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Introduction: Drug repositioning—finding new therapeutic uses for existing
drugs—can dramatically reduce development time and cost, but requires
efficient computational frameworks to generate and validate repositioning
hypotheses. Network-based methods can uncover drug communities with
shared pharmacological properties, while molecular docking offers mechanistic
insights by predicting drug—target binding.

Methods: We introduce an end-to-end, fully automated pipeline that (1)
constructs a tripartite drug-gene-disease network from DrugBank and
DisGeNET, (2) projects it into a drug-drug similarity network for community
detection, (3) labels communities via Anatomical Therapeutic Chemical (ATC)
codes to generate repositioning hints and identify relevant targets, (4) validates
hints through automated literature searches, and (5) prioritizes candidates via
targeted molecular docking.

Results: After filtering for connectivity and size, 12 robust communities emerged
from the initial 34 clusters. The pipeline correctly matched 53.4% of drugs to their
ATC level 1 community label via database entries; literature validation confirmed
an additional 20.2%, yielding 73.6% overall accuracy. The remaining 26.4% of
drugs were flagged as repositioning candidates. To illustrate the advantages
of our pipeline, molecular docking studies of chloramphenicol demonstrated
stable binding and interaction profiles similar to those of known inhibitors,
reinforcing its potential as an anticancer agent.

Conclusion: Our integrated pipeline effectively integrates network-based
community analysis and automated ATC labeling with literature and docking
analysis, narrowing the search space for in silico and experimental follow-
up. The chloramphenicol example illustrates its utility for uncovering
non-obvious repositioning opportunities. Future work will extend similarity
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definitions (e.g., to higher-order network motifs) and incorporate wet-lab
validation of top candidates.
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1 Introduction

Traditional drug design is challenging, expensive, and time-
consuming Fetro and Scherman (2020). In this context, finding
new indications for existing drugs—a process known as drug
repositioning or repurposing—is an effective and promising
strategy for discovering new therapies for both common and
rare diseases Tian et al. (2018); Parvathaneni et al. (2019).
Indeed, repositioning is an alternative strategy that enables the
reuse of approved active pharmaceutical ingredients, significantly
reducing development timelines and costs Pushpakom et al
(2019); it also offers greater safety predictability because it
involves drugs with known pharmacokinetic profiles that have
already undergone rigorous testing Parvathaneni et al. (2019);
Pushpakom et al. (2019); Zhang et al. (2020).

Drug repositioning employs computational and experimental
approaches, sometimes in combination, to harness the benefits of
both Pushpakom et al. (2019); Morselli Gysi et al. (2021); Ko (2020).
Computational models leverage data mining, machine learning,
and network analysis to uncover interactions not detected during
clinical trials, predict drug safety, and explore relationships between
drug data and genomic, transcriptomic, and phenotypic data
Pushpakom et al. (2019); Morselli Gysi et al. (2021); Udrescu et al.
(2016), (2020). However, extracting relevant and meaningful
information becomes difficult due to the exponential growth of
biomedical data, requiring advanced algorithms and strong data
curation Udrescu et al. (2023). Various effective repositioning
methods have emerged by integrating information technology,
including molecular modeling and data mining techniques, to
address such provocation. In this way, refinements in data processing
and computational methods have laid the foundation for structured
drug repositioning protocols. For example, Jarada et al. (2020) set
up a four-step protocol: selecting the strategy based on available
datasets, identifying the appropriate computational method and
building the model, validating the model, and delivering drug
candidates for repositioning.

Network-based models are an important computational
drug repositioning framework that integrates complex system
theory, data mining, and machine learning; they represent
biological systems as nodes (e.g., drugs, diseases, or proteins)
interconnected by edges (e.g., the relationships between them).
Network-based methods help uncover new drug targets Luo et al.
(2017); Amiri Souri et al. (2022); Pham and Tran (2024) or
pharmacological properties Udrescu et al. (2016); Udrescu and
Udrescu (2019), thus supporting repositioning opportunities.
Furthermore, network-based methods working at the macro-scale
can uncover repositioning candidates that micro-scale approaches
like molecular docking cannot identify Morselli Gysi et al. (2021).
One practical approach, which we also use in this paper, is to
employ unsupervised machine learning algorithms in network data
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representations to identify clusters or communities of nodes; these
clusters can be labeled according to relevant properties and then
serve as the basis for drug repositioning according to the rationale of
guilt by association Udrescu et al. (2016), (2020); Groza et al. (2021).

Molecular docking is an in silico approach used to simulate
drug-target interactions, predicting how a drug molecule binds to
a biological target and calculating the binding affinity. Molecular
docking can also identify off-target effects (ie., unaccounted
interactions with target proteins) that may indicate new therapeutic
uses of existing drugs. However, molecular docking requires
significant computational resources, and applying it on a large scale
is cumbersome Bender et al. (2021). Therefore, a more efficient
approach is to use other computational techniques (such as machine
learning and network analysis) to reduce the vast search space of
chemical drug-target interactions by identifying a specific list of
selected targets for exploration and analysis via molecular docking.
In this way, docking studies would provide robust hypotheses for
further in vitro and in vivo experimental testing Udrescu et al.
(2020); Alam et al. (2022); Sharma et al. (2021).

Computational pipelines for drug repositioning commonly
integrate database aggregation, big-data analytics, machine learning,
network analysis, and molecular docking (see our analysis of
previous work in Section 2). While state-of-the-art multi-stage
approaches are effective at prioritizing candidate drugs, they
frequently yield only ranked lists of repositioning hypotheses
without identifying the specific target activities or mechanisms
of action. Consequently, follow-up validation—such as targeted
molecular docking or biochemical assays—remains cumbersome
and time-consuming in the absence of hinting specific targets and
mechanisms of action.

This paper addresses the issue of delivering a drug repositioning
hint list and related data that foster molecular docking analysis.
To this end, we implement a fully automated computational drug
repositioning pipeline that integrates computational network
analysis (i.e., community detection in drug-drug similarity
networks), community labeling based on the Anatomical
Therapeutic Chemical (ATC) drug categorization system, literature-
based validation, and ATC level 4 drug-target interaction
information, to generate drug repositioning hints along with the list
of relevant targets to be further investigated by molecular docking.

Our work proposes the following original contributions to attain
the above-stated objectives:

e A drug-drug similarity network for drug repositioning
built by projecting a tripartite drug-gene-disease network
(with data from DrugBank Wishart et al. (2018)
and DisGeNET Pifero et al. (2020));

e The fully automated computational drug repositioning

drug-drug

clustering, ATC cluster/community labeling, and literature

pipeline that integrates similarity network
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validation of drug repositioning hints (showing an
accuracy of 73.6%);

e A methodology that uses level 4 ATC data to indicate
suitable targets for drug repositioning validation with
molecular docking;

e The illustration of our method’s advantages by performing
molecular docking for the chloramphenicol repositioning in
cancers driven by Bruton’s tyrosine kinase 1 (BTK1) and the
phosphoinositide 3-kinase (PI3K) alpha, gamma, and delta

isoforms; this case was predicted by our pipeline.

The remainder of this paper is organized as follows. Section 2
presents the state-of-the-art in computer-automated pipelines for
drug repositioning, Section 3 describes our repositioning pipeline,
Section 4 presents the pipeline results, Section 5 shows how the
results of our pipeline foster molecular docking analysis in the
case of chloramphenicol repositioning in cancers, and Section 6
discusses the relevant results and draws conclusions.

2 Computational pipelines for drug
repositioning hints

Since our paper proposes an automated pipeline for
computational drug repositioning, this section provides a
comparative overview of computational pipelines that predict new
pharmacological properties of drugs and generate lists of candidate
drugs for repositioning. Consequently, Table 1 summarizes 20
articles (published between 2013 and 2024) that describe drug
repositioning pipelines; for each pipeline, the table presents the
computational method, its focus, source and data integration,
pipeline automation/validation, and the most relevant outcome.

All pipelines presented in Table 1 have three essential
components: data retrieval, data analysis/processing and inference,
and validation. The data retrieved are integrated into specific
structures and fed to the processing and inference stage. The
inference component then produces a tentative drug repositioning
list to be tested by the validation component; the validation outputs
the final repositioning hint list.

The pipelines integrate data from large public datasets and are
automated, although some do not integrate validation (see column
Automation/Validation in Table 1). In addition, most pipelines
are designed for a broad range of repositionings, while some
are focused on specific diseases. However, the defining element
of drug repositioning pipelines is the computational method
for data processing and inference. In Table 1, we have pipelines
based on computational network analysis Udrescu et al. (2016),
Groza et al. (2021), Fiscon and Paci (2021), Fiscon et al. (2021a),
(b), Conte et al. (2022), Paci et al. (2022), Minadakis et al.
(2023), Udrescu and Sbarcea (2020), machine and deep learning
Morselli Gysi et al. (2021); Mangione et al. (2020), (2022),
Ahmed et al. (2022), Tuerkova and Zdrazil (2020), Lv et al. (2024),
Liu et al. (2021), and expression-based and statistical approaches
Brown et al. (2016), Traylor et al. (2021), Pacini et al. (2013),
Shuey et al. (2023), Amadori et al. (2023).

Although, as mentioned, some existing pipelines filter their initial
drug repositioning hint list by performing automated validation
(with literature records or other tools), none integrate molecular
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docking analysis because that would entail substantial computational
resources. Moreover, no existing pipeline facilitates validation with
molecular docking by providing additional information, such as a list
of potentially relevant targets for which the drug binding mode can be
predicted and its binding affinity estimated.

3 Proposed drug-repositioning
pipeline

To foster the integration of molecular docking into the analysis
and validation of drug repositioning hint lists, we propose a pipeline
that has the following components: data retrieval and integration
from DrugBank and DisGeNET, inference using computational
network analysis (ie., cluster/community detection), and drug
repositioning hint validation by checking literature databases.

Figure 1 provides the overview of our project by indicating the
information flow from the data sources (drug-gene interactions
from DrugBank and DisGeNET gene-disease associations), going
through data processing and inference through tripartite network
projection and network community/cluster detection, then cluster
labeling with level-1 ATC codes to produce the initial repositioning
hint list and finding relevant targets using level 4 ATC codes, and
finally to the literature-based testing that produces the validated
drug repositioning hint list. In this way, for each hint validated
by the literature search, we have an additional list of potentially
relevant targets that can be investigated through molecular docking.
Indeed, having information on the anatomical groups targeted by
the repositionings and the relevant targets is a significant advantage
for the docking process because it substantially narrows its search
space. An additional component in our pipeline implementation
is the Postgres Relational Database, which integrates all data
retrieved from DrugBank and DisGeNET with data generated from
community detection and ATC codes.

The following subsections describe the main features of
our pipeline presented in Figure 1. We provide the pipeline
implementation in our GitHub repository.

3.1 Drug-drug similarity network (DDSN)

The component dedicated to data retrieval and integration
extracts information on drug-drug similarity relationships. As such,
it builds a drug-drug similarity network based on indirect drug-
disease relationships, using data from DrugBank Wishart et al.
(2018) and DisGeNet Pifiero et al. (2020). Indeed, neither database
provides direct connections between drugs and diseases; therefore,
we first combined DrugBank (containing data on drug-gene
interactions) and DisGeNet (containing data on gene-disease
relationships) to create a drug-gene-disease tripartite network. We
used a Node. js script to import and process the data. Then we build
the tripartite network as a graph G = (V, E), where V represents the
set of vertices or nodes, and E the set of edges or links between
the nodes. In our tripartite network, set V is the union of the three
disjoint sets of vertices represented by drugs/medicines (V,,), genes
(Vg), and diseases (V), with V=V, U Vg U V. The set of edges E
is the union of the disjoint sets of drug-gene edges (E,) and gene-
disease edges (E;), E = E,UE;. The directed edges e‘lg] € E, represent
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pathology-specific focus), and data integration and source. The Automation/Validation column specifies whether the pipeline is fully automated and includes automated testing/validation. The Main outcome

TABLE 1 (Continued) Comparative overview of computational drug repurposing pipelines. We summarize 20 drug repurposing pipelines based on computational methods, their focus (i.e., exhaustiveness or
column highlights the most relevant results of each pipeline.

Frontiers in Bioinformatics

Main outcome

Predicts repositioning candidates and side effects

20/283 drugs evidenced for glycemic control

‘ Automation/Validation

Automated/Not integrated

Partial/Integrated

GEO, CMAP, ArrayExpress

GWAS, EHR
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Abbreviations: CBDDIN, Community-Based Drug-Drug Interaction Network; DDSN, Drug-Drug Similarity Network; SAveRUNNER, Searching off-IAbel dRUg aNd NEtwoRk); CANDO, Computational Analysis of Novel Drug Opportunities;

ksRepo-Kolmogorov-Smirnov repositioning; DvD-Drug versus Disease.
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the interaction between v!" € V, and Vf €V, (i.e., drugs and genes),
and the directed edges eg € E; represent the interaction between
e V, and de €V, (i.e., genes and diseases).

Next, we projected the tripartite network into a monopartite
drug-drug similarity network G, = (V,,,E,), where the vertices
are medicines (V,,) linked by similarity edges (E,). A similarity
undirected edge e, € E; between v" and v" € V,, exists if there is
at least one path between a drug/medicine v/ and a disease VZ eV,
and at least one path between v" and the same disease VZ in G. The
similarity network G is weighted, with the weight of ¢}; representing
the number of w diseases vz € V, that are connected (via a path) to
both v/" and VJ’.“ in the tripartite graph G. A connecting path between
vi' eV, and v]‘.i € V, exists in the tripartite graph G if we have a gene
Vi €V, such that 3 two directed edges, efk € Eg from v:” to Vi € Vg
and ¢; € Eq from 1{ to v;.j € V. According to the formal description
above, the weight of a link/edge in the DDSN G, (representing the
similarity relationship between two drugs/medicines) is the number
of diseases that can be reached via valid connecting paths in the
tripartite graph from both drugs.

Figure 2 presents an example of tripartite (drug-gene-disease)
graph projection onto a drug-drug similarity network according to
the algorithm described in this section; the example uses a small
subgraph extracted from G.

3.2 Network community detection,
labeling, and target identification

Network community detection (also known as graph clustering)
identifies groups of nodes/vertices that we call communities or
clusters (C,,C,,...C,, with C,UC,U...UC, =V, ), which are more
densely connected internally than the rest of the graph. We perform
network community detection in Wolfram Mathematica 13 Inc.
(2023) using the FindGraphCommunities function with the
‘Hierarchical’ method, based on vertex similarity and a dendrogram
to represent nested community structures.

For each cluster C; (i = 1.n), we automatically assign a cluster’s
dominant level 1 ATC code as its label and add drugs deviating
from the cluster label to the drug repositioning hint list. We do this
by computing cluster C;’s ATC code histogram k' = (k"l,k;, k’W)
(where W is the number of distinct ATC codes in C; and kJ’. the
number of drugs in C; that have ATC code j); as such, the dominant
ATC code is j if max (k’1 K. k’w) = kJ’ As aresult, we add all drugs
v € C; that do not have the dominant ATC level 1 code j (according
to DrugBank) to the repositioning list as potentially having the
property described by j.

DrugBank lists all associated level 4 ATC codes for each
target; therefore, if we establish the dominant level 4 ATC codes
in each cluster, we can identify the cluster’s targets of interest,
which will subsequently foster the molecular docking validation
efforts. Accordingly, for all drugs within the cluster labeled with the
dominant level 1 ATC, we systematically compute the histograms
corresponding to their levels 2, 3, and 4 of ATC and also identify the
dominant level 4 ATC codes in each cluster, map them with their
associated biological targets from DrugBank, and associate these
targets with drug repositioning hints. Specifically, if the dominant
ATC level 4 code in C; corresponds to the mechanism of action g,
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The overview of our proposed drug repositioning pipeline. We present the pipeline components as the information flows from the data sources
(DrugBank and DisGeNET) to the repositioning hint list. The retrieved data is integrated into the Postgres Relational Database (PDR); then, we query the
database to build a tripartite drug-gene-disease graph and project the tripartite graph as a weighted drug-drug similarity network (a bigger edge weight
means a higher similarity). We perform clustering (i.e., community detection) on the drug-drug similarity network and store the cluster/community
structure in the PDR. After an automated analysis of level 1 ATC code distribution in the resulting communities, we assign the dominant label to each
cluster; we also perform a similar distribution analysis for level 4 ATC codes, which identifies the relevant targets for the potential repositionings. The
ATC code distribution analysis and labeling results are stored in the PDR. Drugs that do not match their cluster label (based on existing DrugBank
information) are added to the initial drug repositioning hint list, which is then refined through the Literature Validation component. Finally, the validated
hints and the lists of relevant targets are delivered to Molecular Docking testing.
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carcinoma

FIGURE 2

carcinoma.) The right shows the drug names.

An example of how our algorithm projects the tripartite (drug-gene-disease) network onto a weighted drug-drug similarity network. The left shows the
tripartite graph G built with information retrieved from DrugBank and DisGeNET: the circle nodes represent drugs in V,,,, the triangle nodes represent
genes in V,, the box nodes represent diseases in V,, and the directed edges (i.e., arrows) represent drug-gene interactions from £, and gene-disease
associations from E,. The center depicts the weighted drug-drug similarity network G, where the circles represent drugs and the undirected edges
represent similarity relationships E;—a thicker edge (according to its weight) means a stronger similarity (For instance, we have an edge of weight 3
between M1 and M7 because we have valid paths connecting 3 diseases to both drugs: Paraganglioma, Pheochromocytoma, and Adrenocortical

M1 - Acetylsalicylic acid
M2 - Bosentan

M3 - Sitaxentan

M4 - Oseltamivir

M5 - Celecoxib

M6 - Zinc acetate

M7 -Zinc chloride

M8 - Zinc sulfate

then we retrieve from DrugBank the list of targets associated with
that mechanism of action T,.

Given that we can assemble drugs according to a specific
mechanism of action (described by a level 4 ATC code) and
its corresponding biological targets, our approach uses shared
pharmacological properties to suggest new therapeutic uses. For
example, a drug not known to have the community-dominant ATC
level 4 code could be uncovered as binding to a target shared by the
dominant group; this might be effective for a disease treated by the
community’s dominant drug class.

The targets we identify to associate with the drug repositioning
hints facilitate molecular docking (by calculating their binding
affinity to the assigned targets), thus prioritizing drugs with
favorable interaction profiles. This strategy improves the efficiency
of subsequent experimental validation by focusing on biologically
plausible hypotheses.

3.3 Validation with literature database
search

We validate repositioning candidates by automatically querying
the PubMed database with Biopython Cock et al. (2009).
Explicitly, we assign the Medical Subject Headings (MeSH) terms
corresponding to each drug name in the repositioning candidate
list, its community level 1 ATC name, and relevant synonyms. We
used the Boolean operator AND’ to correlate the drug name and
the ATC category name, and ‘OR’ to include relevant synonyms
of the ATC category. To rely only on high-quality evidence, we
applied filters that retrieve only research articles and clinical trials,
excluding commentaries and unrelated studies. Subsequently, we
pass the retrieved literature list through expert analysis that filters
the publications and further confirms the predicted property.
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Validation of drug repositioning hints with the latest literature
and electronic health databases is paramount. The main problem in
drug repositioning is that we do not have a robust ground truth: we
can rely on what we know about drugs (i.e., current knowledge), but
we cannot rely on negative information. In other words, if we do not
know, for instance, that there is a specific drug-target interaction, it
does not necessarily mean that the interaction does not exist; maybe
it exists, but we do not know about it yet Udrescu et al. (2023).
Therefore, most available drug repositioning pipelines based on
machine learning methods adopt the train/test dataset split strategy
to assess their performance. However, such a strategy cannot work
well in the case of network-based approaches, as it entails affecting
the network topology; this is why network-based methods rely on
external validation for performance assessment. External validation
can be performed by automatic/systematic literature or electronic
health databases, molecular docking, in vitro, or in vivo actual
experiments. Unfortunately, in vitro and in vivo experiments require
extensive resources and demand carefully designed protocols,
meaning serious additional research. On the other hand, molecular
docking requires substantial computational resources, including
months of program execution run time. Therefore, validation of
drug repositioning hints with the latest literature and electronic
health databases remains the most affordable and feasible solution
(adopted by most state-of-the-arthe weight of the similarity
relationship between two drugs/medicines is the number of diseases
that can be reached via valid paths in the tripartite graph from both
drugs t pipelines in Table 2).

4 Pipeline results

This section presents the results that we obtained by applying
our proposed pipeline to the DrugBank 5.1.9 and DisGeNET data.
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TABLE 2 Features of the clusters in our drug similarity network generated by the hierarchical clustering algorithm. For each cluster, we provide the
number of component drugs and the corresponding label corresponding to the level 1 ATC of the majority of drugs in the first and second columns. The
column % Predominant ATC in DB lists the percentages of drugs whose level 1 ATC listed by DrugBank predominates in each cluster. The column %
Confirmed by literature presents the percentages of drugs for which the literature confirms the property represented by the level 1 ATC, thus increasing
the prediction accuracy of our drug-drug similarity network, as presented in column % Accuracy.

Cluster No ATC level 1l % predominant ATC in DB | % confirmed by literature | % accuracy

1 105 N (Nervous system) 52.4 26.7 79.0

2 88 B (Blood and blood forming organs) 52.3 14.8 67.0

3 95 C (Cardiovascular system) 35.8 13.7 49.5

4 85 L (Antineoplastic and 52.9 30.6 83.5
immunomodulating agents)

5 51 D (Dermatologicals) 54.9 17.6 72.5

6 51 L (Antineoplastic and 60.8 23.5 84.3
immunomodulating agents)

7 51 M (Musculo-skeletal system) 64.7 15.7 80.4

8 44 G (Genito-urinary system and sex 61.4 20.4 81.8
hormones)

9 31 N (Nervous system) 61.3 16.1 77.4

10 24 L (Antineoplastic and 87.5 4.2 91.7
immunomodulating agents)

11 15 H (Systemic hormonal preparations) 40 133 53.3

12 13 D (Dermatologicals) 30.8 46.1 76.9
Total 53.4 20.2 73.6

In particular, we extracted information on drug-gene edges E, from
DrugBank and on gene-disease edges E; from DisGeNET.

4.1 Network analysis

Figure 3, shows that our DDSN network-building and clustering
methodology produces 34 clusters. However, we excluded from
further analysis all clusters disconnected from the main connected
component (clusters 15-21 and 23-31) and clusters with fewer than
eight vertices/drugs (clusters 13, 14, 22, 32-34). Consequently, we
investigate the remaining 12 clusters in the drug-drug similarity
network (Figure 3) as follows:

1. Scan the level 1 ATC of all drugs in DrugBank and
automatically label the cluster with its predominantlevel 1 ATC
property (see the first four columns in Table 2).

. Automatically inspect the literature for drugs with ATC
level 1 that differs from those representing the cluster label;
we selected articles reporting the pharmacological property
of interest, thus confirming the ATC-based community, as
presented in Table 2, columns % Confirmed by literature and %
Accuracy, respectively.

3. Add the nodes for which the literature has not confirmed

the cluster’s pharmacological property to the list of drug
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candidates for repositioning (Table 2, column % Repositioning
candidates).

Our results show that 53.4% of drugs have the ATC
level 1 property given by their cluster label, and 20.2% are
not formally classified in the ATC level 1 cluster label with
DrugBank data Wishart et al. (2018), but the automated
literature check demonstrates the predicted corresponding
anatomical/pharmacological properties (see our GitHub main
results). Consequently, 26.4% of the drugs do not comply with
the cluster label, so we consider them candidates for repositioning
on the property corresponding to their community/cluster
label (see Table 2). In addition, this means that the accuracy of our
pipeline, measured with the available information (that is, current
knowledge), is 53.4% + 20.2% = 73.6%.

4.2 ATC analysis and inference

ATC level 1 codes
pharmacological drug groups. ATC level 4 codes correspond to

describe the main anatomical or

the chemical, pharmacological, or therapeutic drug subgroups.
Our method identifies the dominant ATC level 1 and level 4
codes of the cluster and proposes them as new anatomical and
physiological target groups and potential mechanisms of action for

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1666716
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Colibasanu et al.

10.3389/fbinf.2025.1666716

FIGURE 3

numbers according to size (i.e., number of nodes in the cluster).

DrugBank 5.1.9 DDSN network based on gene-disease

The clustered Drug-Drug Similarity Network (DDSN). We present the graphical representation of communities/clusters C;,C,,...C,, (n = 34) generated
for network G,, where nodes represent drug/medicines and weighted links represent similarity relationships (a higher weight corresponds to a stronger
similarity). The graphical representation assigns distinct colors to nodes in each cluster, highlights clusters with gray background, and assigns cluster

repositioning candidates. Figure 4 illustrates the labeling process
for Cluster 1, where the dominant level 1 ATC code is N (Nervous
System); therefore, N is automatically assigned as the cluster’s label,
as shown in panel (a). Panel (b) presents a histogram of drugs
distributed across their level 2 ATC codes, with N05-Psycholeptics
as the dominant category. Panel (c) further refines this distribution
at level 3 ATC, showing that the majority of drugs fall under
NO5C-Hypnotics and Sedatives and NO3-Antiepileptics. Analysis
of level 4 ATC codes reveals the top three categories, NO5CB and
NO5CA (barbiturates), and NO3AX (Other Antiepileptics), depicted
in panel (d). We extract all nervous system-related targets associated
with NO5CB, N05CA, and NO3AX drugs from DrugBank and
propose their evaluation via molecular docking to identify potential
candidates for repositioning within Cluster 1.

Our pipeline generates a list of drug candidates for repositioning
at varying first ATC levels. The project README in our GitHub
(https://github.com/GrozaVlad/Drug-repurposing-using-DDSN-w
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ith-disgenet/blob/main/results/README.md) presents two result
files: Literature validation. xIsx, which provides the PubMed
link(s) and year of publication for literature supporting the
predicted properties, and Repositioning hints and predicted
targets. xlsx, which lists the pipeline’s the top 3 ATC level
4 codes (ranked by frequency within the community) and
the DrugBank targets associated with drugs in those ATC
level 4 groups.

Given the challenge of finding anticancer therapies, we selected
an old drug from an L-labeled community to further validate
our method in silico with molecular docking. To this end, we
selected chloramphenicol, which has been in clinical practice
for decades; its pharmacokinetics, safety profile, and side effects
are well understood, which can expedite its repositioning as a
cancer therapeutic. In addition, chloramphenicol is inexpensive,
making it an attractive option for cancer treatment from economic
considerations. The existing approval for chloramphenicol as an
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antibacterial agent and its age could simplify the regulatory pathway
for repositioning in cancer and may lead to faster clinical trials
and approval.

Chloramphenicol belongs to Cluster 6, where 60.8% of drugs
have ATC level 1 code L-Antineoplastic and immunomodulating
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agents (see Figure 5A), so we add chloramphenicol to the drug
repositioning hint list as an anticancer drug. Inspection of the
higher ATC levels of L drugs reveals their distribution across
ATC levels 2 as follows: 23 drugs have code L01-Antineoplastic
agents (e.g., pentostatin, dasatinib, axicabtagene ciloleucel),

10 frontiersin.org


https://doi.org/10.3389/fbinf.2025.1666716
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Colibasanu et al.

10.3389/fbinf.2025.1666716

wn A
[0}
T e
S
Q ! a b1l
= kel
< G
o 8
> O
g o
= —=
[
2° 2
s 1 103
o
° c
v n L1
o 5 10 15 20 25 30 o 5 10 15 20
Drugs count Drugs count
LO1XL
LO1EM
LO1EL
w
@ Loig
°
O ouan
o
D11A E LO1EX
"
% LO1F E LO1FX
S e 2 e
H —1 1m0
< LO1A 'é
— Lo01BB
9 o =1
%) O 104AA
w
= LoaAC
e
T o3 LO3AC
=
101X L01XX
] 2 4 6 8 10 ] 1 2 3 4 5 6 7
Drugs count Drugs count
FIGURE 5

Cluster 6 histograms levels 1 to 4. (A) Drugs with level 1 ATC codes L-Antineoplastic and immunomodulating agents dominate; consequently, this code
becomes the cluster’s label .(B) The distribution of L-classified drugs across their respective level 2 ATC codes. (C) The distribution of L-classified drugs
across their respective level 3 ATC codes. (D) the distribution of L-classified drugs across their respective level 4 ATC codes.

eight drugs have LO4-Immunosuppressants (e.g., cladribine,
tofacitinib, abatacept), and one has LO3-Immunostimulants (namely,
aldesleukin) (Figure 5B). Next, the ATC level 3 distribution analysis
shows that sublevel LO1E-Protein kinase inhibitors dominates with
11 drugs, followed by L04A-Immunosuppressants with eight drugs
(Figure 5C). Figure 5D illustrates the distribution of drugs on ATC
level 4: eight drugs have code L04A A-Selective immunosuppressants,
five drugs each have LO1FX-Other monoclonal antibodies and
antibody drug conjugates and LO1XX-Other antineoplastic agents,
respectively, and 3 drugs each have LOLEM-Phosphatidylinositol-3-
kinase (PI3K) inhibitors and LO1EL-Bruton’s tyrosine kinase (BTK)
inhibitors, respectively.

According to our repositioning pipeline, we assess the top 3 level
4 ATC codes in Cluster 6 to find the repositioning candidate targets.
The seven selective immunosuppressor drugs labeled as LO4AA
target various proteins, such as the ribonucleoside-diphosphate
reductase protein group (e.g., RRM1, RRM2, and RRM2B) and the
catalytic subunits of the DNA polymerase (e.g., POLA1, POLE,
POLE2, POLE3, and POLE4). Monoclonal antibody drugs within
the LOIFX subgroup target Fc-gamma I, Ia, III-A, III-B, cytotoxic
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T-lymphocyte protein 4, and many other specific biological targets.
The subgroups L01XX, LO1EM, and LO1EL are in third place. The
L01XX subgroup includes other antineoplastic agents for which
DrugBank lists targets, such as adenosine deaminase, B-lymphocyte
antigen CD19, interleukin-2 receptor subunits alpha and beta, G1/S-
specific cyclin-D1, and transcription factor Jun. LOIEM drugs are
phosphatidylinositol 3-kinase (PI3Ks) inhibitors, and LO1EL are
Bruton’s tyrosine kinase (BTK) inhibitors.

5 Molecular docking analysis

In this section, we consider PI3K and BTK (identified in
section 4.2) as targets for the investigation of chloramphenicol’s
anticancer potential with molecular docking due to the smaller
number of targets to test and, thus, more reasonable simulation time.
We provide all the details to perform these simulations, ensuring the
reproducibility and robustness of the results.

Despite its age, the scarcity of chloramphenicol testing in
cancer was unexpected. The literature reveals only a few references,
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which do not specifically present tests for chloramphenicol’s
anticancer effect. For example, PC. Giannopoulou etal. and
O.N. Kostopoulou etal. reported the synthesis and evaluation
of chloramphenicol derivatives that demonstrated cytotoxicity for
7134 cancer cells and inhibited the growth of T-leukemic cells
without influencing the viability of normal human lymphocytes,
respectively Giannopoulou et al. (2019); Kostopoulou et al.
(2015). A relationship between chloramphenicol and cancer is
the triggering of aplastic anemia and leukemia following systemic
administration Yuan and Shi (2008) but not after topical use
Smith et al. (2000). Chloramphenicol has limited use as an
antibacterial because it suppresses bone marrow function by
inhibiting mitochondrial protein synthesis; however, the mechanism
of this adverse effect could be capitalized in the treatment of
leukemia and multiple myeloma Tian et al. (2016). Furthermode,
DrugBank lists no clinical trial for chloramphenicol as a potential
anticancer agent.

5.1 Molecular docking rationale and
method

We employ molecular docking simulations as a computational
screening tool to validate the drug repositioning candidates
identified from network-based clustering and ATC code labeling.
This approach tests the hypotheses generated by our pipeline, which
assigns biological targets to drugs with divergent level 4 ATC codes
within each cluster, as described in Section 3.2.

We performed molecular docking on the crystallographic
structures of Bruton’s tyrosine kinase (BTK1) and the alpha, gamma,
and delta isoforms of phosphoinositide 3-kinase (PI3K), all of which
belong to Homo sapiens. We obtained the crystallographic structures
of the target proteins from the Protein Data Bank: PDB codes 5P91
for BTK1 Bender et al. (2017) and 7K6M, 8SC8, and 5M6U for PI3K
alpha, gamma, and delta isoforms, respectively (see Figures 6A-D)
Cheng et al. (2020); Erra et al. (2017). In 5P9I, BTK1 is co-
crystallized with the known inhibitor ibrutinib; the PI3K isoforms
in 7K6M, 8SC8, and 5M6U are co-crystallized with synthetic ligands
VXY, DOD, and 7KA, respectively (see Figure 7).

We adopted a protein-based approach to study the mode of
interactions with the enzyme active site, using a protocolalready
adopted in our previous studies Tundis et al. (2023); Perri et al.
(2023). As a first step of our in silico experiments, a re-docking
calculation was performed to determine the binding energy values of
the crystallographic ligands for each target protein (see Figure 6E);
we used these values as a reference for subsequent simulations.

The molecular structures of alpelisib, copanlisib, idelalisib,
duvelisib, and chloramphenicol were built using Avogadro modeling
software Hanwell et al. (2012). We employed AutoDock Vina
1.1.2 for docking calculations Trott and Olson (2010). Preliminary
conversion of the structures from the PDB format was performed
using the AutoDock Tools 1.5.6 graphical user interface Morris et al.
(1998). During the conversion, we added polar hydrogens to the
crystallographic enzyme structures and merged the ligands’ apolar
hydrogens with the carbon atoms to which they are attached. Full
flexibility was ensured for the ligands, resulting in four active
torsions for duvelisib, five for alpelisib, idelalisib, chloramphenicol,
and nine for copanlisib. We conducted all simulations for each
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compound to a very high degree of exhaustiveness. We analyzed
the ligand binding modes through visual inspection and evaluated
the intermolecular interactions using the automated protein-ligand
interaction profiler, PLIP Salentin et al. (2015).

5.2 Molecular docking results

In the modern approach to scientific research, computational
techniques provide significant advantages for streamlining drug
discovery or uncovering the biological properties of natural or
synthetic compounds Grande et al. (2020), (2021). Similarly, these
techniques can support the discovery of additional pharmacological
activities of known drugs used to treat diseases other than those for
which they are currently approved Fadlalla et al. (2022).

The possibility of reusing drugs with already established
safety profiles and pharmacokinetics offers the extra advantage of
significantly lowering the costs and time required for the standard
drug discovery process. To this end, encouraged by the results
of previous studies Grande et al. (2020), we conducted molecular
docking studies to explore the potential of chloramphenicol to
directly interact with Bruton’s tyrosine kinase 1 (BTK1) and
the alpha, gamma, and delta isoforms of phosphoinositide 3-
kinase (PI3K).

BTK1 is a kinase protein containing five domains: an amino-
terminal pleckstrin homology (PH) domain, a proline-rich TEC
homology (TH) domain, SRC homology (SH) domains SH2
and SH3, and a protein kinase domain endowed with tyrosine
phosphorylation activity Pal Singh et al. (2018).

As a result, even though the chloramphenicol-5P9I estimated
binding energy (-7.5 kcal/mol) is lower than that obtained for
the crystallographic ligand, it is still a value compatible with a
stable complex. Furthermore, chloramphenicol accommodates into
the protein binding site, occupying the same position as ibrutinib
(Figure 8). The ligand-target complex is stabilized by a hydrogen
bond with Lys 430 and hydrophobic and van der Waals interactions
with other key residues of the active site (Table 3).

Class I PI3K includes two subclasses: IA (PI3K alpha,
beta, delta) and IB (PI3K gamma). All of them function as
heterodimers, consisting of a catalytic subunit (p110) and a
regulatory subunit (p85 for subclass IA and p84/p87 for subclass IB,
respectively) Vanhaesebroeck et al. (2010). Previous studies using
multiple sequence alignment of protein sequences from available
crystallographic structures of PI3K identified key residues in the
binding regions of each isoform. For PI3K alpha, the critical residues
include Ser 774, Trp 780, Asp 810, Tyr 836, Val 851, and Asp 933.
Other residues, such as Ser 773, Asn 853, Ser 854, His 855, and Gln
859, appear important for ligand binding. For PI3K gamma, the key
residues include Val 882, Asp 964, Tyr 867, Ser 806, and Lys 833.
In the case of PI3K delta, Val 828, Trp 760, Lys 779, Glu 826, and
Tyr 813 are significant for ligand binding. Identifying compounds
interacting with these residues may help develop selective inhibitors
for each PI3K isoform Al Hasan et al. (2023).

Considering these details and our preliminary results, we
performed molecular docking experiments on the alpha, gamma,
and delta isoforms of PI3K to compare the interaction mode
of known ligands with that of chloramphenicol. Specifically, to
investigate the interaction of chloramphenicol with the PI3K
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FIGURE 6

Crystallographic structure of four target proteins studied, along with their corresponding co-crystallized ligands and re-docking scores. (A)
Crystallographic structure of Bruton's Tyrosine Kinase (BTK1)—PDB 5P9l. (B) Crystallographic structure of the phosphoinositide 3-kinase (PI3K)
alpha—PDB 7K6M. (C) Crystallographic structure of PI3K gamma—PDB 8SC8. (D) Crystallographic structure of PI3K delta—PDB 5M6U. (E) Re-docking
scores for crystallographic ligands.

alpha isoform, we used the structure retrieved from PDB with  morpholine inhibitor, (S)-2,2-difluoroethyl-3-((2’-amino-5-fluoro-

code 7K6M, which corresponds to the enzyme’s catalytic subunit.  2-morpholino-[4,5'-bipyrimidin]-6-yl)amino)-3-(hydroxymethyl)

In this structure, the protein is co-crystallized with a selective  pyrrolidine-1-carboxylate, referred to as VXY, discovered
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Chemical structure of studied compounds. This figure shows the chemical structures and IUPAC names of the compounds investigated:

Ibrutinib, a well-known BTK1 inhibitor; VXY, a synthetic selective morpholine inhibitor targeting the PI3K alpha isoform; DOD, a
quinazolinpyridinylmethanesulfonamide inhibitor of PI3K gamma; 7KA, a phenylpyrrolotriazinone inhibitor specific to the PI3K delta isoform; alpelisib, a
recognized PI3K alpha inhibitor; copanlisib, an established inhibitor of both PI3K alpha and delta isoforms; idelalisib and duvelisib, both inhibitors of the

PI3K gamma and delta isoforms.
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FIGURE 8

Crystallographic structure of Bruton's tyrosine kinase (BTK1) corresponding to the PDB entry 5P9I. The protein backbone is represented in the
background as ribbons and key amino acid residues of the catalytic site are in cyan. (A) Superimposed binding modes of the crystallographic ligand
ibrutinib (dark pink) and chloramphenicol (blue). (B) The specific binding modes of ibrutinib. (C) The specific binding modes of chloramphenicol.
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through  structure-based  drug (SBDD)  and

computational analysis Cheng et al. (2020).

design

For a more comprehensive understanding of chloramphenicol’s
behavior in its interaction with the target protein, we aimed to
compare its binding mode with those of known ligands, such as
alpelisib and copanlisib. Accordingly, we docked all compounds with
7K6M. As a result, chloramphenicol shares a similar orientation
within the active site as the crystallographic ligands, alpelisib
and copanlisib (Figure 9), interacting with Ser 774 throughout
a hydrogen bond and with other key binding site residues
through hydrophobic and van der Waals interactions (Table 4). The
calculated binding energy for the chloramphenicol-7K6M complex,
although less favorable than those observed for known ligands,
seems to support our hypothesis of a direct interaction between
chloramphenicol and PI3K alpha.
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We performed similar docking on the
crystallographic structure of PI3K gamma (PDB code 8SC8) to

assess the binding mode of the studied ligand to this target. In

experiments

this case, we compared the interaction of chloramphenicol to
that of the crystallographic ligand DOD—(R)-N-(2-chloro-5-(4-
((1-phenylethyl)amino)quinazolin-6-yl)pyridin-3-yl)methanesulfo
namide—and the known inhibitors idelalisib and duvelisib.

Our simulation experiments demonstrated that all the
ligands occupied the same region as the crystallographic ligand,
corresponding to the enzyme’s catalytic subunit (Figure 10).
Chloramphenicol interacted with key residues of the protein active
site, although its binding energy values were less favorable than
those observed for idelalisib and duvelisib (Table 5).

To further assess the reliability of our experiments, we also
tested the interaction between chloramphenicol and the PI3K
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TABLE 3 Binding energy values for ligands complexed with the BTK1 catalytic subunit and key protein residues interacting with the ligands.

Ligand Binding energy Interactions
[Kcal/mol] I e B
Hydrogen bonds Hydrophobic 7 stacking
. interactions
Residues | Distance (A) Donar angle [] residues
H-A D-A
Glu 475 1.95 2.86 152.53 Val 416
Met 477 2.05 2.99 158.41 Ala 428
Ibrutinib -11.3 Phe 540
Cys 481 1.86 2.82 165.66 Lys 430
Leu 528
Val 416
Ala 428
Chloramphenicol -7.5 Lys 430 2.42 3.09 122.65 Lys 430
Lys 430
Thr 474

delta isoform. We docked chloramphenicol with the kinase for Cluster 1, labeled N-Nervous System, the hierarchical breakdown
catalytic subunit of the protein (PDB code 5M6U). Its binding  reveals dominant drug categories at levels 2, 3, and 4. Extracting
mode was compared to that of the crystallographic ligand  nervoussystem-related targets from DrugBank forlevel 4 ATC codes
7 KA—(8)-2-(1-((6-amino-5-ethynylpyrimidin-4-yl)amino)ethyl)- helps molecular docking as a validation step, based on the detailed
3-phenylpyrrolo[2,1-f][1,2,4]triazin-4(3H)-one. For a better = mechanistic insights provided by level 4 ATC codes. Also, in Cluster
perspective, we also docked the known inhibitors idelalisib, 6, 60.8% of drugs are L-Antineoplastic and immunomodulating
duvelisib and copanlisib with the selected protein structure. agents. Our multi-level ATC approach presents the dominant
Chloramphenicol shared a similar orientation within the active  distribution across level 2 (L01, L04, L03), level 3 (LO1E, L04A) and
site as the known ligands and interacted with key residues for the  level 4 (L0O4AA, LO1FX, L01XX, LO1EM, LO1EL) codes (Figure 5).
catalytic activity (Figure 11). Furthermore, the binding energy value ~ In this way, our pipeline enables the identification of various
for the chloramphenicol-5M6U complex was comparable to that  targets relevant to cancer therapies, including PI3K and BTKI,
calculated for the crystallographic ligand, although less favorable  and proposes their testing to reposition candidates from Cluster 6.
than those observed for the known inhibitors (Table 6). As a result, repositioning candidates can be tested with molecular
docking, which simulates drug-target interactions and assesses the

free energy of binding (AG) Issa et al. (2021); Udrescu et al.

6 Discussions and conclusion (2014); thus, the drugs are prioritized for the active binding site
of the target Issa et al. (2021). The most favorable docking-based
This study demonstrates the potential impact of our network-  candidates can be further tested in vitro and in vivo.

based pipeline in drug repositioning efforts. Our Drug-Drug

Similarity Network (DDSN) generates 34 clusters, which we

filtered based on connectivity and cluster size. As such, we 6.1 Recovered repositionings

focus on the remaining 12 robust clusters for a more detailed

analysis (see Figure 3). Our procedure yields a 53.4% success Ourautomatedliterature analysis revealed that 20.2% drugs exhibit

rate in directly matching drugs to their cluster’s level 1 ATC  pharmacological properties aligned with their assigned ATC level 1

code through DrugBank (Table2). The literature confirmed  category, although their ATC labels according to DrugBank do not

pharmacological properties corresponding to ATC level 1 for an  matchtheir communitylabels. For all such cases, theliterature provides

additional 20.2% of drugs, thus increasing the prediction accuracy ~ experimental or clinical evidence supporting the drugs’ mechanisms

to 73.6% (see GitHub results). We consider the 26.4% of drugs  of action, therapeutic applications, or pharmacological effects that

that—according to our current knowledge—do not comply with  correspond to their respective ATC code labeling.

their assigned cluster label as repositioning candidates. These Here, we provide several examples of drugs for which

findings indicate that our network-based pipeline can identify drugs ~ our repositioning method recovers pharmacological properties

with potential new uses, guiding experimental validation efforts. confirmed by the literature beyond those assigned by ATC codes.
Our ATC-based analysis further refines this approach by  Sildenafil is a versatile molecule with famous repositioning stories,

mapping ATC level 1, 2, 3, and 4 codes. As presented in Figure 4,  from vasodilator and platelet aggregation inhibitor to penile
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FIGURE 9
Crystallographic structure of PI3K alpha corresponding to the PDB entry 7K6M. The protein backbone is represented in the background as ribbons and

key amino acid residues of the catalytic site are in cyan. (A) Superimposed binding modes of the crystallographic ligand VXY (red), alpelisib (green),
copanlisib (salmon), and chloramphenicol (blue). (B) The specific binding mode of VXY. (C) The specific binding mode of alpelisib. (D) The specific
binding mode of copanlisib. (E) The specific binding mode of chloramphenicol.
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TABLE 4 Binding energy values for ligands complexed with the PI3K alpha catalytic subunit and key protein residues interacting with the ligands.

Ligand Binding energy Interactions
[Kcal/mol]
Hydrogen bonds Hydrophobic 7 stacking
. interactions
Residues Distance (A) ’ Donar angle [°] residues
H-A D-A ‘
Arg 770 2,97 3.90 157.36
Ser 774 234 3.20 148.88
Ser 774 2.22 3.20 161.99
Lys 802 3.01 401 166.90
VXY -8.7 Lys 802 345 4.01 117.70 Tle 848
Val 851 1.78 277 174.60
Gln 859 2.08 3.06 171.82
Ser 919 1.86 2.77 157.59
Asp 933 271 331 119.48
Val 851 2.34 3.24 149.83 Trp 780
Val 851 2.08 3.01 156.70 Tle 800
Ser 854 2.81 3.63 142.60 Tyr 836
Alpelisib ~11.2 Thr 856 3.40 4.10 129.29 Tle 848
Gln 859 2.03 2.98 159.70 Val 851
Gln 859 2.14 2.94 135.11 Phe 930
Tle 932
Lys 802 2.92 3.92 167.75 Tyr 836
Val 851 1.98 2.96 173.09 Tle 848
Copanlisib -9.5 Asn 853 2.54 3.10 116.39 1le 932
Ser 854 2.63 331 126.23 Trp 780
Asp 933 2.85 3.44 119.07 Tle 848
Ser 774 2.04 3.01 174.21 Tle 848
Chloramphenicol 7.1 Ser 774 2.03 3.01 159.63 Thr 856
Tle 932

erection and later vasodilator in pulmonary arterial hypertension
Jourdan et al. (2020). DrugBank lists sildenafil in the G-Genito
urinary system and sex hormones category as a urological drug
used to treat erectile dysfunction. In our drug-drug similarity
network, sildenafil belongs to Cluster 1, labeled as N-Nervous
system. Indeed, Xiong and Wintermark review the clinical evidence
for the effects of sildenafil on the extent of brain injury, myelination

Frontiers in Bioinformatics

neuroinflammation, and brain function in adults and neonates;
they also indicate the clinical trials that test the effects of sildenafil
seen in animal models in human newborns and after birth
asphyxia Xiong and Wintermark (2022). In addition, another
review presents in vitro and mouse studies, systematic review,
and pilot patient studies reporting the effectiveness of sildenafil
in Alzheimer’s disease Sanders (2020).
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FIGURE 10

Crystallographic structure of PI3K gamma (PDB 78SC8). The protein backbone is represented as ribbons and key amino acid residues of the catalytic
site are in cyan. (A) Superimposed binding modes of the crystallographic ligand DOD (gold), idelalisib (yellow), duvelisib (violet), and chloramphenicol
(blue). (B) The specific binding mode of DOD. (C) The specific binding mode of idelalisib. (D) The specific binding mode of duvelisib. (E) The specific
binding mode of chloramphenicol.

Frontiers in Bioinformatics 19 frontiersin.org


https://doi.org/10.3389/fbinf.2025.1666716
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Colibasanu et al.

10.3389/fbinf.2025.1666716

TABLE 5 Binding energy values for ligands complexed with the PI3K gamma catalytic subunit and key protein residues interacting with the ligands.

Ligand Binding energy Interactions
[Kcal/mol]
Hydrogen bonds Hydrophobic 7 stacking
. interactions
Residues | Distance (A) Donar angle [] residues
H-A D-A
Lys 833 2.65 3.48 137.85 Tle 831
Lys 833 234 327 151.10 Tle 879
DOD ~10.4
Val 882 1.96 2.83 144.98 Thr 887
Asp 964 2.46 3.28 139.73 Tle 963
Ser 806 245 297 11329 Pro 810
Lys 833 352 4.07 115.41 Trp 812
Lys 833 3.65 4.07 107.34 Tle 831
Idelalisib -8.9 Tle 879 Tyr 867
Val 882
Phe 961
Tle 963
Ser 806 235 2.80 107.84 Pro 810
Lys 833 2.64 3.26 118.99 Tle 831
Duvelisib -9.0 Asp 964 2.24 3.01 13157 Tle 879 Tyr 867
Asp 964 2.99 3.83 149.41 Tle 963
Asp 964
Lys 833 2.62 322 117.37 Tle 831
Chloramphenicol -6.7 Lys 833 2.77 3.22 108.73 Ile 879 Tyr 867
Tle 963

Spironolactone is another example of how the literature confirms
the repositionings recovered by our methodology. Spironolactone
is an anti-aldosterone diuretic, officially included in the category
of C-Cardiovascular system drugs (i.e., C is its first ATC level).
Our repositioning method places spironolactone within Cluster 5,
which has the ATC level 1 label D-Dermatologicals. The review
articles by Aguilar Medina et al. (2022); Searle et al. (2020)
confirm the beneficial effects of spironolactone in androgen-
mediated skin conditions, such as hidradenitis suppurativa, acne,
alopecia pattern in women and hirsutism; they also highlight
that spironolactone is well tolerated and has a favorable safety
profile, i.e., it has few adverse effects, at doses ranging from 25
to 200 mg/day.

One more example of recovered repositionings, amitriptyline,
traditionally classified as an antidepressant, is found by our method
in cluster L—Antineoplastic and immunomodulating agents. In fact,

Frontiers in Bioinformatics

amitriptyline has potential in cancer treatment through various
mechanisms. For example, in multiple myeloma (MM) xenograft
models, amitriptyline decreases tumor growth and prolongs survival
by inducing p53, activating caspase-3, and reducing the anti-
apoptotic proteins Bcl-2 and Mcl-1 Zhang et al. (2013). In colorectal
cancer cells, amitriptyline and other tricyclic antidepressants reduce
cell viability in a time-dependent manner Arimochi and Morita
(2006). Furthermore, it inhibits cyclin D2 transactivation, arrests
the cell cycle in GO/G1, and modulates histone acetylation by
downregulating HDACs, particularly HDAC?7, thus enhancing
tumor suppressor gene expression Mao et al. (2011). Amitriptyline
promotes TRAIL-mediated apoptosis by enhancing the expression
of death receptors and caspase activation; it also suppresses
autophagy, disrupts lysosomal-autophagosome fusion, and reduces
oxidative stress markers, underscoring its antitumor properties
Zheng et al. (2023).
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Crystallographic structure of PI3K delta corresponding to the PDB entry 5M6U. The protein backbone is represented in the background as ribbons and
the key amino acid residues of the catalytic site are in cyan. (A) Superimposed binding modes of the crystallographic ligand 7KA (brown), idelalisib
(yellow), duvelisib (violet), copanlisib (salmon) and chloramphenicol (blue). (B) The specific binding modes of 7KA. (C) The specific binding mode of
idelalisib. (D) The specific binding mode of duvelisib. (E) The specific binding mode of copanlisib. (F) The specific binding mode of chloramphenicol.
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TABLE 6 Binding energy values for ligands complexed with the PI3K delta catalytic subunit and key protein residues interacting with the ligands.

Binding energy Interactions
[Kcal/mol]
Hydrogen bonds Hydrophobic 7 stacking
. interactions residues
Residues Distance (A) ’ Donar angle [°]

H-A D-A

Tyr 813 3.37 3.67 100.89 Met 752

Glu 826 2.13 2.77 121.37 Pro 758

7 KA -7.6
Val 828 2.11 3.08 169.52 Trp 760

Ile 910

Phe 751 3.26 3.78 113.70 Trp 760

Met 752 3.48 3.88 107.04 Tle 777

Lys 779
Idelalisib -8.8 Trp 760
Ile 825

Val 828

Asp 911

Phe 751 3.23 3.71 111.25 Trp 760

Met 752 3.46 3.86 107.19 Ile 777

Lys 779

Tyr 813
Duvelisib -9.1 Trp 760
Tle 825

Val 828

Phe 908

Asp 911

Asp 911 2.82 3.57 129.08 Met 752

Trp 760

Lys 779

Copanlisib 7.4 Leu 784

Tyr 813

Ile 825

Ile 910

(Continued on the following page)
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TABLE 6 (Continued) Binding energy values for ligands complexed with the PI3K delta catalytic subunit and key protein residues interacting with

the ligands.

Ligand Binding energy

[Kcal/mol]

Residues  Distance (A) ’ Donar angle []

Interactions

Hydrogen bonds

Hydrophobic 7 stacking
interactions

residues

H-A D-A ‘

Trp 760

Tle 777

Lys 779

Chloramphenicol

Tle 825

Ile 910

Asp 911

Recovered repositioning examples, Table 2 (literature validation,
showing the number of drugs per community with literature-
confirmed ATC changes), and the exhaustive per-community target
lists in the Repositioning hints and predicted targets table in our
GitHub results allow readers to explore alternative candidates from
other communities.

6.2 Molecular docking

A promising result of our approach is the identification of
chloramphenicol in Cluster 6. Chloramphenicol is a widely used
antibacterial agent, but because it is in cluster 6, it represents
a candidate for cancer repositioning. We perform molecular
docking simulations to further analyze our computational
predictions. Several previous studies have reported anticancer
effects of chloramphenicol or its derivatives, including cytotoxicity
in mesothelioma cells Giannopoulou et al. (2019), growth
inhibition of T-leukemic cells by polyamine-conjugated derivatives
Kostopoulou et al. (2015), and apoptosis induction in multiple
myeloma cells through mitochondrial protein synthesis inhibition
Tian et al. (2016). Furthermore, mitochondria-targeting antibiotics
such as chloramphenicol have been shown to eradicate cancer
stem cells across tumor types Lamb et al. (2015). However, no
experimental binding studies have so far demonstrated a direct
interaction of chloramphenicol with BTK1 or PI3K (alpha, gamma,
and delta isoforms). Our docking simulations therefore provide the
first in silico evidence that the drug may interact with these targets,
suggesting a dual mechanistic hypothesis combining mitochondrial
effects with kinases modulation, which is consistent with its reported
anticancer activity and warrants future biochemical validation.

Our docking results indicate that chloramphenicol binds
within the active site of BTK1 similarly to ibrutinib, a BTK1
inhibitor. Although chloramphenicol has a lower binding energy
than ibrutinib, its complex is stabilized by key hydrogen bonds
and hydrophobic interactions (Figure 8; Table 3), suggesting
potential kinase inhibitory activity. Similarly, molecular docking
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of chloramphenicol with PI3K isoforms revealed that the drug
binds to the target protein in a manner comparable to that
of previously identified inhibitors, such as alpelisib, copanlisib,
idelalisib, and duvelisib (Figures 9-11). Although its binding
energies are less favorable than those calculated for known
inhibitors, chloramphenicol interacts with key amino acid residues
through hydrogen bonds and van der Waals forces (Tables 4,
5, 6), supporting its potential role in PI3K modulation. Future
studies are required to determine whether chloramphenicol can
be repurposed for cancer treatment, offering a cost-effective and
adaptable therapeutic option.

6.3 Limitations—Edge cases and
contradictory evidence

Because the drug-drug similarity network projection treats
a drug-gene edge as evidence of a pharmacological relationship
without encoding the precise action (agonist, antagonist, substrate,
etc.), a predicted repositioning can reflect either a potentially
beneficial effect or an adverse/off-target effect on the same
physiological system.

Asan illustrative edge case, clarithromycin clusters in the Cluster
3-Cardiovascular system. Clarithromycin is clinically associated with
QT-interval prolongation and increased arrhythmia risk—a well-
known cardiovascular liability that counsels caution. Our network
analysis nevertheless assigned clarithromycin in Cluster 3 because
it is pharmacologically linked (via targets and shared-disease
connectivity) to targets involved in cardiovascular regulation. One
specific hypothesis emerging from the community mapping is a
putative interaction with NR3C2 (the mineralocorticoid receptor).
Antagonism of NR3C2 underlies the cardioprotective effects
of established mineralocorticoid receptor antagonists (MRAs),
which reduce heart-failure hospitalisation and cardiovascular
death; MRAs are, however, associated with an increased risk
of hyperkalaemia Jhund et al. (2024). While there is no
conclusive evidence that clarithromycin antagonises NR3C2
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in vivo, a retrospective clinical observation that clarithromycin co-
administered with MRAs is associated with higher serum potassium
levels provides indirect, functional context for an interaction
with the mineralocorticoid system Hirai et al. (2023). Taken
together, these lines of evidence make NR3C2 a biologically
plausible target for further mechanistic investigation. However,
any therapeutic hypothesis should be experimentally validated and
carefully evaluated against clarithromycin’s known cardiac risks.

6.4 Future work

This study highlights the potential of our DDSN-based drug
repositioning pipeline to identify new targets for existing drugs and
facilitate molecular docking investigations. The pipeline accurately
aligns 73.6% of the drugs with their cluster’s dominant level 1
ATC property and classifies the non-conforming remainder as
repositioning candidates; overall, this means a good drug property
prediction accuracy given the extent of unknown information.
Furthermore, our automated pipeline also identifies biological
targets that correspond to the majority of drugs within a cluster
and proposes them as potential new targets for the repositioning of
candidates.

In future studies, we can extend our definition of drug-drug
similarity to simplicial complexes (which generalize the notion of
graph by allowing higher-dimensional relationships between nodes,
not just pairwise edges).

Future work may also validate the repositioning candidates
identified by our method (see our GitHub results), by applying
a combination of dry-lab approaches (i.e., molecular docking
simulations) and wet-lab experiments (ie., in vitro and in
vivo tests) to confirm their new pharmacological properties
and therapeutic potential.
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