:' frontiers ‘ Frontiers in Bioinformatics

‘ @ Check for updates

OPEN ACCESS

Tao Zeng,
Guangzhou Labratory, China

Dola Sundeep,

Indian Institute of Information Technology
Design and Manufacturing, India

Michiel Stock,

Ghent University, Belgium

Hans A. Kestler,
hans.kestler@uni-ulm.de

"These authors have contributed equally
to this work

14 July 2025
13 October 2025
03 November 2025

Stolnicu A, Eckhardt-Bellmann P, Kestler AMR
and Kestler HA (2025) Identification of ordinal
relations and alternative suborders within
high-dimensional molecular data.

Front. Bioinform. 5:1665892.

doi: 10.3389/fbinf.2025.1665892

© 2025 Stolnicu, Eckhardt-Bellmann, Kestler
and Kestler. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does nhot comply with these terms.

Frontiers in Bioinformatics

Original Research
03 November 2025
10.3389/fbinf.2025.1665892

ldentification of ordinal relations
and alternative suborders within
high-dimensional molecular data

Ana Stolnicu®, Peter Eckhardt-Bellmann,
Angelika M. R. Kestler? and Hans A. Kestler***

!Institute of Medical Systems Biology, Ulm University, Ulm, Germany, ?Department of Internal
Medicine |, Ulm University Hospital, Ulm, Germany, *Leibniz Institute on Aging — Fritz Lipmann
Institute, Jena, Germany

Introduction: Numerous biological systems exhibit ordinal connections
between categories. Developmental and time-series information inherently
depict sequences like “early,” “intermediate,” and “late” phases, showing that
these specific processes follow a progression. Ordinal classification techniques
are often applied in biological and medical contexts, ranging from the
evaluation of pain intensity, to the detection of evolving diseases, such as
cancer. These ranking systems may assist clinicians in establishing diagnoses
and developing tailored treatment plans. For instance, tumor staging might
guide early detection strategies and targeted therapies, improving patient
outcomes. However, applying ordinal classification to biological data presents
considerable challenges. In addition to their high dimensionality, these datasets
can be highly heterogeneous, often reflecting branching processes that occur
simultaneously during progression. Factors such as intratumoral diversity,
asynchronous progress, and context-specific signaling activity may interfere
with the identification of such alternative development routes.

Methods: To address these challenges, we propose a framework for uncovering
ordinal relationships within molecular data. Specifically, directed threshold
classifiers are introduced as base learners for ordinal classifier cascades, enabling
the detection of both total and partial orderings between molecular states.
Results: This approach preserves the inherent ordinal structure by projecting
high-dimensional data onto one single dimension while simultaneously
decreasing complexity. Additionally, the distinct features of the resulting
thresholds allow the prediction of potential alternative paths among the
suborders.

alternative progression patterns, classifier cascades, directed threshold classifiers,
ordinal classification, high-throughput data

1 Introduction

Various physiological processes and health conditions naturally follow an ordinal
arrangement, in which stages progress hierarchically (Prigogine and Nicolis, 1971).
Organizing disease phases into meaningful semantic groups can be a valuable predictive
tool in clinical practice (Lee et al., 2004). In oncology, tumor classification aids in prognosis
and treatment strategies, guiding the choice of interventions and targeted therapies
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based on predicted tumor behavior (Beadsmoore and Screaton,
2003; Forner et al, 2014; Cortés et al, 2014). Similarly,
categorizing the stages of neurodegenerative disorders, such as
Alzheimer’s disease (Sperling et al., 2011; Davis et al, 2018;
Tahami Monfared et al., 2022) might facilitate prompt therapeutic
decisions and patient monitoring (Scharre, 2019). Pain classification
adheres to comparable principles, where pain intensity reported
by patients can be arranged into numerical or categorical scales
(Hadjistavropoulos and Craig, 2002; Haefeli and Elfering, 2006).
These may also be used in anesthesiology and pain management
to guide treatment suitability (Breivik et al., 2008). Despite its
clinical utility, ordinal classification in biological and medical
data presents considerable computational challenges. Molecular
datasets, such as gene expression profiles, are not only high-
dimensional, consisting of thousands of interrelated features, but
also may encode multiple, potentially parallel biological processes,
each with its own progression dynamics (Brody, 2009; Wu et al.,
2019; Yang et al, 2022; Gerlinger et al., 2012). Additionally,
high-throughput data often suffer from noise introduced by
experimental variability, batch effects, and underlying biological
diversity, which can hinder ordinal relationships and complicate
model training (Tu et al, 2002; Goh et al., 2017). Moreover,
numerous biological processes lack clear stage transitions, exhibiting
overlapped molecular signatures and divergent trajectories, leading
to ambiguous classification boundaries and partial ordering of states
(Seoane and De Mattos-Arruda, 2014). Further suggesting that
these mechanisms could potentially evolve through various parallel
pathways (Olschwang et al., 1997; Traverso et al., 2002).

The proposed architecture is tailored for the detection of
ordinal structures within one-dimensional data, derived from high-
throughput datasets. The categories, i.e., classes, are delineated by
thresholds that partition the input space into distinct intervals. An
essential aspect of this method is the ability to recreate potential
alternative ordinal trajectories from the resulting suborders. This can
be accomplished based on the properties of the decision boundaries.
As a result, the model can provide a distinct benefit in scenarios
in which the ordinal structure may not be strictly predefined,
allowing for more nuanced and adaptable classification decisions.
However, note that our introduced architecture is designed for the
detection of ordinal structures and (parallel) substructures, not for
the classification process at hand.

2 Related work

Ordinal classification is a type of supervised learning in which
the classes exhibit an intrinsic order that does not necessarily
adhere to specific numerical intervals (Frank and Hall, 2001). In
contrast to conventional ordinal classification approaches, which
typically assume a fixed class order and often fail to capture
the optimal ordinal correlations between classes, ordinal classifier
cascades (OCCs) (Lattke et al., 2015) decompose the task into
a series of simplified binary classification problems. In this
framework, a cascade of classifiers is used, where each classifier
determines whether a given instance belongs to a specific category
or a higher-ranked one. The cascade approach evaluates samples
sequentially, attributing a label according to the first classifier
that provides a confident prediction. This structure not only
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streamlines the classification problem at each stage, but also allows
the exploration of potential class sequences. In this context, the
CASCADES algorithm (Lausser et al., 2019) extends the sequential
framework by improving its efficiency, replacing the exhaustive
search with exploratory screening of candidate orders. To handle
the computational complexity of this search, it employs early
rejection criteria based on class-wise sensitivity limits, discarding
underperforming cascades prior to complete training. Additionally,
binary classifiers in the cascade are trained to distinguish between
a class and its successor, enabling pairwise trained classifiers to be
stored and reused for different input orders, thus decreasing runtime
and minimizing redundant computations. Because the algorithm
is independent of the classifier type, allowing the integration of
any suitable binary training method, this approach enhances both
efficiency and flexibility. Finally, it produces a set of candidate
cascades that satisfy the established performance criteria, which can
be further evaluated for ensemble integration or downstream model
selection.

Formally, in the context of ordinal classification, we are given a
set of N samples, D = {(xk,yk)}ﬁl, where x; € X denotes the feature
vector of the k-th sample and y, € £ indicates its associated label.
Here, X C R? is the feature spaceand £ ={I,,1,,..., l|£|} corresponds
to the finite set of class labels. The objective is to predict the label for
each sample k taking into account its feature vector. Thus, a binary
classifier, ¢(; 1), of an OCCs ensemble, e, is trained to differentiate
between samples belonging to adjacent classes, /; and [;,,, in the
given semantic order, [, <[, < --- < l|£|, as:

ec={cumnyX = ol li=1,..,1C]-1}. (1)

The index i designates the position of the classes in the given
order. Throughout the classification procedure, every x; is evaluated
by the sequence of classifiers arranged according to the order under
investigation, that is, if the input order is o =1, <[, < --- < l| cp the
classifiers are organized as {c(; 5),¢(23)>--->¢(2j-1,cp}- For a sample
k, if a classifier c(;;,;)(x;) generates a positive prediction for the
first label, [;, the corresponding label will be assigned to x;, and the
cascade ends. Otherwise, the sample is passed to the next classifier
in the sequence, continuing the process until the final classifier
¢(c-1,c)) 1s reached, in which case, if the second label is predicted,
then the predicted label y, is equal to [ ), as defined in Equation 2:

wherej=min{i € {1,...,|£] -1}
if ciien) (00) =Ly Vi< L]

| C(i,i+1) (x) = li}’

2

I
’ >
V.= { ]

k llll\’

In order to guide the selection of the most effective cascades,
the class-wise sensitivity serves as primary efficiency criterion
for the classifiers. An example of an OCC architecture is
depicted in Figure 1.

Bellmann and Schwenker (2020) proposed another approach
for the detection of ordinal class structures, in which it is not
necessary to explicitly evaluate all possible class orderings. The idea
is to determine the performance (resubstitution accuracy) of linear
Support Vector Machines (SVMs) (Vapnik, 2000) for each class
pair, i.e., |[£| - (|£] —1)/2 binary subtasks. The resulting performance
values, a; g imply how well the classes, {li,lj}, can be separated from

each other. As the next step, the values g; j are combined into ||
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FIGURE 1

Ordinal classifier cascade (OCC) ensemble. The OCC architecture
consists of |[£] -1 binary classifiers c;,,) that can either predict label {;
or label (;,;. If the greater class (l;,,) is predicted, the input is passed to
the next classifier in the sequence. Otherwise, if the lower class (() is
predicted by c;;,4). then this output is taken as the ensemble’s final
prediction for input x. The last classifier in the sequence, ¢z -1z
cannot further pass input x, and therefore, once reached, always
provides the ensemble’s final output, by predicting either | .|y or [ 2.
An OCC ensemble is defined by its set of classifiers, as in Equation 1.

symmetric matrices A, A = (g; ,j)‘iql

, with different arrangements

of the row (and column) elements. While the symmetry of each
= for all i#j, the
authors defined a;;=0, Vi= 1,...,|£|. An ordinal class structure

A is obtained by definition, due to g;

@i
is found if and only if there exist exactly two matrices A for
which the row (and column) entries are monotonously decreasing
towards the diagonal elements. From the symmetry characteristic,
it follows that each ordinal structure is found together with its
reverse order.

Bellmann and Schwenker (2020) further extended their work in
(Bellmann et al., 2022). They generalized their working definition of
ordinal classification tasks by introducing a theoretical framework
which makes it possible to detect ordinal class structures without
utilizing any classification model. As an example, they proposed
using a multidimensional adaptation of Fisher’s discriminant
ratio (Fisher, 1936). Using their framework, they proved that, in
general, 3-class classification problems can be regarded as ordinal
classification tasks consisting of two edge classes and a class
identified as the central one. Note that the authors reduced the
detection complexity from evaluating all possible class orderings,
|L]! evaluations, to only |L]|-(]£]-1)/2. However, they did not
discuss the potential for detecting substructures, a useful property
that was elaborated by Lausser et al. (2020) based on the CASCADES
algorithm. In contrast to the methods discussed above, in our
current approach, the mining for ordinal suborders is not conducted
in the provided, and often high-dimensional, feature space, but in
combination with the one-dimensional real space. Moreover, with
our approach presented in this work, we are able to identify alternate
progressions.

3 Materials and methods
3.1 Directed threshold classifiers
The purpose of the Directed Threshold Classifiers (DTCs)

introduced in this work is to recognize ordinal relations within
univariate data X CR. A DTC f:X —{[,}, defined by a
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threshold 7€ R, is built to differentiate between two distinct
categories [;, [

f)= lj, if x>1, 3)
= L otherwise.

The threshold 7 divides the input space into two decision areas,
in which all elements belonging to class [, which have values
greater than 7, are assigned on the right side, whereas instances
of class [;, with values below 7 fall into the region on the left
side, as shown in Equation 3. A set of DTCs can be organized
sequentially according to a specified input order 0 =/} < -+- <[,z to
be further applied as base classifiers within the OCCs framework.
The samples being examined are assumed to be arranged along a
one-dimensional axis, and the thresholds, corresponding to specific
points, are constrained to follow a strictly increasing order on
the same line, 7; < ... <7_;. This guarantees that the decision
regions form contiguous segments within the space, leading to a
connected and non-overlapping partitioning of the domain that
mirrors a consistent progression aligned with the ordinal nature of
the targeted labels. Moreover, the non-intersecting characteristic of
the regions inherently creates parallel decision boundaries, as each
one is orthogonal to the axis of progression. For the computation
of the one-dimensional thresholds, we apply linear SVM models,
making use of their margin maximization characteristic.

3.2 Data transformation to one dimension

As univariate data rarely appear in real-world scenarios,
the first step of the method involves dimension reduction,
for which supervised and non-supervised techniques exist.
Principal components analysis (PCA) (Kambhatla and Leen, 1997),
Linear discriminant analysis (LDA) (Fisher, 1936), t-distributed
stochastic neighbor embedding (t-SNE) (Van der Maaten and
Hinton, 2008), and uniform manifold approximation and
projection (UMAP) (McInnes and Healy, 2018) are just a few of
the numerous applicable methods that can be used. In this section,
we provide a different strategy tailored to meet the specific objective
of our study. The process is summed up in the following main steps:
From the available category set we select a pair of classes, (I;,];), to
which we apply a linear binary classifier. The data points are then
projected onto the orthogonal hyperplane of the resulting linear
model. For this binary linear classification, we employed SVMs,
in which the data were streamlined to a one-dimensional form by
mapping the points using the normal vector.

Note that we prioritized SVM models for the mapping of the
high-dimensional data onto one dimension for the following main
reasons. First, SVM models are supervised, i.e., classes play an
important role during projection. Second, SVMs are deterministic,
ensuring reproducibility. In addition, SVM models maximize the
margin between the classes of the chosen projection class pair, which
we consider to be important when mining for ordinal structures
in the one-dimensional space. However, users of our introduced
approach can replace the SVM-based projection by any projection
of their preferred choice.

Given that the selection of the initial data mapping most likely
affects the direction of the DTCs during the overall screening
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process, a key aspect to take into account is the choice of this
class pair. Despite appearing trivial, it is important to notice that
the two classes are maintained apart from each other in the
classification process. Consequently, the resulting projection is likely
to highlight distinctions between these selected classes, potentially
overlooking variations or correlations in the other classes. In the
experiments reported in this work, we examined every possible
pairwise combination. We observed that using the two least related
categories in the developmental process described by the dataset,
generally produced the most consistent results.

3.3 Alternative progressions

In the cascaded system, both total orders and potential suborders
can be identified. When partial configurations emerge, it may be
particularly valuable to investigate whether they reflect alternative
advancements of the same underlying progression. In this context,
the afore described properties of the thresholds can help uncover
and characterize competing developmental paths. For suborders to
be considered as potential parallel trajectories of the same process,
they must share a subset of thresholds. In the following, we formally
define the criteria that determine when a threshold qualifies as
shared between suborders. Let £={l},...,] o} represent a finite
collection of class labels for which no global order is determined.
Assume that two suborders, o ¢ £ and o' C £, can be recognized
so that each defines a valid ordinal sequence. Suppose that a
classifier system exists according to which the associated decision
threshold is identified with minimal class-wise sensitivity, sens =
1, for every category within the respective suborders (i.e., all class
instances are correctly classified). The threshold sets obtained for

the suborders 0 and o can be denoted as 7, = {7},...,7;} and 7,

{z},...,7,,}, respectively. We are interested in identifying whether
a threshold equivalence relation ;= TJ’ , with 7; € 7, and TJ’ €Ty,
can be established. Two thresholds are deemed equivalent if they
induce identical separation boundaries in regions in which two
distinct classes have the same adjacent class in their respective
suborders. A threshold can be left-shared or right-shared, depending
on whether the common neighboring class is on the left or on the
right side of the two categories, detailed in Equations 4-10. Formally,
given the classes I, € 0\o’, I, € 0’\o and ], € 0N o', if the subsequent
inequalities occur,

A <7< A and (4)

X‘ll < T], < le, (5)

where X} represents the set of feature values associated with class
I;» then 7; = 7/. Moreover, a threshold 1, exists such that 7,7 - 7,
where 7, represents the left-shared threshold between the respective
class transitions. Similarly, if the following inequalities arise,

A <1< A and (6)

&, < r]’ <X, (7)

then 7;=7}, and a threshold 7,  exists, such that 7,7/ — 7,
represents the right-shared threshold of I, and [,. It follows that
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7;, will be situated between /; and the minimum among [, and [,
whereas, 7, has to be greater than the maximum of [, and [, and less
than [,:

X, < <min {4 ], 8)

max {&;, & } <7, <A )

In a wider framework, in which incorrect sample classifications
are allowed with a misclassification rate of 0 = 1 — sens, with sens €
[0.5,1], O can be incorporated to define the thresholds between each
pair of adjacent classes /; and [, as:

T€ [Xlx+9.()(li+1_')(li)’le_e.()(lm_)(li)]' (10)

Two suborders are required to have a common minimal class
sensitivity for each involved class to qualify as viable alternatives,
thus left- and right-shared thresholds can be adapted to account for
the same amount of misclassifications as outlined below:

> X +0-min{X, -, X -X},
<min{x ~0- (%, -, %, ~0-(%,-)},
> max {2, -0 (- 4), 4, -0 (%, -},
<X +0-max{X; - X A -}

This ensures that the decision boundaries retain a consistent
level of ambiguity across class transitions. The concept of shared
thresholds is illustrated in Figure 2.

A visual representation of the designed procedure is
provided in Figure 3, beginning with the data projection (A-B),
followed by the application of DTCs and the screening procedure
to extract ordinal substructures (C-D), and concluding with their
aggregation for the retrieval of potential alternative structures (E).

3.4 Reversed orders

Another feature of this approach lies in the implicit retrieval
of inverted suborders. More precisely, for a specific class pair
(I, 1)), if the sequence o =1, <--- <[z is retrieved, applying the
inverse combination, i.e., (lj, I;), for the data transformation yields
the reversed order o' =1, <--- <I). This behavior arises from
the fact that switching the class pairs results in a mapping
transformation that mirrors the original structure, thereby naturally
producing the converse sequence without additional interventions.
By definition, this means that reversed orders are mathematical
artifacts. Whether the reversal is biologically meaningful depends on
the classification task at hand and has to be discussed for each case
individually.

3.5 Analyzed datasets

The method was initially evaluated using synthetic data
comprising 10 distinct categories, I;,...,ly, each containing 100
samples described by two features, which were further reduced to
one dimension using the technique introduced in Section 3.2.

To validate our approach, we used two publicly available
developmental datasets from the Gene Expression Omnibus (GEO)
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as alternatives of the same phenomenon.

Representation of equivalent thresholds across suborders. For suborders [, < [, < [y and [, < [, < [. < l,, Ty and 3 share [, on the left, similarly 7, and 75
share [, on the right. This characteristic allows to consider 7; and 73, as well as 7, and 75, as equivalent, enabling the arrangement of the two suborders

T4 T = OB (Lg5lc)

(Barrett et al., 2012). The expression measurements of 4028 genes
of Drosophila melanogaster (D. melanogaster) (Arbeitman et al.,
2002) (included in GEO accession number: GSE4347) were taken
at various stages of the fruit fly’s life cycle. The developmental
phases can be arranged as embryo < larva < pupa < adult, with 31,
10, 18 and 8 samples in each category, respectively. The second
dataset is composed by pineal glands gene expression profiles
collected at five distinct time periods of the zebrafish’s (D. rerio)
maturation process (Toyama et al., 2009) (GEO accession number:
GSE13371). They cover three embryonic (3 days, 5 days, and 10 days)
and two adult time points (3 months, 1-2 years). The first group
consists of 14, 14, and 15 samples, respectively, whereas the second
group comprises 12 and 14 samples, respectively.

Furthermore, we used two tumor datasets to test our
methodology. The pancreatic ductal adenocarcinoma (PDAC)
(Buchholz et al, 2005) which includes 21521 gene expression
profiles from human microdissected cells, with 38 samples split
into 5 classes: normal ductal cells (6 samples), three intermediate
pancreatic intraepithelial neoplasia (PanIN), PanIN-1 (6 samples),
PanIN-2 (8 samples) and PanIN-3 (10 samples), as well as the
metastatic stage (PDAC) (8 samples). This process is assumed
to develop according to the sequence normal < PanIN-1 <
PanIN-2 < PanIN-3 < PDAC. The pancreatic neuroendocrine
tumors (PanNET) (Sadanandam et al, 2015) (GEO accession
number: GSE73514) comprise 35511 mutational profiles from
the RIP1 TAG2 mouse model, containing 22 samples organized

Frontiers in Bioinformatics

into 6 categories: 3 samples for each normal mature S-cells (NM),
hyperplastic islet (HI), angiogenic islet (AI) and liver metastasis
(MET), and 5 samples for tumor islet (TT) and met like primary
(MLP), each. The assumed progression is NM < HI < AI < TI <
MLP < MET.

For all non-synthetic datasets analyzed in this work, we utilized
the normalized versions of the samples provided by the original
authors to ensure reproducibility. Details of the normalization
procedures can be found in the respective dataset publications
(Arbeitman et al., 2002; Toyama et al., 2009; Buchholz et al., 2005;
Sadanandam et al., 2015). For the zebrafish dataset (Toyama et al.,
2009) we additionally applied a log, transformation to stabilize
variance and diminish asymmetry.

4 Results
4.1 Synthetic data simulations

Upon considering either dimension of the simulated data, no
ordinal arrangement encompassing all classes can be discerned with
minimal class sensitivity of 1, as illustrated in Figure 4. To investigate
the impact of the data projection on the final outcome, we employed
all pair combinations of the categories which is the design of the
linear decision boundary. The class pairings that returned orders of
length six or five are shown in Figure 5. The suborders are illustrated
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FIGURE 3

Depiction of the entire process for identifying ordinal structures in
molecular high-throughput data. Steps A to B illustrate the data
projection, beginning with the selection of a pair of classes (A) on
which a binary linear classifier is utilized, followed by the projection of
the data onto the boundary’s perpendicular (B). Consequently, the
directed threshold classifiers are applied on the one-attribute
observations (C). Ordinal patterns are found using an extensive
screening procedure by means of ordinal classifier cascades (D) which
are subsequently analyzed to ascertain potential alternative
trajectories (E).

in a concise graph where overlapping categories, or groups, are
shown layered atop each other. For example, in the first graph, the
sequence ([, < I;) extends alongside class [, likewise [, overlaps with
1, Iy with Ig, and (I, < I5) with .

It can be seen that the suborders ([, <, <, <3 <[, <I;) and
(Ig < I, < Ig < Iy) appear in the outcomes obtained from various
combinations. The majority consists of class couples that incorporate
categories from the same suborder, for instance [, paired with any
other class among {/,,...,Is} or Iy with any class from {l,1,,1g}. Six
out of 45 combinations, namely (I, 1), (I},1), (L,1;), (L3, 1g), (I, 1)
and (I5,1y), produced suborders with lengths less than four and
are excluded from the shown results. Particularly poor were the
sequences obtained from the data mapping of pair (I,,1;), in which
only orders of length two were identified.
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4.2 Empirical datasets

We additionally analyzed our approach using the developmental
datasets. Alongside the employed projection class pair, Figure 6
presents the outcomes of length four and three achieved for D.
melanogaster and of lengths from five to three for D. rerio. After
projecting the data based on class pair (embryo, adult), being the first
and last stages in the maturation process, our classification strategy
accurately provided the fruit fly’s development, embryo < larva <
pupa < adult, with a minimal sensitivity of at least 0.9 for all the
classes. However, when the data was projected using (pupa, adult), a
slightly different order was obtained, with minimal class sensitivity
of 0.94. The reported suborders of length three were acquired with
a minimum sensitivity of 1 for each class. Similarly, the zebrafish
transitions, from embryo to adult, were predicted to follow the
expected sequence, with sensitivity 1 for all classes, when the class
projection (3d, 1-2yrs) was used. Whereas employing different
class projections, the predicted orders exhibit some discrepancies,
treating nearby stages as substitutes; for instance, we frequently
observe 3d overlapping with 5d, and 3mo overlapping with 1-2yrs.

The proposed approach was further applied on the two datasets
pertaining pancreatic cancer, the human PDAC and mouse PanNET.
The results displayed in Figure 7 were obtained with minimal
class-wise sensitivity of 1. Here, we employed projecting pairs
that describe remote stages of the process under consideration.
The pairs (normal, PDAC), (PanIN-1, PDAC), (normal, PanIN-3)
and (PanIN-1, PanIN-3) were examined for PDAC. For PanNET
we investigated (NM, MET), (HI, MET), (NM, MLP) and (HI,
MLP). Each of these class combinations returned partial orders of
length not greater than three for PDAC and not greater than four
for PanNET.

It can be noticed that in both scenarios, no orders, comprising
transitions from normal tissue to the metastatic disease, were
predicted following a fully continuous or linear sequence. The
observed sequences are characterized by gaps, where certain
precursor lesions are noticeably absent.

4.3 Validation of detected structures

To validate the ordinal structures and substructures detected
by our approach, we also applied the detection method
2022). Since the method
proposed by Bellmann et al. (2022) is limited to detecting total

introduced in (Bellmann et al.,

orders, we utilized it as follows. First, the complete datasets
were analyzed. Subsequently, we evaluated all data subsets that
contained only samples from the classes that constitute the longest
substructures detected by our architecture. The evaluation led to the
following outcomes.

As with our current approach, for the synthetic dataset, no total
order was detected. The longest substructure consisting of six classes
was confirmed, which is [; <[, <L, <I; <[, < I;. For D. rerio, the
total order was confirmed, as we detected with the projection class
pair (3d,1-2yrs). For PanNET, no total order was detected. All
nine suborders of length 4 were confirmed, which are depicted in
Figure 7, i.e., (NM < HI < MLP < MET), (NM < AI < MLP < MET),
(NM < TI< MLP < MET), (HI < AT< MLP < MET), (HI < TI < MLP
< MET), (NM < HI < TI < MLP), (NM < HI < TI < MET), (NM < HI

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1665892
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Stolnicu et al.

10.3389/fbinf.2025.1665892

Class lo

i by

FIGURE 4

I3

OO AVORGAYV

Synthetic two-dimensional data. Within the ten classes, no total order can be found, yet four suborders of length six are present: (I < -+ < [5),
(lg<li<b<lg<ly<ls), (lo<li<<lz<ly<l5)and ([g <3 <5 <lg <4 < [5). In addition, 8 subsequences of length five can be likewise identified,
resembling the previous ones where sequences (I, < [;) and ({4 < [5) are replaced by classes lg and [y, respectively.

ly Is Ig
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< Al < MLP), and (NM < HI < AI < MET). For the PDAC dataset,
again no total order was found and the following suborders were
confirmed (cf. Figure 7): (normal < PanIN-1 < PDAC), (PanIN-1 <
PanIN-2 < PDAC), and (PanIN-1 < PanIN-3 < PDAC). In contrast
to our outcomes, for the data subset including the classes (normal,
PanIN-2, Panln-3), the approach of Bellmann et al. (2022) led to the
unconventional order normal < PanIN-3 < PanIN-2.

The most interesting case was observed for dataset D.
melanogaster. While we were able to detect the conventional total
structure embryo < larva < pupa < adult with the projection pair
(embryo, adult), no total order was detected with the approach
proposed by Bellmann et al. (2022). To further analyze this
phenomenon, we additionally evaluated all data subsets including
three of the four total classes. The returned detected orders of length
three were (larva < pupa < adult), (embryo < pupa < adult), (embryo
< larva < adult), and (embryo < pupa < larva). The last suborder
seems to lead to a failed detection of a total class structure.

In summary, the comparison to the detection method
introduced in (Bellmann et al, 2022) validated our detection
architecture, emphasizing the benefit that our proposed approach is
not limited to the analysis of total orders.

5 Discussion and conclusion

Uncovering ordinal correlations concealed within high-
throughput data might significantly enhance our understanding of
genetic alterations underlying various biological processes and assist

Frontiers in Bioinformatics

07

in predicting plausible disease progression. This paper introduces
a methodology to retrieve univariate representations from high-
throughput datasets and further analyze them using an advanced
ordinal classification framework. This approach is especially suitable
when examining intricate biological mechanisms concerning,
for instance, cancer progressions such as pancreatic ductal
adenocarcinomas (PDACs) or pancreatic neuroendocrine tumors
(PanNETs). Alongside their unpredictable non-linear progressions,
these tumors often exhibit heterogeneous staging among different
patients, as well as within an individual (Jones et al, 2008;
Raphael et al.,, 2017; Witkiewicz et al., 2015; Adamo et al., 2017),
indicating the likely presence of distinct alternative developmental
trajectories. In order to investigate these possibilities we integrate
our novel directed threshold classifiers with the existent ordinal
classifier cascades. The combination of these two techniques enables
the detection of underlying ordinal substructures, which can be
further aggregated into partial orders to reveal potential coexisting
transition routes.

The approach used for projecting the data into a single-
dimensional space plays a critical role in determining the
effectiveness of the identified ordinal patterns. Specifically, we
observed that selecting biologically distant class pairs for the
initial binary separation results in a more pronounced separability
of the categories throughout the entire progression. Although
the approach could benefit from additional domain expertise
concerning the definition of remote stages, it still proves effective,
also in its absence. One option to choose an effective projection class
pair, without focusing on the biological meaning of the classes, is

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1665892
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Stolnicu et al.

Predicted
suborders

Class pair
projection

(Lo, 1), (Lo, 12), (Lo, 1),
(10,14), (Lo, 15), (1, 1),
(1, 15), (1, 15), (12, 1),
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(Ls,15), (L6, 1s), (L6, o),
(l7,1s), (17, 1s), (Is, by)
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FIGURE 5
Predicted suborders for the synthetic data. For every outcome the

corresponding pairs of classes used to project the data are listed. The
resulting suborders are depicted as aggregated graphs where
overlapping classes can be seen as alternatives. Only results that
produced sequences of lengths six and five are shown. The average
runtime for suborder screening across the 45 projections was 0.10 s.

to conduct an exhaustive search over all possible class pairs and to
select the two most distant classes, based on the provided feature
space. If the biological order or possible (parallel) suborders are
reflected in the provided feature space, the exhaustive search is
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expected to lead to a meaningful initial projection class pair. Note
that, despite choosing a well-founded data transformation to one
dimension, ordinal detection may be influenced by class imbalance.

The method was validated on both, synthetic and biological
datasets. When applied to the artificially generated dataset,
engineered to include multiple suborders, the method accurately
recovered all alternative sequences. Furthermore, we successfully
rebuilt known linear stage orders in developmental data from
Drosophila melanogaster and Danio rerio. These preliminary
findings support the suggestion that employing projection pairs
describing biologically distant stages in a specific developmental
process, may more effectively direct the classifier in recognizing also
intermediate phases, unlike using closely related stages that might
hide certain transitions. Moreover, the results also prove that the
methodology is suitable for detecting overall orders encompassing
all classes, as well as suborders within data that lack an underlying
total order.

Predicting the staging and progression becomes more
challenging when investigating oncological datasets, such as PDACs
and PanNETs (Buchholz et al., 2005; Ro et al., 2013; Chan et al., 2018;
Mpilla et al., 2020). In these cases, the classifiers failed to recognize
a uniform and stepwise course of the diseases from the onset to
the ending phase. For the human pancreatic cancer, the pancreatic
intraepithelial neoplasia of degree 1 (PanIN-1) as well as dysplasias
of degrees 2 (PanIN-2) and 3 (PanIN-3) appear to be followed by
PDAC. This observation is consistent with the current literature
characterizing pancreatic carcinomas as mostly heterogeneous
tumors with a complex evolution, whereby different tumor regions
can develop independently of each other (Felsenstein et al., 2018).
On the cellular level, PanINs arise from neoplastic transformation
of normal cells like ductal, acinar, central acinar and normal stem
cells in the exocrine part of the pancreas. Various molecular
changes, as well as mutations in different signaling pathways
(Hedgehog, Wnt, EGFE, Notch and IL-17), contribute to varying
degrees to the evolution of PanIN lesions in PDAC with a
key role for Notch signalling (Pian et al, 2025). This leads to
the formation of many subclonal populations, supporting the
hypothesis that some malignancies might not follow a single linear
progression model, but rather develop through multiple, parallel
evolutionary routes (Notta et al., 2017; Wu et al., 2019). Previous
transcriptional profiles analyses revealed a substantial difference
between lesions and malignant pancreatic tumors, with the earliest
lesions resembling more closely normal tissues (Buchholz et al.,
2005). This is also evident in the arrangements that result from
our detection technique. The research conducted by Notta et al.
(2016) revealed that approximately 65% of PDAC tumors exhibit
complex chromosomal rearrangements, including chromothripsis,
a phenomenon in which chromosomes massively split and rejoin ina
single event (Stephens et al., 2011). Multiple tumor suppressor genes,
including TP53, CDKN2A, and SMAD4, can be simultaneously
inactivated by this process, leading to rapid development and spread
of tumors. These findings further challenge the conventional model
of incremental genetic alterations in PDAC progression, suggesting
that in some cases, the disease may advance rapidly due to such
genomic failures. These molecular insights also align with the
sudden onset of an advanced disease and the transition of duct
lesions to invasive carcinoma that have been documented in clinical
settings of certain patients (Hruban et al., 1999; Al-Sukhni et al.,
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Dataset Class pair Predicted
projection (sub)orders
(embryo, adult) | embryo I—’| larva I—P-—>m

(pupa, adult) adult

(embryo, larva)

D. melanogaster

(embryo, pupa) |embryo | larva |
avg. running

time: 0.006 s

(larva, pupa) larva |—>| embryo

(larva, adult) adult

(3d,1 — 2yrs)

(3d, 3mo)

(10d,1 — 2yrs)

D. rerio
(3d,10d)
avg. running
time: 0.01 s
(5d, 3mo),

(5d,1 — 2yrs)

10d, 3mo,

(5d,10d)

FIGURE 6

Predicted overall and partial sequences for the two developmental datasets. The projecting class pairs that returned orders either matching the length
of the expected order or one element shorter (assumed length — 1) are provided for both Drosophila melanogaster and Danio rerio. The average
computation time for suborders detection in all projections is also provided.
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(normal, PDAC)
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PDAC (PanIN-1, PDAC)

avg. running
time: 0.21 s

(normal, PanIN-3)

(PanIN-1, PanIN-3)

(NM, MET)
PanNet (HI, MET)
avg. running
time: 0.01 s

(NM, MLP)

(HI, MLP) | NM > HI

Al

FIGURE 7

Predicted partial sequences related to pancreatic cancer, namely human PDAC and PanNET derived from the mouse model. In either case, no
comprehensive orders of the entire process were predicted. However, we can observe that early phases are located in initial spots, whereas later stages
are more distributed in final positions. The average runtime for the detection of suborders in all projections is also stated.

2012). The observation of patients undergoing yearly magnetic
resonance imaging screenings revealed that although imaging could
detect small pancreatic tumors and cystic lesions, some participants
still developed higher stage PDAC with minimal or no prior
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symptoms. Pancreatic neuroendocrine tumors can be clinically
differentiated into functionally active and inactive types, and
further subdivided into well-differentiated and poorly differentiated
subgroups. Further subtyping of this clinically heterogeneous tumor
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entity can be achieved by integrating molecular information that
may be relevant to tumor development and progression (Shen et al.,
2022). Despite the fact that PDAC and PanNETs are distinct entities,
several studies highlight the role of chromatin remodeling and
genomic alterations in pancreatic tumorigenesis, showing both
similarities and differences between the two (De Wilde et al., 2012;
Tacobuzio-Donahue et al., 2012; Jiao et al., 2011).

A valuable foundation for comprehending tumor heterogeneity
was provided by examining the RIP1-TAG2 mouse model as a
representation of human PanNETs (Sadanandam et al., 2015).
The integration of transcriptomic and metabolic profiling across
human and mouse models led to the identification of multiple
tumor subtypes, each characterized by unique molecular and
clinical features. This work reveals concurrent routes of PanNET
carcinogenesis, exhibiting distinctive cells of origin that result in
tumor islets and metastasis-like primary subtypes, strengthening the
concept of non-linear development of these tumor types.

In conclusion, the approach we introduce offers a foundation
for examining variability in the development of diseases, effectively
unveiling underlying potential ordinal patterns. Additional research
into intricate biological and pathological mechanisms, particularly
understanding the distinct developmental routes in both PanNETs
and PDAC may have significant implications for prognostic
evaluations and tailored treatment plans. While the presented
outcomes were obtained from relatively small datasets, further
research will focus on external validation with larger sample cohorts,
together with the analysis of additional technical modifications. An
example could be to complement the OCC sensitivity by alternative
OC measures, such as the weighted x (Cohen, 1968) or Kendall’s
7 (Kendall, 1938).
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