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Introduction: KRAS mutations are key oncogenic drivers in lung cancer, yet
effective pharmacological targeting has remained a major challenge due to
the protein's elusive and dynamic binding pockets. Computational modeling
offers a promising route to identify novel inhibitors with improved potency and
selectivity.

Methods: A quantitative structure—activity relationship (QSAR) modeling
approach was developed to predict the inhibitory potency (plCsy) of
KRAS inhibitors and support de novo drug design. Molecular descriptors
for 62 inhibitors retrieved from the ChEMBL database (CHEMBL4354832)
were computed using Chemopy. Following descriptor normalization and
dimensionality reduction, five machine learning algorithm spartial least squares
(PLS), random forest (RF), stepwise multiple linear regression (MLR), genetic
algorithm optimized MLR (GA-MLR), and XGBoost were applied. Model
performance was evaluated using R?, RMSE, and MAE, while permutation-based
importance and SHAP analyses provided feature interpretability.

Results: Among the models tested, PLS exhibited the best predictive
performance (R? = 0.851; RMSE = 0.292), followed by RF (R? = 0.796). The GA-
MLR model, based on eight optimized molecular descriptors, achieved good
interpretability and robust internal validation (R? = 0.677). Virtual screening of 56
de novo designed compounds within the model's applicability domain identified
compound C9 with a predicted plCsp) of 8.11 as the most promising hit.
Discussion: This integrative QSAR modeling and de novo design framework
effectively predicted the bioactivity of KRAS inhibitors and facilitated the
identification of novel candidate molecules. The findings demonstrate the utility
of combining interpretable machine learning models with virtual screening to
accelerate the discovery of potent KRAS inhibitors for lung cancer therapy.
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Introduction

Lung cancer is one of the most prevalent malignancies globally
and remains the leading cause of cancer-related deaths, responsible
for about 1.8 million deaths yearly (Sung et al., 2021). In non-small
cell lung cancer (NSCLC), mutations in the Kirsten rat sarcoma
viral oncogene homolog (KRAS) gene are among the most frequent
genetic alterations, particularly in smokers, and are associated with
aggressive tumor phenotypes and resistance to targeted therapies
(Pylayeva-Gupta et al., 2011; Westover et al., 2016).

Historically, the development of direct KRAS inhibitors has
been challenging due to the proteins high affinity for GTP/GDP
and the absence of easily targetable binding sites, earning it
the label of “undruggable” (Cox et al., 2014). However, recent
advances in covalent inhibitors, such as those targeting the
KRAS GI12C mutation (e.g., sotorasib), have demonstrated
clinical efficacy and reignited interest in targeting KRAS-
driven tumors (Lanman et al., 2019).

Despite this progress, most KRAS mutations beyond G12C
remain therapeutically elusive, necessitating the exploration
of novel chemical scaffolds and mechanisms of inhibition.
Accordingly, a promising avenue for rational drug design
is provided by computational methods such as quantitative
structure-activity relationship (QSAR) modeling. By using
statistical and mathematical techniques to link chemical structure
and biological activity, QSAR models make it possible to predict the
activity of untested compounds (Tropsha, 2010; Cherkasov et al.,
2014). Machine learning and genetic algorithm-enhanced QSAR
strategies further enhance model performance by optimizing
descriptor selection and minimizing overfitting (Todeschini and
Consonni, 2009).

Materials and methods
Dataset compilation

A dataset comprising 62 KRAS inhibitors (Supplementary File S1)
was retrieved from the ChEMBL database (CHEMBL ID:
CHEMBLA4354832) (Lanman et al., 2019). The retrieved compounds
included their experimentally measured IC50 values (in nM). Each
compound was standardized, and duplicates were removed to ensure
data consistency. The IC50 values were transformed into pIC50 values
using the standard conversion equation:

pIC50 = —log 10(IC50 x 107%)

This transformation provided a more suitable scale for
regression modeling.

Abbreviations: NSCLC, Non-small cell lung cancer; KRAS, Kirsten rat
sarcoma viral oncogene homolog; QSAR, Quantitative structure—activity
relationship; MLR, Multiple linear regression; GA, Genetic Algorithm; GA-
MLR, Genetic Algorithm-optimized Multiple Linear Regression; AIC, Akaike
Information Criterion; PLS, Partial Least Squares; RF, Random Forest; MSE,
Mean squared error; XGBoost, Extreme Gradient Boosting; RMSE, Root mean
square error; MAE, Mean absolute error; Grav, gravitational index; TASA, Total
solvent-accessible surface area.
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Molecular descriptor calculation

Molecular descriptors were calculated using the ChemoPy
package in Python (Cao et al, 2013). Descriptors generated
included topological, constitutional, geometrical, and electronic
features. The resulting dataset was filtered leaving only numeric
descriptors (Supplementary File S2). Columns with missing valuesand
zero variance were excluded. The final descriptor matrix included a
diverse set of molecular features relevant to QSAR modeling.

Preprocessing and feature reduction

Before model training, descriptors were standardized by
centering to the mean and scaling to unit variance. Highly
correlated descriptors (Pearson’s |r| >0.95) were removed to reduce
multicollinearity (Sulaiman et al, 2021). Among the remaining
descriptors, the top 50 features with the highest variance were selected
for further analysis. The dataset was then split into training (70%) and
test (30%) sets using stratified sampling on the pIC50 values.

Feature selection using genetic algorithm
(GA)

A Genetic Algorithm (GA) (Cho et al,, 2002) was employed
to identify an optimal subset of descriptors that maximized the
adjusted R-squared (R?a dj}) while penalizing model complexity. The
fitness function used was:

k

2 —_——
fadjt "

Fitness = R

Where k is the number of selected descriptors and n is the
number of training samples. The Genetic Algorithm was run
with binary chromosome representation, 50 generations, and 10
consecutive runs without improvement as stopping criteria. The final
GA-selected features were used to train a multiple linear regression
(MLR) model.

Model development

To develop robust predictive models for estimating the pICs,
values of KRAS inhibitors, multiple machine learning algorithms
were employed and benchmarked. The primary model utilized
was a Genetic Algorithm-optimized Multiple Linear Regression
(GA-MLR) model. In this approach, a binary genetic algorithm
was applied to select an optimal subset of molecular descriptors
from the training dataset. The fitness function for the GA was
designed to maximize the adjusted R* of the resulting linear model
while incorporating a penalty term proportional to the number of
selected features, thereby discouraging overfitting. The linear model
constructed using the selected descriptors followed the general form:

y= ﬁoﬂ—le1 +[32x2+"'+ﬁnxn

where y is the predicted pICs,, B, is the intercept, B, ...pn are
the regression coefficients, and x, ...x, represent the GA-selected
standardized descriptors.
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TABLE 1 Summary of validation metrics for each predictive model.

Model ’ R? RMSE MAE
GA-MLR 0.677 0.663 0.509
Stepwise MLR 0.685 0.590 0.466
PLS 0.851 0.292 0.218
Random Forest 0.796 0.343 0.255
XGBoost 0.688 0.478 0.379

TABLE 2 Summary of validation metrics for each predictive model

(external set).

Model R_squared RMSE
GA-MLR (final) 0.599 0.518
PLS 0.893 0.309
Random Forest 0.838 0.330
XGBoost 0.439 0.524

TABLE 3 Summary of training/test sample sizes (N_train, N_test),

descriptor count (p), in-sample fit (R?_train, RMSE_train), external test
performance (R?_pred, RMSE_test), repeated 10 x 5-fold CV statistics
(mean R? with 2.5%-97.5% quantiles), and Williams applicability-domain
(AD) parameters (train/test coverage; threshold h\«<h"\ «).

Metric Value
N_train 46
N_test 16
p 15
R2_train 0.721
RMSE_train 0.476
R2_pred (external) 0.599
RMSE_test 0.518
R2_cv_mean 0.370
R2_cv_2.5% 0.0136
R2_cv_97.5% 0.905
AD_coverage_train 0.742
AD_coverage_test 0.242
h_star 1.043

All metrics are reported in pICy, units where applicable.
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In parallel, a Stepwise Multiple Linear Regression (Stepwise
MLR) model was developed using bidirectional stepwise selection
based on the Akaike Information Criterion (AIC) (Ghani and
Ahmad, 2010). This method involved iterative addition and removal
of variables from a null model to a full model, selecting the
combination of descriptors that minimized AIC.

For comparative purposes, a Partial Least Squares (PLS)
regression model was constructed using the kernel algorithm. The
optimal number of latent components was determined through 10-
fold cross-validation. Additionally, a Random Forest (RF) model
was implemented using 500 trees, leveraging the randomForest
package. Feature importance in the RF model was quantified using a
permutation-based increase in mean squared error (MSE), enabling
interpretation of variable contributions.

Lastly, an Extreme Gradient Boosting (XGBoost) model was
trained using the xgboost package with a squared error loss function.
The model was tuned with a maximum tree depth of 6, a learning rate
(n) of 0.1, and 200 boosting iterations.

Each of these models were trained and validation was achieved
using standardized descriptors derived from the 64-compound
dataset retrieved from the ChEMBL database (CHEMBL ID:
CHEMBL4354832), and their performance metrics were compared
using R? and RMSE on both training and test sets.

Model performances were evaluated on the test set using R%,
RMSE, and MAE.

SHAP and permutation-based
interpretability

In order to feature contributions in the
RF model, SHAP values were computed using the iml

package in R (Molnar et al., 2018). To determine how each variable

interpret

affected the predictive power of the model, permutation-based
feature importance was also calculated using the same package.

Domain of applicability (DOA) assessment

Mahalanobis Distance (MD) (Roy et al., 2015) was used to assess
whether novel compounds fell within the applicability domain of the
training set. The MD was computed as:

D2=(x-p)'Z (x—p)

Where p is the mean vector and X is the covariance matrix
of the normalized training set. A threshold based on the 95th
percentile of the x2 distribution with 8 degrees of freedom was
applied. Compounds with MD above this threshold were flagged as
outside the DOA.

Virtual screening and plC;, prediction

To identify novel inhibitors of KRAS, an evolutionary de
novo design strategy was implemented using the DataWarrior
software (Lopez-Lopez et al, 2019). This method seeks to
explore vast regions of chemical space by mimicking natural
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TABLE 4 Test-set performance and AD coverage for the BIC-selected linear model with fewer descriptors (p).

p R2_pred RMSE_test

AD_train_cov

AD_test_cov ‘ N_insideAD

‘ BIC-MLR ‘ 6 0.429 ‘ 0.632

0.726 0.242 ‘ 15

Where available, inside-AD, test metrics are provided to indicate reliability within the modeled subspace.
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FIGURE 1

External R? as a function of training-set fraction (20%—-90%). Points are replicate subsamples; the solid line is the mean and error bars denote +1 SD.
The plateau indicates diminishing returns at the current data size for this congeneric series.
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FIGURE 2
Top 8 permutation-based feature importances from the Random

Forest model.

evolution to create new molecules optimized for drug-likeness
and target-specific similarity. The process began with a seed
molecule (Compound ID: 2363810; Supplementary File S1), chosen
for its known KRAS inhibitory profile and desirable drug-like
properties. DataWarrior applied random chemical transformations
to this initial structure, including atom substitutions, bond
rearrangements, and ring modifications, to generate a larger
first-generation library of child compounds. These structural
mutations were probabilistically biased toward those that improved
molecular drug-likeness, as measured by built-in scoring metrics,
while chemically implausible modifications were penalized or
excluded.
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FIGURE 3
Top 8 SHAP contributions computed using the Random Forest model.

Each resulting compound underwent multi-objective evaluation
using fitness criteria such as drug-likeness, pharmacophore alignment,
and 3D shape similarity to the reference KRAS inhibitor.
Specifically, two similarity scores were used to guide molecular
selection: the SkelSpheres similarity score, which captures topological
resemblance, and the Flexophore similarity score, which quantifies
3D pharmacophore overlap. Compounds from each generation were
ranked based on these criteria, and top performers were retained as
parents for the next-generation. Over multiple cycles and generations,
the algorithm progressively refined the structures, selecting candidates
with fitness scores approaching 1.000 and similarity metrics (both
SkelSpheres and Flexophore) often exceeding 0.98.
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FIGURE 4
Performance and interpretability of the Random Forest (RF) model.
TABLE 5 Comparison of GA-MLR vs. Stepwise MLR coefficients. Ultimately, 56 molecules were selected across seven

Variable Estimate_ | p_GA Estimate_ pP—
GA stepwise  stepwise
(Intercept) 6.6791 1.75E-49 6.6791 6.46E-46
TASA ~0.5139 1.52E-05 -0.3092 0.00028
RDFE14 0.8145 0.00016 0.2550 0.01463
gray 0.6494 0.00033 - -
RDFE19 0.0090 0.92763 - -
PNSA3 03118 0.01231 - -
RDFM11 -0.3224 0.00040 -0.3894 0.00316
RDFP9 0.4943 6.81E-05 - -
RDFV14 ~0.4546 0.01444 -
RDFE10 - - 03250 0.00213
RDFM9 - - 03570 0.00039
WNSA1L - - -0.2156 0.00062
RDFU9 - - 05351 0.00040
RDFM6 - - 0.1926 0.05153
RDFU4 - - -0.3821 0.00331
RDFE21 - - -0.1618 0.02145
MoRSEE1 - - ~0.1429 0.05268
RDFE20 - - 0.1307 0.10460
RDFV11 - - 0.1986 0.16125
RDFV16 - - 0.0961 0.23464
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generations (Supplementary File $3), encompassing diverse yet drug-
like scaffolds. Each compound’s SMILES structure was exported,
and the same eight GA-selected descriptors—TASA, RDFE14, grav,
RDFE19, PNSA3, RDFM11, RDFP9, and RDFV14—were computed
using the Chemopy Python library. These descriptors were normalized
using the mean and standard deviation values derived from the training
set, ensuring compatibility with the original model space.

The normalized descriptors were then passed into the GA-
optimized multiple linear regression (GA-MLR) model, which had
been trained on 62 experimental KRAS inhibitors (CHEMBL4354832
dataset). Predicted pICs, values were calculated for all 56 de novo
compounds. To ensure model applicability, Mahalanobis distance was
computed for each prediction, and compounds falling outside the 95%
confidence ellipsoid of the descriptor space were flagged as “Outside
DOA” (domain of applicability).

This virtual screening workflow successfully yielded novel
candidate molecules with promising inhibitory activity. Several of
these compounds exceeded a pICy, threshold of 8.0—comparable
or superior to reference KRAS inhibitors—and were designated as
hits for further consideration. These candidates will be structurally
highlighted in the manuscript and considered for in silico ADMET
profiling and docking-based validation.

Molecular docking

For molecular docking, we used the KRAS G12 crystal
structure (PDB ID: 6CU6 as the receptor. The protein was
prepared in BIOVIA Discovery Studio Visualizer and PyMOL
by removing crystallographic waters/ions (except those required
for structural integrity), retaining the co-crystallized ligand for
redocking qualification, adding polar hydrogens, and assigning atom
types; Cysl2 was kept in its standard form because we modeled
noncovalent pre-reaction poses (no covalent bond formation).
Ligands (de novo designs and C9) were generated in DataWarrior,
sanitized, assigned protonation states appropriate for ~ physiological

frontiersin.org
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in the MLR model.

(a) Observed vs. Predicted plC50 values for GA-MLR across training and test sets. (b) Regression coefficients for the GA-selected molecular descriptors
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based on Mahalanobis distance (cutoff = 15).

Distribution of predicted plC50 for 58 de novo synthesized KRAS-like compounds. Bars are color-coded to indicate domain of applicability status

Applicability Domain Status

B outside DOA
I within DOA

pH, and energy-minimized; final docking inputs were prepared
via PyRx (Open Babel) with Gasteiger charges and PDBQT
conversion. Docking was carried out in PyRx/AutoDock Vina, using
a search box centered on the Switch-II pocket around the co-
crystal pose to fully encompass the H95-Y96-Q99 cryptic region
and the Cys12 vicinity; default Vina parameters were used unless
otherwise stated. The protocol was qualified by redocking the co-
crystallized ligand and visually assessing recovery of the pose and
key contacts. For all compounds, multiple poses were generated
and ranked by Vina score (kcal-mol™); the top-scoring, clash-
free pose consistent with known SII-P pharmacology was retained
for analysis. Interaction fingerprints (H-bonding, electrostatics,
hydrophobics/m) were inspected and illustrated in Discovery Studio
and PyMOL, and binding energies reported from Vina are presented
as negative values (more negative = more favorable).

Software environment

All data preprocessing, modeling, and visualization were
conducted in R version 4.3.2. Libraries used include: caret,
randomForest, xgboost, iml, GA, pls, Metrics, and ggplot2. The R

Frontiers in Bioinformatics 06

script used for the analysis is provided as an additional file for
reference (Additional file).

Results and discussion
Overview of model performance

Five machine learning and statistical regression models were
developed to predict the pIC;, values of compounds using molecular
descriptors generated via Chemopy. These models included: (1)
Genetic Algorithm-optimized Multiple Linear Regression (GA-MLR),
(2) Stepwise MLR, (3) Partial Least Squares (PLS) Regression, (4)
Random Forest (RF), and (5) XGBoost regression. Each model was
trained on a dataset consisting of 70% of the observations and validated
using the remaining 30%. The evaluation metrics used were the
coefficient of determination (R?), root mean square error (RMSE),
and mean absolute error (MAE).

Table 1 presents the validation performance of each model. The
PLS model achieved the highest predictive accuracy with an R? of 0.851
and the lowest RMSE (0.292). The Random Forest model yielded an
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FIGURE 7

Predicted KRAS Inhibitor Hits with plCsq >8.0 from Virtual Screening of De Novo Compounds. Structures of the top-scoring compounds generated via
de novo design and screened using the GA-optimized MLR model. Only compound C9 was predicted to fall within the applicability domain (DOA); all
others are flagged as outside the DOA. Predicted plCsq values are indicated for each compound.

TABLE 6 For each k-means cluster held out in turn, the table lists
training/test sizes and external performance (R?, RMSE).

Cluster  N_train N_test = R_squared RMSE
1 37 25 0.1005769 0.9484648
2 60 2 1.0000000 27320567
3 4 20 0.0985520 0.9912530
4 47 15 0.2545580 1.2480888

LCO, penalizes neighborhood overfitting and approximates generalization to “novel”
analog clusters.

R? of 0.796 and an RMSE of 0.343. XGBoost achieved R*> = 0.688
and RMSE = 0.478. The GA-MLR and Stepwise MLR models yielded
comparable R* values of 0.677 and 0.685, respectively, though the
Stepwise model demonstrated a slightly lower RMSE (0.590 vs. 0.663).
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External-test benchmarking on the standardized pipeline
confirms this ranking: PLS (R? = 0.893, RMSE = 0.309), RF (R’
= 0.838, RMSE = 0.330), GA-MLR (R* = 0.599, RMSE = 0.518),
and XGBoost (R? = 0.439, RMSE = 0.524). We therefore retain GA-
MLR as the primary, interpretable model for SAR extraction, while
reporting PLS/RF as higher-capacity baselines for context (Table 2).

To quantify statistical robustness, repeated 10 x 5-fold cross-
validation on the training set produced mean R? = 0.370 with 95%
quantiles 0.014-0.905, and mean RMSE = 1.02 with 95% quantiles
0.365-1.80. The observed spread is expected for a small, congeneric
series and is reflected in the external performance variance.

Predictive equation from GA-optimized
MLR

The GA-MLR model selected eight features using a genetic
algorithm that maximized the adjusted R? while penalizing model

frontiersin.org
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Cl
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Structural resemblance between (a) KRAS inhibitor (Compound ID: 2363810; Supplementary File S1; pICsy = 8.10) and (b) C9 (pICs, = 8.11).

complexity. The regression equation derived is as follows:

y=6.6791-0.5139 - TASA +0.8145 - RDFE14
+0.6494 - grav+0.00898 - RDFE19 +0.3118
-PNSA3-0.3224 - RDFM11 + 0.4943 - RDFP9
—0.4546 -RDFV14

This model yielded an R? of 0.677 and RMSE of 0.663 on the test
set, with predicted pIC;, values ranging from 5.23 to 9.26.

Using the final GA-MLR (GA + VIF) implementation, N_train
= 46, N_test = 16, p = 15 descriptors, with R?_train = 0.721,
RMSE_train = 0.476, and Rz_pred = 0.599, RMSE_test = 0.518.
We additionally report 95% coefficient confidence intervals for
transparency; four coefficients (two positive, two negative) do not
cross zero, supporting mechanistic interpretability (Table 3).

Predictors selected by stepwise MLR

The stepwise MLR model selected 14 descriptors through a
bidirectional selection process. Descriptors like RDFE10, RDFM9,
WNSA1, RDFE21, and MoRSEE1 were included in the final model
equation. On the validation set, the final formula produced an R? of
0.685 and an RMSE of 0.590.

For parsimony, we also derived a BIC-penalized refit from
the GA-VIF pool (p = 6), yielding R*_pred = 0.429, RMSE_test
= 0.632. While less accurate, the BIC model offers a compact
explanatory scaffold and can expand the reliable applicability
domain in prospective use (Table 4).

PLS and ensemble models

With two latent components, the PLS regression model
produced better predictive results (R? = 0.851; RMSE = 0.292). The
Random Forest model, constructed with 500 trees and 16 variables
tried at each split, achieved an R? of 0.796 and an RMSE of 0.343.
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XGBoost, trained using the GA-selected features and tuned with 200
boosting rounds (max depth = 6, eta = 0.1), achieved R?>=0.688 and
RMSE = 0.478.

Under the standardized feature/normalization protocol, PLS
improved to R* = 0.893, RMSE = 0.309; RF to R? = 0.838, RMSE
= 0.330; XGBoost performed at R? = 0.439, RMSE = 0.524. These
baselines bound the achievable accuracy and corroborate that
the activity signal is learnable while GA-MLR remains the SAR
workhorse (Figure 1).

Feature importance and model
interpretability

Grav, RDFE19, RDFP9, and RDFEI4 were among the
most significant descriptors, according to a permutation-
based  importance analysis  employing  the
Forest model (Figure 2). When permuted, these features displayed

Random

the largest increase in mean squared error (MSE), suggesting their
significance for the predictive performance of the model.

Additionally, SHAP (Shapley Additive Explanations) values were
computed using the iml package to provide a local explanation for
model predictions. Figure 3 shows the top 8 features ranked by
average absolute SHAP values. The grav descriptor exhibited the
highest negative SHAP impact on pICy, predictions, followed by
RDFE19 and RDFP9.

Descriptor directions inferred from GA-MLR (e.g., positive
contributions for vdW/shape-weighted RDF/MoRSE families and
balanced positive polar surface area) align with the amphiphilic
character of the Switch-II pocket and informed substituent vectors
subsequently tested by docking.

Model visualization and residual analysis
Visualization techniques were used to further assess the Random

Forest (RF) model’s performance and interpretability. The RF
model’s predicted and observed pICs, values are shown in Figure 4.
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TABLE 7 Comparison of physicochemical and toxicity properties between C9 and reference KRAS inhibitor.

Frontiers in Bioinformatics

Mutagenic | Tumorigenic Reproductive

Polar surface

(V]
(Y]
©
G
b
=
7]
©
o
=

pICsq Mol. weight clLogP  H-acceptors H-donors

Compound ID

area (A2)

area (A?)

effective

(OF)]

L
z =
=} (=]
= Z
3
z =
Q (=]
= Z
= L
> 5
T Z
) R
< <
el <}
Nl [}
@ =
N [=3
o —
<+ <+
— —
@« =)
N O
N ]
o [Te}
f=)} [}
< <
o> [Te}
Nel wn
wn w
(=] —
= —
e} o0
—
= | B
S 3
= °
o) A
= £
El S
o
2 =
~-
M o
®)

09

10.3389/fbinf.2025.1663846

Good predictive agreement is suggested by the scatter plot’s strong
alignment along the diagonal reference line (slope = 1). The model’s
resilience on the test set is further supported by the fact that
the majority of the points cluster around the diagonal with little
deviation. This visual coherence supports the previously reported R>
0f0.796 and RMSE of 0.343, demonstrating the RF model’s capability
to capture variance in the bioactivity dataset.

In addition, feature interpretability —was examined
using the mean decrease in accuracy metric, as shown in
Supplementary Figure S1 (Supplementary File S4). The bar chart
ranks the molecular descriptors based on their contribution to
model performance. Among the top-ranking descriptors, grav
(gravitational index), RDFM4, RDFE5, and RDFU4 demonstrated
the highest importance in explaining model variance. These features
reflect various physicochemical and 3D spatial properties essential
in determining compound-target interaction. Interestingly, features
such as RDFM11, RDFV16, and TASA, although initially selected
in other models, were assigned relatively low importance in the
RF model, which may suggest non-linearity or redundancy under
ensemble learning paradigms.

We further quantified uncertainty with split conformal
prediction (80/20 proper-train/calibration), achieving 93.8%
empirical coverage at a 90% nominal target and a mean prediction-
interval width of 5.55 pICs, units, providing calibrated error bars
for decision-making.

Comparative analysis of GA-MLR and
stepwise MLR coefficients

To assess the alignment and divergence in feature selection
strategies, the multiple linear regression (MLR) models derived
via Genetic Algorithm (GA) and Stepwise regression were
systematically compared. Table 5 presents the coefficient estimates
and associated p-values for predictors retained in both models.

The GA-MLR model selected nine descriptors, including TASA,
RDFE14, grav, RDFE19, PNSA3, RDEM11, RDFP9, and RDFV14.
Notably, grav, RDFP9, and RDFV14 were exclusively retained by
GA, suggesting that these features may offer predictive value in
non-sequential optimization processes but were excluded during
stepwise elimination due to collinearity or marginal gain in
explanatory power.

Conversely, the Stepwise MLR model retained 14 descriptors,
including RDFE10, RDFM9, WNSA1, RDFUY, and others not
selected by the GA-based approach. Despite some overlap, such as
the inclusion of TASA, RDFE14, and RDFM11 in both models, their
estimated coefficients and significance levels varied. For instance,
TASA was more negatively weighted in the GA model (p = -0.514,
p < 0.0001) than in the stepwise model (B = —0.309, p = 0.0003),
highlighting differences in the model optimization trajectory.

Overall, the comparative findings highlight the fact that
although both feature selection methods find core descriptors that
significantly affect pIC5;,, GA might give preference to a smaller
group of important variables. Stepwise regression, on the other hand,
encourages a more complex model that is guided by small gains
in model fit.
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GA-MLR prediction accuracy and
coefficient interpretation

To evaluate the predictive performance of the Genetic
Algorithm-based Multiple Linear Regression (GA-MLR) model,
a combined visualization of the observed versus predicted pIC50
values for both training and test datasets was generated (Figure 5a).
While the predictions for the test set were somewhat more scattered,
they generally matched the observed values, while the training set’s
points clustered closely along the identity line, suggesting a strong
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model fit. This indicates that the GA-MLR model was able to strike
a fair balance between generalization and training fit.

In addition to visual assessment, coefficient estimates for the
selected descriptors were extracted and plotted (Figure 5b). Here,
positive coefficients (e.g., RDFE14, grav, PNSA3, RDFP9) indicate
descriptors that positively influence pIC50, whereas negative
coefficients (e.g., TASA, RDFM11, RDFV14) suggest inhibitory
contributions. Notably, RDFE14 had the highest positive impact
on pIC50 prediction among the molecular descriptors, while TASA
showed the most pronounced negative contribution. The regression
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TABLE 8 External test R2 and RMSE reported for the full test set
(“All_Test") and, where available, for inside-AD and outside-AD strata.

Stratum R? RMSE N

All_test 0.5988135 0.518295 16

Inside_ AD 15
Outside_AD 1

N indicates the number of compounds per stratum. The Williams threshold is computed
from the training design matrix.

model captures the multifaceted nature of the molecular features
that drive bioactivity, as demonstrated by this balance of influences.

To guard against chance correlation, Y-randomization with B =
50 label shuffles yielded an empirical p-value =0.000, indicating the
model captures non-random SAR signal.

Virtual screening of de novo
KRAS-designed compounds

A virtual screening of 58 novel compounds created from
scratch using DataWarrior was done to investigate the predictive
potential of the GA-optimized MLR model. These compounds
were structurally inspired by known KRAS inhibitors used in the
development of the model. Molecular descriptors were calculated for
each compound, and normalization was applied using the training
set mean and standard deviation for each of the eight GA-selected
features (TASA, RDFE14, grav, RDFE19, PNSA3, RDFEM11, RDFP9,
RDFV14).

The trained GA-MLR model was then used to compute
predicted pIC50 values for the new compounds. The predicted
activities ranged from 6.42 to 9.05, suggesting a moderate to
high potential for KRAS inhibition. To ensure model reliability,
the Mahalanobis distance was computed for each compound,
assessing its proximity to the descriptor space defined by the
training set.

Figure 6 illustrates the distribution of predicted pIC50
values and highlights compounds flagged as outside the model’s
applicability domain (DOA >15.0). Of the 58 molecules, 36
compounds (62%) were classified as within the model’s applicability
domain, while 22 compounds (38%) were flagged as extrapolations
(outside DOA) (Supplementary File S5). These excluded molecules,
despite having favorable predicted pIC50, may require further
experimental validation due to structural dissimilarity or feature
deviations.

Among the 58 de novo synthesized compounds evaluated
through virtual screening, several exhibited predicted pICy,
values exceeding the benchmark of 8.0, which was used as a
reference based on the potency of known experimental KRAS
inhibitors. Specifically, compounds C4, C9, C19, C27, C28, C40,
C44, C47, C49, C52, and C54 demonstrated predicted pICy,
values ranging from 8.02 to 8.64 (Figure 7), marking them as
potential virtual hits for KRAS inhibition. Notably, of these,
only compound C9 (pICs, = 8.11) was classified as within the
model’s applicability domain (DOA), reinforcing its reliability for
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further consideration. The remaining high-activity compounds,
although flagged as being outside the applicability domain, may
represent structurally novel scaffolds that warrant experimental
validation.

To
unavailable, we performed leave-cluster-out validation, holding

support generalization claims when chronology is

out whole descriptor clusters. Across folds, the mean R? = 0.363 and
mean RMSE ~1.48 (k = 4), penalizing neighborhood overfitting and
approximating “novel-analog” performance (Table 6).

Drug-likeness and toxicity profile

To evaluate the drug-likeness of the identified hit compound,
ADMET-related physicochemical and toxicity parameters were
assessed for compound C9 using DataWarrior software, which is
the only de novo molecule that both exceeded the benchmark
pICs, value of 8.0 and fell within the model’s applicability domain
(Figure 8). As shown in Table 7, compound C9 exhibited a predicted
pICs, of 8.11, which is slightly higher than that of the known
KRAS inhibitor (pICs, = 8.10). Its molecular weight (555.08 Da),
cLogP (5.96), number of hydrogen bond acceptors (8), and number
of hydrogen bond donors (1) were all comparable to those of
the reference compound. The total surface area (410.08 A%) and
polar surface area (84.9 A?) further supported its bioavailability
profile.

Importantly, In-silico toxicity predictions revealed that
compound C9 was classified as non-mutagenic, non-tumorigenic,
and lacking reproductive toxicity, unlike the reference KRAS
inhibitor, which was flagged for high mutagenic potential. This
suggests that C9 may represent a safer lead candidate for further
preclinical investigation.

In addition to its favorable ADMET profile, compound
C9 exhibited a close structural resemblance to the reference
KRAS inhibitor, with subtle modifications at the R1 position. As
depicted in Figure 9, both molecules share a conserved quinazoline-
based scaffold, which is crucial for KRAS inhibitory activity.
However, C9 features a 4-methylpiperidin-4-ylacetamide moiety
at the R1 position, which distinguishes it from the acrylamide-
bearing R1 group in the reference inhibitor. This modification
may contribute to C9’s improved predicted potency (pICs, = 8.11)
and non-toxic profile. The simplified side chain in C9 potentially
reduces electrophilic reactivity, contributing to its favorable
mutagenicity and tumorigenicity scores. These findings suggest that
C9 retains the pharmacophoric integrity of the KRAS inhibitor while
presenting a safer and equally potent alternative for further lead
optimization.

Applicability-domain stratification based on Williams leverage
(threshold h#=1.04) showed 74.2% coverage for training and 24.2%
for test; we therefore prioritize inside-AD candidates (e.g., C9) for
experimental follow-up (Figure 10; Table 8).

Molecular docking of C9 in the KRAS G12
binding pocket

We docked the top-ranked de novo hit C9 into the KRAS
G12 binding pocket and benchmarked the protocol against

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1663846
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Stephen Adebayo et al.

10.3389/fbinf.2025.1663846

LYS917

FIGURE 11

Chemical interaction of compound C9 within the KRAS G12 binding pocket (a) 3D interactions and (b) 2D interaction.
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the co-crystallized reference ligand. C9 achieved a docking
score of —9.6kcalmol™, indicative of strong non-covalent
complementarity within the pocket. The predicted pose forms
a small hydrogen-bond network (ca. 2.26-2.93 A) with SER17
(HG->0), THR35 (HN->0; OG1--0) and ASP33 (O--0), supported
by electrostatic contacts to LYS117 (NZ) and a hydrophobic shell
involving PHE28, TYR32, LYS117, LEU120, and ALA18 (m-m
and alkyl contacts, ~3.5-5.1 A). Representative 3D/2D interaction
depictions and per-contact distances are shown in Figure 11 and
Table 9.

For the co-crystallized ligand, the docking reproduced a
dense polar network dominated by ARGI161 (NHI1/HH--O)*
and THR158/ASP154 hydrogen bonds (=2.29-3.30 A), with
hydrophobic stabilization at ALA134 (Figure 12; Table 10). This
provides an internal control for the docking setup and highlights that
C9 engages a complementary but non-identical microenvironment
compared with the reference ligand.

Our integrated workflow—pairing an interpretable GA-MLR
with robust validation and orthogonal docking—argues that C9
is a credible KRAS"G12C Switch-II pocket (SII-P) binder while
clarifying where the model’s predictions are most reliable. We
deliberately prioritize explainability and calibrated uncertainty
over marginal gains in point accuracy, because mechanistic
hypotheses and decision-grade error bars are the levers that most
improve prospective medicinal chemistry on small, congeneric
datasets.

In the fitted GA-MLR, the dominant descriptor families point to
two complementary physical themes with direct design implications
for Switch-II pocket (SII-P) engagement. First, 3D distribution
descriptors (RDF/MoRSE, with different atomic weightings)
capture how mass, volume, and electronegativity are arranged
at specific distance shells; the positive coefficients at selected
shells imply that compact hydrophobic density and appropriately
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placed polarity at those radii favor activity—consistent with
burying non-polar surface under the SII-P “lid” while projecting
donors/acceptors toward the H95-Y96-Q99 cryptic subpocket
exploited by KRAS"G12C covalent chemotypes (Lanman et al.,
2019; Ostrem et al., 2013; Canon et al., 2019; Fell et al., 2020;
Schuur et al, 1996; Hemmer et al., 1999; Gramatica, 2020).
Second, surface-partition terms (e.g., fractional positive polar
surface area, FPSA) weight where chargeable/heteroatom surface
is exposed; their positive sign supports moderated, localized
polarity rather than wholesale charge—compatible with known
permeability/recognition trade-offs and with the hydrogen-
bond topology reported for SII-P binders (Lanman et al,
2019; Ostrem et al., 2013; Canon et al., 2019; Fell et al., 2020;
Ertl et al., 2000). By contrast, global exposure metrics (e.g., TASA)
trending negative argue against over-extended solvent-facing area,
reinforcing a design bias toward tighter shape complementarity and
fewer, better polar contacts. Practically, these signals recommend
(i) increasing lipophilic bulk along vectors that deepen contact
in the Y96/Q99 wall, (ii) retaining a focused donor/acceptor
pattern aligned to the observed pose, and (iii) avoiding gratuitous
polar surface that would inflate TASA without productive pocket
interactions—together offering a descriptor-anchored blueprint
for the next round of analogs (Sung et al, 2021; Pylayeva-
Gupta et al., 2011; Westover et al., 2016; Cox et al., 2014; Tropsha,
2010; Cherkasov et al.,, 2014; Todeschini and Consonni, 2009;
Lanman et al., 2019; Cao et al., 2013; Sulaiman et al., 2021; C et al.,
2002; Ghani and Ahmad, 2010; Molnar et al.,, 2018; Roy et al.,
2015; Lopez-Lopez et al., 2019; Ostrem et al., 2013; Canon et al.,
2019; Fell et al., 2020; Schuur et al., 1996; Hemmer et al., 1999;
Gramatica, 2020).

Although higher-capacity baselines (PLS, RF) can outperform
linear models on a given split, GA-MLR remains the most useful
engine for hypothesis generation: its coeflicients map cleanly
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TABLE 9 Details of chemical interactions of C9 with KRAS G12 binding pocket.

Name XYZ:X XYZ:Y XYZ:Z Distance | Category From To
chemistry chemistry
A:SER17:HG - 6.0305 27.823 12.966 2.26169 Hydrogen bond A:SER17:HG H-donor N:UNK1:0 H-acceptor
N:UNK1:0
A:THR35:HN - 7.233 26.2585 12.0425 2.79979 Hydrogen bond | A:THR35:HN H-donor N:UNK1:0 H-acceptor
N:UNK1:0
N:UNK1:0 - 6.093 27.275 11.0135 2.92842 Hydrogen bond N:UNK1:0 H-donor A:ASP33:0 H-acceptor
A:ASP33:0
N:UNK1:0 - 7.0485 27.4675 12.7705 2.5282 Hydrogen bond N:UNK1:0 H-donor A:THR35:0G1 H-acceptor
A:THR35:0G1
N:UNK1:C - 0.997 27.2265 10.335 3.73123 Hydrogen bond N:UNK1:C H-donor A:GLU31:0 H-acceptor
A:GLU31:0
A:LYS117:NZ - -1.92625 23.2282 13.2429 4.35725 Electrostatic A:LYS117:NZ Positive N:UNK1 Pi-orbitals
N:UNK1
A:LYSI117:NZ - -1.77083 22.1195 12.7876 3.51304 Electrostatic A:LYS117:NZ Positive N:UNK1 Pi-orbitals
N:UNK1
A:PHE28 - -5.62917 27.4446 12.3228 4.95864 Hydrophobic A:PHE28 Pi-orbitals N:UNK1 Pi-orbitals
N:UNK1
A:TYR32 - 3.148 24.2891 11.0662 4.36469 Hydrophobic A:TYR32 Pi-orbitals N:UNK1 Pi-orbitals
N:UNK1
N:UNKI:C - —4.74833 23.8055 16.4143 3.79833 Hydrophobic N:UNK1:C Alkyl A:LYS117 Alkyl
A:LYS117
N:UNKI:C - —5.66283 23.0475 15.9958 3.63672 Hydrophobic N:UNK1:C Alkyl A:LYS117 Alkyl
A:LYS117
N:UNKI:C - —7.78325 224312 15.0076 3.93632 Hydrophobic N:UNK1:C Alkyl A:LEU120 Alkyl
A:LEU120
A:PHE2S - -5.26192 27.6692 14.4117 5.00562 Hydrophobic A:PHE28 Pi-orbitals N:UNK1:C Alkyl
N:UNK1:C
N:UNKI1 - -1.22125 27.1132 13.7384 5.10359 Hydrophobic N:UNK1 Pi-orbitals A:ALA18 Alkyl
A:ALA18
onto physically interpretable descriptor families (vdW/shape-  we therefore treat inside-AD predictions as decision-

weighted RDF/MoRSE; balanced positive polar surface area),
yielding actionable guidance for substituent placement and polarity
tuning within SII-P. The dispersion observed in repeated cross-
validation is a faithful readout of the small-N regime rather than
a model defect, and Y-randomization effectively rules out chance
correlations. Together with split-conformal prediction intervals,
which provide calibrated coverage, the framework supplies both
rank ordering and uncertainty—information that is more actionable
than point estimates alone when advancing compounds into
synthesis and testing.

Generalizability is constrained, by design, to a single
congeneric covalent series. Applicability-domain (AD) analysis
indicates that most training analogs lie within the modeled
subspace, whereas a subset of test compounds fall outside;
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preferred and outside-AD as hypothesis-generating. Leave-
which  withholds
neighborhoods, further stresses the model and exposes performance

cluster-out  validation, whole descriptor
heterogeneity typical of narrow chemical neighborhoods. In
this context, reporting both AD stratification and conformal
intervals makes explicit the reliability envelope for any given
prediction.

Docking provides orthogonal structural support. The C9
pose occupies the canonical SII-P cavity and projects toward
the H95-Y96-Q99 cryptic subpocket that underpinned the
transformation of KRAS"G12C from “undruggable” concept to
a clinically validated target, beginning with allosteric covalent
inhibitors that lock the GDP state and culminating in sotorasib
(AMG-510) and adagrasib (MRTX849) (Lanman et al, 2019

Ostrem et al., 2013; Canon et al, 2019; Fell et al., 2020).
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FIGURE 12
Chemical interaction of co-crystalized compound within the KRAS G12 binding pocket (a) 3D interactions and (b) 2D interaction.

TABLE 10 Details of chemical interaction of co-crystalized compound with KRAS G12 binding pocket.

XYZ:X XYZ:Y XYZ:Z Distance  Category From
chemistry
A:ARG161:NH1 -2.3605 32.5235 35.009 5.55825 Electrostatic A:ARG161:NH1 Positive N:UNK1:0 Negative
- N:UNK1:0
A:ARG161:NH1 —2.1455 34.5075 36.2335 3.11101 Electrostatic A:ARG161:NH1 Positive N:UNK1:0 Negative
- N:UNK1:0
A:ARG161:NH1 -3.747 34.559 34.565 4.93326 Electrostatic A:ARG161:NH1 Positive N:UNK1:0 Negative
- N:UNK1:0
A:THR158:HG1 —-2.6095 30.1995 34.149 2.29217 Hydrogen A:THR158:HG1 H-donor N:UNK1:0 H-acceptor
- N:UNK1:0 bond
A:ARG161:HH11 ~ -3.2095 35.3805 34.6405 2.50646 Hydrogen A:ARG161:HH11 H-donor N:UNK1:0 H-acceptor
- N:UNK1:0 bond
A:ARG161:HH12 -1.185 33.2155 35.7535 2.47248 Hydrogen A:ARG161:HH12 H-donor N:UNK1:0 H-acceptor
- N:UNK1:0 bond
A:ARG161:HH21 —3.447 36.4505 34.989 2.65184 Hydrogen A:ARG161:HH21 H-donor N:UNK1:0 H-acceptor
- N:UNK1:0 bond
N:UNKI:H - —-3.5245 32.516 33.337 2.46273 Hydrogen N:UNKI1:H H-donor A:ASP154:0D1  H-acceptor
A:ASP154:0D1 bond
N:UNKI:H - -2.22 32.1705 33.8875 2.7364 Hydrogen N:UNKI1:H H-donor A:THR158:0G1 H-acceptor
A:THR158:0G1 bond
N:UNKI:H - -5.987 31.8555 36.4525 2.8911 Hydrogen N:UNKI1:H H-donor N:UNK1:0 H-acceptor
N:UNK1:0 bond
A:ALA134:C - -0.1825 19.1655 37.06 3.35859 Hydrogen A:ALA134:C H-donor N:UNK1:0 H-acceptor
N:UNK1:0 bond
A:ARG161:CD —0.5445 33.4775 36.7565 3.30101 Hydrogen A:ARG161:CD H-donor N:UNK1:0 H-acceptor
- N:UNK1:0 bond
N:UNKI1 - —-1.68033 20.2327 35.3445 4.16894 Hydrophobic N:UNK1 Pi-orbitals A:ALA134 Alkyl
A:ALA134
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This atomistic picture coheres with the GA-MLR descriptor
signals—hydrophobic packing and moderated polarity at specific 3D
radii—reinforcing that the linear model is capturing pocket physics
rather than spurious correlations. We interpret the —9.6 kcal/mol
docking score qualitatively, consistent with community benchmarks
that docking is most reliable for pose generation and less so for
precise affinity ranking (Warren et al., 2006; Huang and Zou,
2010). Moreover, noncovalent docking does not explicitly model
the G12C reaction coordinate, and SII-P conformational plasticity
(cryptic breathing, water networks) can modulate recognition;
covalent docking and short explicit-water molecular dynamics
are therefore logical next steps to stress-test pose stability and
reactive geometry in a pocket known to be dynamic (Huang and
Zou, 2010; Mou et al., 2025).

Finally, the evidence positions C9 as a mechanistically rational
KRAS"G12C candidate: an SII-P-consistent pose aligned with
descriptor-level SAR, decision-grade uncertainty quantification,
and clear AD guidance for triaging experiments. Practically,
the data motivate a staged plan: biochemical engagement and
nucleotide-exchange assays for KRAS"G12C, orthogonal biophysics
(e.g., intact-protein MS for covalent adducts; DSF/CETSA), and
comparative docking/short MD (including covalent protocols)
against sotorasib/adagrasib-like matter to refine vectors that
deepen H95/Y96/Q99 engagement. Positive outcomes would
justify cellular studies in KRAS"G12C-mutant models and inform
subsequent lead-optimization cycles. Within the realistic constraints
of a small, single-series dataset, this balance—interpretability,
calibration, and structural plausibility—maximizes the likelihood
of successful translation from in silico predictions to in vitro

validation.
Therefore, this study presents a novel pipeline that
synergizes interpretable machine learning with evolution-

based molecular generation, vyielding compound C9 as a
promising KRAS inhibitor with predictive potency, safety, and
structural validity. The ability to pinpoint such candidates
within an interpretable and chemically meaningful framework
holds substantial promise for guiding experimental validation
and future lead optimization efforts against KRAS-driven
malignancies.

Conclusion

This study demonstrates the successful integration of QSAR
modeling and de novo design to identify novel KRAS inhibitors
with strong predicted potency and favorable drug-like properties.
Among the models developed, PLS and Random Forest offered
high predictive accuracy, while the GA-MLR model provided a
mechanistically interpretable equation based on eight key molecular
descriptors. Virtual screening of 58 de novo compounds identified
compound C9 as a potent, non-toxic candidate within the model’s
applicability domain, highlighting its potential as a lead structure
for further development in lung cancer therapy. These findings
offer a promising computational pipeline for accelerating structure-
based drug discovery against challenging oncogenic targets
like KRAS.
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