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Integrative machine learning and 
transcriptomic analysis identifies 
key molecular targets in 
MNPN-associated oral squamous 
cell carcinoma pathogenesis

Xiangjun Wang*, Panpan Jin, Juan Xu, Junyi Li and 
Mengzhen Ji

Department of Stomatology, The Third People’s Hospital of Henan Province, Zhengzhou, China

Background: Oral squamous cell carcinoma (OSCC) represents a significant 
global health challenge, with betel nut consumption being a major risk factor. 3-
(methylnitrosamino)propionitrile (MNPN), a betel nut-derived nitrosamine, has 
been identified as a potential carcinogen, but its molecular targets in OSCC 
pathogenesis remain poorly understood.
Methods: We employed a comprehensive computational framework integrating 
target prediction, transcriptomic analysis, weighted gene co-expression 
network analysis (WGCNA), and machine learning approaches. Four OSCC 
datasets from Gene Expression Omnibus (GEO) were analyzed, and MNPN 
targets were predicted using ChEMBL, PharmMapper, and SwissTargetPrediction 
databases. Machine learning algorithms (n = 127 combinations) were evaluated 
for optimal biomarker identification, with model interpretability assessed using 
SHAP (SHapley Additive exPlanations) analysis.
Results: Target prediction identified 881 potential MNPN targets across three 
databases. WGCNA revealed 534 OSCC-associated differentially expressed 
genes, with 38 overlapping MNPN targets. Machine learning optimization 
identified 13 hub genes, with PLAU demonstrating the highest predictive 
performance (AUC = 0.944). SHAP analysis confirmed PLAU and PLOD3 as 
the most influential contributors to disease prediction. Functional enrichment 
analysis revealed MNPN targets’ involvement in xenobiotic response, hypoxic 
conditions, and aberrant tissue remodeling.
Conclusion: This study provides the first comprehensive molecular 
characterization of MNPN-associated OSCC pathogenesis, identifying PLAU as 
a critical therapeutic target with exceptional diagnostic potential. Our findings 
establish a foundation for developing targeted interventions for betel nut 
nitrosamine-associated oral cancers and demonstrate the power of integrative 
computational approaches in environmental carcinogen research.

KEYWORDS

oral squamous cell carcinoma (OSCC), betel nut nitrosamine, 3-(methylnitrosamino)
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1 Introduction

OSCC represents the most prevalent malignancy of the oral 
cavity, accounting for approximately 90% of all oral cancers 
and constituting a significant global health challenge. With an 
estimated annual incidence exceeding 350,000 cases worldwide, 
OSCC ranks among the ten most common cancers globally, 
exhibiting particularly high prevalence rates in South and 
Southeast Asian populations (Tan et al., 2023; Prokopczyk et al., 
1987). The disease is characterized by aggressive local invasion, 
high propensity for lymph node metastasis, and substantial 
morbidity due to its impact on essential functions including 
speech, swallowing, and facial aesthetics. Despite advances 
in multimodal treatment approaches encompassing surgery, 
radiotherapy, and chemotherapy, the 5-year survival rate for 
OSCC remains disappointingly low at approximately 50%–60% 
(Ng et al., 2017; Fatima et al., 2024), primarily attributed to late-stage 
diagnosis and limited understanding of molecular mechanisms 
underlying disease progression. The heterogeneous nature of 
OSCC, combined with its complex etiology involving multiple 
risk factors, necessitates comprehensive molecular characterization 
to identify novel therapeutic targets and develop precision
medicine approaches.

Betel nut (Areca catechu) consumption represents one of 
the most significant and well-established risk factors for OSCC 
development, particularly in regions where this practice is culturally 
embedded, including India, Taiwan region, and other Asian-
Pacific regions (Li et al., 2019). The International Agency for 
Research on Cancer (IARC) has classified betel nut as a Group 
1 carcinogen. Studies indicate that the oral carcinogenic effects 
induced by betel nut are attributed to arecoline, reactive oxygen 
species, and nitrosamines (Warnakulasuriya and Chen, 2022). In 
betel nut, arecoline constitutes the primary alkaloid component at 
concentrations ranging from 0.1% to 0.7% of dry weight, followed by 
guvacine (0.19%–0.72%), arecaidine (0.31%–0.66%), and guvacoline 
(0.03%–0.06%) in fresh seeds (Gupta et al., 2020). These alkaloids 
contribute approximately 0.15%–0.70% of the total betel nut 
composition and have been extensively studied for their genotoxic 
and cytotoxic properties. Furthermore, betel nut consumption 
involves complex metabolic processes. During this process, various 
nitrogen-containing compounds undergo chemical transformations 
in the presence of saliva, bacterial enzymes, and added lime (calcium 
hydroxide), leading to the formation of N-nitroso compounds. 
It is known that alkaloids undergo nitrosation in the oral cavity 
in the presence of nitrites and thiocyanates (Jeng et al., 2001). 
Currently, nitrosamine derivatives may play important roles in 
OSCC pathogenesis, but research remains insufficient; therefore, 
this study focuses on investigating a specific secondary metabolite.

N-nitroso compounds, commonly referred to as nitrosamines, 
constitute a diverse class of chemical carcinogens formed through 
nitrosation of secondary amines. These compounds exhibit 
distinct carcinogenic potencies and target organ specificities, 
with their carcinogenic potential stemming from metabolic 
activation to highly reactive alkylating agents that form DNA 
adducts, particularly at guanine residues, leading to mutagenic 
lesions and subsequent malignant transformation (Li and Hecht, 
2022). In betel quid consumption, nitrosamine exposure involves 
multiple compound categories. When betel quid is consumed 

with tobacco, tobacco-specific nitrosamines are formed, including 
N-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK), both classified as Group 
1 human carcinogens by IARC (Peterson et al., 2024). 
Additionally, other nitrosamines such as N-nitrosodimethylamine 
(NDMA), a Group 2A carcinogen, may be present due to 
environmental exposure and endogenous formation. Furthermore, 
betel quid-specific nitrosamines are formed through direct 
nitrosation of areca nut alkaloids, primarily arecoline, resulting 
in four major compounds: N-nitrosoguvacoline (NGL), 3-
(methylnitrosamino)propionaldehyde (MNPA), N-nitrosoguvacine 
(NGC), and 3-(methylnitrosamino)propionitrile (MNPN). While 
NGL, MNPA, and NGC are classified as Group 3 by IARC, MNPN 
stands out as a Group 2B carcinogen and has demonstrated potent 
carcinogenic effects in animal studies (Rangani et al., 2025). 
MNPN, distinguished by its nitrile group connected to a propyl 
chain bearing a methylnitrosamino moiety, has been consistently 
detected in betel quid extracts and oral cavity samples from 
habitual users (Prokopczyk et al., 1987). The formation of MNPN 
occurs readily under the alkaline conditions created by slaked lime 
addition during betel quid preparation. Given its specific association 
with betel quid consumption and demonstrated carcinogenic 
potential, MNPN represents a critical target for mechanistic 
investigation in betel quid-associated oral carcinogenesis and serves 
as the primary focus of this study.

Previous studies investigating carcinogen-disease relationships 
have primarily utilized in vitro cell culture experiments, animal 
models, and basic bioinformatics analyses to assess carcinogenic 
potential and elucidate molecular mechanisms. Recent advances 
have introduced network pharmacology, WGCNA, and machine 
learning approaches as powerful tools for understanding 
complex disease pathogenesis and identifying biomarkers (Al-
Tashi et al., 2023; Rafique et al., 2021). The present study employs 
a comprehensive analytical framework that integrates large-
scale transcriptomic data mining from GEO datasets, WGCNA 
for co-expression module identification, network toxicology 
for target prediction, an extensive evaluation of 127 machine 
learning algorithm combinations for optimal biomarker selection, 
and SHAP analysis for model interpretation to elucidate the 
molecular mechanisms underlying MNPN-associated OSCC 
pathogenesis (Ponce Bobadilla et al., 2024). 

2 Materials and methods

2.1 Data acquisition and preprocessing

Four human OSCC transcriptomic datasets (GSE30784, 
GSE37991, GSE25099, and GSE146483) (Jiang et al., 2022) were 
selected from the GEO database (RRID:SCR_005012). Datasets 
focused solely on tongue carcinoma or broader head and neck 
squamous cell carcinoma were excluded, as well as datasets with 
unconventional storage formats or processing issues. GSE30784 
(n = 212) and GSE37991 (n = 80) served as the discovery 
cohort, while GSE25099 (n = 79) and GSE146483 (n = 11) 
comprised the validation cohort. We evaluated datasets based on 
both sample size and research relevance. We selected the larger-
sample-size GSE30784 and the more research-relevant GSE37991, 
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which contains OSCC data from male patients who regularly 
consume alcohol, chew areca nut, and smoke, as the training set to 
enhance the reliability of target identification, while the remaining 
smaller-sample-size datasets served as the testing set to validate 
the accuracy of the trained model. Raw expression data were 
processed using R software (version 4.4.2; RRID:SCR_001905). 
Quality control included probe annotation, removal of non-specific 
probes, log2 transformation, and quantile normalization using the 
limma package (version 3.62.2; RRID:SCR_010943). To mitigate 
batch effects, Surrogate Variable Analysis (SVA) was performed 
using the sva package (version 3.54.0; RRID:SCR_012836). Post-
correction principal component analysis confirmed successful data 
harmonization. 

2.2 MNPN target prediction

MNPN targets were predicted using three complementary 
databases: ChEMBL (https://www.ebi.ac.uk/chembl/; RRID:SCR_
014042), SwissTargetPrediction (http://swisstargetprediction.
ch/; RRID:SCR_023756), and PharmMapper (https://lilab-ecust.cn/
pharmmapper/index.html; RRID:SCR_022604). ChEMBL employs 
structure-activity relationship analysis based on experimental 
bioactivity data from literature, depositing bioassay data and 
focusing on compounds with validated biological activities 
(Mendez et al., 2019). SwissTargetPrediction utilizes ligand-
based similarity searching and updated data features for efficient 
prediction of protein targets of small molecules (Daina et al., 
2019) PharmMapper identifies potential drug targets through 
large-scale reverse pharmacophore mapping using a comprehensive 
target pharmacophore database (Wang et al., 2017). The canonical 
SMILES notation (CN(CCC#N)N=O) was retrieved from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/; RRID:SCR_004284). All 
predicted targets were filtered to retain only human proteins and 
mapped to official gene symbols using the org.Hs.eg.db package 
(version 3.20.0). 

2.3 Differential gene expression analysis

Differential expression analysis was conducted using the limma 
package with empirical Bayes moderation. In the training set, 
normal individuals without OSCC or normal tissues from OSCC 
patients served as the control group (n = 85), while tumor tissues 
from OSCC patients comprised the experimental group (n = 207). 
DEGs were identified using false discovery rate (FDR)-adjusted p-
value <0.05 and absolute log2 fold change >0.585 (1.5-fold change). 
Multiple testing correction was performed using the Benjamini-
Hochberg method. Results were visualized through volcano plots 
using ggplot2 package (version 3.5.2; RRID:SCR_014601), with the 
top 5 most significant genes labeled. 

2.4 Weighted gene co-expression network 
analysis

Scale-free co-expression networks were constructed using 
the WGCNA package (Langfelder and Horvath, 2008) (version 

1.73; RRID:SCR_003302). Sample quality control included outlier 
removal by hierarchical clustering. Optimal soft thresholding power 
was determined by analyzing scale-free topology fit index (R2 ≥ 
0.8). Gene modules were identified through hierarchical clustering 
of the topological overlap matrix using dynamic tree-cutting 
with minimum module size = 50. Module-trait associations were 
evaluated using Pearson correlation analysis (|r| > 0.5, p < 0.05). Hub 
genes were identified based on intramodular connectivity and gene 
significance. 

2.5 MNPN-associated target identification

MNPN-associated disease targets were identified through 
intersection analysis between predicted MNPN targets, 
differentially expressed genes, and hub genes from trait-
associated WGCNA modules. Venn diagrams were generated 
using the ggvenn package (version 0.1.10) to visualize
overlapping gene sets. 

2.6 Functional enrichment analysis

Gene Ontology (GO; RRID:SCR_002811) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG; RRID:SCR_
012773) pathway enrichment analyses were performed using 
the clusterProfiler package (Wu et al., 2021) (version 4.14.4; 
RRID:SCR_016884). Enrichment significance was assessed using 
hypergeometric testing with FDR correction (adjusted p-value 
<0.05). Protein-protein interaction (PPI) networks were constructed 
using the STRING database (https://string-db.org/; version 12.0; 
RRID:SCR_005223) with confidence score threshold 0.4 and 
visualized using Cytoscape software (version 3.10.3; RRID:SCR_
003032). 

2.7 Machine learning-based biomarker 
discovery

A comprehensive machine learning framework evaluated twelve 
algorithms: Lasso regression, Ridge regression, Elastic Net (α = 
0.1–0.9), Random Forest (RF), Gradient Boosting Machine (GBM), 
XGBoost, Linear Discriminant Analysis (LDA), Naive Bayes, 
stepwise GLM (forward/backward/both), glmBoost, plsRglm, and 
Support Vector Machine (SVM). All algorithms were implemented 
using the caret package (version 7.0.1) with 10-fold cross-validation 
repeated 5 times, generating 127 unique algorithm combinations. 
Models were trained on the discovery cohort and validated on 
the independent validation cohort. Performance was assessed using 
area under the ROC curve (AUC), sensitivity, specificity, and 
balanced accuracy. High-performance models (AUC >0.9) were 
subjected to ensemble learning using stacking methodology. A 
nomogram was constructed based on logistic regression algorithm 
designed for the binary classification outcome (OSCC versus
Normal) for clinical risk assessment. Decision curve analysis 
(DCA) was performed to evaluate the clinical net benefit of the
predictive models. 
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FIGURE 1
Molecular structure and target prediction analysis of MNPN. (A) Chemical structure of MNPN. (B) Venn diagram of predicted molecular targets from 
three databases: ChEMBL, PharmMapper, and SwissTargetPrediction.

2.8 Model interpretability analysis

Model interpretability analysis was performed using 14 
algorithms, including the 12 machine learning algorithms and 
K-Nearest Neighbors (KNN) as well as ensemble algorithm 
glmBoost + LDA to quantify individual feature contributions 
to prediction outcomes. SHAP values were computed using the 
kernelshap package (version 0.7.0) and visualized with the shapviz 
(version 0.10.1) package. The analysis included global feature 
importance assessment through mean absolute SHAP values, 
feature interactions via dependence plots, and individual prediction 
explanations through force plots for representative samples. 
Additional model interpretation was conducted using the DALEX 
package (version 2.4.3) to provide comprehensive explanations of 
model predictions and feature relationships. 

3 Results

3.1 Identification of MNPN target proteins

To elucidate the potential biological targets of MNPN, 
we performed computational target prediction using three 
complementary databases: ChEMBL, PharmMapper, and 
SwissTargetPrediction. The chemical structure of MNPN is 
characterized by a nitrile group connected to a propyl chain bearing 
a methylnitrosamino moiety (Figure 1A). Target prediction analysis 
revealed distinct sets of potential molecular targets across the three 
databases (Figure 1B). ChEMBL identified 784 potential targets, 
PharmMapper predicted 93 targets, and SwissTargetPrediction 
suggested 25 targets (Supplementary Tables S1–S3). The 
Venn diagram analysis demonstrated the complementary 
nature of different prediction algorithms, with each database 
contributing unique target predictions alongside shared targets. 
To comprehensively capture the potential biological activities of 
MNPN, we selected the union of all predicted targets from the three 
databases for subsequent downstream analysis.

3.2 Transcriptomic data processing and 
co-expression network analysis

To identify key gene modules associated with OSCC, we 
performed comprehensive transcriptomic analysis using two 
publicly available datasets (GSE23991 and GSE37991). Initial 
principal component analysis revealed distinct clustering of samples 
by dataset, indicating the presence of batch effects (Figure 2A). After 
applying batch effect correction using normalization, the principal 
component analysis (PCA) plot demonstrated improved sample 
distribution with reduced technical variation while preserving 
biological differences (Figure 2B).

Differential expression analysis comparing the OSCC 
group with the normal control group identified 2,101 
significantly dysregulated genes, with 1,079 upregulated and 
1,022 downregulated genes (Figure 2C; Supplementary Table S4). 
The volcano plot highlights the top 5 most significantly
altered genes.

To explore co-expression patterns and identify functionally 
related gene modules, we conducted WGCNA. The gene 
dendrogram revealed distinct co-expression modules, each assigned 
a unique color identifier (Figure 2D; Supplementary Table S5). 
Module-trait correlation analysis demonstrated varying associations 
between gene modules and clinical traits, with several modules 
showing significant correlations (Figure 2E). Notably, the turquoise 
module exhibited strong correlation with OSCC (correlation 
coefficient = 0.73, p = 1.9e-50).

Further analysis of the turquoise module revealed a high 
correlation between gene significance and module membership 
(r = 0.98), indicating that genes central to this module are 
also highly associated with the trait of interest (Figure 2F). 
To identify the most relevant genes for downstream analysis, 
we examined the intersection between differentially expressed 
genes and the turquoise module. This analysis revealed 534 
overlapping genes, representing high-confidence candidates that 
are both differentially expressed and co-regulated in a trait-
associated network (Figure 2G).
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FIGURE 2
Transcriptomic analysis workflow and identification of key gene modules. (A) PCA plot before batch effect removal. (B) PCA plot after batch effect 
removal. (C) Volcano plot of DEGs with the top 5 genes labeled. Red and blue dots represent significantly up- and downregulated genes. (D) Gene 
dendrogram from WGCNA with color-coded modules below. (E) Module-trait correlation heatmap showing the association between gene modules 
and clinical traits. Correlation coefficients and p-values are displayed, with red indicating positive correlation and blue indicating negative correlation.
(F) Scatter plot of gene significance versus module membership for the turquoise module (correlation = 0.98; p < 0.0001). (G) Venn diagram showing 
the overlap between DEGs and genes in the turquoise module.

3.3 Identification of MNPN-associated 
disease targets in OSCC

To elucidate the molecular mechanisms underlying MNPN’s 
pathogenic effects in OSCC, we performed target prediction and 
intersection analysis. The intersection analysis between MNPN 
target proteins predicted from three independent databases 
(ChEMBL, PharmMapper, and SwissTargetPrediction) and OSCC-
related differential genes from the turquoise module identified 38 
potential key targets involved in MNPN-mediated oncogenic effects 
(Figure 3A; Supplementary Table S6).

The PPI network analysis revealed complex interconnections 
among the target genes, with only connected nodes displayed 
in the network (Figure 3B; Supplementary Table S7). Isolated 
nodes without protein-protein interactions were excluded from 
visualization. In PPI network topology analysis, proteins with 
high degree centrality typically serve as key regulatory factors, 
while betweenness centrality reflects the bridging role of proteins, 
and clustering coefficient indicates local network density. From 
our network analysis, nodes such as TGFB1, MET, and PLAU 
demonstrated high connectivity, suggesting these proteins function 
as critical regulatory factors in MNPN’s pathogenic mechanism.
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FIGURE 3
Identification and functional analysis of MNPN-associated targets in OSCC. (A) Venn diagram showing the intersection of MNPN target genes predicted 
by databases with OSCC-related differential genes from the turquoise module. (B) PPI network of the intersected gene-encoded proteins constructed 
using STRING database. Node colors: red indicates upregulated DEGs, blue indicates downregulated DEGs. Node size represents the degree of 
connectivity. (C) GO biological process enrichment analysis of the 38 target genes. Color gradients in panels represent statistical significance levels 
(p-values). (D) KEGG pathway enrichment analysis of the 38 target genes. (E) Heatmap showing expression patterns of genes involved in cellular stress 
response pathways. (F) Heatmap showing expression patterns of genes associated with aberrant tissue remodeling pathways.

Functional characterization through GO and KEGG enrichment 
analyses of the 38 MNPN-associated target genes revealed 
comprehensive molecular insights into MNPN’s oncogenic 
action mechanisms. GO biological process analysis demonstrated 
significant enrichment in processes including response to xenobiotic 
stimuli, response to decreased oxygen levels, morphogenesis 
of epithelium, collagen metabolic processes, and various 
developmental processes (Figure 3C; Supplementary Table S8). 
These significant pathways indicate that MNPN may promote 
OSCC progression primarily through dysregulation of cellular 
stress responses and aberrant tissue remodeling. KEGG pathway 
analysis highlighted enrichment in cancer-promoting pathways, 
including transcriptional misregulation in cancer and nitrogen 
metabolism (Figure 3D; Supplementary Table S9). These KEGG 

pathways indicate that MNPN may promote OSCC progression 
through activation of oncogenic signaling cascades and metabolic 
reprogramming.

However, GO pathways showed more significant enrichment 
than KEGG pathways, suggesting that GO-enriched pathways 
may be more closely associated with OSCC pathogenesis. We 
specifically highlight the key pathways and genes involved in 
cellular stress response and aberrant tissue remodeling through 
heatmap analysis (Figures 3E,F). The cellular stress response 
heatmap reveals that genes such as PLAU, CA9, and TGFB1 
are prominently involved in xenobiotic response and hypoxic 
conditions, while the tissue remodeling heatmap demonstrates that 
PLOD3 and TGFB1 play critical roles in collagen metabolism 
and epithelial morphogenesis. The multi-pathway involvement 
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suggests MNPN’s complex role as a multi-target oncogenic factor 
contributing to malignant transformation and tumor maintenance 
in OSCC development. 

3.4 Machine learning-based construction 
of predictive model and identification of 
hub genes with clinical utility assessment

To identify the most predictive MNPN-associated genes 
for OSCC diagnosis, we employed multiple machine learning 
algorithms on the 38 MNPN-OSCC related differential gene targets 
identified. We evaluated the performance of various algorithms 
using both training and testing datasets to optimize both predictive 
accuracy and gene number.

Comprehensive comparison of various machine learning 
approaches revealed distinct performance patterns across different 
algorithms (Figure 4A; Supplementary Table S10). Considering 
the dual criteria of relatively high AUC values and a gene 
signature size of approximately 10 genes, the glmBoost + LDA 
algorithm exhibited satisfactory performance and was selected 
as the predictive framework, identifying 13 hub genes from the 
training dataset (Supplementary Table S11).

The ROC analysis of the 13 hub genes selected by the glmBoost 
+ LDA algorithm showed excellent discriminatory power, with AUC 
values ranging from 0.799 to 0.944 (Figure 4B). Notably, PLAU, 
PLOD3, SHC1 and TGFB1 exhibited the highest predictive accuracy 
with AUC values exceeding 0.9, indicating their strong potential as 
diagnostic biomarkers for OSCC.

The nomogram visualization revealed the clinical risk prediction 
value of these hub genes for OSCC (Figure 4C). The nomogram 
converts gene expression levels into risk scores, where genes 
with larger score ranges have greater impact on OSCC risk 
assessment, particularly CA9 and TH in our analysis. DCA evaluated 
the clinical net benefit of different genes across various risk 
thresholds (Figure 4D). In the decision curve, “None” represents 
no treatment with zero net benefit, while “All” represents treating 
all patients without discrimination. All single-gene models 
demonstrated higher net benefit compared to the “All” strategy, 
with PLAU showing the highest clinical net benefit among single-
gene models across most threshold ranges. Furthermore, among all 
models, “Combined_Model” demonstrated optimal performance, 
indicating that the multi-gene combined model provides superior 
clinical net benefit for OSCC diagnosis. This approach refined the 38 
MNPN-related targets into 13 highly predictive hub genes critical for 
MNPN-driven OSCC pathogenesis, demonstrating their predictive 
performance, clinical risk assessment value, and clinical benefit 
potential. 

3.5 SHAP analysis identifies key hub genes 
contributing to disease prediction

To further elucidate the relative importance of the 13 hub genes 
in disease classification, we employed SHAP analysis to provide 
interpretable insights into our machine learning models. Model 
performance evaluation demonstrated varying predictive capability 

across 14 algorithms (Figure 5A). Among these algorithms, tree-
based methods including XGBoost, RF, and GBM achieved the 
highest performance (AUC >0.98). The remaining 11 algorithms 
also demonstrated excellent predictive capability, with AUC values 
all exceeding 0.96. The consistently high performance across 
diverse algorithmic categories validated the robustness of our hub 
gene signature and made these models particularly suitable for 
subsequent SHAP interpretation analysis.

The feature importance heatmap across different models 
revealed varying contributions of hub genes to disease prediction 
(Figure 5B; Supplementary Table S12). PLAU, PLOD3, and TDRD3 
demonstrated high importance scores across the majority of 
algorithms. The consistency analysis across algorithms (Figure 5C) 
showed that TGFB1, PLOD3, PLAU, DNMT3B, and CA9 exhibited 
high consistency across different algorithms. Collectively, PLAU and 
PLOD3 emerged as the consistently important genes for OSCC 
prediction across most of the evaluated algorithms.

The SHAP analysis using the glmBoost + LDA algorithm 
revealed differential contributions of hub genes to disease 
prediction (Figures 5D,E). Among these genes, PLAU, TDRD3, 
and PLOD3 were the most influential genes, exhibiting the highest 
mean absolute SHAP values. The beeswarm plots demonstrated 
that high expression points (yellow) with positive SHAP values 
indicate increased likelihood of OSCC classification, promoting 
disease development, while negative values suggest a protective 
role against disease progression. This analysis clearly indicated that 
PLOD3 and PLAU drive OSCC development.

SHAP dependence plots (Figure 5F) illustrated the complex 
relationships between gene expression levels and their predictive 
contributions. For instance, PLOD3 showed a positive correlation 
between expression levels and SHAP values, indicating that 
higher expression consistently increased disease prediction 
probability. Conversely, TDRD3 exhibited a negative correlation 
between expression levels and SHAP values, suggesting that 
higher expression reduced disease prediction probability. Their 
contributions varied based on expression thresholds and potential 
gene-gene interactions.

Individual sample analysis through SHAP force plots provided 
mechanistic insights into model predictions (Figures 5G,H). In 
randomly selected control samples, most hub genes contributed 
negatively to disease probability, maintaining the prediction below the 
baseline. In contrast, disease samples showed predominant positive 
contributions from key genes such as PLAU and PLOD3, collectively 
driving the prediction toward disease classification. These results 
validate the biological relevance of our identified hub genes and 
demonstrate their potential as diagnostic biomarkers for OSCC. 

4 Discussion

This study presents a comprehensive computational framework 
integrating toxicology, transcriptomic analysis, machine learning 
approaches, and SHAP analysis to elucidate the molecular 
mechanisms underlying MNPN-mediated oral squamous cell 
carcinoma pathogenesis. Our findings provide novel insights into 
the toxicological profile of this betel nut-derived nitrosamine 
and identify critical therapeutic targets for OSCC prevention and 
treatment. 
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FIGURE 4
Machine learning-based construction of predictive model and identification of hub genes with clinical utility assessment. (A) Performance comparison 
of different machine learning algorithms showing AUC values in training and testing datasets. (B) ROC curves of the 13 hub genes identified by the 
selected glmBoost + LDA algorithm. (C) Nomogram constructed based on the 13 hub genes using logistic regression algorithm for risk prediction. (D)
DCA of the logistic regression algorithm showing the relationship between clinical net benefit and threshold probability for different gene 
combinations.

4.1 MNPN as a critical carcinogenic 
component in betel nut-associated OSCC

Our computational target prediction revealed that MNPN 
exhibits broad molecular promiscuity, with 881 predicted 
targets from ChEMBL, PharmMapper, and SwissTargetPrediction 
databases. WGCNA identified 534 DEGs highly correlated with 
OSCC, among which 38 were MNPN-related targets. These 

overlapping genes provide compelling evidence for the direct 
involvement of this nitrosamine in oral carcinogenesis.

The functional enrichment analysis revealed that MNPN-
associated targets are significantly involved in response to xenobiotic 
stimuli, hypoxic conditions, epithelial morphogenesis, and collagen 
metabolism. These biological processes are fundamental to 
cancer initiation and progression, supporting the notion that 
MNPN contributes to OSCC through disruption of cellular 
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FIGURE 5
SHAP analysis identifies key hub genes contributing to disease prediction. (A) Model performance comparison showing AUC values for different 
machine learning algorithms. (B) Heatmap displaying feature importance scores for hub genes across different algorithms. (C) Bar plot showing 
consistency analysis of gene ranking across multiple algorithms. (D) Mean absolute SHAP values bar plot for each of the 13 hub genes in the glmBoost 
+ LDA algorithm. (E) SHAP value distribution for each gene displayed as beeswarm plots in the glmBoost + LDA algorithm. Color scale represents 
expression levels of genes. (F) SHAP dependence plots showing the relationship between gene expression levels and SHAP values for individual hub 
genes in the glmBoost + LDA algorithm. (G) SHAP force plot for a randomly selected control sample (GSE30784_GSM764953_con), showing individual 
gene contributions to the final prediction. (H) SHAP force plot for a randomly selected disease sample (GSE37991_GSM931582_tra), showing individual 
gene contributes to the disease prediction.

homeostasis, tissue architecture, and stress response mechanisms. 
The dysregulation of cellular stress responses is particularly relevant, 
as it encompasses both the hypoxic stress response and xenobiotic 

detoxification pathways. This reflects the cellular attempt to cope 
with oxygen deprivation and detoxify MNPN, potentially leading to 
the formation of more reactive metabolites that cause DNA damage 

Frontiers in Bioinformatics 09 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1664576
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Wang et al. 10.3389/fbinf.2025.1664576

and mutagenesis. This is consistent with previous studies that betel 
nut-derived MNPN induces aberrant cell proliferation in OSCC
(Chen et al., 2017). 

4.2 PLAU as a critical nexus in 
MNPN-mediated OSCC pathogenesis

Among the 13 hub genes identified through machine 
learning optimization, PLAU (plasminogen activator, urokinase) 
emerged as the most significant contributor to OSCC prediction, 
exhibiting the highest AUC value and frequently ranking 
among the top contributors in SHAP analysis across multiple 
algorithms, indicating its stable contribution to disease prediction. 
PLAU encodes urokinase-type plasminogen activator (uPA), a 
serine protease that plays pivotal roles in extracellular matrix 
degradation, cell migration, invasion, and angiogenesis. The 
protein functions by converting plasminogen to plasmin, 
which subsequently degrades fibrin and various extracellular 
matrix components, facilitating tumor cell invasion and
metastasis.

The identification of PLAU as a primary MNPN target 
with exceptional predictive power for OSCC provides several 
mechanistic insights. Firstly, PLAU upregulation in response to 
MNPN exposure may enhance the invasive capacity of oral 
epithelial cells, promoting malignant transformation and tumor 
progression. Recent studies have confirmed that PLAU promotes 
cell proliferation and epithelial-mesenchymal transition across 
multiple cancer types including head and neck squamous cell 
carcinoma (Chen et al., 2021), pancreatic ductal adenocarcinoma 
(Hosen et al., 2022), and triple-negative breast cancer (Sarno et al., 
2022), with higher expression correlating with poorer clinical 
outcomes. Additionally, the SHAP analysis demonstrates the 
contribution of genes to disease prediction, revealing that PLAU’s 
positive correlation with disease probability is consistent across 
expression levels. Furthermore, PLAU expression is known to 
be induced by hypoxic conditions through HIF-1α activation 
(Chen et al., 2023a; Nishi et al., 2016), which aligns with our 
GO enrichment results showing MNPN targets’ involvement in 
hypoxic response pathways, including response to decreased oxygen 
levels, response to oxygen levels, and response to hypoxia. This 
connection suggests that PLAU may serve as a crucial mediator 
linking MNPN exposure to hypoxia-induced oncogenic signaling in
oral tissues.

The clinical relevance of PLAU in OSCC is well-established, 
with numerous studies demonstrating its association with 
poor prognosis, increased metastatic potential, and treatment 
resistance (Bacchiocchi et al., 2008). Moreover, the single-gene 
model based on PLAU demonstrated the highest clinical net 
benefit in DCA, further supporting its clinical utility. Our findings 
extend this knowledge by providing the first evidence linking 
PLAU upregulation to specific environmental carcinogen exposure, 
particularly MNPN from betel nut consumption. This connection 
offers a molecular explanation for the aggressive nature of betel 
nut-associated oral cancers and suggests that PLAU could serve as 
both a biomarker for MNPN exposure and a therapeutic target for 
intervention. 

4.3 Comparative analysis with previous 
research

Our computational approach reveals both consistencies and 
novel findings compared to previous investigations of betel nut 
carcinogenesis. Traditional studies have primarily focused on 
arecoline as the major carcinogenic component, with limited 
attention to nitrosamine derivatives like MNPN. While arecoline 
has been shown to induce cell proliferation, invasion and migration, 
genotoxicity, and inflammatory responses (Gocol et al., 2023), 
our study demonstrates that MNPN targets distinct molecular 
pathways that complement and potentially amplify arecoline’s 
carcinogenic effects.

Previous toxicological studies of betel nut components 
have identified several overlapping targets with our findings, 
including genes involved in cell cycle regulation, apoptosis, and 
inflammation. However, the specific identification of PLAU as a 
critical MNPN target represents a novel contribution to the field. 
Earlier proteomic and transcriptomic studies of OSCC have reported 
PLAU upregulation, but none have established its connection to 
specific betel nut-derived carcinogens.

The machine learning approach employed in this study, 
utilizing 127 algorithm combinations, represents a significant 
methodological advancement over previous biomarker 
identification studies that typically rely on single statistical methods. 
Our glmBoost + LDA algorithm achieved superior performance 
compared to conventional approaches, demonstrating the value of 
ensemble methods in identifying robust biomarker signatures. 

4.4 Additional hub genes and therapeutic 
implications

Beyond PLAU, our analysis identified 12 additional hub 
genes that warrant further investigation as potential therapeutic 
targets. Among these, PLOD3 (procollagen-lysine, 2-oxoglutarate 5-
dioxygenase 3) showed the second-highest predictive performance 
and represents another critical component in extracellular matrix 
remodeling. PLOD3 is essential for collagen hydroxylation and 
cross-linking, processes that are frequently dysregulated in cancer-
associated fibrosis and tumor stroma formation (Qi and Xu, 2018). 
SHC1 (SHC adaptor protein 1) and TGFB1 (transforming growth 
factor beta 1) also demonstrated excellent predictive performance 
(AUC >0.9), representing key nodes in growth factor signaling and 
cellular transformation pathways (Chen et al., 2022; Liu et al., 2021).

Other hub genes include CA9 (carbonic anhydrase 9), which 
plays crucial roles in pH regulation and hypoxic adaptation 
(Giatromanolaki et al., 2020); DNMT3B (DNA methyltransferase 
3 beta), involved in epigenetic modifications and gene silencing 
(Heawchaiyaphum et al., 2021); and several solute carriers 
(SLC16A1, SLC1A1, SLC28A3) that regulate metabolic transport 
processes (Pizzagalli et al., 2021). HIBCH (3-hydroxyisobutyryl-
CoA hydrolase) and ARSG (arylsulfatase G) contribute to metabolic 
pathways (Wang et al., 2021; Poterala-Hejmo et al., 2020), 
while TH (tyrosine hydroxylase) and TDRD3 (tudor domain 
containing 3) are involved in neurotransmitter synthesis and RNA 
processing, respectively (Yi et al., 2024; Chen et al., 2023b). The 
convergence of MNPN targeting on these fundamental signaling 
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and metabolic molecules underscores the multi-faceted nature of 
nitrosamine-induced carcinogenesis. 

4.5 Novel hypotheses

Our findings support a novel hypothesis that MNPN promotes 
OSCC through coordinated disruption of tissue homeostasis 
mechanisms. The simultaneous targeting of proteolytic enzymes 
(PLAU), matrix synthesis enzymes (PLOD3), growth factor 
signaling (TGFB1, SHC1), metabolic regulators (CA9, SLC family 
members), and epigenetic modifiers (DNMT3B) creates a cellular 
environment conducive to malignant transformation. This multi-
target mechanism may explain why betel nut-associated cancers 
often exhibit poor treatment responses.

The enrichment of MNPN targets in hypoxic response pathways 
suggests an additional mechanism whereby this nitrosamine may 
sensitize oral tissues to hypoxic stress, a common feature of 
the oral microenvironment. This sensitization could accelerate 
the progression from premalignant lesions to invasive carcinoma, 
particularly in individuals with concurrent risk factors such as 
tobacco use or poor oral hygiene. 

4.6 Clinical implications and translational 
potential

The identification of PLAU as a primary MNPN target with 
exceptional diagnostic accuracy has immediate clinical implications 
for OSCC screening and risk assessment. PLAU expression levels, 
either alone or in combination with other hub genes, could serve 
as biomarkers for early detection of betel nut-associated oral 
malignancies. This is particularly relevant for high-risk populations 
in endemic regions where routine screening could significantly 
impact disease outcomes.

Furthermore, the established role of PLAU in cancer invasion 
and metastasis makes it an attractive therapeutic target. Several 
PLAU inhibitors, including small molecules and monoclonal 
antibodies, are currently in preclinical and clinical development 
for various cancer types (Zhai et al., 2022). Our findings provide 
a strong rationale for evaluating these agents specifically in betel 
nut-associated OSCC, potentially leading to targeted prevention or 
treatment strategies.

The machine learning framework developed in this study also 
has broader applications for environmental carcinogen research. 
The integration of target prediction, transcriptomic analysis, and 
interpretable machine learning could be applied to investigate other 
carcinogen-disease relationships, accelerating the identification of 
novel therapeutic targets and biomarkers. 

4.7 Study limitations and future directions

Several limitations of this study should be acknowledged. Our 
analysis relies entirely on computational predictions and public 
database mining, lacking experimental validation of the proposed 
MNPN-PLAU interaction. Future studies should employ molecular 
techniques such as surface plasmon resonance, molecular docking 

simulations with experimental validation, and cell-based assays to 
confirm direct binding and functional relationships. Additionally, 
the transcriptomic data used in this study were derived from 
mixed OSCC populations that may not specifically represent betel 
nut-associated cases. Ideally, future investigations should focus 
on transcriptomic profiles from OSCC patients with confirmed 
betel nut exposure history to enhance the specificity of our 
findings. Moreover, the cross-sectional nature of the available 
datasets limits our ability to assess temporal relationships between 
MNPN exposure, gene expression changes, and disease progression. 
Longitudinal studies tracking individuals from initial betel nut 
exposure through premalignant changes to invasive carcinoma 
would provide crucial insights into the temporal dynamics of 
MNPN-mediated carcinogenesis.

Future research directions should include experimental 
validation of MNPN-PLAU interactions using biochemical 
and cellular assays, development of MNPN-specific exposure 
biomarkers for epidemiological studies, investigation of genetic 
polymorphisms in PLAU and other hub genes that may modify 
individual susceptibility to MNPN-induced carcinogenesis, 
evaluation of PLAU inhibitors as chemopreventive agents in high-
risk populations, and expansion of the analytical framework 
to investigate other betel nut-derived nitrosamines and their 
molecular targets. 

5 Conclusion

This study provides the first comprehensive molecular 
characterization of MNPN-associated OSCC pathogenesis, 
identifying PLAU as a critical therapeutic target with exceptional 
diagnostic and prognostic potential. Our findings represent a 
paradigm shift from traditional focus on arecoline to secondary 
metabolite nitrosamines and establish a foundation for developing 
targeted interventions for this global health challenge. The 
integration of computational toxicology, machine learning, and 
SHAP approaches demonstrates the power of systems-level analysis 
in elucidating complex environmental carcinogen mechanisms and 
identifying novel therapeutic opportunities.
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