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Introduction: KRAS mutations are key oncogenic drivers in lung cancer, yet 
effective pharmacological targeting has remained a major challenge due to 
the protein's elusive and dynamic binding pockets. Computational modeling 
offers a promising route to identify novel inhibitors with improved potency and 
selectivity.
Methods: A quantitative structure–activity relationship (QSAR) modeling 
approach was developed to predict the inhibitory potency (pIC50) of 
KRAS inhibitors and support de novo drug design. Molecular descriptors 
for 62 inhibitors retrieved from the ChEMBL database (CHEMBL4354832) 
were computed using Chemopy. Following descriptor normalization and 
dimensionality reduction, five machine learning algorithm spartial least squares 
(PLS), random forest (RF), stepwise multiple linear regression (MLR), genetic 
algorithm optimized MLR (GA-MLR), and XGBoost were applied. Model 
performance was evaluated using R2, RMSE, and MAE, while permutation-based 
importance and SHAP analyses provided feature interpretability.
Results: Among the models tested, PLS exhibited the best predictive 
performance (R2 = 0.851; RMSE = 0.292), followed by RF (R2 = 0.796). The GA-
MLR model, based on eight optimized molecular descriptors, achieved good 
interpretability and robust internal validation (R2 = 0.677). Virtual screening of 56
de novo designed compounds within the model's applicability domain identified 
compound C9 with a predicted pIC50) of 8.11 as the most promising hit.
Discussion: This integrative QSAR modeling and de novo design framework 
effectively predicted the bioactivity of KRAS inhibitors and facilitated the 
identification of novel candidate molecules. The findings demonstrate the utility 
of combining interpretable machine learning models with virtual screening to 
accelerate the discovery of potent KRAS inhibitors for lung cancer therapy.
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Introduction

Lung cancer is one of the most prevalent malignancies globally 
and remains the leading cause of cancer-related deaths, responsible 
for about 1.8 million deaths yearly (Sung et al., 2021). In non-small 
cell lung cancer (NSCLC), mutations in the Kirsten rat sarcoma 
viral oncogene homolog (KRAS) gene are among the most frequent 
genetic alterations, particularly in smokers, and are associated with 
aggressive tumor phenotypes and resistance to targeted therapies 
(Pylayeva-Gupta et al., 2011; Westover et al., 2016).

Historically, the development of direct KRAS inhibitors has 
been challenging due to the protein’s high affinity for GTP/GDP 
and the absence of easily targetable binding sites, earning it 
the label of “undruggable” (Cox et al., 2014). However, recent 
advances in covalent inhibitors, such as those targeting the 
KRAS G12C mutation (e.g., sotorasib), have demonstrated 
clinical efficacy and reignited interest in targeting KRAS-
driven tumors (Lanman et al., 2019).

Despite this progress, most KRAS mutations beyond G12C 
remain therapeutically elusive, necessitating the exploration 
of novel chemical scaffolds and mechanisms of inhibition. 
Accordingly, a promising avenue for rational drug design 
is provided by computational methods such as quantitative 
structure–activity relationship (QSAR) modeling. By using 
statistical and mathematical techniques to link chemical structure 
and biological activity, QSAR models make it possible to predict the 
activity of untested compounds (Tropsha, 2010; Cherkasov et al., 
2014). Machine learning and genetic algorithm-enhanced QSAR 
strategies further enhance model performance by optimizing 
descriptor selection and minimizing overfitting (Todeschini and 
Consonni, 2009).

Materials and methods

Dataset compilation

A dataset comprising 62 KRAS inhibitors (Supplementary File S1) 
was retrieved from the ChEMBL database (CHEMBL ID: 
CHEMBL4354832) (Lanman et al., 2019). The retrieved compounds 
included their experimentally measured IC50 values (in nM). Each 
compound was standardized, and duplicates were removed to ensure 
data consistency. The IC50 values were transformed into pIC50 values 
using the standard conversion equation: 

pIC50 = − log 10(IC50× 10−9)

This transformation provided a more suitable scale for 
regression modeling. 

Abbreviations: NSCLC, Non-small cell lung cancer; KRAS, Kirsten rat 
sarcoma viral oncogene homolog; QSAR, Quantitative structure–activity 
relationship; MLR, Multiple linear regression; GA, Genetic Algorithm; GA-
MLR, Genetic Algorithm-optimized Multiple Linear Regression; AIC, Akaike 
Information Criterion; PLS, Partial Least Squares; RF, Random Forest; MSE, 
Mean squared error; XGBoost, Extreme Gradient Boosting; RMSE, Root mean 
square error; MAE, Mean absolute error; Grav, gravitational index; TASA, Total 
solvent-accessible surface area.

Molecular descriptor calculation

Molecular descriptors were calculated using the ChemoPy 
package in Python (Cao et al., 2013). Descriptors generated 
included topological, constitutional, geometrical, and electronic 
features. The resulting dataset was filtered leaving only numeric 
descriptors (Supplementary File S2). Columns with missing values and 
zero variance were excluded. The final descriptor matrix included a 
diverse set of molecular features relevant to QSAR modeling.  

Preprocessing and feature reduction

Before model training, descriptors were standardized by 
centering to the mean and scaling to unit variance. Highly 
correlated descriptors (Pearson’s |r| >0.95) were removed to reduce 
multicollinearity (Sulaiman et al., 2021). Among the remaining 
descriptors, the top 50 features with the highest variance were selected 
for further analysis. The dataset was then split into training (70%) and 
test (30%) sets using stratified sampling on the pIC50 values. 

Feature selection using genetic algorithm 
(GA)

A Genetic Algorithm (GA) (Cho et al., 2002) was employed 
to identify an optimal subset of descriptors that maximized the 
adjusted R-squared (R2

{adj}) while penalizing model complexity. The 
fitness function used was:

Fitness = R2
{adj} −

k
n

Where k is the number of selected descriptors and n is the 
number of training samples. The Genetic Algorithm was run 
with binary chromosome representation, 50 generations, and 10 
consecutive runs without improvement as stopping criteria. The final 
GA-selected features were used to train a multiple linear regression 
(MLR) model. 

Model development

To develop robust predictive models for estimating the pIC50
values of KRAS inhibitors, multiple machine learning algorithms 
were employed and benchmarked. The primary model utilized 
was a Genetic Algorithm-optimized Multiple Linear Regression 
(GA-MLR) model. In this approach, a binary genetic algorithm 
was applied to select an optimal subset of molecular descriptors 
from the training dataset. The fitness function for the GA was 
designed to maximize the adjusted R2 of the resulting linear model 
while incorporating a penalty term proportional to the number of 
selected features, thereby discouraging overfitting. The linear model 
constructed using the selected descriptors followed the general form:

y = β0 + β1x1
+ β2x2
+…+ βnxn

where y is the predicted pIC50, β0 is the intercept, β1 …βn are 
the regression coefficients, and x1 …xn represent the GA-selected 
standardized descriptors.
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TABLE 1  Summary of validation metrics for each predictive model.

Model R2 RMSE MAE

GA-MLR 0.677 0.663 0.509

Stepwise MLR 0.685 0.590 0.466

PLS 0.851 0.292 0.218

Random Forest 0.796 0.343 0.255

XGBoost 0.688 0.478 0.379

TABLE 2  Summary of validation metrics for each predictive model 
(external set).

Model R_squared RMSE

GA-MLR (final) 0.599 0.518

PLS 0.893 0.309

Random Forest 0.838 0.330

XGBoost 0.439 0.524

TABLE 3  Summary of training/test sample sizes (N_train, N_test), 
descriptor count (p), in-sample fit (R2_train, RMSE_train), external test 
performance (R2_pred, RMSE_test), repeated 10 × 5-fold CV statistics 
(mean R2 with 2.5%–97.5% quantiles), and Williams applicability-domain 
(AD) parameters (train/test coverage; threshold h\∗h^\ ∗).

Metric Value

N_train 46

N_test 16

p 15

R2_train 0.721

RMSE_train 0.476

R2_pred (external) 0.599

RMSE_test 0.518

R2_cv_mean 0.370

R2_cv_2.5% 0.0136

R2_cv_97.5% 0.905

AD_coverage_train 0.742

AD_coverage_test 0.242

h_star 1.043

All metrics are reported in pIC50 units where applicable.

In parallel, a Stepwise Multiple Linear Regression (Stepwise 
MLR) model was developed using bidirectional stepwise selection 
based on the Akaike Information Criterion (AIC) (Ghani and 
Ahmad, 2010). This method involved iterative addition and removal 
of variables from a null model to a full model, selecting the 
combination of descriptors that minimized AIC.

For comparative purposes, a Partial Least Squares (PLS) 
regression model was constructed using the kernel algorithm. The 
optimal number of latent components was determined through 10-
fold cross-validation. Additionally, a Random Forest (RF) model 
was implemented using 500 trees, leveraging the randomForest 
package. Feature importance in the RF model was quantified using a 
permutation-based increase in mean squared error (MSE), enabling 
interpretation of variable contributions.

Lastly, an Extreme Gradient Boosting (XGBoost) model was 
trained using the xgboost package with a squared error loss function. 
The model was tuned with a maximum tree depth of 6, a learning rate 
(η) of 0.1, and 200 boosting iterations.

Each of these models were trained and validation was achieved 
using standardized descriptors derived from the 64-compound 
dataset retrieved from the ChEMBL database (CHEMBL ID: 
CHEMBL4354832), and their performance metrics were compared 
using R2 and RMSE on both training and test sets.

Model performances were evaluated on the test set using R2, 
RMSE, and MAE. 

SHAP and permutation-based 
interpretability

In order to interpret feature contributions in the 
RF model, SHAP values were computed using the iml 
package in R (Molnar et al., 2018). To determine how each variable 
affected the predictive power of the model, permutation-based 
feature importance was also calculated using the same package. 

Domain of applicability (DOA) assessment

Mahalanobis Distance (MD) (Roy et al., 2015) was used to assess 
whether novel compounds fell within the applicability domain of the 
training set. The MD was computed as:

D2 = (x− μ)TΣ−1(x− μ)

Where μ is the mean vector and Σ is the covariance matrix 
of the normalized training set. A threshold based on the 95th 
percentile of the χ2 distribution with 8 degrees of freedom was 
applied. Compounds with MD above this threshold were flagged as 
outside the DOA. 

Virtual screening and pIC50 prediction

To identify novel inhibitors of KRAS, an evolutionary de 
novo design strategy was implemented using the DataWarrior 
software (López-López et al., 2019). This method seeks to 
explore vast regions of chemical space by mimicking natural 
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TABLE 4  Test-set performance and AD coverage for the BIC-selected linear model with fewer descriptors (p).

Model p R2_pred RMSE_test AD_train_cov AD_test_cov N_insideAD

BIC-MLR 6 0.429 0.632 0.726 0.242 15

Where available, inside-AD, test metrics are provided to indicate reliability within the modeled subspace.

FIGURE 1
External R2 as a function of training-set fraction (20%–90%). Points are replicate subsamples; the solid line is the mean and error bars denote ±1 SD. 
The plateau indicates diminishing returns at the current data size for this congeneric series.

FIGURE 2
Top 8 permutation-based feature importances from the Random 
Forest model.

evolution to create new molecules optimized for drug-likeness 
and target-specific similarity. The process began with a seed 
molecule (Compound ID: 2363810; Supplementary File S1), chosen 
for its known KRAS inhibitory profile and desirable drug-like 
properties. DataWarrior applied random chemical transformations 
to this initial structure, including atom substitutions, bond 
rearrangements, and ring modifications, to generate a larger 
first-generation library of child compounds. These structural 
mutations were probabilistically biased toward those that improved 
molecular drug-likeness, as measured by built-in scoring metrics, 
while chemically implausible modifications were penalized or
excluded.

FIGURE 3
Top 8 SHAP contributions computed using the Random Forest model.

Each resulting compound underwent multi-objective evaluation 
using fitness criteria such as drug-likeness, pharmacophore alignment, 
and 3D shape similarity to the reference KRAS inhibitor. 
Specifically, two similarity scores were used to guide molecular 
selection: the SkelSpheres similarity score, which captures topological 
resemblance, and the Flexophore similarity score, which quantifies 
3D pharmacophore overlap. Compounds from each generation were 
ranked based on these criteria, and top performers were retained as 
parents for the next-generation. Over multiple cycles and generations, 
the algorithm progressively refined the structures, selecting candidates 
with fitness scores approaching 1.000 and similarity metrics (both 
SkelSpheres and Flexophore) often exceeding 0.98. 
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FIGURE 4
Performance and interpretability of the Random Forest (RF) model.

TABLE 5  Comparison of GA-MLR vs. Stepwise MLR coefficients.

Variable Estimate_
GA

p_GA Estimate_
stepwise

p_
stepwise

(Intercept) 6.6791 1.75E-49 6.6791 6.46E-46

TASA −0.5139 1.52E-05 −0.3092 0.00028

RDFE14 0.8145 0.00016 0.2550 0.01463

grav 0.6494 0.00033 - -

RDFE19 0.0090 0.92763 - -

PNSA3 0.3118 0.01231 - -

RDFM11 −0.3224 0.00040 −0.3894 0.00316

RDFP9 0.4943 6.81E-05 - -

RDFV14 −0.4546 0.01444 - -

RDFE10 - - 0.3250 0.00213

RDFM9 - - 0.3570 0.00039

WNSA1 - - −0.2156 0.00062

RDFU9 - - 0.5351 0.00040

RDFM6 - - 0.1926 0.05153

RDFU4 - - −0.3821 0.00331

RDFE21 - - −0.1618 0.02145

MoRSEE1 - - −0.1429 0.05268

RDFE20 - - 0.1307 0.10460

RDFV11 - - 0.1986 0.16125

RDFV16 - - 0.0961 0.23464

Ultimately, 56 molecules were selected across seven 
generations (Supplementary File S3), encompassing diverse yet drug-
like scaffolds. Each compound’s SMILES structure was exported, 
and the same eight GA-selected descriptors—TASA, RDFE14, grav, 
RDFE19, PNSA3, RDFM11, RDFP9, and RDFV14—were computed 
using the Chemopy Python library. These descriptors were normalized 
using the mean and standard deviation values derived from the training 
set, ensuring compatibility with the original model space. 

The normalized descriptors were then passed into the GA-
optimized multiple linear regression (GA-MLR) model, which had 
been trained on 62 experimental KRAS inhibitors (CHEMBL4354832 
dataset). Predicted pIC50 values were calculated for all 56 de novo
compounds. To ensure model applicability, Mahalanobis distance was 
computed for each prediction, and compounds falling outside the 95% 
confidence ellipsoid of the descriptor space were flagged as “Outside 
DOA” (domain of applicability). 

This virtual screening workflow successfully yielded novel 
candidate molecules with promising inhibitory activity. Several of 
these compounds exceeded a pIC50 threshold of 8.0—comparable 
or superior to reference KRAS inhibitors—and were designated as 
hits for further consideration. These candidates will be structurally 
highlighted in the manuscript and considered for in silico ADMET 
profiling and docking-based validation. 

Molecular docking

For molecular docking, we used the KRAS G12 crystal 
structure (PDB ID: 6CU6 as the receptor. The protein was 
prepared in BIOVIA Discovery Studio Visualizer and PyMOL 
by removing crystallographic waters/ions (except those required 
for structural integrity), retaining the co-crystallized ligand for 
redocking qualification, adding polar hydrogens, and assigning atom 
types; Cys12 was kept in its standard form because we modeled 
noncovalent pre-reaction poses (no covalent bond formation). 
Ligands (de novo designs and C9) were generated in DataWarrior, 
sanitized, assigned protonation states appropriate for ∼ physiological 
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FIGURE 5
(a) Observed vs. Predicted pIC50 values for GA-MLR across training and test sets. (b) Regression coefficients for the GA-selected molecular descriptors 
in the MLR model.

FIGURE 6
Distribution of predicted pIC50 for 58 de novo synthesized KRAS-like compounds. Bars are color-coded to indicate domain of applicability status 
based on Mahalanobis distance (cutoff = 15).

pH, and energy-minimized; final docking inputs were prepared 
via PyRx (Open Babel) with Gasteiger charges and PDBQT 
conversion. Docking was carried out in PyRx/AutoDock Vina, using 
a search box centered on the Switch-II pocket around the co-
crystal pose to fully encompass the H95–Y96–Q99 cryptic region 
and the Cys12 vicinity; default Vina parameters were used unless 
otherwise stated. The protocol was qualified by redocking the co-
crystallized ligand and visually assessing recovery of the pose and 
key contacts. For all compounds, multiple poses were generated 
and ranked by Vina score (kcal·mol−1); the top-scoring, clash-
free pose consistent with known SII-P pharmacology was retained 
for analysis. Interaction fingerprints (H-bonding, electrostatics, 
hydrophobics/π) were inspected and illustrated in Discovery Studio 
and PyMOL, and binding energies reported from Vina are presented 
as negative values (more negative = more favorable). 

Software environment

All data preprocessing, modeling, and visualization were 
conducted in R version 4.3.2. Libraries used include: caret, 
randomForest, xgboost, iml, GA, pls, Metrics, and ggplot2. The R 

script used for the analysis is provided as an additional file for 
reference (Additional file).

Results and discussion

Overview of model performance

Five machine learning and statistical regression models were 
developed to predict the pIC50 values of compounds using molecular 
descriptors generated via Chemopy. These models included: (1) 
Genetic Algorithm-optimized Multiple Linear Regression (GA-MLR), 
(2) Stepwise MLR, (3) Partial Least Squares (PLS) Regression, (4) 
Random Forest (RF), and (5) XGBoost regression. Each model was 
trained on a dataset consisting of 70% of the observations and validated 
using the remaining 30%. The evaluation metrics used were the 
coefficient of determination (R2), root mean square error (RMSE), 
and mean absolute error (MAE). 

Table 1 presents the validation performance of each model. The 
PLS model achieved the highest predictive accuracy with an R2 of 0.851 
and the lowest RMSE (0.292). The Random Forest model yielded an 
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FIGURE 7
Predicted KRAS Inhibitor Hits with pIC50 >8.0 from Virtual Screening of De Novo Compounds. Structures of the top-scoring compounds generated via
de novo design and screened using the GA-optimized MLR model. Only compound C9 was predicted to fall within the applicability domain (DOA); all 
others are flagged as outside the DOA. Predicted pIC50 values are indicated for each compound.

TABLE 6  For each k-means cluster held out in turn, the table lists 
training/test sizes and external performance (R2, RMSE).

Cluster N_train N_test R_squared RMSE

1 37 25 0.1005769 0.9484648

2 60 2 1.0000000 2.7320567

3 42 20 0.0985520 0.9912530

4 47 15 0.2545580 1.2480888

LCO, penalizes neighborhood overfitting and approximates generalization to “novel” 
analog clusters.

R2 of 0.796 and an RMSE of 0.343. XGBoost achieved R2 = 0.688 
and RMSE = 0.478. The GA-MLR and Stepwise MLR models yielded 
comparable R2 values of 0.677 and 0.685, respectively, though the 
Stepwise model demonstrated a slightly lower RMSE (0.590 vs. 0.663). 

External-test benchmarking on the standardized pipeline 
confirms this ranking: PLS (R2 = 0.893, RMSE = 0.309), RF (R2

= 0.838, RMSE = 0.330), GA-MLR (R2 = 0.599, RMSE = 0.518), 
and XGBoost (R2 = 0.439, RMSE = 0.524). We therefore retain GA-
MLR as the primary, interpretable model for SAR extraction, while 
reporting PLS/RF as higher-capacity baselines for context (Table 2).

To quantify statistical robustness, repeated 10 × 5-fold cross-
validation on the training set produced mean R2 = 0.370 with 95% 
quantiles 0.014–0.905, and mean RMSE = 1.02 with 95% quantiles 
0.365–1.80. The observed spread is expected for a small, congeneric 
series and is reflected in the external performance variance. 

Predictive equation from GA-optimized 
MLR

The GA-MLR model selected eight features using a genetic 
algorithm that maximized the adjusted R2 while penalizing model 
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FIGURE 8
Structural resemblance between (a) KRAS inhibitor (Compound ID: 2363810; Supplementary File S1; pIC50 = 8.10) and (b) C9 (pIC50 = 8.11).

complexity. The regression equation derived is as follows:

y = 6.6791− 0.5139 ·TASA+ 0.8145 ·RDFE14

+ 0.6494 · grav+ 0.00898 ·RDFE19+ 0.3118

·PNSA3− 0.3224 ·RDFM11+ 0.4943 ·RDFP9

− 0.4546 ·RDFV14

This model yielded an R2 of 0.677 and RMSE of 0.663 on the test 
set, with predicted pIC50 values ranging from 5.23 to 9.26.

Using the final GA-MLR (GA + VIF) implementation, N_train 
= 46, N_test = 16, p = 15 descriptors, with R2_train = 0.721, 
RMSE_train = 0.476, and R2_pred = 0.599, RMSE_test = 0.518. 
We additionally report 95% coefficient confidence intervals for 
transparency; four coefficients (two positive, two negative) do not 
cross zero, supporting mechanistic interpretability (Table 3). 

Predictors selected by stepwise MLR

The stepwise MLR model selected 14 descriptors through a 
bidirectional selection process. Descriptors like RDFE10, RDFM9, 
WNSA1, RDFE21, and MoRSEE1 were included in the final model 
equation. On the validation set, the final formula produced an R2 of 
0.685 and an RMSE of 0.590.

For parsimony, we also derived a BIC-penalized refit from 
the GA-VIF pool (p = 6), yielding R2_pred = 0.429, RMSE_test 
= 0.632. While less accurate, the BIC model offers a compact 
explanatory scaffold and can expand the reliable applicability 
domain in prospective use (Table 4). 

PLS and ensemble models

With two latent components, the PLS regression model 
produced better predictive results (R2 = 0.851; RMSE = 0.292). The 
Random Forest model, constructed with 500 trees and 16 variables 
tried at each split, achieved an R2 of 0.796 and an RMSE of 0.343. 

XGBoost, trained using the GA-selected features and tuned with 200 
boosting rounds (max depth = 6, eta = 0.1), achieved R2 = 0.688 and 
RMSE = 0.478.

Under the standardized feature/normalization protocol, PLS 
improved to R2 = 0.893, RMSE = 0.309; RF to R2 = 0.838, RMSE 
= 0.330; XGBoost performed at R2 = 0.439, RMSE = 0.524. These 
baselines bound the achievable accuracy and corroborate that 
the activity signal is learnable while GA-MLR remains the SAR 
workhorse (Figure 1). 

Feature importance and model 
interpretability

Grav, RDFE19, RDFP9, and RDFE14 were among the 
most significant descriptors, according to a permutation-
based importance analysis employing the Random 
Forest model (Figure 2). When permuted, these features displayed 
the largest increase in mean squared error (MSE), suggesting their 
significance for the predictive performance of the model.

Additionally, SHAP (Shapley Additive Explanations) values were 
computed using the iml package to provide a local explanation for 
model predictions. Figure 3 shows the top 8 features ranked by 
average absolute SHAP values. The grav descriptor exhibited the 
highest negative SHAP impact on pIC50 predictions, followed by 
RDFE19 and RDFP9.

Descriptor directions inferred from GA-MLR (e.g., positive 
contributions for vdW/shape-weighted RDF/MoRSE families and 
balanced positive polar surface area) align with the amphiphilic 
character of the Switch-II pocket and informed substituent vectors 
subsequently tested by docking.

Model visualization and residual analysis

Visualization techniques were used to further assess the Random 
Forest (RF) model’s performance and interpretability. The RF 
model’s predicted and observed pIC50 values are shown in Figure 4. 
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Good predictive agreement is suggested by the scatter plot’s strong 
alignment along the diagonal reference line (slope = 1). The model’s 
resilience on the test set is further supported by the fact that 
the majority of the points cluster around the diagonal with little 
deviation. This visual coherence supports the previously reported R2 
of 0.796 and RMSE of 0.343, demonstrating the RF model’s capability 
to capture variance in the bioactivity dataset.

In addition, feature interpretability was examined 
using the mean decrease in accuracy metric, as shown in 
Supplementary Figure S1 (Supplementary File S4). The bar chart 
ranks the molecular descriptors based on their contribution to 
model performance. Among the top-ranking descriptors, grav 
(gravitational index), RDFM4, RDFE5, and RDFU4 demonstrated 
the highest importance in explaining model variance. These features 
reflect various physicochemical and 3D spatial properties essential 
in determining compound-target interaction. Interestingly, features 
such as RDFM11, RDFV16, and TASA, although initially selected 
in other models, were assigned relatively low importance in the 
RF model, which may suggest non-linearity or redundancy under 
ensemble learning paradigms.

We further quantified uncertainty with split conformal 
prediction (80/20 proper-train/calibration), achieving 93.8% 
empirical coverage at a 90% nominal target and a mean prediction-
interval width of 5.55 pIC50 units, providing calibrated error bars 
for decision-making. 

Comparative analysis of GA-MLR and 
stepwise MLR coefficients

To assess the alignment and divergence in feature selection 
strategies, the multiple linear regression (MLR) models derived 
via Genetic Algorithm (GA) and Stepwise regression were 
systematically compared. Table 5 presents the coefficient estimates 
and associated p-values for predictors retained in both models.

The GA-MLR model selected nine descriptors, including TASA, 
RDFE14, grav, RDFE19, PNSA3, RDFM11, RDFP9, and RDFV14. 
Notably, grav, RDFP9, and RDFV14 were exclusively retained by 
GA, suggesting that these features may offer predictive value in 
non-sequential optimization processes but were excluded during 
stepwise elimination due to collinearity or marginal gain in 
explanatory power.

Conversely, the Stepwise MLR model retained 14 descriptors, 
including RDFE10, RDFM9, WNSA1, RDFU9, and others not 
selected by the GA-based approach. Despite some overlap, such as 
the inclusion of TASA, RDFE14, and RDFM11 in both models, their 
estimated coefficients and significance levels varied. For instance, 
TASA was more negatively weighted in the GA model (β = −0.514, 
p < 0.0001) than in the stepwise model (β = −0.309, p = 0.0003), 
highlighting differences in the model optimization trajectory.

Overall, the comparative findings highlight the fact that 
although both feature selection methods find core descriptors that 
significantly affect pIC50, GA might give preference to a smaller 
group of important variables. Stepwise regression, on the other hand, 
encourages a more complex model that is guided by small gains 
in model fit.
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FIGURE 9
A conserved quinazoline-based scaffold seen in both C9 and Compound ID: 2363810; (Supplementary File S1).

FIGURE 10
Williams plot (applicability domain). Standardized residuals vs. leverage for train/test (final GA-MLR). Dashed lines: ±3 residuals (horizontal) and 
h∗(vertical). Inside-AD points indicate the most reliable predictions; coverage in Table 8.

GA-MLR prediction accuracy and 
coefficient interpretation

To evaluate the predictive performance of the Genetic 
Algorithm–based Multiple Linear Regression (GA-MLR) model, 
a combined visualization of the observed versus predicted pIC50 
values for both training and test datasets was generated (Figure 5a). 
While the predictions for the test set were somewhat more scattered, 
they generally matched the observed values, while the training set’s 
points clustered closely along the identity line, suggesting a strong 

model fit. This indicates that the GA-MLR model was able to strike 
a fair balance between generalization and training fit.

In addition to visual assessment, coefficient estimates for the 
selected descriptors were extracted and plotted (Figure 5b). Here, 
positive coefficients (e.g., RDFE14, grav, PNSA3, RDFP9) indicate 
descriptors that positively influence pIC50, whereas negative 
coefficients (e.g., TASA, RDFM11, RDFV14) suggest inhibitory 
contributions. Notably, RDFE14 had the highest positive impact 
on pIC50 prediction among the molecular descriptors, while TASA 
showed the most pronounced negative contribution. The regression 
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TABLE 8  External test R2 and RMSE reported for the full test set 
(“All_Test”) and, where available, for inside-AD and outside-AD strata.

Stratum R2 RMSE N

All_test 0.5988135 0.518295 16

Inside_AD 15

Outside_AD 1

N indicates the number of compounds per stratum. The Williams threshold is computed 
from the training design matrix.

model captures the multifaceted nature of the molecular features 
that drive bioactivity, as demonstrated by this balance of influences.

To guard against chance correlation, Y-randomization with B = 
50 label shuffles yielded an empirical p-value ≈0.000, indicating the 
model captures non-random SAR signal. 

Virtual screening of de novo
KRAS-designed compounds

A virtual screening of 58 novel compounds created from 
scratch using DataWarrior was done to investigate the predictive 
potential of the GA-optimized MLR model. These compounds 
were structurally inspired by known KRAS inhibitors used in the 
development of the model. Molecular descriptors were calculated for 
each compound, and normalization was applied using the training 
set mean and standard deviation for each of the eight GA-selected 
features (TASA, RDFE14, grav, RDFE19, PNSA3, RDFM11, RDFP9,
RDFV14).

The trained GA-MLR model was then used to compute 
predicted pIC50 values for the new compounds. The predicted 
activities ranged from 6.42 to 9.05, suggesting a moderate to 
high potential for KRAS inhibition. To ensure model reliability, 
the Mahalanobis distance was computed for each compound, 
assessing its proximity to the descriptor space defined by the
training set.

Figure 6 illustrates the distribution of predicted pIC50 
values and highlights compounds flagged as outside the model’s 
applicability domain (DOA >15.0). Of the 58 molecules, 36 
compounds (62%) were classified as within the model’s applicability 
domain, while 22 compounds (38%) were flagged as extrapolations 
(outside DOA) (Supplementary File S5). These excluded molecules, 
despite having favorable predicted pIC50, may require further 
experimental validation due to structural dissimilarity or feature 
deviations.

Among the 58 de novo synthesized compounds evaluated 
through virtual screening, several exhibited predicted pIC50
values exceeding the benchmark of 8.0, which was used as a 
reference based on the potency of known experimental KRAS 
inhibitors. Specifically, compounds C4, C9, C19, C27, C28, C40, 
C44, C47, C49, C52, and C54 demonstrated predicted pIC50
values ranging from 8.02 to 8.64 (Figure 7), marking them as 
potential virtual hits for KRAS inhibition. Notably, of these, 
only compound C9 (pIC50 = 8.11) was classified as within the 
model’s applicability domain (DOA), reinforcing its reliability for 

further consideration. The remaining high-activity compounds, 
although flagged as being outside the applicability domain, may 
represent structurally novel scaffolds that warrant experimental
validation.

To support generalization claims when chronology is 
unavailable, we performed leave-cluster-out validation, holding 
out whole descriptor clusters. Across folds, the mean R2 ≈ 0.363 and 
mean RMSE ≈1.48 (k = 4), penalizing neighborhood overfitting and 
approximating “novel-analog” performance (Table 6). 

Drug-likeness and toxicity profile

To evaluate the drug-likeness of the identified hit compound, 
ADMET-related physicochemical and toxicity parameters were 
assessed for compound C9 using DataWarrior software, which is 
the only de novo molecule that both exceeded the benchmark 
pIC50 value of 8.0 and fell within the model’s applicability domain 
(Figure 8). As shown in Table 7, compound C9 exhibited a predicted 
pIC50 of 8.11, which is slightly higher than that of the known 
KRAS inhibitor (pIC50 = 8.10). Its molecular weight (555.08 Da), 
cLogP (5.96), number of hydrogen bond acceptors (8), and number 
of hydrogen bond donors (1) were all comparable to those of 
the reference compound. The total surface area (410.08 Å2) and 
polar surface area (84.9 Å2) further supported its bioavailability
profile.

Importantly, In-silico toxicity predictions revealed that 
compound C9 was classified as non-mutagenic, non-tumorigenic, 
and lacking reproductive toxicity, unlike the reference KRAS 
inhibitor, which was flagged for high mutagenic potential. This 
suggests that C9 may represent a safer lead candidate for further 
preclinical investigation.

In addition to its favorable ADMET profile, compound 
C9 exhibited a close structural resemblance to the reference 
KRAS inhibitor, with subtle modifications at the R1 position. As 
depicted in Figure 9, both molecules share a conserved quinazoline-
based scaffold, which is crucial for KRAS inhibitory activity. 
However, C9 features a 4-methylpiperidin-4-ylacetamide moiety 
at the R1 position, which distinguishes it from the acrylamide-
bearing R1 group in the reference inhibitor. This modification 
may contribute to C9’s improved predicted potency (pIC50 = 8.11) 
and non-toxic profile. The simplified side chain in C9 potentially 
reduces electrophilic reactivity, contributing to its favorable 
mutagenicity and tumorigenicity scores. These findings suggest that 
C9 retains the pharmacophoric integrity of the KRAS inhibitor while 
presenting a safer and equally potent alternative for further lead
optimization.

Applicability-domain stratification based on Williams leverage 
(threshold h∗= 1.04) showed 74.2% coverage for training and 24.2% 
for test; we therefore prioritize inside-AD candidates (e.g., C9) for 
experimental follow-up (Figure 10; Table 8). 

Molecular docking of C9 in the KRAS G12 
binding pocket

We docked the top-ranked de novo hit C9 into the KRAS 
G12 binding pocket and benchmarked the protocol against 
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FIGURE 11
Chemical interaction of compound C9 within the KRAS G12 binding pocket (a) 3D interactions and (b) 2D interaction.

the co-crystallized reference ligand. C9 achieved a docking 
score of −9.6 kcal mol−1, indicative of strong non-covalent 
complementarity within the pocket. The predicted pose forms 
a small hydrogen-bond network (ca. 2.26–2.93 Å) with SER17 
(HG→O), THR35 (HN→O; OG1···O) and ASP33 (O···O), supported 
by electrostatic contacts to LYS117 (NZ) and a hydrophobic shell 
involving PHE28, TYR32, LYS117, LEU120, and ALA18 (π–π 
and alkyl contacts, ∼3.5–5.1 Å). Representative 3D/2D interaction 
depictions and per-contact distances are shown in Figure 11 and
Table 9.

For the co-crystallized ligand, the docking reproduced a 
dense polar network dominated by ARG161 (NH1/HH···O)∗
and THR158/ASP154 hydrogen bonds (≈2.29–3.30 Å), with 
hydrophobic stabilization at ALA134 (Figure 12; Table 10). This 
provides an internal control for the docking setup and highlights that 
C9 engages a complementary but non-identical microenvironment 
compared with the reference ligand.

Our integrated workflow—pairing an interpretable GA-MLR 
with robust validation and orthogonal docking—argues that C9 
is a credible KRAS^G12C Switch-II pocket (SII-P) binder while 
clarifying where the model’s predictions are most reliable. We 
deliberately prioritize explainability and calibrated uncertainty 
over marginal gains in point accuracy, because mechanistic 
hypotheses and decision-grade error bars are the levers that most 
improve prospective medicinal chemistry on small, congeneric
datasets.

In the fitted GA-MLR, the dominant descriptor families point to 
two complementary physical themes with direct design implications 
for Switch-II pocket (SII-P) engagement. First, 3D distribution 
descriptors (RDF/MoRSE, with different atomic weightings) 
capture how mass, volume, and electronegativity are arranged 
at specific distance shells; the positive coefficients at selected 
shells imply that compact hydrophobic density and appropriately 

placed polarity at those radii favor activity—consistent with 
burying non-polar surface under the SII-P “lid” while projecting 
donors/acceptors toward the H95–Y96–Q99 cryptic subpocket 
exploited by KRAS^G12C covalent chemotypes (Lanman et al., 
2019; Ostrem et al., 2013; Canon et al., 2019; Fell et al., 2020; 
Schuur et al., 1996; Hemmer et al., 1999; Gramatica, 2020). 
Second, surface-partition terms (e.g., fractional positive polar 
surface area, FPSA) weight where chargeable/heteroatom surface 
is exposed; their positive sign supports moderated, localized 
polarity rather than wholesale charge—compatible with known 
permeability/recognition trade-offs and with the hydrogen-
bond topology reported for SII-P binders (Lanman et al., 
2019; Ostrem et al., 2013; Canon et al., 2019; Fell et al., 2020; 
Ertl et al., 2000). By contrast, global exposure metrics (e.g., TASA) 
trending negative argue against over-extended solvent-facing area, 
reinforcing a design bias toward tighter shape complementarity and 
fewer, better polar contacts. Practically, these signals recommend 
(i) increasing lipophilic bulk along vectors that deepen contact 
in the Y96/Q99 wall, (ii) retaining a focused donor/acceptor 
pattern aligned to the observed pose, and (iii) avoiding gratuitous 
polar surface that would inflate TASA without productive pocket 
interactions—together offering a descriptor-anchored blueprint 
for the next round of analogs (Sung et al., 2021; Pylayeva-
Gupta et al., 2011; Westover et al., 2016; Cox et al., 2014; Tropsha, 
2010; Cherkasov et al., 2014; Todeschini and Consonni, 2009; 
Lanman et al., 2019; Cao et al., 2013; Sulaiman et al., 2021; C et al., 
2002; Ghani and Ahmad, 2010; Molnar et al., 2018; Roy et al., 
2015; López-López et al., 2019; Ostrem et al., 2013; Canon et al., 
2019; Fell et al., 2020; Schuur et al., 1996; Hemmer et al., 1999;
Gramatica, 2020).

Although higher-capacity baselines (PLS, RF) can outperform 
linear models on a given split, GA-MLR remains the most useful 
engine for hypothesis generation: its coefficients map cleanly 
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TABLE 9  Details of chemical interactions of C9 with KRAS G12 binding pocket.

Name XYZ:X XYZ:Y XYZ:Z Distance Category From From 
chemistry

To To 
chemistry

A:SER17:HG - 
N:UNK1:O

6.0305 27.823 12.966 2.26169 Hydrogen bond A:SER17:HG H-donor N:UNK1:O H-acceptor

A:THR35:HN - 
N:UNK1:O

7.233 26.2585 12.0425 2.79979 Hydrogen bond A:THR35:HN H-donor N:UNK1:O H-acceptor

N:UNK1:O - 
A:ASP33:O

6.093 27.275 11.0135 2.92842 Hydrogen bond N:UNK1:O H-donor A:ASP33:O H-acceptor

N:UNK1:O - 
A:THR35:OG1

7.0485 27.4675 12.7705 2.5282 Hydrogen bond N:UNK1:O H-donor A:THR35:OG1 H-acceptor

N:UNK1:C - 
A:GLU31:O

0.997 27.2265 10.335 3.73123 Hydrogen bond N:UNK1:C H-donor A:GLU31:O H-acceptor

A:LYS117:NZ - 
N:UNK1

−1.92625 23.2282 13.2429 4.35725 Electrostatic A:LYS117:NZ Positive N:UNK1 Pi-orbitals

A:LYS117:NZ - 
N:UNK1

−1.77083 22.1195 12.7876 3.51304 Electrostatic A:LYS117:NZ Positive N:UNK1 Pi-orbitals

A:PHE28 - 
N:UNK1

−5.62917 27.4446 12.3228 4.95864 Hydrophobic A:PHE28 Pi-orbitals N:UNK1 Pi-orbitals

A:TYR32 - 
N:UNK1

3.148 24.2891 11.0662 4.36469 Hydrophobic A:TYR32 Pi-orbitals N:UNK1 Pi-orbitals

N:UNK1:C - 
A:LYS117

−4.74833 23.8055 16.4143 3.79833 Hydrophobic N:UNK1:C Alkyl A:LYS117 Alkyl

N:UNK1:C - 
A:LYS117

−5.66283 23.0475 15.9958 3.63672 Hydrophobic N:UNK1:C Alkyl A:LYS117 Alkyl

N:UNK1:C - 
A:LEU120

−7.78325 22.4312 15.0076 3.93632 Hydrophobic N:UNK1:C Alkyl A:LEU120 Alkyl

A:PHE28 - 
N:UNK1:C

−5.26192 27.6692 14.4117 5.00562 Hydrophobic A:PHE28 Pi-orbitals N:UNK1:C Alkyl

N:UNK1 - 
A:ALA18

−1.22125 27.1132 13.7384 5.10359 Hydrophobic N:UNK1 Pi-orbitals A:ALA18 Alkyl

onto physically interpretable descriptor families (vdW/shape-
weighted RDF/MoRSE; balanced positive polar surface area), 
yielding actionable guidance for substituent placement and polarity 
tuning within SII-P. The dispersion observed in repeated cross-
validation is a faithful readout of the small-N regime rather than 
a model defect, and Y-randomization effectively rules out chance 
correlations. Together with split-conformal prediction intervals, 
which provide calibrated coverage, the framework supplies both 
rank ordering and uncertainty—information that is more actionable 
than point estimates alone when advancing compounds into 
synthesis and testing.

Generalizability is constrained, by design, to a single 
congeneric covalent series. Applicability-domain (AD) analysis 
indicates that most training analogs lie within the modeled 
subspace, whereas a subset of test compounds fall outside; 

we therefore treat inside-AD predictions as decision-
preferred and outside-AD as hypothesis-generating. Leave-
cluster-out validation, which withholds whole descriptor 
neighborhoods, further stresses the model and exposes performance 
heterogeneity typical of narrow chemical neighborhoods. In 
this context, reporting both AD stratification and conformal 
intervals makes explicit the reliability envelope for any given
prediction.

Docking provides orthogonal structural support. The C9 
pose occupies the canonical SII-P cavity and projects toward 
the H95–Y96–Q99 cryptic subpocket that underpinned the 
transformation of KRAS^G12C from “undruggable” concept to 
a clinically validated target, beginning with allosteric covalent 
inhibitors that lock the GDP state and culminating in sotorasib 
(AMG-510) and adagrasib (MRTX849) (Lanman et al., 2019; 
Ostrem et al., 2013; Canon et al., 2019; Fell et al., 2020). 
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FIGURE 12
Chemical interaction of co-crystalized compound within the KRAS G12 binding pocket (a) 3D interactions and (b) 2D interaction.

TABLE 10  Details of chemical interaction of co-crystalized compound with KRAS G12 binding pocket.

Name XYZ:X XYZ:Y XYZ:Z Distance Category From From 
chemistry

To To 
chemistry

A:ARG161:NH1 
- N:UNK1:O

−2.3605 32.5235 35.009 5.55825 Electrostatic A:ARG161:NH1 Positive N:UNK1:O Negative

A:ARG161:NH1 
- N:UNK1:O

−2.1455 34.5075 36.2335 3.11101 Electrostatic A:ARG161:NH1 Positive N:UNK1:O Negative

A:ARG161:NH1 
- N:UNK1:O

−3.747 34.559 34.565 4.93326 Electrostatic A:ARG161:NH1 Positive N:UNK1:O Negative

A:THR158:HG1 
- N:UNK1:O

−2.6095 30.1995 34.149 2.29217 Hydrogen 
bond

A:THR158:HG1 H-donor N:UNK1:O H-acceptor

A:ARG161:HH11 
- N:UNK1:O

−3.2095 35.3805 34.6405 2.50646 Hydrogen 
bond

A:ARG161:HH11 H-donor N:UNK1:O H-acceptor

A:ARG161:HH12 
- N:UNK1:O

−1.185 33.2155 35.7535 2.47248 Hydrogen 
bond

A:ARG161:HH12 H-donor N:UNK1:O H-acceptor

A:ARG161:HH21 
- N:UNK1:O

−3.447 36.4505 34.989 2.65184 Hydrogen 
bond

A:ARG161:HH21 H-donor N:UNK1:O H-acceptor

N:UNK1:H - 
A:ASP154:OD1

−3.5245 32.516 33.337 2.46273 Hydrogen 
bond

N:UNK1:H H-donor A:ASP154:OD1 H-acceptor

N:UNK1:H - 
A:THR158:OG1

−2.22 32.1705 33.8875 2.7364 Hydrogen 
bond

N:UNK1:H H-donor A:THR158:OG1 H-acceptor

N:UNK1:H - 
N:UNK1:O

−5.987 31.8555 36.4525 2.8911 Hydrogen 
bond

N:UNK1:H H-donor N:UNK1:O H-acceptor

A:ALA134:C - 
N:UNK1:O

−0.1825 19.1655 37.06 3.35859 Hydrogen 
bond

A:ALA134:C H-donor N:UNK1:O H-acceptor

A:ARG161:CD 
- N:UNK1:O

−0.5445 33.4775 36.7565 3.30101 Hydrogen 
bond

A:ARG161:CD H-donor N:UNK1:O H-acceptor

N:UNK1 - 
A:ALA134

−1.68033 20.2327 35.3445 4.16894 Hydrophobic N:UNK1 Pi-orbitals A:ALA134 Alkyl

Frontiers in Bioinformatics 14 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1663846
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Stephen Adebayo et al. 10.3389/fbinf.2025.1663846

This atomistic picture coheres with the GA-MLR descriptor 
signals—hydrophobic packing and moderated polarity at specific 3D 
radii—reinforcing that the linear model is capturing pocket physics 
rather than spurious correlations. We interpret the −9.6 kcal/mol 
docking score qualitatively, consistent with community benchmarks 
that docking is most reliable for pose generation and less so for 
precise affinity ranking (Warren et al., 2006; Huang and Zou, 
2010). Moreover, noncovalent docking does not explicitly model 
the G12C reaction coordinate, and SII-P conformational plasticity 
(cryptic breathing, water networks) can modulate recognition; 
covalent docking and short explicit-water molecular dynamics 
are therefore logical next steps to stress-test pose stability and 
reactive geometry in a pocket known to be dynamic (Huang and 
Zou, 2010; Mou et al., 2025).

Finally, the evidence positions C9 as a mechanistically rational 
KRAS^G12C candidate: an SII-P-consistent pose aligned with 
descriptor-level SAR, decision-grade uncertainty quantification, 
and clear AD guidance for triaging experiments. Practically, 
the data motivate a staged plan: biochemical engagement and 
nucleotide-exchange assays for KRAS^G12C, orthogonal biophysics 
(e.g., intact-protein MS for covalent adducts; DSF/CETSA), and 
comparative docking/short MD (including covalent protocols) 
against sotorasib/adagrasib-like matter to refine vectors that 
deepen H95/Y96/Q99 engagement. Positive outcomes would 
justify cellular studies in KRAS^G12C-mutant models and inform 
subsequent lead-optimization cycles. Within the realistic constraints 
of a small, single-series dataset, this balance—interpretability, 
calibration, and structural plausibility—maximizes the likelihood 
of successful translation from in silico predictions to in vitro
validation.

Therefore, this study presents a novel pipeline that 
synergizes interpretable machine learning with evolution-
based molecular generation, yielding compound C9 as a 
promising KRAS inhibitor with predictive potency, safety, and 
structural validity. The ability to pinpoint such candidates 
within an interpretable and chemically meaningful framework 
holds substantial promise for guiding experimental validation 
and future lead optimization efforts against KRAS-driven
malignancies.

Conclusion

This study demonstrates the successful integration of QSAR 
modeling and de novo design to identify novel KRAS inhibitors 
with strong predicted potency and favorable drug-like properties. 
Among the models developed, PLS and Random Forest offered 
high predictive accuracy, while the GA-MLR model provided a 
mechanistically interpretable equation based on eight key molecular 
descriptors. Virtual screening of 58 de novo compounds identified 
compound C9 as a potent, non-toxic candidate within the model’s 
applicability domain, highlighting its potential as a lead structure 
for further development in lung cancer therapy. These findings 
offer a promising computational pipeline for accelerating structure-
based drug discovery against challenging oncogenic targets
like KRAS.
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