, if the dominant 
ATC level 4 code in Ci corresponds to the mechanism of action a, 
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FIGURE 1
The overview of our proposed drug repositioning pipeline. We present the pipeline components as the information flows from the data sources 
(DrugBank and DisGeNET) to the repositioning hint list. The retrieved data is integrated into the Postgres Relational Database (PDR); then, we query the 
database to build a tripartite drug-gene-disease graph and project the tripartite graph as a weighted drug-drug similarity network (a bigger edge weight 
means a higher similarity). We perform clustering (i.e., community detection) on the drug-drug similarity network and store the cluster/community 
structure in the PDR. After an automated analysis of level 1 ATC code distribution in the resulting communities, we assign the dominant label to each 
cluster; we also perform a similar distribution analysis for level 4 ATC codes, which identifies the relevant targets for the potential repositionings. The 
ATC code distribution analysis and labeling results are stored in the PDR. Drugs that do not match their cluster label (based on existing DrugBank 
information) are added to the initial drug repositioning hint list, which is then refined through the Literature Validation component. Finally, the validated 
hints and the lists of relevant targets are delivered to Molecular Docking testing.

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1666716
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Colibăşanu et al. 10.3389/fbinf.2025.1666716

FIGURE 2
An example of how our algorithm projects the tripartite (drug-gene-disease) network onto a weighted drug-drug similarity network. The left shows the 
tripartite graph G built with information retrieved from DrugBank and DisGeNET: the circle nodes represent drugs in Vm, the triangle nodes represent 
genes in Vg, the box nodes represent diseases in Vd, and the directed edges (i.e., arrows) represent drug-gene interactions from Eg and gene-disease 
associations from Ed. The center depicts the weighted drug-drug similarity network Gs, where the circles represent drugs and the undirected edges 
represent similarity relationships Es—a thicker edge (according to its weight) means a stronger similarity (For instance, we have an edge of weight 3 
between M1 and M7 because we have valid paths connecting 3 diseases to both drugs: Paraganglioma, Pheochromocytoma, and Adrenocortical 
carcinoma.) The right shows the drug names.

then we retrieve from DrugBank the list of targets associated with 
that mechanism of action Ta.

Given that we can assemble drugs according to a specific 
mechanism of action (described by a level 4 ATC code) and 
its corresponding biological targets, our approach uses shared 
pharmacological properties to suggest new therapeutic uses. For 
example, a drug not known to have the community-dominant ATC 
level 4 code could be uncovered as binding to a target shared by the 
dominant group; this might be effective for a disease treated by the 
community’s dominant drug class.

The targets we identify to associate with the drug repositioning 
hints facilitate molecular docking (by calculating their binding 
affinity to the assigned targets), thus prioritizing drugs with 
favorable interaction profiles. This strategy improves the efficiency 
of subsequent experimental validation by focusing on biologically 
plausible hypotheses. 

3.3 Validation with literature database 
search

We validate repositioning candidates by automatically querying 
the PubMed database with Biopython Cock et al. (2009). 
Explicitly, we assign the Medical Subject Headings (MeSH) terms 
corresponding to each drug name in the repositioning candidate 
list, its community level 1 ATC name, and relevant synonyms. We 
used the Boolean operator ‘AND’ to correlate the drug name and 
the ATC category name, and ‘OR’ to include relevant synonyms 
of the ATC category. To rely only on high-quality evidence, we 
applied filters that retrieve only research articles and clinical trials, 
excluding commentaries and unrelated studies. Subsequently, we 
pass the retrieved literature list through expert analysis that filters 
the publications and further confirms the predicted property.

Validation of drug repositioning hints with the latest literature 
and electronic health databases is paramount. The main problem in 
drug repositioning is that we do not have a robust ground truth: we 
can rely on what we know about drugs (i.e., current knowledge), but 
we cannot rely on negative information. In other words, if we do not 
know, for instance, that there is a specific drug-target interaction, it 
does not necessarily mean that the interaction does not exist; maybe 
it exists, but we do not know about it yet Udrescu et al. (2023). 
Therefore, most available drug repositioning pipelines based on 
machine learning methods adopt the train/test dataset split strategy 
to assess their performance. However, such a strategy cannot work 
well in the case of network-based approaches, as it entails affecting 
the network topology; this is why network-based methods rely on 
external validation for performance assessment. External validation 
can be performed by automatic/systematic literature or electronic 
health databases, molecular docking, in vitro, or in vivo actual 
experiments. Unfortunately, in vitro and in vivo experiments require 
extensive resources and demand carefully designed protocols, 
meaning serious additional research. On the other hand, molecular 
docking requires substantial computational resources, including 
months of program execution run time. Therefore, validation of 
drug repositioning hints with the latest literature and electronic 
health databases remains the most affordable and feasible solution 
(adopted by most state-of-the-arthe weight of the similarity 
relationship between two drugs/medicines is the number of diseases 
that can be reached via valid paths in the tripartite graph from both 
drugs t pipelines in Table 2).

4 Pipeline results

This section presents the results that we obtained by applying 
our proposed pipeline to the DrugBank 5.1.9 and DisGeNET data. 
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TABLE 2  Features of the clusters in our drug similarity network generated by the hierarchical clustering algorithm. For each cluster, we provide the 
number of component drugs and the corresponding label corresponding to the level 1 ATC of the majority of drugs in the first and second columns. The 
column % Predominant ATC in DB lists the percentages of drugs whose level 1 ATC listed by DrugBank predominates in each cluster. The column % 
Confirmed by literature presents the percentages of drugs for which the literature confirms the property represented by the level 1 ATC, thus increasing 
the prediction accuracy of our drug-drug similarity network, as presented in column % Accuracy.

Cluster No ATC level 1 % predominant ATC in DB % confirmed by literature % accuracy

1 105 N (Nervous system) 52.4 26.7 79.0

2 88 B (Blood and blood forming organs) 52.3 14.8 67.0

3 95 C (Cardiovascular system) 35.8 13.7 49.5

4 85 L (Antineoplastic and 
immunomodulating agents)

52.9 30.6 83.5

5 51 D (Dermatologicals) 54.9 17.6 72.5

6 51 L (Antineoplastic and 
immunomodulating agents)

60.8 23.5 84.3

7 51 M (Musculo-skeletal system) 64.7 15.7 80.4

8 44 G (Genito-urinary system and sex 
hormones)

61.4 20.4 81.8

9 31 N (Nervous system) 61.3 16.1 77.4

10 24 L (Antineoplastic and 
immunomodulating agents)

87.5 4.2 91.7

11 15 H (Systemic hormonal preparations) 40 13.3 53.3

12 13 D (Dermatologicals) 30.8 46.1 76.9

Total 53.4 20.2 73.6

In particular, we extracted information on drug-gene edges Eg from 
DrugBank and on gene-disease edges Ed from DisGeNET. 

4.1 Network analysis

Figure 3, shows that our DDSN network-building and clustering 
methodology produces 34 clusters. However, we excluded from 
further analysis all clusters disconnected from the main connected 
component (clusters 15–21 and 23–31) and clusters with fewer than 
eight vertices/drugs (clusters 13, 14, 22, 32–34). Consequently, we 
investigate the remaining 12 clusters in the drug-drug similarity 
network (Figure 3) as follows: 

1. Scan the level 1 ATC of all drugs in DrugBank and 
automatically label the cluster with its predominant level 1 ATC 
property (see the first four columns in Table 2).

2. Automatically inspect the literature for drugs with ATC 
level 1 that differs from those representing the cluster label; 
we selected articles reporting the pharmacological property 
of interest, thus confirming the ATC-based community, as 
presented in Table 2, columns % Confirmed by literature and % 
Accuracy, respectively.

3. Add the nodes for which the literature has not confirmed 
the cluster’s pharmacological property to the list of drug 

candidates for repositioning (Table 2, column % Repositioning
candidates).

Our results show that 53.4% of drugs have the ATC 
level 1 property given by their cluster label, and 20.2% are 
not formally classified in the ATC level 1 cluster label with 
DrugBank data Wishart et al. (2018), but the automated 
literature check demonstrates the predicted corresponding 
anatomical/pharmacological properties (see our GitHub main 
results). Consequently, 26.4% of the drugs do not comply with 
the cluster label, so we consider them candidates for repositioning 
on the property corresponding to their community/cluster 
label (see Table 2). In addition, this means that the accuracy of our 
pipeline, measured with the available information (that is, current 
knowledge), is 53.4%+ 20.2% = 73.6%. 

4.2 ATC analysis and inference

ATC level 1 codes describe the main anatomical or 
pharmacological drug groups. ATC level 4 codes correspond to 
the chemical, pharmacological, or therapeutic drug subgroups. 
Our method identifies the dominant ATC level 1 and level 4 
codes of the cluster and proposes them as new anatomical and 
physiological target groups and potential mechanisms of action for 
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FIGURE 3
The clustered Drug-Drug Similarity Network (DDSN). We present the graphical representation of communities/clusters C1,C2,…Cn (n = 34) generated 
for network Gs, where nodes represent drug/medicines and weighted links represent similarity relationships (a higher weight corresponds to a stronger 
similarity). The graphical representation assigns distinct colors to nodes in each cluster, highlights clusters with gray background, and assigns cluster 
numbers according to size (i.e., number of nodes in the cluster).

repositioning candidates. Figure 4 illustrates the labeling process 
for Cluster 1, where the dominant level 1 ATC code is N (Nervous 
System); therefore, N is automatically assigned as the cluster’s label, 
as shown in panel (a). Panel (b) presents a histogram of drugs 
distributed across their level 2 ATC codes, with N05–Psycholeptics
as the dominant category. Panel (c) further refines this distribution 
at level 3 ATC, showing that the majority of drugs fall under 
N05C–Hypnotics and Sedatives and N03–Antiepileptics. Analysis 
of level 4 ATC codes reveals the top three categories, N05CB and 
N05CA (barbiturates), and N03AX (Other Antiepileptics), depicted 
in panel (d). We extract all nervous system-related targets associated 
with N05CB, N05CA, and N03AX drugs from DrugBank and 
propose their evaluation via molecular docking to identify potential 
candidates for repositioning within Cluster 1.

Our pipeline generates a list of drug candidates for repositioning 
at varying first ATC levels. The project README in our GitHub 
(https://github.com/GrozaVlad/Drug-repurposing-using-DDSN-w

ith-disgenet/blob/main/results/README.md) presents two result 
files: Literature validation. xlsx, which provides the PubMed 
link(s) and year of publication for literature supporting the 
predicted properties, and Repositioning hints and predicted 
targets. xlsx, which lists the pipeline’s the top 3 ATC level 
4 codes (ranked by frequency within the community) and 
the DrugBank targets associated with drugs in those ATC
level 4 groups.

Given the challenge of finding anticancer therapies, we selected 
an old drug from an L-labeled community to further validate 
our method in silico with molecular docking. To this end, we 
selected chloramphenicol, which has been in clinical practice 
for decades; its pharmacokinetics, safety profile, and side effects 
are well understood, which can expedite its repositioning as a 
cancer therapeutic. In addition, chloramphenicol is inexpensive, 
making it an attractive option for cancer treatment from economic 
considerations. The existing approval for chloramphenicol as an 
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FIGURE 4
Cluster 1 histograms for ATC levels 1–4. (A) Drugs with level-1 ATC code N—Nervous System dominate, hence the cluster label. (B) Distribution of 
N-classified drugs across ATC level 2 codes. (C) Distribution across ATC level 3 codes. (D) Distribution across ATC level 4 codes.

antibacterial agent and its age could simplify the regulatory pathway 
for repositioning in cancer and may lead to faster clinical trials 
and approval.

Chloramphenicol belongs to Cluster 6, where 60.8% of drugs 
have ATC level 1 code L–Antineoplastic and immunomodulating 

agents (see Figure 5A), so we add chloramphenicol to the drug 
repositioning hint list as an anticancer drug. Inspection of the 
higher ATC levels of L drugs reveals their distribution across 
ATC levels 2 as follows: 23 drugs have code L01–Antineoplastic 
agents (e.g., pentostatin, dasatinib, axicabtagene ciloleucel), 
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FIGURE 5
Cluster 6 histograms levels 1 to 4. (A) Drugs with level 1 ATC codes L–Antineoplastic and immunomodulating agents dominate; consequently, this code 
becomes the cluster’s label .(B) The distribution of L-classified drugs across their respective level 2 ATC codes. (C) The distribution of L-classified drugs 
across their respective level 3 ATC codes. (D) the distribution of L-classified drugs across their respective level 4 ATC codes.

eight drugs have L04–Immunosuppressants (e.g., cladribine, 
tofacitinib, abatacept), and one has L03–Immunostimulants (namely, 
aldesleukin) (Figure 5B). Next, the ATC level 3 distribution analysis 
shows that sublevel L01E–Protein kinase inhibitors dominates with 
11 drugs, followed by L04A–Immunosuppressants with eight drugs 
(Figure 5C). Figure 5D illustrates the distribution of drugs on ATC 
level 4: eight drugs have code L04AA–Selective immunosuppressants, 
five drugs each have L01FX–Other monoclonal antibodies and 
antibody drug conjugates and L01XX–Other antineoplastic agents, 
respectively, and 3 drugs each have L01EM–Phosphatidylinositol-3-
kinase (PI3K) inhibitors and L01EL–Bruton’s tyrosine kinase (BTK) 
inhibitors, respectively.

According to our repositioning pipeline, we assess the top 3 level 
4 ATC codes in Cluster 6 to find the repositioning candidate targets. 
The seven selective immunosuppressor drugs labeled as L04AA 
target various proteins, such as the ribonucleoside-diphosphate 
reductase protein group (e.g., RRM1, RRM2, and RRM2B) and the 
catalytic subunits of the DNA polymerase (e.g., POLA1, POLE, 
POLE2, POLE3, and POLE4). Monoclonal antibody drugs within 
the L01FX subgroup target Fc-gamma I, IIa, III-A, III-B, cytotoxic 

T-lymphocyte protein 4, and many other specific biological targets. 
The subgroups L01XX, L01EM, and L01EL are in third place. The 
L01XX subgroup includes other antineoplastic agents for which 
DrugBank lists targets, such as adenosine deaminase, B-lymphocyte 
antigen CD19, interleukin-2 receptor subunits alpha and beta, G1/S-
specific cyclin-D1, and transcription factor Jun. L01EM drugs are 
phosphatidylinositol 3-kinase (PI3Ks) inhibitors, and L01EL are 
Bruton’s tyrosine kinase (BTK) inhibitors. 

5 Molecular docking analysis

In this section, we consider PI3K and BTK (identified in
section 4.2) as targets for the investigation of chloramphenicol’s 
anticancer potential with molecular docking due to the smaller 
number of targets to test and, thus, more reasonable simulation time. 
We provide all the details to perform these simulations, ensuring the 
reproducibility and robustness of the results.

Despite its age, the scarcity of chloramphenicol testing in 
cancer was unexpected. The literature reveals only a few references, 
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which do not specifically present tests for chloramphenicol’s 
anticancer effect. For example, P.C. Giannopoulou et al. and 
O.N. Kostopoulou et al. reported the synthesis and evaluation 
of chloramphenicol derivatives that demonstrated cytotoxicity for 
ZL34 cancer cells and inhibited the growth of T-leukemic cells 
without influencing the viability of normal human lymphocytes, 
respectively Giannopoulou et al. (2019); Kostopoulou et al. 
(2015). A relationship between chloramphenicol and cancer is 
the triggering of aplastic anemia and leukemia following systemic 
administration Yuan and Shi (2008) but not after topical use 
Smith et al. (2000). Chloramphenicol has limited use as an 
antibacterial because it suppresses bone marrow function by 
inhibiting mitochondrial protein synthesis; however, the mechanism 
of this adverse effect could be capitalized in the treatment of 
leukemia and multiple myeloma Tian et al. (2016). Furthermode, 
DrugBank lists no clinical trial for chloramphenicol as a potential 
anticancer agent. 

5.1 Molecular docking rationale and 
method

We employ molecular docking simulations as a computational 
screening tool to validate the drug repositioning candidates 
identified from network-based clustering and ATC code labeling. 
This approach tests the hypotheses generated by our pipeline, which 
assigns biological targets to drugs with divergent level 4 ATC codes 
within each cluster, as described in Section 3.2.

We performed molecular docking on the crystallographic 
structures of Bruton’s tyrosine kinase (BTK1) and the alpha, gamma, 
and delta isoforms of phosphoinositide 3-kinase (PI3K), all of which 
belong to Homo sapiens. We obtained the crystallographic structures 
of the target proteins from the Protein Data Bank: PDB codes 5P9I 
for BTK1 Bender et al. (2017) and 7K6M, 8SC8, and 5M6U for PI3K 
alpha, gamma, and delta isoforms, respectively (see Figures 6A–D) 
Cheng et al. (2020); Erra et al. (2017). In 5P9I, BTK1 is co-
crystallized with the known inhibitor ibrutinib; the PI3K isoforms 
in 7K6M, 8SC8, and 5M6U are co-crystallized with synthetic ligands 
VXY, D0D, and 7KA, respectively (see Figure 7).

We adopted a protein-based approach to study the mode of 
interactions with the enzyme active site, using a protocolalready 
adopted in our previous studies Tundis et al. (2023); Perri et al. 
(2023). As a first step of our in silico experiments, a re-docking 
calculation was performed to determine the binding energy values of 
the crystallographic ligands for each target protein (see Figure 6E); 
we used these values as a reference for subsequent simulations.

The molecular structures of alpelisib, copanlisib, idelalisib, 
duvelisib, and chloramphenicol were built using Avogadro modeling 
software Hanwell et al. (2012). We employed AutoDock Vina 
1.1.2 for docking calculations Trott and Olson (2010). Preliminary 
conversion of the structures from the PDB format was performed 
using the AutoDock Tools 1.5.6 graphical user interface Morris et al. 
(1998). During the conversion, we added polar hydrogens to the 
crystallographic enzyme structures and merged the ligands’ apolar 
hydrogens with the carbon atoms to which they are attached. Full 
flexibility was ensured for the ligands, resulting in four active 
torsions for duvelisib, five for alpelisib, idelalisib, chloramphenicol, 
and nine for copanlisib. We conducted all simulations for each 

compound to a very high degree of exhaustiveness. We analyzed 
the ligand binding modes through visual inspection and evaluated 
the intermolecular interactions using the automated protein-ligand 
interaction profiler, PLIP Salentin et al. (2015). 

5.2 Molecular docking results

In the modern approach to scientific research, computational 
techniques provide significant advantages for streamlining drug 
discovery or uncovering the biological properties of natural or 
synthetic compounds Grande et al. (2020), (2021). Similarly, these 
techniques can support the discovery of additional pharmacological 
activities of known drugs used to treat diseases other than those for 
which they are currently approved Fadlalla et al. (2022).

The possibility of reusing drugs with already established 
safety profiles and pharmacokinetics offers the extra advantage of 
significantly lowering the costs and time required for the standard 
drug discovery process. To this end, encouraged by the results 
of previous studies Grande et al. (2020), we conducted molecular 
docking studies to explore the potential of chloramphenicol to 
directly interact with Bruton’s tyrosine kinase 1 (BTK1) and 
the alpha, gamma, and delta isoforms of phosphoinositide 3-
kinase (PI3K).

BTK1 is a kinase protein containing five domains: an amino-
terminal pleckstrin homology (PH) domain, a proline-rich TEC 
homology (TH) domain, SRC homology (SH) domains SH2 
and SH3, and a protein kinase domain endowed with tyrosine 
phosphorylation activity Pal Singh et al. (2018).

As a result, even though the chloramphenicol–5P9I estimated 
binding energy (−7.5 kcal/mol) is lower than that obtained for 
the crystallographic ligand, it is still a value compatible with a 
stable complex. Furthermore, chloramphenicol accommodates into 
the protein binding site, occupying the same position as ibrutinib 
(Figure 8). The ligand-target complex is stabilized by a hydrogen 
bond with Lys 430 and hydrophobic and van der Waals interactions 
with other key residues of the active site (Table 3).

Class I PI3K includes two subclasses: IA (PI3K alpha, 
beta, delta) and IB (PI3K gamma). All of them function as 
heterodimers, consisting of a catalytic subunit (p110) and a 
regulatory subunit (p85 for subclass IA and p84/p87 for subclass IB, 
respectively) Vanhaesebroeck et al. (2010). Previous studies using 
multiple sequence alignment of protein sequences from available 
crystallographic structures of PI3K identified key residues in the 
binding regions of each isoform. For PI3K alpha, the critical residues 
include Ser 774, Trp 780, Asp 810, Tyr 836, Val 851, and Asp 933. 
Other residues, such as Ser 773, Asn 853, Ser 854, His 855, and Gln 
859, appear important for ligand binding. For PI3K gamma, the key 
residues include Val 882, Asp 964, Tyr 867, Ser 806, and Lys 833. 
In the case of PI3K delta, Val 828, Trp 760, Lys 779, Glu 826, and 
Tyr 813 are significant for ligand binding. Identifying compounds 
interacting with these residues may help develop selective inhibitors 
for each PI3K isoform Al Hasan et al. (2023).

Considering these details and our preliminary results, we 
performed molecular docking experiments on the alpha, gamma, 
and delta isoforms of PI3K to compare the interaction mode 
of known ligands with that of chloramphenicol. Specifically, to 
investigate the interaction of chloramphenicol with the PI3K 
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FIGURE 6
Crystallographic structure of four target proteins studied, along with their corresponding co-crystallized ligands and re-docking scores. (A)
Crystallographic structure of Bruton’s Tyrosine Kinase (BTK1)—PDB 5P9I. (B) Crystallographic structure of the phosphoinositide 3-kinase (PI3K) 
alpha—PDB 7K6M. (C) Crystallographic structure of PI3K gamma—PDB 8SC8. (D) Crystallographic structure of PI3K delta—PDB 5M6U. (E) Re-docking 
scores for crystallographic ligands.

alpha isoform, we used the structure retrieved from PDB with 
code 7K6M, which corresponds to the enzyme’s catalytic subunit. 
In this structure, the protein is co-crystallized with a selective 

morpholine inhibitor, (S)-2,2-difluoroethyl-3-((2′-amino-5-fluoro-
2-morpholino-[4,5′-bipyrimidin]-6-yl)amino)-3-(hydroxymethyl)
pyrrolidine-1-carboxylate, referred to as VXY, discovered 
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FIGURE 7
Chemical structure of studied compounds. This figure shows the chemical structures and IUPAC names of the compounds investigated:
Ibrutinib, a well-known BTK1 inhibitor; VXY, a synthetic selective morpholine inhibitor targeting the PI3K alpha isoform; D0D, a 
quinazolinpyridinylmethanesulfonamide inhibitor of PI3K gamma; 7KA, a phenylpyrrolotriazinone inhibitor specific to the PI3K delta isoform; alpelisib, a 
recognized PI3K alpha inhibitor; copanlisib, an established inhibitor of both PI3K alpha and delta isoforms; idelalisib and duvelisib, both inhibitors of the 
PI3K gamma and delta isoforms.
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FIGURE 8
Crystallographic structure of Bruton’s tyrosine kinase (BTK1) corresponding to the PDB entry 5P9I. The protein backbone is represented in the 
background as ribbons and key amino acid residues of the catalytic site are in cyan. (A) Superimposed binding modes of the crystallographic ligand 
ibrutinib (dark pink) and chloramphenicol (blue). (B) The specific binding modes of ibrutinib. (C) The specific binding modes of chloramphenicol.

through structure-based drug design (SBDD) and 
computational analysis Cheng et al. (2020).

For a more comprehensive understanding of chloramphenicol’s 
behavior in its interaction with the target protein, we aimed to 
compare its binding mode with those of known ligands, such as 
alpelisib and copanlisib. Accordingly, we docked all compounds with 
7K6M. As a result, chloramphenicol shares a similar orientation 
within the active site as the crystallographic ligands, alpelisib 
and copanlisib (Figure 9), interacting with Ser 774 throughout 
a hydrogen bond and with other key binding site residues 
through hydrophobic and van der Waals interactions (Table 4). The 
calculated binding energy for the chloramphenicol–7K6M complex, 
although less favorable than those observed for known ligands, 
seems to support our hypothesis of a direct interaction between 
chloramphenicol and PI3K alpha.

We performed similar docking experiments on the 
crystallographic structure of PI3K gamma (PDB code 8SC8) to 
assess the binding mode of the studied ligand to this target. In 
this case, we compared the interaction of chloramphenicol to 
that of the crystallographic ligand D0D—(R)-N-(2-chloro-5-(4-
((1-phenylethyl)amino)quinazolin-6-yl)pyridin-3-yl)methanesulfo
namide—and the known inhibitors idelalisib and duvelisib.

Our simulation experiments demonstrated that all the 
ligands occupied the same region as the crystallographic ligand, 
corresponding to the enzyme’s catalytic subunit (Figure 10). 
Chloramphenicol interacted with key residues of the protein active 
site, although its binding energy values were less favorable than 
those observed for idelalisib and duvelisib (Table 5).

To further assess the reliability of our experiments, we also 
tested the interaction between chloramphenicol and the PI3K 
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TABLE 3  Binding energy values for ligands complexed with the BTK1 catalytic subunit and key protein residues interacting with the ligands.

Ligand Binding energy 
[Kcal/mol]

Interactions

Hydrogen bonds Hydrophobic 
interactions 

residues

π stacking

Residues Distance (Å) Donar angle [°]

H–A D–A

Ibrutinib −11.3

Glu 475 1.95 2.86 152.53 Val 416

Phe 540
Met 477 2.05 2.99 158.41 Ala 428

Cys 481 1.86 2.82 165.66 Lys 430

Leu 528

Chloramphenicol −7.5 Lys 430 2.42 3.09 122.65

Val 416

Lys 430
Ala 428

Lys 430

Thr 474

delta isoform. We docked chloramphenicol with the kinase 
catalytic subunit of the protein (PDB code 5M6U). Its binding 
mode was compared to that of the crystallographic ligand 
7 KA—(S)-2-(1-((6-amino-5-ethynylpyrimidin-4-yl)amino)ethyl)-
3-phenylpyrrolo[2,1-f ][1,2,4]triazin-4(3H)-one. For a better 
perspective, we also docked the known inhibitors idelalisib, 
duvelisib and copanlisib with the selected protein structure.

Chloramphenicol shared a similar orientation within the active 
site as the known ligands and interacted with key residues for the 
catalytic activity (Figure 11). Furthermore, the binding energy value 
for the chloramphenicol-5M6U complex was comparable to that 
calculated for the crystallographic ligand, although less favorable 
than those observed for the known inhibitors (Table 6).

6 Discussions and conclusion

This study demonstrates the potential impact of our network-
based pipeline in drug repositioning efforts. Our Drug-Drug 
Similarity Network (DDSN) generates 34 clusters, which we 
filtered based on connectivity and cluster size. As such, we 
focus on the remaining 12 robust clusters for a more detailed 
analysis (see Figure 3). Our procedure yields a 53.4% success 
rate in directly matching drugs to their cluster’s level 1 ATC 
code through DrugBank (Table 2). The literature confirmed 
pharmacological properties corresponding to ATC level 1 for an 
additional 20.2% of drugs, thus increasing the prediction accuracy 
to 73.6% (see GitHub results). We consider the 26.4% of drugs 
that—according to our current knowledge—do not comply with 
their assigned cluster label as repositioning candidates. These 
findings indicate that our network-based pipeline can identify drugs 
with potential new uses, guiding experimental validation efforts.

Our ATC-based analysis further refines this approach by 
mapping ATC level 1, 2, 3, and 4 codes. As presented in Figure 4, 

for Cluster 1, labeled N–Nervous System, the hierarchical breakdown 
reveals dominant drug categories at levels 2, 3, and 4. Extracting 
nervous system-related targets from DrugBank for level 4 ATC codes 
helps molecular docking as a validation step, based on the detailed 
mechanistic insights provided by level 4 ATC codes. Also, in Cluster 
6, 60.8% of drugs are L–Antineoplastic and immunomodulating 
agents. Our multi-level ATC approach presents the dominant 
distribution across level 2 (L01, L04, L03), level 3 (L01E, L04A) and 
level 4 (L04AA, L01FX, L01XX, L01EM, L01EL) codes (Figure 5). 
In this way, our pipeline enables the identification of various 
targets relevant to cancer therapies, including PI3K and BTK1, 
and proposes their testing to reposition candidates from Cluster 6. 
As a result, repositioning candidates can be tested with molecular 
docking, which simulates drug-target interactions and assesses the 
free energy of binding (ΔG) Issa et al. (2021); Udrescu et al. 
(2014); thus, the drugs are prioritized for the active binding site 
of the target Issa et al. (2021). The most favorable docking-based 
candidates can be further tested in vitro and in vivo. 

6.1 Recovered repositionings

Our automated literature analysis revealed that 20.2% drugs exhibit 
pharmacological properties aligned with their assigned ATC level 1 
category, although their ATC labels according to DrugBank do not 
match their community labels. For all such cases, the literature provides 
experimental or clinical evidence supporting the drugs’ mechanisms 
of action, therapeutic applications, or pharmacological effects that 
correspond to their respective ATC code labeling. 

Here, we provide several examples of drugs for which 
our repositioning method recovers pharmacological properties 
confirmed by the literature beyond those assigned by ATC codes. 
Sildenafil is a versatile molecule with famous repositioning stories, 
from vasodilator and platelet aggregation inhibitor to penile 
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FIGURE 9
Crystallographic structure of PI3K alpha corresponding to the PDB entry 7K6M. The protein backbone is represented in the background as ribbons and 
key amino acid residues of the catalytic site are in cyan. (A) Superimposed binding modes of the crystallographic ligand VXY (red), alpelisib (green), 
copanlisib (salmon), and chloramphenicol (blue). (B) The specific binding mode of VXY. (C) The specific binding mode of alpelisib. (D) The specific 
binding mode of copanlisib. (E) The specific binding mode of chloramphenicol.
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TABLE 4  Binding energy values for ligands complexed with the PI3K alpha catalytic subunit and key protein residues interacting with the ligands.

Ligand Binding energy 
[Kcal/mol]

Interactions

Hydrogen bonds Hydrophobic 
interactions 

residues

π stacking

Residues Distance (Å) Donar angle [°]

H–A D–A

VXY −8.7

Arg 770 2.97 3.90 157.36

Ile 848

Ser 774 2.34 3.20 148.88

Ser 774 2.22 3.20 161.99

Lys 802 3.01 4.01 166.90

Lys 802 3.45 4.01 117.70

Val 851 1.78 2.77 174.60

Gln 859 2.08 3.06 171.82

Ser 919 1.86 2.77 157.59

Asp 933 2.71 3.31 119.48

Alpelisib −11.2

Val 851 2.34 3.24 149.83 Trp 780

Val 851 2.08 3.01 156.70 Ile 800

Ser 854 2.81 3.63 142.60 Tyr 836

Thr 856 3.40 4.10 129.29 Ile 848

Gln 859 2.03 2.98 159.70 Val 851

Gln 859 2.14 2.94 135.11 Phe 930

Ile 932

Copanlisib −9.5

Lys 802 2.92 3.92 167.75 Tyr 836

Val 851 1.98 2.96 173.09 Ile 848

Asn 853 2.54 3.10 116.39 Ile 932

Ser 854 2.63 3.31 126.23 Trp 780

Asp 933 2.85 3.44 119.07 Ile 848

Chloramphenicol −7.1

Ser 774 2.04 3.01 174.21 Ile 848

Ser 774 2.03 3.01 159.63 Thr 856

Ile 932

erection and later vasodilator in pulmonary arterial hypertension 
Jourdan et al. (2020). DrugBank lists sildenafil in the G–Genito 
urinary system and sex hormones category as a urological drug 
used to treat erectile dysfunction. In our drug-drug similarity 
network, sildenafil belongs to Cluster 1, labeled as N–Nervous 
system. Indeed, Xiong and Wintermark review the clinical evidence 
for the effects of sildenafil on the extent of brain injury, myelination 

neuroinflammation, and brain function in adults and neonates; 
they also indicate the clinical trials that test the effects of sildenafil 
seen in animal models in human newborns and after birth 
asphyxia Xiong and Wintermark (2022). In addition, another 
review presents in vitro and mouse studies, systematic review, 
and pilot patient studies reporting the effectiveness of sildenafil 
in Alzheimer’s disease Sanders (2020).
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FIGURE 10
Crystallographic structure of PI3K gamma (PDB 78SC8). The protein backbone is represented as ribbons and key amino acid residues of the catalytic 
site are in cyan. (A) Superimposed binding modes of the crystallographic ligand D0D (gold), idelalisib (yellow), duvelisib (violet), and chloramphenicol 
(blue). (B) The specific binding mode of D0D. (C) The specific binding mode of idelalisib. (D) The specific binding mode of duvelisib. (E) The specific 
binding mode of chloramphenicol.
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TABLE 5  Binding energy values for ligands complexed with the PI3K gamma catalytic subunit and key protein residues interacting with the ligands.

Ligand Binding energy 
[Kcal/mol]

Interactions

Hydrogen bonds Hydrophobic 
interactions 

residues

π stacking

Residues Distance (Å) Donar angle [°]

H–A D–A

D0D −10.4

Lys 833 2.65 3.48 137.85 Ile 831

Lys 833 2.34 3.27 151.10 Ile 879

Val 882 1.96 2.83 144.98 Thr 887

Asp 964 2.46 3.28 139.73 Ile 963

Idelalisib −8.9

Ser 806 2.45 2.97 113.29 Pro 810

Tyr 867

Lys 833 3.52 4.07 115.41 Trp 812

Lys 833 3.65 4.07 107.34 Ile 831

Ile 879

Val 882

Phe 961

Ile 963

Duvelisib −9.0

Ser 806 2.35 2.80 107.84 Pro 810

Tyr 867

Lys 833 2.64 3.26 118.99 Ile 831

Asp 964 2.24 3.01 131.57 Ile 879

Asp 964 2.99 3.83 149.41 Ile 963

Asp 964

Chloramphenicol −6.7

Lys 833 2.62 3.22 117.37 Ile 831

Tyr 867Lys 833 2.77 3.22 108.73 Ile 879

Ile 963

Spironolactone is another example of how the literature confirms 
the repositionings recovered by our methodology. Spironolactone 
is an anti-aldosterone diuretic, officially included in the category 
of C–Cardiovascular system drugs (i.e., C is its first ATC level). 
Our repositioning method places spironolactone within Cluster 5, 
which has the ATC level 1 label D–Dermatologicals. The review 
articles by Aguilar Medina et al. (2022); Searle et al. (2020) 
confirm the beneficial effects of spironolactone in androgen-
mediated skin conditions, such as hidradenitis suppurativa, acne, 
alopecia pattern in women and hirsutism; they also highlight 
that spironolactone is well tolerated and has a favorable safety 
profile, i.e., it has few adverse effects, at doses ranging from 25
to 200 mg/day.

One more example of recovered repositionings, amitriptyline, 
traditionally classified as an antidepressant, is found by our method 
in cluster L—Antineoplastic and immunomodulating agents. In fact, 

amitriptyline has potential in cancer treatment through various 
mechanisms. For example, in multiple myeloma (MM) xenograft 
models, amitriptyline decreases tumor growth and prolongs survival 
by inducing p53, activating caspase-3, and reducing the anti-
apoptotic proteins Bcl-2 and Mcl-1 Zhang et al. (2013). In colorectal 
cancer cells, amitriptyline and other tricyclic antidepressants reduce 
cell viability in a time-dependent manner Arimochi and Morita 
(2006). Furthermore, it inhibits cyclin D2 transactivation, arrests 
the cell cycle in G0/G1, and modulates histone acetylation by 
downregulating HDACs, particularly HDAC7, thus enhancing 
tumor suppressor gene expression Mao et al. (2011). Amitriptyline 
promotes TRAIL-mediated apoptosis by enhancing the expression 
of death receptors and caspase activation; it also suppresses 
autophagy, disrupts lysosomal-autophagosome fusion, and reduces 
oxidative stress markers, underscoring its antitumor properties
Zheng et al. (2023).
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FIGURE 11
Crystallographic structure of PI3K delta corresponding to the PDB entry 5M6U. The protein backbone is represented in the background as ribbons and 
the key amino acid residues of the catalytic site are in cyan. (A) Superimposed binding modes of the crystallographic ligand 7KA (brown), idelalisib 
(yellow), duvelisib (violet), copanlisib (salmon) and chloramphenicol (blue). (B) The specific binding modes of 7KA. (C) The specific binding mode of 
idelalisib. (D) The specific binding mode of duvelisib. (E) The specific binding mode of copanlisib. (F) The specific binding mode of chloramphenicol.
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TABLE 6  Binding energy values for ligands complexed with the PI3K delta catalytic subunit and key protein residues interacting with the ligands.

Ligand Binding energy 
[Kcal/mol]

Interactions

Hydrogen bonds Hydrophobic 
interactions residues

π stacking

Residues Distance (Å) Donar angle [°]

H–A D–A

7 KA −7.6

Tyr 813 3.37 3.67 100.89 Met 752

Glu 826 2.13 2.77 121.37 Pro 758

Val 828 2.11 3.08 169.52 Trp 760

Ile 910

Idelalisib −8.8

Phe 751 3.26 3.78 113.70 Trp 760

Trp 760

Met 752 3.48 3.88 107.04 Ile 777

Lys 779

Ile 825

Val 828

Asp 911

Duvelisib −9.1

Phe 751 3.23 3.71 111.25 Trp 760

Trp 760

Met 752 3.46 3.86 107.19 Ile 777

Lys 779

Tyr 813

Ile 825

Val 828

Phe 908

Asp 911

Copanlisib −7.4

Asp 911 2.82 3.57 129.08 Met 752

Trp 760

Lys 779

Leu 784

Tyr 813

Ile 825

Ile 910

(Continued on the following page)
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TABLE 6  (Continued) Binding energy values for ligands complexed with the PI3K delta catalytic subunit and key protein residues interacting with 
the ligands.

Ligand Binding energy 
[Kcal/mol]

Interactions

Hydrogen bonds Hydrophobic 
interactions 

residues

π stacking

Residues Distance (Å) Donar angle [°]

H–A D–A

Chloramphenicol −6.9

Trp 760

Ile 777

Lys 779

Ile 825

Ile 910

Asp 911

Recovered repositioning examples, Table 2 (literature validation, 
showing the number of drugs per community with literature-
confirmed ATC changes), and the exhaustive per-community target 
lists in the Repositioning hints and predicted targets table in our 
GitHub results allow readers to explore alternative candidates from 
other communities. 

6.2 Molecular docking

A promising result of our approach is the identification of 
chloramphenicol in Cluster 6. Chloramphenicol is a widely used 
antibacterial agent, but because it is in cluster 6, it represents 
a candidate for cancer repositioning. We perform molecular 
docking simulations to further analyze our computational 
predictions. Several previous studies have reported anticancer 
effects of chloramphenicol or its derivatives, including cytotoxicity 
in mesothelioma cells Giannopoulou et al. (2019), growth 
inhibition of T-leukemic cells by polyamine-conjugated derivatives 
Kostopoulou et al. (2015), and apoptosis induction in multiple 
myeloma cells through mitochondrial protein synthesis inhibition 
Tian et al. (2016). Furthermore, mitochondria-targeting antibiotics 
such as chloramphenicol have been shown to eradicate cancer 
stem cells across tumor types Lamb et al. (2015). However, no 
experimental binding studies have so far demonstrated a direct 
interaction of chloramphenicol with BTK1 or PI3K (alpha, gamma, 
and delta isoforms). Our docking simulations therefore provide the 
first in silico evidence that the drug may interact with these targets, 
suggesting a dual mechanistic hypothesis combining mitochondrial 
effects with kinases modulation, which is consistent with its reported 
anticancer activity and warrants future biochemical validation.

Our docking results indicate that chloramphenicol binds 
within the active site of BTK1 similarly to ibrutinib, a BTK1 
inhibitor. Although chloramphenicol has a lower binding energy 
than ibrutinib, its complex is stabilized by key hydrogen bonds 
and hydrophobic interactions (Figure 8; Table 3), suggesting 
potential kinase inhibitory activity. Similarly, molecular docking 

of chloramphenicol with PI3K isoforms revealed that the drug 
binds to the target protein in a manner comparable to that 
of previously identified inhibitors, such as alpelisib, copanlisib, 
idelalisib, and duvelisib (Figures 9–11). Although its binding 
energies are less favorable than those calculated for known 
inhibitors, chloramphenicol interacts with key amino acid residues 
through hydrogen bonds and van der Waals forces (Tables 4, 
5, 6), supporting its potential role in PI3K modulation. Future 
studies are required to determine whether chloramphenicol can 
be repurposed for cancer treatment, offering a cost-effective and 
adaptable therapeutic option. 

6.3 Limitations—Edge cases and 
contradictory evidence

Because the drug-drug similarity network projection treats 
a drug-gene edge as evidence of a pharmacological relationship 
without encoding the precise action (agonist, antagonist, substrate, 
etc.), a predicted repositioning can reflect either a potentially 
beneficial effect or an adverse/off-target effect on the same 
physiological system.

As an illustrative edge case, clarithromycin clusters in the Cluster 
3–Cardiovascular system. Clarithromycin is clinically associated with 
QT-interval prolongation and increased arrhythmia risk—a well-
known cardiovascular liability that counsels caution. Our network 
analysis nevertheless assigned clarithromycin in Cluster 3 because 
it is pharmacologically linked (via targets and shared-disease 
connectivity) to targets involved in cardiovascular regulation. One 
specific hypothesis emerging from the community mapping is a 
putative interaction with NR3C2 (the mineralocorticoid receptor). 
Antagonism of NR3C2 underlies the cardioprotective effects 
of established mineralocorticoid receptor antagonists (MRAs), 
which reduce heart-failure hospitalisation and cardiovascular 
death; MRAs are, however, associated with an increased risk 
of hyperkalaemia Jhund et al. (2024). While there is no 
conclusive evidence that clarithromycin antagonises NR3C2
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in vivo, a retrospective clinical observation that clarithromycin co-
administered with MRAs is associated with higher serum potassium 
levels provides indirect, functional context for an interaction 
with the mineralocorticoid system Hirai et al. (2023). Taken 
together, these lines of evidence make NR3C2 a biologically 
plausible target for further mechanistic investigation. However, 
any therapeutic hypothesis should be experimentally validated and 
carefully evaluated against clarithromycin’s known cardiac risks. 

6.4 Future work

This study highlights the potential of our DDSN-based drug 
repositioning pipeline to identify new targets for existing drugs and 
facilitate molecular docking investigations. The pipeline accurately 
aligns 73.6% of the drugs with their cluster’s dominant level 1 
ATC property and classifies the non-conforming remainder as 
repositioning candidates; overall, this means a good drug property 
prediction accuracy given the extent of unknown information. 
Furthermore, our automated pipeline also identifies biological 
targets that correspond to the majority of drugs within a cluster 
and proposes them as potential new targets for the repositioning of 
candidates.

In future studies, we can extend our definition of drug-drug 
similarity to simplicial complexes (which generalize the notion of 
graph by allowing higher-dimensional relationships between nodes, 
not just pairwise edges).

Future work may also validate the repositioning candidates 
identified by our method (see our GitHub results), by applying 
a combination of dry-lab approaches (i.e., molecular docking 
simulations) and wet-lab experiments (i.e., in vitro and in 
vivo tests) to confirm their new pharmacological properties 
and therapeutic potential. 
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