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Integrative machine learning and
transcriptomic analysis identifies
key molecular targets in
MNPN-associated oral squamous
cell carcinoma pathogenesis

Xiangjun Wang*, Panpan Jin, Juan Xu, Junyi Li and
Mengzhen Ji

Department of Stomatology, The Third People’s Hospital of Henan Province, Zhengzhou, China

Background: Oral squamous cell carcinoma (OSCC) represents a significant
global health challenge, with betel nut consumption being a major risk factor. 3-
(methylnitrosamino)propionitrile (MNPN), a betel nut-derived nitrosamine, has
been identified as a potential carcinogen, but its molecular targets in OSCC
pathogenesis remain poorly understood.

Methods: We employed a comprehensive computational framework integrating
target prediction, transcriptomic analysis, weighted gene co-expression
network analysis (WGCNA), and machine learning approaches. Four OSCC
datasets from Gene Expression Omnibus (GEO) were analyzed, and MNPN
targets were predicted using ChEMBL, PharmMapper, and SwissTargetPrediction
databases. Machine learning algorithms (n = 127 combinations) were evaluated
for optimal biomarker identification, with model interpretability assessed using
SHAP (SHapley Additive exPlanations) analysis.

Results: Target prediction identified 881 potential MNPN targets across three
databases. WGCNA revealed 534 OSCC-associated differentially expressed
genes, with 38 overlapping MNPN targets. Machine learning optimization
identified 13 hub genes, with PLAU demonstrating the highest predictive
performance (AUC = 0.944). SHAP analysis confirmed PLAU and PLOD3 as
the most influential contributors to disease prediction. Functional enrichment
analysis revealed MNPN targets’ involvement in xenobiotic response, hypoxic
conditions, and aberrant tissue remodeling.

Conclusion: This study provides the first comprehensive molecular
characterization of MNPN-associated OSCC pathogenesis, identifying PLAU as
a critical therapeutic target with exceptional diagnostic potential. Our findings
establish a foundation for developing targeted interventions for betel nut
nitrosamine-associated oral cancers and demonstrate the power of integrative
computational approaches in environmental carcinogen research.

oral squamous cell carcinoma (OSCC), betel nut nitrosamine, 3-(methylnitrosamino)
propionitrile (MNPN), transcriptomic analysis, machine learning

01 frontiersin.org


https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1664576
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1664576&domain=pdf&date_stamp=2025-09-25
mailto:obscurestar@126.com
mailto:obscurestar@126.com
https://doi.org/10.3389/fbinf.2025.1664576
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1664576/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1664576/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1664576/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1664576/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1664576/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

1 Introduction

OSCC represents the most prevalent malignancy of the oral
cavity, accounting for approximately 90% of all oral cancers
and constituting a significant global health challenge. With an
estimated annual incidence exceeding 350,000 cases worldwide,
OSCC ranks among the ten most common cancers globally,
exhibiting particularly high prevalence rates in South and
Southeast Asian populations (Tan et al., 2023; Prokopczyk et al.,
1987). The disease is characterized by aggressive local invasion,
high propensity for lymph node metastasis, and substantial
morbidity due to its impact on essential functions including
speech, swallowing, and facial aesthetics. Despite advances
in multimodal treatment approaches encompassing surgery,
radiotherapy, and chemotherapy, the 5-year survival rate for
OSCC remains disappointingly low at approximately 50%-60%
(Ngetal., 2017; Fatima et al., 2024), primarily attributed to late-stage
diagnosis and limited understanding of molecular mechanisms
underlying disease progression. The heterogeneous nature of
OSCC, combined with its complex etiology involving multiple
risk factors, necessitates comprehensive molecular characterization
to identify novel therapeutic targets and develop precision
medicine approaches.

Betel nut (Areca catechu) consumption represents one of
the most significant and well-established risk factors for OSCC
development, particularly in regions where this practice is culturally
embedded, including India, Taiwan region, and other Asian-
Pacific regions (Li et al, 2019). The International Agency for
Research on Cancer (IARC) has classified betel nut as a Group
1 carcinogen. Studies indicate that the oral carcinogenic effects
induced by betel nut are attributed to arecoline, reactive oxygen
species, and nitrosamines (Warnakulasuriya and Chen, 2022). In
betel nut, arecoline constitutes the primary alkaloid component at
concentrations ranging from 0.1% to 0.7% of dry weight, followed by
guvacine (0.19%-0.72%), arecaidine (0.31%-0.66%), and guvacoline
(0.03%-0.06%) in fresh seeds (Gupta et al., 2020). These alkaloids
contribute approximately 0.15%-0.70% of the total betel nut
composition and have been extensively studied for their genotoxic
and cytotoxic properties. Furthermore, betel nut consumption
involves complex metabolic processes. During this process, various
nitrogen-containing compounds undergo chemical transformations
in the presence of saliva, bacterial enzymes, and added lime (calcium
hydroxide), leading to the formation of N-nitroso compounds.
It is known that alkaloids undergo nitrosation in the oral cavity
in the presence of nitrites and thiocyanates (Jeng et al., 2001).
Currently, nitrosamine derivatives may play important roles in
OSCC pathogenesis, but research remains insufficient; therefore,
this study focuses on investigating a specific secondary metabolite.

N-nitroso compounds, commonly referred to as nitrosamines,
constitute a diverse class of chemical carcinogens formed through
nitrosation of secondary amines. These compounds exhibit
distinct carcinogenic potencies and target organ specificities,
with their carcinogenic potential stemming from metabolic
activation to highly reactive alkylating agents that form DNA
adducts, particularly at guanine residues, leading to mutagenic
lesions and subsequent malignant transformation (Li and Hecht,
2022). In betel quid consumption, nitrosamine exposure involves
multiple compound categories. When betel quid is consumed
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with tobacco, tobacco-specific nitrosamines are formed, including

N-nitrosonornicotine  (NNN) and  4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK), both classified as Group
1 human carcinogens by IARC (Peterson et al, 2024).

Additionally, other nitrosamines such as N-nitrosodimethylamine
(NDMA), a Group 2A carcinogen, may be present due to
environmental exposure and endogenous formation. Furthermore,
betel quid-specific nitrosamines are formed through direct
nitrosation of areca nut alkaloids, primarily arecoline, resulting
in four major compounds: N-nitrosoguvacoline (NGL), 3-
(methylnitrosamino)propionaldehyde (MNPA), N-nitrosoguvacine
(NGC), and 3-(methylnitrosamino)propionitrile (MNPN). While
NGL, MNPA, and NGC are classified as Group 3 by IARC, MNPN
stands out as a Group 2B carcinogen and has demonstrated potent
carcinogenic effects in animal studies (Rangani et al., 2025).
MNPN, distinguished by its nitrile group connected to a propyl
chain bearing a methylnitrosamino moiety, has been consistently
detected in betel quid extracts and oral cavity samples from
habitual users (Prokopczyk et al., 1987). The formation of MNPN
occurs readily under the alkaline conditions created by slaked lime
addition during betel quid preparation. Given its specific association
with betel quid consumption and demonstrated carcinogenic
potential, MNPN represents a critical target for mechanistic
investigation in betel quid-associated oral carcinogenesis and serves
as the primary focus of this study.

Previous studies investigating carcinogen-disease relationships
have primarily utilized in vitro cell culture experiments, animal
models, and basic bioinformatics analyses to assess carcinogenic
potential and elucidate molecular mechanisms. Recent advances
have introduced network pharmacology, WGCNA, and machine
learning approaches as powerful tools for understanding
complex disease pathogenesis and identifying biomarkers (Al-
Tashi et al., 2023; Rafique et al., 2021). The present study employs
a comprehensive analytical framework that integrates large-
scale transcriptomic data mining from GEO datasets, WGCNA
for co-expression module identification, network toxicology
for target prediction, an extensive evaluation of 127 machine
learning algorithm combinations for optimal biomarker selection,
and SHAP analysis for model interpretation to elucidate the
molecular mechanisms underlying MNPN-associated OSCC
pathogenesis (Ponce Bobadilla et al., 2024).

2 Materials and methods
2.1 Data acquisition and preprocessing

Four human OSCC transcriptomic datasets (GSE30784,
GSE37991, GSE25099, and GSE146483) (Jiang et al., 2022) were
selected from the GEO database (RRID:SCR_005012). Datasets
focused solely on tongue carcinoma or broader head and neck
squamous cell carcinoma were excluded, as well as datasets with
unconventional storage formats or processing issues. GSE30784
(n 212) and GSE37991 (n 80) served as the discovery
cohort, while GSE25099 (n 79) and GSE146483 (n 11)
comprised the validation cohort. We evaluated datasets based on

both sample size and research relevance. We selected the larger-
sample-size GSE30784 and the more research-relevant GSE37991,
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which contains OSCC data from male patients who regularly
consume alcohol, chew areca nut, and smoke, as the training set to
enhance the reliability of target identification, while the remaining
smaller-sample-size datasets served as the testing set to validate
the accuracy of the trained model. Raw expression data were
processed using R software (version 4.4.2; RRID:SCR_001905).
Quality control included probe annotation, removal of non-specific
probes, log2 transformation, and quantile normalization using the
limma package (version 3.62.2; RRID:SCR_010943). To mitigate
batch effects, Surrogate Variable Analysis (SVA) was performed
using the sva package (version 3.54.0; RRID:SCR_012836). Post-
correction principal component analysis confirmed successful data
harmonization.

2.2 MNPN target prediction

MNPN targets were predicted using three complementary
databases: ChEMBL (https://www.ebi.ac.uk/chembl/; RRID:SCR _
014042),  SwissTargetPrediction  (http://swisstargetprediction.
ch/; RRID:SCR_023756), and PharmMapper (https://lilab-ecust.cn/
pharmmapper/index.html; RRID:SCR_022604). ChEMBL employs
structure-activity relationship analysis based on experimental
bioactivity data from literature, depositing bioassay data and
focusing on compounds with validated biological activities
(Mendez et al, 2019). SwissTargetPrediction utilizes ligand-
based similarity searching and updated data features for efficient
prediction of protein targets of small molecules (Daina et al.,
2019) PharmMapper identifies potential drug targets through
large-scale reverse pharmacophore mapping using a comprehensive
target pharmacophore database (Wang et al., 2017). The canonical
SMILES notation (CN(CCC#N)N=0) was retrieved from PubChem
RRID:SCR_004284).  All
predicted targets were filtered to retain only human proteins and

(https://pubchem.ncbi.nlm.nih.gov/;

mapped to official gene symbols using the org.Hs.eg.db package
(version 3.20.0).

2.3 Differential gene expression analysis

Differential expression analysis was conducted using the limma
package with empirical Bayes moderation. In the training set,
normal individuals without OSCC or normal tissues from OSCC
patients served as the control group (n = 85), while tumor tissues
from OSCC patients comprised the experimental group (n = 207).
DEGs were identified using false discovery rate (FDR)-adjusted p-
value <0.05 and absolute log2 fold change >0.585 (1.5-fold change).
Multiple testing correction was performed using the Benjamini-
Hochberg method. Results were visualized through volcano plots
using ggplot2 package (version 3.5.2; RRID:SCR_014601), with the
top 5 most significant genes labeled.

2.4 Weighted gene co-expression network
analysis

Scale-free co-expression networks were constructed using
the WGCNA package (Langfelder and Horvath, 2008) (version
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1.73; RRID:SCR_003302). Sample quality control included outlier
removal by hierarchical clustering. Optimal soft thresholding power
was determined by analyzing scale-free topology fit index (R* >
0.8). Gene modules were identified through hierarchical clustering
of the topological overlap matrix using dynamic tree-cutting
with minimum module size = 50. Module-trait associations were
evaluated using Pearson correlation analysis (|r| > 0.5, p < 0.05). Hub
genes were identified based on intramodular connectivity and gene
significance.

2.5 MNPN-associated target identification

MNPN-associated disease targets were identified through
predicted MNPN
differentially expressed genes, and hub genes from trait-

intersection analysis between targets,
associated WGCNA modules. Venn diagrams were generated
the (version 0.1.10)

overlapping gene sets.

using ggvenn package to visualize

2.6 Functional enrichment analysis

Gene Ontology (GO; RRID:SCR_002811) and Kyoto
Encyclopedia of Genes and Genomes (KEGG; RRID:SCR_
012773) pathway enrichment analyses were performed using
the clusterProfiler package (Wu et al, 2021) (version 4.14.4;
RRID:SCR_016884). Enrichment significance was assessed using
hypergeometric testing with FDR correction (adjusted p-value
<0.05). Protein-protein interaction (PPI) networks were constructed
using the STRING database (https://string-db.org/; version 12.0;
RRID:SCR_005223) with confidence score threshold 0.4 and
visualized using Cytoscape software (version 3.10.3; RRID:SCR_
003032).

2.7 Machine learning-based biomarker
discovery

A comprehensive machine learning framework evaluated twelve
algorithms: Lasso regression, Ridge regression, Elastic Net (a =
0.1-0.9), Random Forest (RF), Gradient Boosting Machine (GBM),
XGBoost, Linear Discriminant Analysis (LDA), Naive Bayes,
stepwise GLM (forward/backward/both), glmBoost, plsRglm, and
Support Vector Machine (SVM). All algorithms were implemented
using the caret package (version 7.0.1) with 10-fold cross-validation
repeated 5 times, generating 127 unique algorithm combinations.
Models were trained on the discovery cohort and validated on
the independent validation cohort. Performance was assessed using
area under the ROC curve (AUC), sensitivity, specificity, and
balanced accuracy. High-performance models (AUC >0.9) were
subjected to ensemble learning using stacking methodology. A
nomogram was constructed based on logistic regression algorithm
designed for the binary classification outcome (OSCC versus
Normal) for clinical risk assessment. Decision curve analysis
(DCA) was performed to evaluate the clinical net benefit of the
predictive models.
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FIGURE 1

Molecular structure and target prediction analysis of MNPN. (A) Chemical structure of MNPN. (B) Venn diagram of predicted molecular targets from
three databases: ChEMBL, PharmMapper, and SwissTargetPrediction.

2.8 Model interpretability analysis

Model interpretability analysis was performed using 14
algorithms, including the 12 machine learning algorithms and
K-Nearest Neighbors (KNN) as well as ensemble algorithm
glmBoost + LDA to quantify individual feature contributions
to prediction outcomes. SHAP values were computed using the
kernelshap package (version 0.7.0) and visualized with the shapviz
(version 0.10.1) package. The analysis included global feature
importance assessment through mean absolute SHAP values,
feature interactions via dependence plots, and individual prediction
explanations through force plots for representative samples.
Additional model interpretation was conducted using the DALEX
package (version 2.4.3) to provide comprehensive explanations of
model predictions and feature relationships.

3 Results
3.1 Identification of MNPN target proteins

To elucidate the potential biological targets of MNPN,
we performed computational target prediction using three
ChEMBL,
SwissTargetPrediction. The chemical structure of MNPN is

complementary  databases: PharmMapper, and
characterized by a nitrile group connected to a propyl chain bearing
a methylnitrosamino moiety (Figure 1A). Target prediction analysis
revealed distinct sets of potential molecular targets across the three
databases (Figure 1B). ChEMBL identified 784 potential targets,
PharmMapper predicted 93 targets, and SwissTargetPrediction
suggested 25  targets The

Venn diagram analysis complementary

(Supplementary Tables S1-S3).
the
nature of different prediction algorithms, with each database

demonstrated

contributing unique target predictions alongside shared targets.
To comprehensively capture the potential biological activities of
MNPN, we selected the union of all predicted targets from the three
databases for subsequent downstream analysis.

Frontiers in Bioinformatics

04

3.2 Transcriptomic data processing and
co-expression network analysis

To identify key gene modules associated with OSCC, we
performed comprehensive transcriptomic analysis using two
publicly available datasets (GSE23991 and GSE37991). Initial
principal component analysis revealed distinct clustering of samples
by dataset, indicating the presence of batch effects (Figure 2A). After
applying batch effect correction using normalization, the principal
component analysis (PCA) plot demonstrated improved sample
distribution with reduced technical variation while preserving
biological differences (Figure 2B).

Differential
group with

expression analysis comparing the OSCC
the group identified 2,101
significantly dysregulated genes, with 1,079 upregulated and

normal control
1,022 downregulated genes (Figure 2C; Supplementary Table S4).
The volcano plot highlights the top 5 most significantly
altered genes.

To explore co-expression patterns and identify functionally
related gene modules, we conducted WGCNA. The gene
dendrogram revealed distinct co-expression modules, each assigned
a unique color identifier (Figure 2D; Supplementary Table S5).
Module-trait correlation analysis demonstrated varying associations
between gene modules and clinical traits, with several modules
showing significant correlations (Figure 2E). Notably, the turquoise
module exhibited strong correlation with OSCC (correlation
coefficient = 0.73, p = 1.9¢-50).

Further analysis of the turquoise module revealed a high
correlation between gene significance and module membership
(r = 0.98), indicating that genes central to this module are
also highly associated with the trait of interest (Figure 2F).
To identify the most relevant genes for downstream analysis,
we examined the intersection between differentially expressed
genes and the turquoise module. This analysis revealed 534
overlapping genes, representing high-confidence candidates that
are both differentially expressed and co-regulated in a trait-
associated network (Figure 2G).
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FIGURE 2
Transcriptomic analysis workflow and identification of key gene modules. (A) PCA plot before batch effect removal. (B) PCA plot after batch effect
removal. (C) Volcano plot of DEGs with the top 5 genes labeled. Red and blue dots represent significantly up- and downregulated genes. (D) Gene
dendrogram from WGCNA with color-coded modules below. (E) Module-trait correlation heatmap showing the association between gene modules
and clinical traits. Correlation coefficients and p-values are displayed, with red indicating positive correlation and blue indicating negative correlation.
(F) Scatter plot of gene significance versus module membership for the turquoise module (correlation = 0.98; p < 0.0001). (G) Venn diagram showing
the overlap between DEGs and genes in the turquoise module.

3.3 ldentification of MNPN-associated
disease targets in OSCC

To elucidate the molecular mechanisms underlying MNPN’s
pathogenic effects in OSCC, we performed target prediction and
intersection analysis. The intersection analysis between MNPN
target proteins predicted from three independent databases
(ChEMBL, PharmMapper, and SwissTargetPrediction) and OSCC-
related differential genes from the turquoise module identified 38
potential key targets involved in MNPN-mediated oncogenic effects
(Figure 3A; Supplementary Table S6).
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The PPI network analysis revealed complex interconnections
among the target genes, with only connected nodes displayed
Isolated
nodes without protein-protein interactions were excluded from

in the network (Figure3B; Supplementary Table S7).

visualization. In PPI network topology analysis, proteins with
high degree centrality typically serve as key regulatory factors,
while betweenness centrality reflects the bridging role of proteins,
and clustering coefficient indicates local network density. From
our network analysis, nodes such as TGFB1, MET, and PLAU
demonstrated high connectivity, suggesting these proteins function
as critical regulatory factors in MNPN’s pathogenic mechanism.
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Functional characterization through GO and KEGG enrichment
analyses of the 38 MNPN-associated target genes revealed
comprehensive molecular insights into MNPN’s oncogenic
action mechanisms. GO biological process analysis demonstrated
significant enrichment in processes including response to xenobiotic
stimuli, response to decreased oxygen levels, morphogenesis
of epithelium, and various
developmental processes (Figure 3C; Supplementary Table S8).

collagen metabolic processes,

These significant pathways indicate that MNPN may promote
OSCC progression primarily through dysregulation of cellular
stress responses and aberrant tissue remodeling. KEGG pathway
analysis highlighted enrichment in cancer-promoting pathways,
including transcriptional misregulation in cancer and nitrogen
metabolism (Figure 3D; Supplementary Table S9). These KEGG
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pathways indicate that MNPN may promote OSCC progression
through activation of oncogenic signaling cascades and metabolic
reprogramming.

However, GO pathways showed more significant enrichment
than KEGG pathways, suggesting that GO-enriched pathways
may be more closely associated with OSCC pathogenesis. We
specifically highlight the key pathways and genes involved in
cellular stress response and aberrant tissue remodeling through
heatmap analysis (Figures 3E,F). The cellular stress response
heatmap reveals that genes such as PLAU, CA9, and TGFBI1
are prominently involved in xenobiotic response and hypoxic
conditions, while the tissue remodeling heatmap demonstrates that
PLOD3 and TGFB1 play critical roles in collagen metabolism
and epithelial morphogenesis. The multi-pathway involvement
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suggests MNPN’s complex role as a multi-target oncogenic factor
contributing to malignant transformation and tumor maintenance
in OSCC development.

3.4 Machine learning-based construction
of predictive model and identification of
hub genes with clinical utility assessment

To identify the most predictive MNPN-associated genes
for OSCC diagnosis, we employed multiple machine learning
algorithms on the 38 MNPN-OSCC related differential gene targets
identified. We evaluated the performance of various algorithms
using both training and testing datasets to optimize both predictive
accuracy and gene number.

Comprehensive comparison of various machine learning
approaches revealed distinct performance patterns across different
algorithms (Figure 4A; Supplementary Table S10). Considering
the dual criteria of relatively high AUC values and a gene
signature size of approximately 10 genes, the glmBoost + LDA
algorithm exhibited satisfactory performance and was selected
as the predictive framework, identifying 13 hub genes from the
training dataset (Supplementary Table S11).

The ROC analysis of the 13 hub genes selected by the glmBoost
+ LDA algorithm showed excellent discriminatory power, with AUC
values ranging from 0.799 to 0.944 (Figure 4B). Notably, PLAU,
PLOD3, SHCI and TGFB1 exhibited the highest predictive accuracy
with AUC values exceeding 0.9, indicating their strong potential as
diagnostic biomarkers for OSCC.

The nomogram visualization revealed the clinical risk prediction
value of these hub genes for OSCC (Figure 4C). The nomogram
converts gene expression levels into risk scores, where genes
with larger score ranges have greater impact on OSCC risk
assessment, particularly CA9 and TH in our analysis. DCA evaluated
the clinical net benefit of different genes across various risk
thresholds (Figure 4D). In the decision curve, “None” represents
no treatment with zero net benefit, while “All” represents treating
all patients without discrimination. All single-gene models
demonstrated higher net benefit compared to the “All” strategy,
with PLAU showing the highest clinical net benefit among single-
gene models across most threshold ranges. Furthermore, among all
models, “Combined_Model” demonstrated optimal performance,
indicating that the multi-gene combined model provides superior
clinical net benefit for OSCC diagnosis. This approach refined the 38
MNPN-related targets into 13 highly predictive hub genes critical for
MNPN-driven OSCC pathogenesis, demonstrating their predictive
performance, clinical risk assessment value, and clinical benefit
potential.

3.5 SHAP analysis identifies key hub genes
contributing to disease prediction

To further elucidate the relative importance of the 13 hub genes
in disease classification, we employed SHAP analysis to provide
interpretable insights into our machine learning models. Model
performance evaluation demonstrated varying predictive capability
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across 14 algorithms (Figure 5A). Among these algorithms, tree-
based methods including XGBoost, RF, and GBM achieved the
highest performance (AUC >0.98). The remaining 11 algorithms
also demonstrated excellent predictive capability, with AUC values
all exceeding 0.96. The consistently high performance across
diverse algorithmic categories validated the robustness of our hub
gene signature and made these models particularly suitable for
subsequent SHAP interpretation analysis.

The feature importance heatmap across different models
revealed varying contributions of hub genes to disease prediction
(Figure 5B; Supplementary Table S12). PLAU, PLOD3, and TDRD3
demonstrated high importance scores across the majority of
algorithms. The consistency analysis across algorithms (Figure 5C)
showed that TGFB1, PLOD3, PLAU, DNMT3B, and CA9 exhibited
high consistency across different algorithms. Collectively, PLAU and
PLOD3 emerged as the consistently important genes for OSCC
prediction across most of the evaluated algorithms.

The SHAP analysis using the glmBoost + LDA algorithm
revealed differential contributions of hub genes to disease
prediction (Figures 5D,E). Among these genes, PLAU, TDRD3,
and PLOD3 were the most influential genes, exhibiting the highest
mean absolute SHAP values. The beeswarm plots demonstrated
that high expression points (yellow) with positive SHAP values
indicate increased likelihood of OSCC classification, promoting
disease development, while negative values suggest a protective
role against disease progression. This analysis clearly indicated that
PLOD3 and PLAU drive OSCC development.

SHAP dependence plots (Figure 5F) illustrated the complex
relationships between gene expression levels and their predictive
contributions. For instance, PLOD3 showed a positive correlation
between expression levels and SHAP values, indicating that
higher expression consistently increased disease prediction
probability. Conversely, TDRD3 exhibited a negative correlation
between expression levels and SHAP values, suggesting that
higher expression reduced disease prediction probability. Their
contributions varied based on expression thresholds and potential
gene-gene interactions.

Individual sample analysis through SHAP force plots provided
mechanistic insights into model predictions (Figures 5G,H). In
randomly selected control samples, most hub genes contributed
negatively to disease probability, maintaining the prediction below the
baseline. In contrast, disease samples showed predominant positive
contributions from key genes such as PLAU and PLOD3, collectively
driving the prediction toward disease classification. These results
validate the biological relevance of our identified hub genes and
demonstrate their potential as diagnostic biomarkers for OSCC.

4 Discussion

This study presents a comprehensive computational framework
integrating toxicology, transcriptomic analysis, machine learning
approaches, and SHAP analysis to elucidate the molecular
mechanisms underlying MNPN-mediated oral squamous cell
carcinoma pathogenesis. Our findings provide novel insights into
the toxicological profile of this betel nut-derived nitrosamine
and identify critical therapeutic targets for OSCC prevention and
treatment.
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4.1 MNPN as a critical carcinogenic

component in betel nut-associated OSCC

Our computational target prediction revealed that MNPN

exhibits broad molecular promiscuity, with 881 predicted

targets from ChEMBL, PharmMapper, and SwissTargetPrediction
databases. WGCNA identified 534 DEGs highly correlated with
OSCC, among which 38 were MNPN-related targets. These
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overlapping genes provide compelling evidence for the direct

involvement of this nitrosamine in oral carcinogenesis.

The functional enrichment analysis

revealed that MNPN-

associated targets are significantly involved in response to xenobiotic

stimuli, hypoxic conditions, epithelial morphogenesis, and collagen

metabolism. These biological processes are fundamental to

cancer initiation and progression, supporting the notion that

MNPN contributes to OSCC through

disruption of cellular
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machine learning algorithms. (B) Heatmap displaying feature importance scores for hub genes across different algorithms. (C) Bar plot showing
consistency analysis of gene ranking across multiple algorithms. (D) Mean absolute SHAP values bar plot for each of the 13 hub genes in the glmBoost
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homeostasis, tissue architecture, and stress response mechanisms.
The dysregulation of cellular stress responses is particularly relevant,
as it encompasses both the hypoxic stress response and xenobiotic

Frontiers in Bioinformatics

09

detoxification pathways. This reflects the cellular attempt to cope
with oxygen deprivation and detoxify MNPN, potentially leading to
the formation of more reactive metabolites that cause DNA damage
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and mutagenesis. This is consistent with previous studies that betel
nut-derived MNPN induces aberrant cell proliferation in OSCC
(Chen et al., 2017).

4.2 PLAU as a critical nexus in
MNPN-mediated OSCC pathogenesis

Among the 13 hub genes identified through machine
learning optimization, PLAU (plasminogen activator, urokinase)
emerged as the most significant contributor to OSCC prediction,
exhibiting the highest AUC value and frequently ranking
among the top contributors in SHAP analysis across multiple
algorithms, indicating its stable contribution to disease prediction.
PLAU encodes urokinase-type plasminogen activator (uPA), a
serine protease that plays pivotal roles in extracellular matrix
degradation, cell migration, invasion, and angiogenesis. The
protein functions by converting plasminogen to plasmin,
which subsequently degrades fibrin and various extracellular
matrix components, facilitating tumor cell invasion and
metastasis.

The identification of PLAU as a primary MNPN target
with exceptional predictive power for OSCC provides several
mechanistic insights. Firstly, PLAU upregulation in response to
MNPN exposure may enhance the invasive capacity of oral
epithelial cells, promoting malignant transformation and tumor
progression. Recent studies have confirmed that PLAU promotes
cell proliferation and epithelial-mesenchymal transition across
multiple cancer types including head and neck squamous cell
carcinoma (Chen et al., 2021), pancreatic ductal adenocarcinoma
(Hosen et al., 2022), and triple-negative breast cancer (Sarno et al.,
2022), with higher expression correlating with poorer clinical
outcomes. Additionally, the SHAP analysis demonstrates the
contribution of genes to disease prediction, revealing that PLAU’s
positive correlation with disease probability is consistent across
expression levels. Furthermore, PLAU expression is known to
be induced by hypoxic conditions through HIF-la activation
(Chen et al.,, 2023a; Nishi et al., 2016), which aligns with our
GO enrichment results showing MNPN targets’ involvement in
hypoxic response pathways, including response to decreased oxygen
levels, response to oxygen levels, and response to hypoxia. This
connection suggests that PLAU may serve as a crucial mediator
linking MNPN exposure to hypoxia-induced oncogenic signaling in
oral tissues.

The clinical relevance of PLAU in OSCC is well-established,
with numerous studies demonstrating its association with
poor prognosis, increased metastatic potential, and treatment
resistance (Bacchiocchi et al,, 2008). Moreover, the single-gene
model based on PLAU demonstrated the highest clinical net
benefit in DCA, further supporting its clinical utility. Our findings
extend this knowledge by providing the first evidence linking
PLAU upregulation to specific environmental carcinogen exposure,
particularly MNPN from betel nut consumption. This connection
offers a molecular explanation for the aggressive nature of betel
nut-associated oral cancers and suggests that PLAU could serve as
both a biomarker for MNPN exposure and a therapeutic target for
intervention.
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4.3 Comparative analysis with previous
research

Our computational approach reveals both consistencies and
novel findings compared to previous investigations of betel nut
carcinogenesis. Traditional studies have primarily focused on
arecoline as the major carcinogenic component, with limited
attention to nitrosamine derivatives like MNPN. While arecoline
has been shown to induce cell proliferation, invasion and migration,
genotoxicity, and inflammatory responses (Gocol et al., 2023),
our study demonstrates that MNPN targets distinct molecular
pathways that complement and potentially amplify arecoline’s
carcinogenic effects.

Previous toxicological studies of betel nut components
have identified several overlapping targets with our findings,
including genes involved in cell cycle regulation, apoptosis, and
inflammation. However, the specific identification of PLAU as a
critical MNPN target represents a novel contribution to the field.
Earlier proteomic and transcriptomic studies of OSCC have reported
PLAU upregulation, but none have established its connection to
specific betel nut-derived carcinogens.

The machine learning approach employed in this study,
utilizing 127 algorithm combinations, represents a significant
methodological ~— advancement over  previous biomarker
identification studies that typically rely on single statistical methods.
Our glmBoost + LDA algorithm achieved superior performance
compared to conventional approaches, demonstrating the value of

ensemble methods in identifying robust biomarker signatures.

4.4 Additional hub genes and therapeutic
implications

Beyond PLAU, our analysis identified 12 additional hub
genes that warrant further investigation as potential therapeutic
targets. Among these, PLOD3 (procollagen-lysine, 2-oxoglutarate 5-
dioxygenase 3) showed the second-highest predictive performance
and represents another critical component in extracellular matrix
remodeling. PLOD3 is essential for collagen hydroxylation and
cross-linking, processes that are frequently dysregulated in cancer-
associated fibrosis and tumor stroma formation (Qi and Xu, 2018).
SHC1 (SHC adaptor protein 1) and TGFBI1 (transforming growth
factor beta 1) also demonstrated excellent predictive performance
(AUC >0.9), representing key nodes in growth factor signaling and
cellular transformation pathways (Chen et al., 2022; Liu et al., 2021).

Other hub genes include CA9 (carbonic anhydrase 9), which
plays crucial roles in pH regulation and hypoxic adaptation
(Giatromanolaki et al., 2020); DNMT3B (DNA methyltransferase
3 beta), involved in epigenetic modifications and gene silencing
(Heawchaiyaphum et al, 2021); and several solute carriers
(SLC16A1, SLC1A1, SLC28A3) that regulate metabolic transport
processes (Pizzagalli et al.,, 2021). HIBCH (3-hydroxyisobutyryl-
CoA hydrolase) and ARSG (arylsulfatase G) contribute to metabolic
pathways (Wang et al, 2021; Poterala-Hejmo et al, 2020),
while TH (tyrosine hydroxylase) and TDRD3 (tudor domain
containing 3) are involved in neurotransmitter synthesis and RNA
processing, respectively (Yi et al., 2024; Chen et al., 2023b). The
convergence of MNPN targeting on these fundamental signaling
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and metabolic molecules underscores the multi-faceted nature of
nitrosamine-induced carcinogenesis.

4.5 Novel hypotheses

Our findings support a novel hypothesis that MNPN promotes
OSCC through coordinated disruption of tissue homeostasis
mechanisms. The simultaneous targeting of proteolytic enzymes
(PLAU), matrix synthesis enzymes (PLOD3), growth factor
signaling (TGFB1, SHCI), metabolic regulators (CA9, SLC family
members), and epigenetic modifiers (DNMT3B) creates a cellular
environment conducive to malignant transformation. This multi-
target mechanism may explain why betel nut-associated cancers
often exhibit poor treatment responses.

The enrichment of MNPN targets in hypoxic response pathways
suggests an additional mechanism whereby this nitrosamine may
sensitize oral tissues to hypoxic stress, a common feature of
the oral microenvironment. This sensitization could accelerate
the progression from premalignant lesions to invasive carcinoma,
particularly in individuals with concurrent risk factors such as
tobacco use or poor oral hygiene.

4.6 Clinical implications and translational
potential

The identification of PLAU as a primary MNPN target with
exceptional diagnostic accuracy has immediate clinical implications
for OSCC screening and risk assessment. PLAU expression levels,
either alone or in combination with other hub genes, could serve
as biomarkers for early detection of betel nut-associated oral
malignancies. This is particularly relevant for high-risk populations
in endemic regions where routine screening could significantly
impact disease outcomes.

Furthermore, the established role of PLAU in cancer invasion
and metastasis makes it an attractive therapeutic target. Several
PLAU inhibitors, including small molecules and monoclonal
antibodies, are currently in preclinical and clinical development
for various cancer types (Zhai et al., 2022). Our findings provide
a strong rationale for evaluating these agents specifically in betel
nut-associated OSCC, potentially leading to targeted prevention or
treatment strategies.

The machine learning framework developed in this study also
has broader applications for environmental carcinogen research.
The integration of target prediction, transcriptomic analysis, and
interpretable machine learning could be applied to investigate other
carcinogen-disease relationships, accelerating the identification of
novel therapeutic targets and biomarkers.

4.7 Study limitations and future directions

Several limitations of this study should be acknowledged. Our
analysis relies entirely on computational predictions and public
database mining, lacking experimental validation of the proposed
MNPN-PLAU interaction. Future studies should employ molecular
techniques such as surface plasmon resonance, molecular docking
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simulations with experimental validation, and cell-based assays to
confirm direct binding and functional relationships. Additionally,
the transcriptomic data used in this study were derived from
mixed OSCC populations that may not specifically represent betel
nut-associated cases. Ideally, future investigations should focus
on transcriptomic profiles from OSCC patients with confirmed
betel nut exposure history to enhance the specificity of our
findings. Moreover, the cross-sectional nature of the available
datasets limits our ability to assess temporal relationships between
MNPN exposure, gene expression changes, and disease progression.
Longitudinal studies tracking individuals from initial betel nut
exposure through premalignant changes to invasive carcinoma
would provide crucial insights into the temporal dynamics of
MNPN-mediated carcinogenesis.

Future research directions should include experimental
validation of MNPN-PLAU interactions using biochemical
and cellular assays, development of MNPN-specific exposure
biomarkers for epidemiological studies, investigation of genetic
polymorphisms in PLAU and other hub genes that may modify
susceptibility to MNPN-induced
evaluation of PLAU inhibitors as chemopreventive agents in high-

individual carcinogenesis,
risk populations, and expansion of the analytical framework
to investigate other betel nut-derived nitrosamines and their
molecular targets.

5 Conclusion

This study provides the first comprehensive molecular
of MNPN-associated OSCC pathogenesis,
identifying PLAU as a critical therapeutic target with exceptional

characterization

diagnostic and prognostic potential. Our findings represent a
paradigm shift from traditional focus on arecoline to secondary
metabolite nitrosamines and establish a foundation for developing
targeted interventions for this global health challenge. The
integration of computational toxicology, machine learning, and
SHAP approaches demonstrates the power of systems-level analysis
in elucidating complex environmental carcinogen mechanisms and
identifying novel therapeutic opportunities.
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