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Introduction: Numerous biological systems exhibit ordinal connections 
between categories. Developmental and time-series information inherently 
depict sequences like “early,” “intermediate,” and “late” phases, showing that 
these specific processes follow a progression. Ordinal classification techniques 
are often applied in biological and medical contexts, ranging from the 
evaluation of pain intensity, to the detection of evolving diseases, such as 
cancer. These ranking systems may assist clinicians in establishing diagnoses 
and developing tailored treatment plans. For instance, tumor staging might 
guide early detection strategies and targeted therapies, improving patient 
outcomes. However, applying ordinal classification to biological data presents 
considerable challenges. In addition to their high dimensionality, these datasets 
can be highly heterogeneous, often reflecting branching processes that occur 
simultaneously during progression. Factors such as intratumoral diversity, 
asynchronous progress, and context-specific signaling activity may interfere 
with the identification of such alternative development routes.
Methods: To address these challenges, we propose a framework for uncovering 
ordinal relationships within molecular data. Specifically, directed threshold 
classifiers are introduced as base learners for ordinal classifier cascades, enabling 
the detection of both total and partial orderings between molecular states.
Results: This approach preserves the inherent ordinal structure by projecting 
high-dimensional data onto one single dimension while simultaneously 
decreasing complexity. Additionally, the distinct features of the resulting 
thresholds allow the prediction of potential alternative paths among the 
suborders.

KEYWORDS

alternative progression patterns, classifier cascades, directed threshold classifiers, 
ordinal classification, high-throughput data 

 1 Introduction

Various physiological processes and health conditions naturally follow an ordinal 
arrangement, in which stages progress hierarchically (Prigogine and Nicolis, 1971). 
Organizing disease phases into meaningful semantic groups can be a valuable predictive 
tool in clinical practice (Lee et al., 2004). In oncology, tumor classification aids in prognosis 
and treatment strategies, guiding the choice of interventions and targeted therapies
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based on predicted tumor behavior (Beadsmoore and Screaton, 
2003; Forner et al., 2014; Cortés et al., 2014). Similarly, 
categorizing the stages of neurodegenerative disorders, such as 
Alzheimer’s disease (Sperling et al., 2011; Davis et al., 2018; 
Tahami Monfared et al., 2022) might facilitate prompt therapeutic 
decisions and patient monitoring (Scharre, 2019). Pain classification 
adheres to comparable principles, where pain intensity reported 
by patients can be arranged into numerical or categorical scales 
(Hadjistavropoulos and Craig, 2002; Haefeli and Elfering, 2006). 
These may also be used in anesthesiology and pain management 
to guide treatment suitability (Breivik et al., 2008). Despite its 
clinical utility, ordinal classification in biological and medical 
data presents considerable computational challenges. Molecular 
datasets, such as gene expression profiles, are not only high-
dimensional, consisting of thousands of interrelated features, but 
also may encode multiple, potentially parallel biological processes, 
each with its own progression dynamics (Brody, 2009; Wu et al., 
2019; Yang et al., 2022; Gerlinger et al., 2012). Additionally, 
high-throughput data often suffer from noise introduced by 
experimental variability, batch effects, and underlying biological 
diversity, which can hinder ordinal relationships and complicate 
model training (Tu et al., 2002; Goh et al., 2017). Moreover, 
numerous biological processes lack clear stage transitions, exhibiting 
overlapped molecular signatures and divergent trajectories, leading 
to ambiguous classification boundaries and partial ordering of states 
(Seoane and De Mattos-Arruda, 2014). Further suggesting that 
these mechanisms could potentially evolve through various parallel 
pathways (Olschwang et al., 1997; Traverso et al., 2002).

The proposed architecture is tailored for the detection of 
ordinal structures within one-dimensional data, derived from high-
throughput datasets. The categories, i.e., classes, are delineated by 
thresholds that partition the input space into distinct intervals. An 
essential aspect of this method is the ability to recreate potential 
alternative ordinal trajectories from the resulting suborders. This can 
be accomplished based on the properties of the decision boundaries. 
As a result, the model can provide a distinct benefit in scenarios 
in which the ordinal structure may not be strictly predefined, 
allowing for more nuanced and adaptable classification decisions. 
However, note that our introduced architecture is designed for the 
detection of ordinal structures and (parallel) substructures, not for 
the classification process at hand. 

2 Related work

Ordinal classification is a type of supervised learning in which 
the classes exhibit an intrinsic order that does not necessarily 
adhere to specific numerical intervals (Frank and Hall, 2001). In 
contrast to conventional ordinal classification approaches, which 
typically assume a fixed class order and often fail to capture 
the optimal ordinal correlations between classes, ordinal classifier 
cascades (OCCs) (Lattke et al., 2015) decompose the task into 
a series of simplified binary classification problems. In this 
framework, a cascade of classifiers is used, where each classifier 
determines whether a given instance belongs to a specific category 
or a higher-ranked one. The cascade approach evaluates samples 
sequentially, attributing a label according to the first classifier 
that provides a confident prediction. This structure not only 

streamlines the classification problem at each stage, but also allows 
the exploration of potential class sequences. In this context, the 
CASCADES algorithm (Lausser et al., 2019) extends the sequential 
framework by improving its efficiency, replacing the exhaustive 
search with exploratory screening of candidate orders. To handle 
the computational complexity of this search, it employs early 
rejection criteria based on class-wise sensitivity limits, discarding 
underperforming cascades prior to complete training. Additionally, 
binary classifiers in the cascade are trained to distinguish between 
a class and its successor, enabling pairwise trained classifiers to be 
stored and reused for different input orders, thus decreasing runtime 
and minimizing redundant computations. Because the algorithm 
is independent of the classifier type, allowing the integration of 
any suitable binary training method, this approach enhances both 
efficiency and flexibility. Finally, it produces a set of candidate 
cascades that satisfy the established performance criteria, which can 
be further evaluated for ensemble integration or downstream model 
selection.

Formally, in the context of ordinal classification, we are given a 
set of N  samples, D = {(xk,yk)}

N
k=1, where xk ∈ X  denotes the feature 

vector of the k-th sample and yk ∈ L indicates its associated label. 
Here, X ⊆ ℝd is the feature space and L = {l1, l2,…, l|L|} corresponds 
to the finite set of class labels. The objective is to predict the label for 
each sample k taking into account its feature vector. Thus, a binary 
classifier, c(i,i+1), of an OCCs ensemble, εC, is trained to differentiate 
between samples belonging to adjacent classes, li and li+1, in the 
given semantic order, l1 ≺ l2 ≺⋯ ≺ l|L|, as:

εC = {c(i,i+1):X ↦ {li, li+1} ∣ i = 1,…, |L| − 1} . (1)

The index i designates the position of the classes in the given 
order. Throughout the classification procedure, every xk is evaluated 
by the sequence of classifiers arranged according to the order under 
investigation, that is, if the input order is o = l1 ≺ l2 ≺⋯ ≺ l|L|, the 
classifiers are organized as {c(1,2),c(2,3),…,c(|L|−1,|L|)}. For a sample 
k, if a classifier c(i,i+1)(xk) generates a positive prediction for the 
first label, li, the corresponding label will be assigned to xk, and the 
cascade ends. Otherwise, the sample is passed to the next classifier 
in the sequence, continuing the process until the final classifier 
c(|L|−1,|L|) is reached, in which case, if the second label is predicted, 
then the predicted label y′k is equal to l|L|, as defined in Equation 2:

y′k = {
lj, where j =min{i ∈ {1,…, |L| − 1} | c(i,i+1) (xk) = li} ,
l|L|, if c(i,i+1) (xk) = li+1 ∀i < |L|.

(2)

In order to guide the selection of the most effective cascades, 
the class-wise sensitivity serves as primary efficiency criterion 
for the classifiers. An example of an OCC architecture is 
depicted in Figure 1.

Bellmann and Schwenker (2020) proposed another approach 
for the detection of ordinal class structures, in which it is not 
necessary to explicitly evaluate all possible class orderings. The idea 
is to determine the performance (resubstitution accuracy) of linear 
Support Vector Machines (SVMs) (Vapnik, 2000) for each class 
pair, i.e., |L| ⋅ (|L| − 1)/2 binary subtasks. The resulting performance 
values, ai,j, imply how well the classes, {li, lj}, can be separated from 
each other. As the next step, the values ai,j are combined into |L|
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FIGURE 1
Ordinal classifier cascade (OCC) ensemble. The OCC architecture 
consists of |L| − 1 binary classifiers c(i,i+1) that can either predict label li
or label li+1. If the greater class (li+1) is predicted, the input is passed to 
the next classifier in the sequence. Otherwise, if the lower class (li) is 
predicted by c(i,i+1), then this output is taken as the ensemble’s final 
prediction for input x. The last classifier in the sequence, c(|L|−1,|L|), 
cannot further pass input x, and therefore, once reached, always 
provides the ensemble’s final output, by predicting either l|L|−1 or l|L|. 
An OCC ensemble is defined by its set of classifiers, as in Equation 1.

symmetric matrices A, A = (ai,j)
|L|
i,j=1

, with different arrangements 
of the row (and column) elements. While the symmetry of each 
A is obtained by definition, due to ai,j = aj,i, for all i ≠ j, the 
authors defined ai,i ≔ 0, ∀i = 1,…, |L|. An ordinal class structure 
is found if and only if there exist exactly two matrices A for 
which the row (and column) entries are monotonously decreasing 
towards the diagonal elements. From the symmetry characteristic, 
it follows that each ordinal structure is found together with its
reverse order.

Bellmann and Schwenker (2020) further extended their work in 
(Bellmann et al., 2022). They generalized their working definition of 
ordinal classification tasks by introducing a theoretical framework 
which makes it possible to detect ordinal class structures without 
utilizing any classification model. As an example, they proposed 
using a multidimensional adaptation of Fisher’s discriminant 
ratio (Fisher, 1936). Using their framework, they proved that, in 
general, 3-class classification problems can be regarded as ordinal 
classification tasks consisting of two edge classes and a class 
identified as the central one. Note that the authors reduced the 
detection complexity from evaluating all possible class orderings, 
|L|! evaluations, to only |L| ⋅ (|L| − 1)/2. However, they did not 
discuss the potential for detecting substructures, a useful property 
that was elaborated by Lausser et al. (2020) based on the CASCADES 
algorithm. In contrast to the methods discussed above, in our 
current approach, the mining for ordinal suborders is not conducted 
in the provided, and often high-dimensional, feature space, but in 
combination with the one-dimensional real space. Moreover, with 
our approach presented in this work, we are able to identify alternate 
progressions. 

3 Materials and methods

3.1 Directed threshold classifiers

The purpose of the Directed Threshold Classifiers (DTCs) 
introduced in this work is to recognize ordinal relations within 
univariate data X ⊆ ℝ. A DTC fτ:X → {li, lj}, defined by a 

threshold τ ∈ ℝ, is built to differentiate between two distinct
categories li, lj:

fτ (x) = {
lj, if x ≥ τ,
li, otherwise.

(3)

The threshold τ divides the input space into two decision areas, 
in which all elements belonging to class lj, which have values 
greater than τ, are assigned on the right side, whereas instances 
of class li, with values below τ fall into the region on the left 
side, as shown in Equation 3. A set of DTCs can be organized 
sequentially according to a specified input order o = l1 ≺⋯ ≺ l|L| to 
be further applied as base classifiers within the OCCs framework. 
The samples being examined are assumed to be arranged along a 
one-dimensional axis, and the thresholds, corresponding to specific 
points, are constrained to follow a strictly increasing order on 
the same line, τ1 < … < τ|L|−1. This guarantees that the decision 
regions form contiguous segments within the space, leading to a 
connected and non-overlapping partitioning of the domain that 
mirrors a consistent progression aligned with the ordinal nature of 
the targeted labels. Moreover, the non-intersecting characteristic of 
the regions inherently creates parallel decision boundaries, as each 
one is orthogonal to the axis of progression. For the computation 
of the one-dimensional thresholds, we apply linear SVM models, 
making use of their margin maximization characteristic. 

3.2 Data transformation to one dimension

As univariate data rarely appear in real-world scenarios, 
the first step of the method involves dimension reduction, 
for which supervised and non-supervised techniques exist. 
Principal components analysis (PCA) (Kambhatla and Leen, 1997), 
Linear discriminant analysis (LDA) (Fisher, 1936), t-distributed 
stochastic neighbor embedding (t-SNE) (Van der Maaten and 
Hinton, 2008), and uniform manifold approximation and 
projection (UMAP) (McInnes and Healy, 2018) are just a few of 
the numerous applicable methods that can be used. In this section, 
we provide a different strategy tailored to meet the specific objective 
of our study. The process is summed up in the following main steps: 
From the available category set we select a pair of classes, (li, lj), to 
which we apply a linear binary classifier. The data points are then 
projected onto the orthogonal hyperplane of the resulting linear 
model. For this binary linear classification, we employed SVMs, 
in which the data were streamlined to a one-dimensional form by 
mapping the points using the normal vector.

Note that we prioritized SVM models for the mapping of the 
high-dimensional data onto one dimension for the following main 
reasons. First, SVM models are supervised, i.e., classes play an 
important role during projection. Second, SVMs are deterministic, 
ensuring reproducibility. In addition, SVM models maximize the 
margin between the classes of the chosen projection class pair, which 
we consider to be important when mining for ordinal structures 
in the one-dimensional space. However, users of our introduced 
approach can replace the SVM-based projection by any projection 
of their preferred choice.

Given that the selection of the initial data mapping most likely 
affects the direction of the DTCs during the overall screening 
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process, a key aspect to take into account is the choice of this 
class pair. Despite appearing trivial, it is important to notice that 
the two classes are maintained apart from each other in the 
classification process. Consequently, the resulting projection is likely 
to highlight distinctions between these selected classes, potentially 
overlooking variations or correlations in the other classes. In the 
experiments reported in this work, we examined every possible 
pairwise combination. We observed that using the two least related 
categories in the developmental process described by the dataset, 
generally produced the most consistent results. 

3.3 Alternative progressions

In the cascaded system, both total orders and potential suborders 
can be identified. When partial configurations emerge, it may be 
particularly valuable to investigate whether they reflect alternative 
advancements of the same underlying progression. In this context, 
the afore described properties of the thresholds can help uncover 
and characterize competing developmental paths. For suborders to 
be considered as potential parallel trajectories of the same process, 
they must share a subset of thresholds. In the following, we formally 
define the criteria that determine when a threshold qualifies as 
shared between suborders. Let L = {l1,…, l|L|} represent a finite 
collection of class labels for which no global order is determined. 
Assume that two suborders, o ⊂ L and o′ ⊂ L, can be recognized 
so that each defines a valid ordinal sequence. Suppose that a 
classifier system exists according to which the associated decision 
threshold is identified with minimal class-wise sensitivity, sens =
1, for every category within the respective suborders (i.e., all class 
instances are correctly classified). The threshold sets obtained for 
the suborders o and o′ can be denoted as τo = {τ1,…,τk} and τo′ =
{τ′1,…,τ

′
m}, respectively. We are interested in identifying whether 

a threshold equivalence relation τi ≡ τ′j , with τi ∈ τo and τ′j ∈ τo′ , 
can be established. Two thresholds are deemed equivalent if they 
induce identical separation boundaries in regions in which two 
distinct classes have the same adjacent class in their respective 
suborders. A threshold can be left-shared or right-shared, depending 
on whether the common neighboring class is on the left or on the 
right side of the two categories, detailed in Equations 4–10. Formally, 
given the classes la ∈ o\o′, lb ∈ o′\o and ll ∈ o∩ o′, if the subsequent 
inequalities occur,

Xll < τi ≤ Xla and (4)

Xll < τ′j ≤ Xlb , (5)

where Xli  represents the set of feature values associated with class 
li, then τi ≡ τ′j . Moreover, a threshold τls exists such that τi,τ

′
j ↦ τls, 

where τls represents the left-shared threshold between the respective 
class transitions. Similarly, if the following inequalities arise,

Xla < τi ≤ Xlr and (6)

Xlb < τ′j ≤ Xlr , (7)

then τi ≡ τ′j , and a threshold τrs exists, such that τi,τ
′
j ↦ τrs

represents the right-shared threshold of la and lb. It follows that 

τls will be situated between ll and the minimum among la and lb, 
whereas, τrs has to be greater than the maximum of la and lb and less 
than lr:

Xll < τls ≤min{Xla ,Xlb} , (8)

max{Xla ,Xlb} < τrs ≤ Xlr . (9)

In a wider framework, in which incorrect sample classifications 
are allowed with a misclassification rate of θ = 1− sens, with sens ∈
[0.5,1], θ can be incorporated to define the thresholds between each 
pair of adjacent classes li and li+1 as:

τ ∈ [Xli + θ ⋅ (Xli+1 −Xli) ,Xli+1 − θ ⋅ (Xli+1 −Xli)] . (10)

Two suborders are required to have a common minimal class 
sensitivity for each involved class to qualify as viable alternatives, 
thus left- and right-shared thresholds can be adapted to account for 
the same amount of misclassifications as outlined below:

τls > Xll + θ ⋅min{Xla −Xll , Xlb −Xll} ,
τls ≤min{Xla − θ ⋅ (Xla −Xll) , Xlb − θ ⋅ (Xlb −Xll)} ,
τrs >max{Xla − θ ⋅ (Xla −Xll) , Xlb − θ ⋅ (Xlb −Xll)} ,
τrs ≤ Xll + θ ⋅max{Xla −Xll , ; Xlb −Xll} .

This ensures that the decision boundaries retain a consistent 
level of ambiguity across class transitions. The concept of shared 
thresholds is illustrated in Figure 2.

A visual representation of the designed procedure is 
provided in Figure 3, beginning with the data projection (A–B), 
followed by the application of DTCs and the screening procedure 
to extract ordinal substructures (C–D), and concluding with their 
aggregation for the retrieval of potential alternative structures (E).

3.4 Reversed orders

Another feature of this approach lies in the implicit retrieval 
of inverted suborders. More precisely, for a specific class pair 
(li, lj), if the sequence o = l1 ≺⋯ ≺ l|L| is retrieved, applying the 
inverse combination, i.e., (lj, li), for the data transformation yields 
the reversed order o′ = l|L| ≺⋯ ≺ l1. This behavior arises from 
the fact that switching the class pairs results in a mapping 
transformation that mirrors the original structure, thereby naturally 
producing the converse sequence without additional interventions. 
By definition, this means that reversed orders are mathematical 
artifacts. Whether the reversal is biologically meaningful depends on 
the classification task at hand and has to be discussed for each case
individually. 

3.5 Analyzed datasets

The method was initially evaluated using synthetic data 
comprising 10 distinct categories, l0,…, l9, each containing 100 
samples described by two features, which were further reduced to 
one dimension using the technique introduced in Section 3.2.

To validate our approach, we used two publicly available 
developmental datasets from the Gene Expression Omnibus (GEO) 
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FIGURE 2
Representation of equivalent thresholds across suborders. For suborders ll ≺ la ≺ ld and ll ≺ lb ≺ lc ≺ ld, τ1 and τ3 share ll on the left, similarly τ2 and τ5

share ld on the right. This characteristic allows to consider τ1 and τ3, as well as τ2 and τ5, as equivalent, enabling the arrangement of the two suborders 
as alternatives of the same phenomenon.

(Barrett et al., 2012). The expression measurements of 4028 genes 
of Drosophila melanogaster (D. melanogaster) (Arbeitman et al., 
2002) (included in GEO accession number: GSE4347) were taken 
at various stages of the fruit fly’s life cycle. The developmental 
phases can be arranged as embryo ≺ larva ≺ pupa ≺ adult, with 31, 
10, 18 and 8 samples in each category, respectively. The second 
dataset is composed by pineal glands gene expression profiles 
collected at five distinct time periods of the zebrafish’s (D. rerio) 
maturation process (Toyama et al., 2009) (GEO accession number: 
GSE13371). They cover three embryonic (3 days, 5 days, and 10 days) 
and two adult time points (3 months, 1–2 years). The first group 
consists of 14, 14, and 15 samples, respectively, whereas the second 
group comprises 12 and 14 samples, respectively.

Furthermore, we used two tumor datasets to test our 
methodology. The pancreatic ductal adenocarcinoma (PDAC) 
(Buchholz et al., 2005) which includes 21521 gene expression 
profiles from human microdissected cells, with 38 samples split 
into 5 classes: normal ductal cells (6 samples), three intermediate 
pancreatic intraepithelial neoplasia (PanIN), PanIN-1 (6 samples), 
PanIN-2 (8 samples) and PanIN-3 (10 samples), as well as the 
metastatic stage (PDAC) (8 samples). This process is assumed 
to develop according to the sequence normal ≺ PanIN-1 ≺
PanIN-2 ≺ PanIN-3 ≺ PDAC. The pancreatic neuroendocrine 
tumors (PanNET) (Sadanandam et al., 2015) (GEO accession 
number: GSE73514) comprise 35511 mutational profiles from 
the RIP1 TAG2 mouse model, containing 22 samples organized 

into 6 categories: 3 samples for each normal mature β-cells (NM), 
hyperplastic islet (HI), angiogenic islet (AI) and liver metastasis 
(MET), and 5 samples for tumor islet (TI) and met like primary 
(MLP), each. The assumed progression is NM ≺ HI ≺ AI ≺ TI ≺
MLP ≺ MET.

For all non-synthetic datasets analyzed in this work, we utilized 
the normalized versions of the samples provided by the original 
authors to ensure reproducibility. Details of the normalization 
procedures can be found in the respective dataset publications 
(Arbeitman et al., 2002; Toyama et al., 2009; Buchholz et al., 2005; 
Sadanandam et al., 2015). For the zebrafish dataset (Toyama et al., 
2009) we additionally applied a log2 transformation to stabilize 
variance and diminish asymmetry. 

4 Results

4.1 Synthetic data simulations

Upon considering either dimension of the simulated data, no 
ordinal arrangement encompassing all classes can be discerned with 
minimal class sensitivity of 1, as illustrated in Figure 4. To investigate 
the impact of the data projection on the final outcome, we employed 
all pair combinations of the categories which is the design of the 
linear decision boundary. The class pairings that returned orders of 
length six or five are shown in Figure 5. The suborders are illustrated 
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FIGURE 3
Depiction of the entire process for identifying ordinal structures in 
molecular high-throughput data. Steps A to B illustrate the data 
projection, beginning with the selection of a pair of classes (A) on 
which a binary linear classifier is utilized, followed by the projection of 
the data onto the boundary’s perpendicular (B). Consequently, the 
directed threshold classifiers are applied on the one-attribute 
observations (C). Ordinal patterns are found using an extensive 
screening procedure by means of ordinal classifier cascades (D) which 
are subsequently analyzed to ascertain potential alternative 
trajectories (E).

in a concise graph where overlapping categories, or groups, are 
shown layered atop each other. For example, in the first graph, the 
sequence (l0 ≺ l1) extends alongside class l6, likewise l2 overlaps with 
l7, l3 with l8, and (l4 ≺ l5) with l9.

It can be seen that the suborders (l0 ≺ l1 ≺ l2 ≺ l3 ≺ l4 ≺ l5) and 
(l6 ≺ l7 ≺ l8 ≺ l9) appear in the outcomes obtained from various 
combinations. The majority consists of class couples that incorporate 
categories from the same suborder, for instance l0 paired with any 
other class among {l1,…, l5} or l9 with any class from {l6, l7, l8}. Six 
out of 45 combinations, namely (l0, l6), (l1, l6), (l2, l7), (l3, l8), (l4, l9)
and (l5, l9), produced suborders with lengths less than four and 
are excluded from the shown results. Particularly poor were the 
sequences obtained from the data mapping of pair (l2, l7), in which 
only orders of length two were identified. 

4.2 Empirical datasets

We additionally analyzed our approach using the developmental 
datasets. Alongside the employed projection class pair, Figure 6 
presents the outcomes of length four and three achieved for D. 
melanogaster and of lengths from five to three for D. rerio. After 
projecting the data based on class pair (embryo, adult), being the first 
and last stages in the maturation process, our classification strategy 
accurately provided the fruit fly’s development, embryo ≺ larva ≺
pupa ≺ adult, with a minimal sensitivity of at least 0.9 for all the 
classes. However, when the data was projected using (pupa,adult), a 
slightly different order was obtained, with minimal class sensitivity 
of 0.94. The reported suborders of length three were acquired with 
a minimum sensitivity of 1 for each class. Similarly, the zebrafish 
transitions, from embryo to adult, were predicted to follow the 
expected sequence, with sensitivity 1 for all classes, when the class 
projection (3d, 1–2yrs) was used. Whereas employing different 
class projections, the predicted orders exhibit some discrepancies, 
treating nearby stages as substitutes; for instance, we frequently 
observe 3d overlapping with 5d, and 3mo overlapping with 1–2yrs.

The proposed approach was further applied on the two datasets 
pertaining pancreatic cancer, the human PDAC and mouse PanNET. 
The results displayed in Figure 7 were obtained with minimal 
class-wise sensitivity of 1. Here, we employed projecting pairs 
that describe remote stages of the process under consideration. 
The pairs (normal, PDAC), (PanIN-1, PDAC), (normal, PanIN-3) 
and (PanIN-1, PanIN-3) were examined for PDAC. For PanNET 
we investigated (NM, MET), (HI, MET), (NM, MLP) and (HI, 
MLP). Each of these class combinations returned partial orders of 
length not greater than three for PDAC and not greater than four 
for PanNET.

It can be noticed that in both scenarios, no orders, comprising 
transitions from normal tissue to the metastatic disease, were 
predicted following a fully continuous or linear sequence. The 
observed sequences are characterized by gaps, where certain 
precursor lesions are noticeably absent. 

4.3 Validation of detected structures

To validate the ordinal structures and substructures detected 
by our approach, we also applied the detection method 
introduced in (Bellmann et al., 2022). Since the method 
proposed by Bellmann et al. (2022) is limited to detecting total 
orders, we utilized it as follows. First, the complete datasets 
were analyzed. Subsequently, we evaluated all data subsets that 
contained only samples from the classes that constitute the longest 
substructures detected by our architecture. The evaluation led to the 
following outcomes.

As with our current approach, for the synthetic dataset, no total 
order was detected. The longest substructure consisting of six classes 
was confirmed, which is l0 ≺ l1 ≺ l2 ≺ l3 ≺ l4 ≺ l5. For D. rerio, the 
total order was confirmed, as we detected with the projection class 
pair (3d,1− 2yrs). For PanNET, no total order was detected. All 
nine suborders of length 4 were confirmed, which are depicted in 
Figure 7, i.e., (NM ≺ HI ≺ MLP ≺ MET), (NM ≺ AI ≺ MLP ≺ MET), 
(NM ≺ TI ≺ MLP ≺ MET), (HI ≺ AI ≺ MLP ≺ MET), (HI ≺ TI ≺ MLP 
≺ MET), (NM ≺ HI ≺ TI ≺ MLP), (NM ≺ HI ≺ TI ≺ MET), (NM ≺ HI 
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FIGURE 4
Synthetic two-dimensional data. Within the ten classes, no total order can be found, yet four suborders of length six are present: (l0 ≺⋯ ≺ l5), 
(l0 ≺ l1 ≺ l2 ≺ l8 ≺ l4 ≺ l5), (l0 ≺ l1 ≺ l7 ≺ l3 ≺ l4 ≺ l5) and (l0 ≺ l1 ≺ l7 ≺ l8 ≺ l4 ≺ l5). In addition, 8 subsequences of length five can be likewise identified, 
resembling the previous ones where sequences (l0 ≺ l1) and (l4 ≺ l5) are replaced by classes l6 and l9, respectively.

≺ AI ≺ MLP), and (NM ≺ HI ≺ AI ≺ MET). For the PDAC dataset, 
again no total order was found and the following suborders were 
confirmed (cf. Figure 7): (normal ≺ PanIN-1 ≺ PDAC), (PanIN-1 ≺
PanIN-2 ≺ PDAC), and (PanIN-1 ≺ PanIN-3 ≺ PDAC). In contrast 
to our outcomes, for the data subset including the classes (normal, 
PanIN-2, PanIn-3), the approach of Bellmann et al. (2022) led to the 
unconventional order normal ≺ PanIN-3 ≺ PanIN-2.

The most interesting case was observed for dataset D. 
melanogaster. While we were able to detect the conventional total 
structure embryo ≺ larva ≺ pupa ≺ adult with the projection pair 
(embryo, adult), no total order was detected with the approach 
proposed by Bellmann et al. (2022). To further analyze this 
phenomenon, we additionally evaluated all data subsets including 
three of the four total classes. The returned detected orders of length 
three were (larva ≺ pupa ≺ adult), (embryo ≺ pupa ≺ adult), (embryo 
≺ larva ≺ adult), and (embryo ≺ pupa ≺ larva). The last suborder 
seems to lead to a failed detection of a total class structure.

In summary, the comparison to the detection method 
introduced in (Bellmann et al., 2022) validated our detection 
architecture, emphasizing the benefit that our proposed approach is 
not limited to the analysis of total orders. 

5 Discussion and conclusion

Uncovering ordinal correlations concealed within high-
throughput data might significantly enhance our understanding of 
genetic alterations underlying various biological processes and assist 

in predicting plausible disease progression. This paper introduces 
a methodology to retrieve univariate representations from high-
throughput datasets and further analyze them using an advanced 
ordinal classification framework. This approach is especially suitable 
when examining intricate biological mechanisms concerning, 
for instance, cancer progressions such as pancreatic ductal 
adenocarcinomas (PDACs) or pancreatic neuroendocrine tumors 
(PanNETs). Alongside their unpredictable non-linear progressions, 
these tumors often exhibit heterogeneous staging among different 
patients, as well as within an individual (Jones et al., 2008; 
Raphael et al., 2017; Witkiewicz et al., 2015; Adamo et al., 2017), 
indicating the likely presence of distinct alternative developmental 
trajectories. In order to investigate these possibilities we integrate 
our novel directed threshold classifiers with the existent ordinal 
classifier cascades. The combination of these two techniques enables 
the detection of underlying ordinal substructures, which can be 
further aggregated into partial orders to reveal potential coexisting 
transition routes.

The approach used for projecting the data into a single-
dimensional space plays a critical role in determining the 
effectiveness of the identified ordinal patterns. Specifically, we 
observed that selecting biologically distant class pairs for the 
initial binary separation results in a more pronounced separability 
of the categories throughout the entire progression. Although 
the approach could benefit from additional domain expertise 
concerning the definition of remote stages, it still proves effective, 
also in its absence. One option to choose an effective projection class 
pair, without focusing on the biological meaning of the classes, is 
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FIGURE 5
Predicted suborders for the synthetic data. For every outcome the 
corresponding pairs of classes used to project the data are listed. The 
resulting suborders are depicted as aggregated graphs where 
overlapping classes can be seen as alternatives. Only results that 
produced sequences of lengths six and five are shown. The average 
runtime for suborder screening across the 45 projections was 0.10 s.

to conduct an exhaustive search over all possible class pairs and to 
select the two most distant classes, based on the provided feature 
space. If the biological order or possible (parallel) suborders are 
reflected in the provided feature space, the exhaustive search is 

expected to lead to a meaningful initial projection class pair. Note 
that, despite choosing a well-founded data transformation to one 
dimension, ordinal detection may be influenced by class imbalance.

The method was validated on both, synthetic and biological 
datasets. When applied to the artificially generated dataset, 
engineered to include multiple suborders, the method accurately 
recovered all alternative sequences. Furthermore, we successfully 
rebuilt known linear stage orders in developmental data from 
Drosophila melanogaster and Danio rerio. These preliminary 
findings support the suggestion that employing projection pairs 
describing biologically distant stages in a specific developmental 
process, may more effectively direct the classifier in recognizing also 
intermediate phases, unlike using closely related stages that might 
hide certain transitions. Moreover, the results also prove that the 
methodology is suitable for detecting overall orders encompassing 
all classes, as well as suborders within data that lack an underlying 
total order.

Predicting the staging and progression becomes more 
challenging when investigating oncological datasets, such as PDACs 
and PanNETs (Buchholz et al., 2005; Ro et al., 2013; Chan et al., 2018; 
Mpilla et al., 2020). In these cases, the classifiers failed to recognize 
a uniform and stepwise course of the diseases from the onset to 
the ending phase. For the human pancreatic cancer, the pancreatic 
intraepithelial neoplasia of degree 1 (PanIN-1) as well as dysplasias 
of degrees 2 (PanIN-2) and 3 (PanIN-3) appear to be followed by 
PDAC. This observation is consistent with the current literature 
characterizing pancreatic carcinomas as mostly heterogeneous 
tumors with a complex evolution, whereby different tumor regions 
can develop independently of each other (Felsenstein et al., 2018). 
On the cellular level, PanINs arise from neoplastic transformation 
of normal cells like ductal, acinar, central acinar and normal stem 
cells in the exocrine part of the pancreas. Various molecular 
changes, as well as mutations in different signaling pathways 
(Hedgehog, Wnt, EGF, Notch and IL-17), contribute to varying 
degrees to the evolution of PanIN lesions in PDAC with a 
key role for Notch signalling (Pian et al., 2025). This leads to 
the formation of many subclonal populations, supporting the 
hypothesis that some malignancies might not follow a single linear 
progression model, but rather develop through multiple, parallel 
evolutionary routes (Notta et al., 2017; Wu et al., 2019). Previous 
transcriptional profiles analyses revealed a substantial difference 
between lesions and malignant pancreatic tumors, with the earliest 
lesions resembling more closely normal tissues (Buchholz et al., 
2005). This is also evident in the arrangements that result from 
our detection technique. The research conducted by Notta et al. 
(2016) revealed that approximately 65% of PDAC tumors exhibit 
complex chromosomal rearrangements, including chromothripsis, 
a phenomenon in which chromosomes massively split and rejoin in a 
single event (Stephens et al., 2011). Multiple tumor suppressor genes, 
including TP53, CDKN2A, and SMAD4, can be simultaneously 
inactivated by this process, leading to rapid development and spread 
of tumors. These findings further challenge the conventional model 
of incremental genetic alterations in PDAC progression, suggesting 
that in some cases, the disease may advance rapidly due to such 
genomic failures. These molecular insights also align with the 
sudden onset of an advanced disease and the transition of duct 
lesions to invasive carcinoma that have been documented in clinical 
settings of certain patients (Hruban et al., 1999; Al-Sukhni et al., 
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FIGURE 6
Predicted overall and partial sequences for the two developmental datasets. The projecting class pairs that returned orders either matching the length 
of the expected order or one element shorter (assumed length − 1) are provided for both Drosophila melanogaster and Danio rerio. The average 
computation time for suborders detection in all projections is also provided.
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FIGURE 7
Predicted partial sequences related to pancreatic cancer, namely human PDAC and PanNET derived from the mouse model. In either case, no 
comprehensive orders of the entire process were predicted. However, we can observe that early phases are located in initial spots, whereas later stages 
are more distributed in final positions. The average runtime for the detection of suborders in all projections is also stated.

2012). The observation of patients undergoing yearly magnetic 
resonance imaging screenings revealed that although imaging could 
detect small pancreatic tumors and cystic lesions, some participants 
still developed higher stage PDAC with minimal or no prior 

symptoms. Pancreatic neuroendocrine tumors can be clinically 
differentiated into functionally active and inactive types, and 
further subdivided into well-differentiated and poorly differentiated 
subgroups. Further subtyping of this clinically heterogeneous tumor
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entity can be achieved by integrating molecular information that 
may be relevant to tumor development and progression (Shen et al., 
2022). Despite the fact that PDAC and PanNETs are distinct entities, 
several studies highlight the role of chromatin remodeling and 
genomic alterations in pancreatic tumorigenesis, showing both 
similarities and differences between the two (De Wilde et al., 2012; 
Iacobuzio-Donahue et al., 2012; Jiao et al., 2011).

A valuable foundation for comprehending tumor heterogeneity 
was provided by examining the RIP1-TAG2 mouse model as a 
representation of human PanNETs (Sadanandam et al., 2015). 
The integration of transcriptomic and metabolic profiling across 
human and mouse models led to the identification of multiple 
tumor subtypes, each characterized by unique molecular and 
clinical features. This work reveals concurrent routes of PanNET 
carcinogenesis, exhibiting distinctive cells of origin that result in 
tumor islets and metastasis-like primary subtypes, strengthening the 
concept of non-linear development of these tumor types.

In conclusion, the approach we introduce offers a foundation 
for examining variability in the development of diseases, effectively 
unveiling underlying potential ordinal patterns. Additional research 
into intricate biological and pathological mechanisms, particularly 
understanding the distinct developmental routes in both PanNETs 
and PDAC may have significant implications for prognostic 
evaluations and tailored treatment plans. While the presented 
outcomes were obtained from relatively small datasets, further 
research will focus on external validation with larger sample cohorts, 
together with the analysis of additional technical modifications. An 
example could be to complement the OCC sensitivity by alternative 
OC measures, such as the weighted κ (Cohen, 1968) or Kendall’s 
τ (Kendall, 1938).
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