:' frontiers ‘ Frontiers in Bioinformatics

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Chaoyang Zhang,

University of Southern Mississippi,
United States

REVIEWED BY

Jung Hae-un,

Kyung Hee University, Republic of Korea
Aleksandar llic,

University of Lisbon, Portugal

Johan Zvrskovec,

King's College London, United Kingdom

*CORRESPONDENCE
Xiaoxi Shen,
rcd67@txstate.edu

RECEIVED 30 June 2025
REVISED 12 December 2025
ACCEPTED 15 December 2025
PUBLISHED 08 January 2026

CITATION

Wang A, Xiao E, Cheng J and Shen X (2026)
Genetic risk predictions using deep learning

models with summary data.
Front. Bioinform. 5:1657021.
doi: 10.3389/fbinf.2025.1657021

COPYRIGHT

© 2026 Wang, Xiao, Cheng and Shen. This is
an open-access article distributed under the
terms of the Creative Commons Attribution

License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the

copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Bioinformatics

TYPE Methods
PUBLISHED 08 January 2026
pol 10.3389/fbinf.2025.1657021

Genetic risk predictions using
deep learning models with
summary data

Angela Wang'?, Elena Xiao??, Jason Cheng?® and Xiaoxi Shen?*

!University School of Milwaukee, Milwaukee, WI, United States, 2Department of Mathematics, Texas
State University, San Marcos, TX, United States, *Westwood High School, Austin, TX, United States

Background: As a driving force of the Fourth Industrial Revolution, deep learning
methods have achieved significant success across various fields, including
genetic and genomic studies. While individual-level genetic data is ideal for deep
learning models, privacy concerns and data-sharing restrictions often limit its
availability to researchers.

Methods: In this paper, we investigated the potential applications of
deep learning models—including deep neural networks, convolutional neural
networks, recurrent neural networks, and transformers—when only genetic
summary data, such as linkage disequilibrium matrices, is available. The
bootstrap method was used to approximate the test error. Simulation studies
and real data analyses were conducted to compare the performance of deep
learning methods in genetic risk prediction using individual-level genetic data
versus genetic summary data.

Results: The test mean squared errors (MSEs) of most applied deep learning
models are comparable when using individual-level data versus summary data.
Conclusion: Our results suggest that suitable deep learning methods could also
serve as an alternative approach to predict disease related traits when only
linkage disequilibrium matrices are available as input.

KEYWORDS

bootstrap, deep neural networks, linkage disequilibrium, risk prediction, single
nucleotide polymorphisms

1 Introduction

With the high throughput of genetic sequencing technology and the success of
genome-wide association studies (GWAS), numerous disease-related single nucleotide
polymorphisms (SNPs) have been identified in various studies (Consortium, 2007;
Scott et al., 2007; Sladek et al., 2007). Additionally, in 2015, President Obama launched the
Precision Medicine Initiative, which aims to revolutionize medical treatment for complex
diseases (Collins and Varmus, 2015). One of the most critical aspects of precision medicine is
customizing treatments based on the unique genetic information carried by each individual.
Therefore, accurate risk prediction of disease onset and progression based on an individual’s
genetic data can enable targeted preventive treatments (Jostins and Barrett, 2011).

It is widely believed that multiple SNPs contribute to a trait, with the genetic effect
arising from the cumulative impact of these genetic variants (Yang et al., 2010). As a result,
linear mixed-effects models are conventional tools for genetic risk prediction, where the
fixed effects include the clinical and demographic variables (e.g., age and gender) and the
effect size of each SNP in a genetic region is treated as a random variable. The total genetic
effect is calculated by aggregating the SNPs and their random effects. The Best Linear

01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1657021
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1657021&domain=pdf&date_stamp=
2025-12-30
mailto:rcd67@txstate.edu
mailto:rcd67@txstate.edu
https://doi.org/10.3389/fbinf.2025.1657021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1657021/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1657021/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1657021/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

Unbiased Prediction (BLUP) is a commonly used method for
predicting disease-related traits (Campos et al., 2013; Speed and
Balding, 2014). However, one limitation of linear mixed-effects
models is the assumption that the relationship between SNPs and the
trait is strictly linear. In reality, many diseases, such as Alzheimer’s
disease (AD), have substantial genetic components and complex
genetic etiologies (Karch et al., 2014; Sims et al., 2020). Therefore, it
is more reasonable to assume that the relationships between SNPs
and disease-related traits are nonlinear. This includes nonlinear
relationships between genetic regions such as epistasis as well as
those within a genetic region including compound heterozygosity
(Nazarian etal., 2023) and allele dosage for AD (Hostage et al., 2013).
Although such nonlinearity can be incorporated into a linear mixed-
effects model through kernel methods (Hofmann et al., 2008),
the performance of BLUP depends on the choice of kernels. In
general, it is not clear which kernel is optimal for prediction. In this
manuscript, the hippocampal volume is used as the phenotype in the
real data analysis. The motivation for this choice stems from previous
findings. First, the hippocampus plays a crucial role in memory and
is particularly vulnerable to damage at the early stages of Alzheimer’s
disease (AD) (Mu and Gage, 2011). Changes in hippocampal
volume over time can have a significant impact on AD progression
(Schuft et al., 2009). Accurately predicting hippocampal atrophy
could therefore facilitate early intervention in disease development.
Moreover, the genetic influence on hippocampal volume is relatively
high. For instance, in a study of a large sample of elderly twin men,
(Sullivan et al., 2001) showed that approximately 40% of the variance
in hippocampal volume is attributable to genetic factors. In addition,
an exploratory GWAS of hippocampal volume using data from the
Sydney Memory and Ageing Study suggested that the heritability of
hippocampal volume is 62%-65% (Mather et al., 2015). Second, the
relationship between SNPs and hippocampal volume is potentially
complex. For instance, studies have identified interactions between
rs1345203 and rs1213205 that explain 1.9% of the variance in
temporal lobe volume (Hibar et al., 2015). The ability of deep
learning methods to capture nonlinear relationships may help
improve predictive performance in this context. As an example
illustrating the predictive performance of deep learning models
based on genetic data, (Liu et al., 2022) used a deep neural
network-based model to predict AV45 and FDG, two tracers
in positron emission tomography (PET) imaging used to model
biological processes in the brain, based on genetic data. Compared
with other mixed-effects model-based methods, the deep neural
network-based models achieved better prediction accuracy.

Since 2010, advancements in deep learning technologies have
become the driving force behind the fourth Industrial Revolution
(Bai et al., 2020). With numerous successful applications, such as
in computer vision and natural language processing, deep neural
networks (DNNs) have emerged as one of the most popular
research tools across various scientific fields. A major advantage
of DNN is their ability to capture complex relationships between
variables, thanks to the universal approximation property (UAP)
(Cybenko, 1989; Hornik et al., 1989). This makes them suitable
candidates for approximating the complex relationships between
genetic variants and disease-related traits. On the other hand, kernel
methods have also been widely used in genetic studies to capture
the nonlinear relationships (Hofmann et al., 2008). However, the
performances of kernel methods highly depend on whether the

Frontiers in Bioinformatics

02

10.3389/fbinf.2025.1657021

kernel function has been chosen wisely as well as the specification
of hyperparameters in the kernel function (e.g., the degree in a
polynomial kernel). Compared to kernel methods, one only needs
to specify the number of layers and the number of hidden units in
a layer to construct a DNN, which from our point of view, is easier
than selecting the correct kernel function. A lot of research has been
conducted to uncover complex genotype-phenotype relationships
using DNNs. For example, DNNs have been used to model
Alzheimer’s disease (AD) polygenic risk, outperforming traditional
methods (Zhou et al., 2023). Additionally, Shen and Wang, 2024
employed deep ReLU neural networks to detect significant SNPs
associated with phenotypes. Their simulation studies demonstrated
that tests based on deep ReLU neural networks are more powerful
at detecting nonlinear relationships compared to F-tests in linear
models. We refer interested readers to Shen et al. (2022b) for
a review of applications of deep learning models in genetic and
genomic studies.

Although individual-level genetic data can improve the
precision of predictions, such data is often difficult to obtain due
to privacy concerns and data-sharing restrictions. Recently, many
researchers have focused on conducting analyses using GWAS
summary data, including gene- and pathway-based association tests
(Guo and Wu, 2019; Kwak and Pan, 2016; Svishcheva et al., 2019),
genetic heritability estimations (Li et al., 2023; Speed et al., 2020;
Speed and Balding, 2019), and the detection of causal associations
(Xue and Pan, 2020; Zhu et al.,, 2018). The goal of this paper is
to explore whether deep learning methods, such as convolutional
neural networks (CNNs) (LeCun, 1989) and long short-term
memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997),
can achieve predictive performance on genetic data comparable
to that obtained when applying the same model structures to
individual-level data.

The rest of the paper is organized as follows: In the Methods
section, we briefly review basic deep learning models, including
deep neural networks, convolutional neural networks, and recurrent
neural networks, such as LSTMs. We then propose a framework for
applying deep learning models to GWAS summary data (e.g., the
linkage disequilibrium (LD) matrix) and outline the approach for
calculating the test error. The Results section presents simulation
studies and an application predicting Alzheimer’s disease-related
traits using real data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). Finally, we conclude with a discussion of the
proposed method and its potential future improvements.

2 Methods
2.1 Simulation data

To evaluate the proposed methodologies, extensive simulation
studies were conducted. The simulations involved applying DNN,
CNN, LSTM and Transformers to both individual-level genetic data
and summary data (i.e., LD matrix). The training errors and testing
errors obtained using the summary data were compared with those
from using the individual-level data. The data used for simulations
was generated using R and the implementation of the deep learning
methods was conducted using the Keras package in python.

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

2.1.1 Individual-level data

To mimic the real structure of genetic sequencing data, the data
used for simulation were generated based on the real sequencing
data from Chromosome 17: 7344328-8344327 in the 1,000 Genomes
Project (The 1000 Genomes Project Consortium, 2010). The minor
allele frequencies (MAF) of the SNPs in this region range from
0.046% to 49.954%. Since deep learning models have better
performance when the signal is strong (James et al., 2013), including
rare SNPs could deteriorate the performance. Therefore, we removed
SNPs with MAF <0.001 were removed. Each remaining SNP was
scaled to have a sample mean of 0 and a sample standard deviation
of 1/+/p, where p = 8,299 is the number of common SNPs in this
region. To simulate the response variable, 30% of the common SNPs
were randomly selected as causal variants, and the response variable
was generated using the following equation:

K
Y, = Zwkgi,k+si,i: 1,...,n,
k=1

where K is the number of causal variants; 8ix 1 the value of the kth
causal SNP for the ith individual and wy, ..., wy ~ i.i.d. N(0,0.6%) and
€15 -..>&, ~ 1.1.d.N(0, 1). The dataset consists of n = 1,092 individuals.
When training deep learning models, 80% of the samples were
randomly selected as training data and the remaining samples were
used as test data.

2.1.2 Construction of LD matrices

In terms of the summary data, the LD matrices were generated
as follows. Let G denote the scaled SNP data as mentioned above,
which contains 1,092 individuals and 8,299 SNPs. To generate
the LD matrix for training the deep learning models, 80% of the
samples were randomly selected, and the SNPs of the remaining
individuals were used to generate the LD matrix for testing purposes.
Let G,, be the design matrix of the scaled SNPs in the training
data and G,, be the design matrix of the scaled SNPs in the test
data. In other words, G, was extracted from G by taking the
rows corresponding to the training samples and G,, contains the
remaining rows in G. The LD matrices for training and testing
were generated by calculating ni”GtTrGt, and ni”GtTthe, respectively.
Here n,, = 873 represents the number of training data and n,, = 219
represents the number of test data.

2.2 Real data

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases, significantly influenced by genetic
factors (Karch et al., 2014; Sims et al., 2020). Effective predictions
on the development of AD based on genetic components could lead
to early intervention as well as targeted treatment of the disease. In
this section, we applied the proposed methods to perform genetic
risk prediction using deep learning models on a real dataset from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI (https://
adni.loni.usc.edu/)). The ADNI study is a multisite, longitudinal
observational study aimed at improving the scientific understanding
of Alzheimer’s disease (AD). Data from phases 1 and 2 of the ADNI
study were used in the analysis. A total of 3,108 participants were
included across these two phases, with about 89% of the participants

Frontiers in Bioinformatics

03

10.3389/fbinf.2025.1657021

TABLE 1 Demographics of participants in ADNI1 and ADNI2 studies.

Mean (standard
deiviation)/
Relative frequency

Demographic variable

Age 72.76 (7.7)
Years of education 15.4 (3.99)
Gender

Male 53.15%

Female 43.98%
Self identified race

American indian or alaskan native 0.06%

Asian 1.54%

Native Hawaiian or other pacific 0.06%
islander

Black or african american 4.63%

White 89.25%

More than one race 0.68%

Unknown 0.35%
Self identified ethnicity

Hispanic or latino 3.09%

Not hispanic or latino 92.82%

Unknown 0.61%
Participant’'s primary language

English 93.56%

Spanish 1.51%

Other 1.58%

identifying as white and an average baseline age of 72.76 years. More
demographic information is summarized in Table 1.

A total of 808 samples at the screening and baseline of the
ADNI1 and ADNI2 studies have the whole genome sequencing
data, and we used SNPs from the APOE gene located on
Chromosome 19: 45409005-45412652. Variants with a call rate
<99% or a Hardy-Weinberg equilibrium p-value < le-6 were
removed. The final SNP dataset included 780 individuals and
168 SNPs. Regarding the choice of the response variable, the
hippocampus region was selected because it plays a vital role in
memory (Mu and Gage, 2011), and shrinkage in the hippocampal
volume is an early symptom of AD (Schuff et al.,, 2009). Thus,
the volume of the hippocampus region was chosen as a potential
response variable. In this dataset, the hippocampal volume has
mean 6778.89 with a standard deviation of 1179.07. We first

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

took the logarithm of the hippocampal volume such that it has
an approximately normal shape. To remove some confounding
effects, we regressed the logarithm of hippocampal volume onto
important predictors, including age (mean: 73.46, sd: 7.01), gender
(Male: 35.98%, Female: 63.94%), and number of years in education
(mean: 16.08, sd: 2.78). The residuals obtained from this regression
were used as the response variable to train the deep learning
models.

Similar to the simulation studies, 80% of the data were randomly
selected as the training data, and the remining data was served as
the test data to evaluate model performances. The LD matrices for
training and testing were obtained using the matrix inner product
of the SNP matrix corresponding to the APOE gene in the training
set and test set, respectively. The formula of generating the LD
matrices is the same as those described in the simulation data. The
training data consists of 624 individuals while the test data has 156
individuals.

2.3 Deep neural networks (DNNs)

The development of deep neural networks can be traced back
to 1950s when a mathematical model, known as the perceptron
(Rosenblatt, 1958), was proposed to model the functionality of
neurons in a human brain. Around the 1990s, multiple perceptrons
were stacked to create artificial neural networks. An artificial
neural network consists of three layers: the input layer contains all
the features from the data used to make predictions; the hidden
layer contains several units to further extract useful information
from the inputs, and the output layer produces the output of
the artificial neural network to make predictions. Deep neural
networks are obtained by including multiple hidden layers. One
of the major advantages discovered for DNN is their ability to
capture these complex relationships due to their famous universal
approximation property (UAP) (Cybenko, 1989; Hornik et al., 1989;
Yarotsky, 2017; Yarotsky and Zhevnerchuk, 2020). This suggests
that DNNs may be suitable candidates for approximating the
complex structures present in such research problems. Because of
the UAP, deep neural networks are popular tools in predictive
analyses nowadays.

Since SNP data and LD matrices often contain nonlinear, high-
dimensional relationships that are difficult to capture with classical
models. Deep neural networks are well suited because stacked
nonlinear layers can learn complex interaction patterns without
requiring specifying the functional form of underlying relationship
explicitly. The flexibility of DNNs makes them effective when the
relevant predictive structure is distributed across many genetic
regions. In the application of DNNs to genetic risk prediction,
each input unit represents a SNP in a genetic region (e.g., a gene).
Throughout the remainder of the paper, additive coding was used
for the genotypes (i.e., 0 for genotype AA, 1 for genotype Aa, and
2 for genotype aa) in the raw genetic data. In additive coding, the
alleles assigned to ‘A’ and @ are not arbitrary. ‘A" always represents
the allele with a higher frequency in the population (the major
allele), and ‘@’ represents the allele with a lower frequency in the
population (the minor allele). In other words, the numerical value
used for encoding a genotype in additive coding corresponds to the
number of minor alleles in the genotype. Additive coding has been

Frontiers in Bioinformatics

04

10.3389/fbinf.2025.1657021

commonly used in the statistical genetics literature (Wu et al., 2011;
Li et al., 2014; Shen et al., 2022c). As mentioned in the Simulated
Data and Real Data sections, each column of the genotype matrix,
which represents a SNP, will be standardized so that the column has
mean 0 and standard deviation 1/+/p with p being the number of

SNPs. In other words, the actual SNP coding used in the analysis
are 2 L™ and 2

svp svp svpo o]
the column standard deviation. The genetic information then passes

with m being the column mean and s being

through hidden layers to extract important features from the data.
The output layer, which contains a single unit with a linear activation
function, produces the predicted value of the trait. Figure 1
provides a graphical illustration of the structure of a deep neural
network.

When applying DNNs to the simulated and the real individual
level SNP dataset, each SNP was used as an input. In other words, the
input dimension is 8,299 for the simulated data and is 168 for the real
data. We used a similar structure as described in Zhou et al. (2023),
with the network comprising four hidden layers containing 231,
77, 22, and 5 hidden units, respectively. Additionally, one dropout
layer with dropout rate 0.2 was added after the first hidden layer
and another dropout layer with dropout rate 0.5 was added after the
third hidden layer. When the DNNs were trained using the adaptive
moment estimation (ADAM) (Kingma and Ba, 2017), we set the
number of epochs to 100, the batch size to 256, and the learning
rate to 0.001 with a decay rate of 0.96. These hyperparameters
were selected based on validation errors from a predefined set of
candidate values.

2.4 Convolutional neural networks (CNNSs)

CNN s are a class of neural networks that use filters to process
multidimensional data, such as images, by extracting relevant
features. The core building blocks of CNN include convolutional
layers and pooling layers, which work together to refine feature
representations (Li et al., 2022).

Each convolutional layer consists of several filters, with each
filter acting as a sliding window that applies a nonlinear activation
function (such as ReLU) to the linear combination of filter entries
and outputs from the previous layer, producing feature maps.
Pooling layers reduce the size of the representation, accelerating
computations and enhancing the robustness of detected features.
A commonly used pooling technique is max pooling, which
extracts the maximum value within a sliding window. After
passing through multiple convolutional and pooling layers, the
extracted features are flattened into a vector and fed into a fully
connected neural network to make final predictions. Figure 2
illustrates the basic structure of a convolutional neural
network.

Additionally, the weights in the filters of convolutional layers
and in the fully connected neural network are trained using
backpropagation, with the learning rate controlling the rate of
parameter updates. However, CNNs may encounter issues such
as vanishing or exploding gradients during training. To improve
generalization and reduce overfitting to the training data, dropout
layers can be employed. These layers randomly deactivate nodes
during training, preventing the model from relying too heavily

on specific neurons. This encourages the development of more

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

10.3389/fbinf.2025.1657021

FIGURE 1
Architecture of a deep neural network applied on genetic data.

input

max

pooling
pooling

conv 2D

conv 2D

FIGURE 2

fed to a fully connected deep neural network to make predictions.

max conv 2D

Structure of a convolutional neural network. The input is a 2-dimensional array (in our applications, it could be a SNP matrix or a LD matrix). The blue
cuboid and the yellow cuboid represent convolutional layers and max-pooling layers respectively. After the last max pooling layer, the features were

prediction

»—> > >
dense dense dense dense

4

96
max ©onv2D pooling 256

pooling

2048
4096

general and robust models. While CNNs excel at capturing local
patterns, they may struggle with broader patterns, which require
additional and larger-size filters. However, increasing filter sizes and
quantity could significantly raises computational cost and training
time.

Due to the fact that CNNs can capture local patterns, it makes
CNNs a natural fit when the SNPs exhibit spatial structure along
the genome. In particular, adjacent SNPs tend to be correlated due
to LD, so a CNN’s convolutional filters can detect local patterns
or LD blocks similarly to how they detect edges or textures in
images. Moreover, weight sharing dramatically reduces the number
of parameters, helping the model generalize even when training data
are limited. This makes CNNs especially useful for modeling local
genetic architecture and short-range dependencies. When applying
CNNs to simulated and real individual level SNP data, the inputs are
the values of each SNP and 1-dimensional filters were used (i.e., the

Frontiers in Bioinformatics

05

input dimension is 8,299 for the simulated data and is 168 for the real
data). The rationale for using 1-dimensional filters for individual-
level data is that individuals are typically considered independent
observations, a common assumption in machine learning theory. As
a result, local information is only present within the observations
of the SNPs. Based on validation errors from a predefined set
of candidate hyperparameter values using 1-dimensional filters,
two CNN structures outperformed the others. The first structure
consists of one convolutional layer with 50 filters, each of size 500,
and one hidden neural network layer with 50 hidden units. The
second structure includes one convolutional layer with 50 filters,
each of size 500, and five hidden neural network layers, each with
50 hidden units. In all cases, each hidden layer used a ReLU
activation function. Training was conducted over 200 epochs with
a batch size of 32, an initial learning rate of 0.1, and a decay rate
0f 0.98.

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

10.3389/fbinf.2025.1657021

(b)

|@ |@|

D LSTM] LSTM —

LSTM

T

LSTM —— LSTM —— LSTM —>

%éé

(a) Structure of an LSTM unit where X, is the current input of a LSTM unit; h,_; and h, are the outputs from the previous LSTM unit and the current LSTM
unit respectively; C,_, and C, represent the memories from the previous LSTM units and the updated memory after the current LSTM unit, respectively.
Additionally, ¢ and tanh are the sigmoid and hyperbolic tangent activation function. The unit consists of three main gates: the forget gate, the input
gate, and the output gate. The forget gate uses a dense layer with inputs x; and h,_; to determine what proportion of previous information should be
discarded. The input gate consists of two parts: the first is a dense layer with a sigmoid activation function, and the second is another dense layer with a
hyperbolic tangent activation function. Both dense layers take x;, and h,_; as input. The first part determines how much new information x, contributes
to the cell and the second part provides a candidate cell state. The output gate, which also consists of a dense layer, controls what information from
the cell state is used to compute the final output. (b) A BiLSTM contains both forward and backward loops to improve the model for capturing
long-rage dependencies. In the figure each box of LSTM represents a single LSTM unit with the structure shown in (a) Here x,_;,x., X4 form a segment

~ e = -

Output
Gate

of input sequence and y,_1,y,Y:,1 are the corresponding output sequence.

2.5 Recurrent neural networks (RNNs)

RNNs are a class of neural networks extended to include
feedback connections. This allows them to capture temporal patterns
in sequential data. The long-short term memory (LSTM) is a
special type of RNN aimed at learning long-range dependencies by
mitigating the vanishing gradient problem that traditional RNNs
struggle with (Bengio et al., 1994). An LSTM unit uses input, forget,
and output gates to control the flow of information into and out
of its memory cell. This structure allows the network to retain
relevant information across longer time spans. Figure 3a provides an
illustration of the structure of an LSTM unit.

Due to linkage disequilibrium, SNPs are often correlated,
making LSTM an ideal model for capturing sequential dependencies
in genetic data. In addition, the physical positions of SNPs reflect
the underlying linkage disequilibrium (LD) structure and local
genomic context, as nearby SNPs often exhibit correlated variation
due to shared inheritance. By leveraging its memory cells and gating
mechanisms, LSTM can be trained on numerical SNP sequences,
which are the ordered sequences of SNP genotypes encoded as
0, 1 and 2, representing the number of minor alleles at each
locus, to learn complex temporal and spatial dependencies in
genomic structures. This capability makes it particularly effective
for identifying nonlinear relationships between correlated genetic
features and response variables. In our project, we numerically
encoded SNPs as inputs for models composed of multiple LSTM
units and trained these models to predict disease-related traits.

To further improve the models’ ability to capture long-range
dependencies, we also implemented a bidirectional approach.
Unlike unidirectional LSTMs, which only process information in
the forward direction, bidirectional LSTM (BiLSTM) networks

Frontiers in Bioinformatics

06

traverse the input data both forwards and backwards. This allows
them to produce outputs based on later context, while LSTM
relies only on previous context. As a result, BILSTM networks
generally outperform LSTM (Graves and Schmidhuber, 2005;
Siami-Namini et al, 2019). The structure of a BiLSTM is
described in Figure 3b.

Similar to the DNN and CNN models, the inputs for the LSTM
and BiLSTM models are the SNP values in the data. Hence, the
input dimensions for the simulated data and the real data are 8,299
and 168, respectively. When applying LSTM to individual-level SNP
data, we used a five-layer LSTM, with each layer containing 10
LSTM units, followed by a dense layer. Training was conducted over
10 epochs with a batch size of 256. For the BiLSTM, we used a
two-layer architecture, with each layer containing 10 BiLSTM units,
followed by a dense layer. The model was trained for 5 epochs
with a batch size of 256. For both LSTM and BiLSTM models, the
ADAM optimizer was used with an initial learning rate of 0.001
and a decay rate of 0.96. These hyperparameters were determined
based on validation errors from a predefined set of candidate
values.

2.6 Transformers

The transformer architecture (Vaswani et al., 2017) brings deep
learning into a modern era. Although the original work focused
on English-German machine translation, transformers have since
been widely applied to a broad range of tasks, including applications
in genetics and genomics (Graga et al., 2024; Li et al,, 2025). A
transformer model consists of an encoder and a decoder. In our
application, only the encoder component was used. The structure

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

of the transformer encoder is illustrated in Figure 4. There are four
main components in a transformer encoder:

1. Input embedding converts categorical inputs (e.g., each word
or symbol in the vocabulary) into numerical vectors.
Positional encoding allows the transformer to keep track of the
order of words in a sequence.

3. Multi-head attention computes the relationships between each
word and all the words in the sentence, including itself.
Residual connections provide shortcut paths that stabilize and
speed up the training of deep networks.

Since transformers use self-attention to model relationships
between all pairs of positions in a sequence simultaneously, it makes
them highly effective for genetic data where both local and long-
range LD patterns matter. Instead of processing the sequence step by
step, transformers directly learn how each SNP is related to others.
In addition, interactions across the genetic region or LD matrix are
modeled more flexibly, making transformers particularly powerful
for discovering complex relationships across the genetic regions. On
the other hand, because of the high dimensionality of SNP data (e.g.,
the simulated dataset contains 8,299 SNPs), feeding all SNPs into a
transformer simultaneously would result in excessive memory usage
and computational cost. To address this issue, we applied a sliding
window of size 1,000 with a stride of 500, generating 15 overlapping
SNP sequences of length 1,000. Each of these SNP sequences was
used as input to the transformer, and the outputs from the multi-
head attention units were averaged to form the input to the final
feedforward neural network. The number of multi-head attention
units was set to 6, and the number of hidden units in the final
feedforward neural network was 64. The ADAM optimizer was used
with a batch size of 8 and 10 training epochs.

2.7 Applications to summary data

Although deep learning models are expected to perform
better on individual-level genetic data, such data are not always
accessible due to privacy concerns and data-sharing restrictions. In
contrast, genetic summary data are more readily available, making
it worthwhile to investigate the performance of deep learning
models on this type of data. Additionally, it is important to assess
whether prediction accuracy based on genetic summary data is
comparable to that achieved with individual-level data. In this paper,
we utilized the LD matrix as our summary data. Although other
GWAS summary statistics can also help address privacy concerns,
using LD matrices as summary data offers additional benefits.
GWAS summary statistics, such as polygenic risk scores (PRS),
are calculated based on the marginal linear effects of SNPs. As a
result, information about the interactions and correlations among
SNPs is not taken into account, whereas LD matrices preserve these
correlations and can improve predictive performance.

A significant challenge in applying deep learning models to
genetic summary data is evaluating the prediction error on both
the training and, more importantly, the test data. Our proposed
approach is illustrated in Figure 5a. During the training phase, the
LD matrix of a genetic region, derived from the training data, is
used as input. Deep learning models such as DNN, CNN, or LSTM
are then applied to this input LD matrix. Unlike the traditional

Frontiers in Bioinformatics

07

10.3389/fbinf.2025.1657021

approach, where the number of units in the output layer matches
the dimension of the response variable, this framework sets the
number of output units equal to the number of training samples.
LetY;,...,Y, be the quantitative response variables in the training
set and let Oy,...,0,, be the outputs from a deep learning model,
the parameters in a deep learning model were trained via ADAM to
minimize the loss function

Ny
Lo,V ==Y (0,- V)

Mr 21
To evaluate the test error, we adopted the resampling
approach from the well-known bootstrap method (Efron and
Tibshirani, 1994). First, the LD matrix from the test data will be
fed to the trained deep learning model. Once the #,, outputs are
obtained, we randomly select n,, outputs with replacement from
these outputs. Denote the test error based on this random sample
as TE,. This process is then repeated B times to obtain a set of
bootstrapped test error samples TE,, ..., TEg. The approximated test

error will be the mean of these B test errors:

B
L1
TE = 3 ETE]..
=

The following network structures were used when applying the
deep learning models to LD matrices:

o DNN: The elements in the upper triangle of the LD matrix
were used as inputs for the DNN. The network structure was
the same as that used for the individual-level SNP data. The
ADAM optimizer was applied, and we set the number of
epochs to 100, the batch size to 256, and the learning rate to
0.001 with a decay rate of 0.96.

o CNN: Since LD matrices are inherently two-dimensional, and
the inputs used in CNNs are typically images, we treated the
LD matrices as “images” when applying CNNs. Unlike the
CNN models for individual-level SNP data, two-dimensional
filters were applied when the inputs were LD matrices. We
then used the same CNN architecture as that described for the
individual-level SNP data. Due to the structure of CNNs, the
size of the two-dimensional filters was scaled down by a factor
of 10 compared to their one-dimensional counterparts. In
other words, two-dimensional filters of size 50 x 50 were used
instead. This scaling was necessary because most CNN models
with two-dimensional filters could not complete training
within a reasonable time frame. Training was conducted over
200 epochs with a batch size of 32, an initial learning rate of
0.1, and a decay rate of 0.98 per epoch.

For the real data, since the LD matrix based on the APOE gene
is significantly smaller than the one used in the simulation studies,
we modified the convolutional layers in the two CNN structures. The
first structure consists of one convolutional layer with 32 filters, each
of size 5, followed by a pooling layer with a pooling size of 2. The
second structure includes four convolutional layers: the first with
32 filters of size 5, followed by three layers, each with 64 filters of
size 3. Each convolutional layer is followed by a max pooling layer
with a pooling size of 2. For all configurations, each hidden layer
employed a ReLU activation function. The same CNN architectures
were then applied to the summary-level data using two-dimensional

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al. 10.3389/fbinf.2025.1657021

— Add & Norm

Feedforward
Neural Network

L A
> Add & Norm
Multi-head |
Attention
_ ~ - ‘r)

Position
Encoding

A

Input Embedding

Inputs

FIGURE 4

Structure of a transformer encoder. There are four main components in the structure. Input embedding converts categorical inputs (e.g., each word or
symbol in the vocabulary) into numerical vectors. Positional encoding allows the transformer to keep track of the order of words in a sequence.
Multi-head attention computes the relationships between each word and all other words in the sentence, including itself and the residual connections
provide shortcut paths that help stabilize and speed up the training of deep networks.

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al. 10.3389/fbinf.2025.1657021
(a)
Training Phase Testing Phase
Deep Learning O O
5NP1 Model (e.g. : N Units > ; Ne
o DNN, CNN or units
¢ (BI)LSTM) : ;
Q Q Sampling
o with
Replace
Output Layer RS
(b)
S S A e
SNP eeoe
{ | 0.71836538 0.93399838 | 0.91694626 0.63242343
2 | 0.22694684 0.58637365 | 0.40799089 0.56801167 eee
ij’ 0.61377733 0.17529578 | 0.14258960 0.12961204 see
4 0.16875569 0.55803217 | 0.40125831 0.69430940 | eee
L]
: : : : *
L] L] L] L]
FIGURE 5
Illustration of application of deep learning models to genetic summary data. (a) In the training phase, the LD matrix of a genetic region, derived from the
training data, is used as input. Deep learning models such as DNN, CNN, or LSTM are then applied to this input LD matrix. The number of output units
of these deep learning methods is set to be equal to the number of training samples. In the testing phase, the LD matrix from the test data will first be
fed to the trained deep learning model. n,, outputs are then randomly selected with replacement from the n,, outputs. Denote the test error based on
this random sample as TE;. This process is then repeated B times to obtain a set of bootstrapped test error samples TE, ..., TEg. The approximated test
error will be the mean of these B test errors. (b) In the situation of large LD matrix, to reduce computational burden, the LD matrix will be broken into
smaller submatrix along the diagonal (as shown in the orange box). These smaller LD matrices will then be used as inputs to train deep learning models.

(2D) convolutional filters with sizes 5 x 5 and 3 x 3, along with
max pooling layers having filters of size 2 x 2.

o LSTM/BiLSTM: When the LSTM or BiLSTM models were
applied to the LD matrices, the entire LD matrix was used as
input. In other words, the input dimensions were 8,299 x 8,299
for the simulated data and 168 x 168 for the real data. The same
LSTM and BiLSTM architectures used for the individual-level
SNP data were also applied to the LD matrices. In addition, the
ADAM optimizer was used with 10 epochs and a batch size of
256 for the LSTM, and with 5 epochs and a batch size of 256 for
the BiLSTM. For both models, the initial learning rate was set
to 0.001, with a decay rate of 0.96 per epoch during training.

Transformer: Due to the large size of the LD matrix in the
simulated data, the transformer input consisted of diagonal
blocks extracted from the original LD matrix, as described
in the following paragraph. Without this operation, training
a transformer would be infeasible because of the tremendous
memory requirements. For the real data, we directly used
the 168 x 168 LD matrix as the input. The input data were
first flattened and embedded into a vector of dimension

Frontiers in Bioinformatics

09

128. Positional encoding was then applied, followed by two
transformer blocks, each containing six multi-head attention
units, a dropout layer with a dropout rate of 0.1, and layer
normalization. Finally, two dense hidden layers, each with 128
hidden units, were applied, followed by another dropout layer
(dropout rate 0.1) and layer normalization.

Training a deep learning model, especially a CNN or a
transformer with an LD matrix as input, can involve a large
number of parameters. In addition, when the dimension of the
LD matrix is large, storing such a large LD matrix requires
substantial memory. Combining with the number of parameters
to train in a deep learning model, it could lead to prohibitively
long computation time. To reduce the computational burden in
cases with large LD matrices, the matrix is divided into smaller
block matrices along the diagonal, and these smaller LD matrices
are used as inputs instead. This idea is originated from the fact
that LD is largely local due to the haplotype block structure of
SNPs (Gabriel et al., 2002) and is illustrated in Figure 5b. Although
dividing the LD matrix into smaller blocks may lead to the loss
of some long-range SNP relationships, doing so helps mitigate

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

substantial computational challenges. Moreover, when multiple
small LD blocks are fed into a deep learning model, such as a
convolutional neural network (CNN), the model can still capture
correlations between neighbouring blocks, which may partially
recover the missing LD information. In our application, a block size
of 193 was used so that 8,299 SNPs resulted in exactly 43 smaller
blocks, and these blocks of LD matrices were used as inputs when
training the CNN and the transformer.

When applying deep learning models with LD matrices as
inputs, there is an inherent trade-off between retaining genomic
information and managing computational cost. For the DNN and
LSTM models, we used the entire LD matrix as input, as the
computational costs of DNN and LSTM are less demanding. In DNN
applications, we used the upper triangular portion of the LD matrix,
which does not result in information loss because the LD matrix is
symmetric. In contrast, for the CNN and transformer models, which
are more computationally intensive, it should be noted that we used
the same block LD matrices along the diagonal as inputs to reduce
computational burden.

3 Result

Table 2 summarizes the training and test errors of the deep
learning models applied to individual-level SNP data as well as
to LD matrices. The results were obtained from 500 independent
repetitions. Each cell contains the sample mean of the training/test
errors based on the 500 runs, with the sample standard deviation
provided in parentheses. As shown in Table 2, when individual-
level SNP data is available, the training errors from the DNN and
CNN (structure 1) are relatively small, but their test errors are
larger. Notably, the test errors of CNNs are significantly higher
than those of DNNs, suggesting that CNNs may be less effective
for SNP data. In contrast, both LSTM and BiLSTM models exhibit
smaller test errors compared to DNNGs, indicating that LSTM-
based models may be more suitable for SNP data. In addition, the
transformer models achieved a performance comparable to that of
the LSTM and BiLSTM on the individual-level SNP data, but the
test error was higher when only the LD matrix was available. A
key observation from Table 2 is that when only genetic summary
data (LD matrices) is available, deep learning models can still
achieve performance comparable to that obtained with individual-
level SNP data.

Table 3 summarizes the results obtained from the real data
analysis. Similar to the simulation studies, 500 independent
runs were performed on different random initialization and the
training/test errors have a very similar pattern as in Table 2. The
performances of all deep learning models applied on LD matrices are
similar to those obtained from using individual-level SNP data. On
the other hand, both BiLSTM and CNN perform better compared
to that of DNN’s and CNN performs the best. We hypothesize that
SNPs within the APOE gene are more spatially correlated compared
to the ones generated in the simulation studies. It is a little bit
surprise to see that transformers did not perform very well in this
case as the test error is significantly larger than other statistical
models, which could potentially be due to the small sample size in
the ADNI data.

Frontiers in Bioinformatics

10

10.3389/fbinf.2025.1657021

As a comparison, we also applied the best linear unbiased
predictor (BLUP) from linear mixed-effects models to predict the
traits based on the simulated individual-level SNP data, which
serves as a benchmark. Based on 500 independent runs, for the
simulated data, the mean and standard deviation of the training
error of BLUP were 0.849 and 3.499¢-01, respectively, and the mean
and standard deviation of the test error were 1.087 and 9.984e-02,
respectively. Although BLUP appears to outperform all the deep
learning models due to its smaller test error, it should be noted that
the underlying relationship between the SNPs and the trait is linear.
Therefore, BLUP is expected to be the best predictor in terms of
mean squared error.

4 Discussions and conclusion

Deep learning methods have achieved significant success in
genetic and genomic predictive analyses. However, their application
to genetic summary data has not been fully explored. In this paper,
we propose an approach for training and evaluating deep learning
models using genetic summary data as inputs, with the test error
approximated through the bootstrap method. Through simulation
studies and real data analyses, we find that deep learning methods
based on LD matrices can achieve prediction accuracies comparable
to those obtained using individual-level data. This finding broadens
the potential applications of deep learning methods to genetic risk
prediction based on summary data.

In practice, the performance of deep learning methods heavily
depends on the choice of hyperparameters (such as the number of
hidden units and hidden layers in a DNN) as well as the learning
algorithms. To determine these hyperparameters, we created a pool
of deep learning models with varying configurations, selecting
those with the best validation prediction accuracy. Developing
effective strategies for choosing hyperparameters to ensure optimal
predictive performance will be a focus of our future work.
Additionally, while CNNs can capture local information, it is
noteworthy that their performances vary a lot in the simulation
studies and the real data analyses. We conjecture that the
performance of CNNs relies heavily on the noises and spatial
correlations of SNPs in the genetic data, which could potentially
limit their feature extraction capabilities. Further analyses on
different simulated and real genetic datasets are needed to verify this
conjecture, and this will be another work of our future research. On
the other hand, the performances of LSTM or BiLSTM are more
consistent and can produce slightly better test error compared to
DNNs, which may suggest these models are more suitable for genetic
and genomic applications.

Computational costs and limited sample sizes are two major
bottlenecks of the proposed method. To enable a deep learning
model to flexibly capture complex relationships, larger network
architectures and greater sample sizes are preferred. However, due
to limited sample sizes and computational resources, we were only
able to test deep learning models with relatively small architectures.
Even with such small structures, it remains infeasible to use a
genome-wide LD matrix as input. In the paper, we proposed to
use nonoverlap block matrices along the diagonal to address the
issue. To avoid further information loss, a potential solution could
be using overlapped block matrices along the diagonal. However,

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

10.3389/fbinf.2025.1657021

TABLE 2 Comparisons between training/test errors of deep learning models on individual-level SNP data and on genetic summary data based on

simulated data.

Method

DNN

Individual-level SNP data

Training error

0.564 (3.720e-01)

Test error

1.233 (8.589¢-02)

Genetic summary data

0.119 (9.714e-02)

Training error

Test error

1.822 (1.758e-01)

CNN

Structure 1

0.356 (3.237¢-01)

1.466 (2.198¢-01)

0.694 (2.190e-02)

2.303 (6.369¢-04)

Structure 2

1.338 (5.434e-01)

1.367 (6.085e-01)

0.720 (1.149-02)

2.303 (6.375¢-04)

LSTM 1.119 (1.034e-04) 1.134 (4.835¢-03) 1.109 (1.945¢-03) 1.153 (4.573¢-04)
BiLSTM 1.119 (1.471e-04) 1.136 (5.407¢-03) 1.101 (2.720e-04) 1.153 (2.171e-04)
Transformer 1.120 (2.358¢-02) 1.118 (9.446e-02) 0.182 (1.320e-02) 1.894 (2.225€-02)

TABLE 3 Comparisons between training/test errors of deep learning models on individual-level SNP data and on genetic summary data based on ADNI
data. The unit for the response variable (logarithm of hippocampal volume) is the natural logarithm of cubic millimeters.

Individual-level SNP data Genetic summary data

Test error Test error

Training error

Training error

DNN

2.188¢-02 (1.923e-03)

2.118e-02 (1.118e-03)

3.494e-03 (1.272e-03)

1.694e-02 (2.237¢-04)

CNN

Structure 1

1.389¢-02 (8.903¢-4)

1.397e-02 (9.313e-4)

1.430e-02 (3.564¢-3)

1.531-e02 (2.412¢-04)

Structure 2

1.389¢-02 (4.448e-4)

1.391e-02 (3.936e-4)

1.356e-02 (5.1131e-4)

1.389-€02 (1.863e-04)

LSTM 2.345e-02 (6.690e-05) 2.063e-02 (2.266e-04) 2.265e-02 (3.367¢-04) 2.265e-02 (4.052e-04)
BiLSTM 2.364e-02 (4.794e-04) 2.059¢-02 (4.054e-04) 1.407e-02 (1.537e-04) 1.392e-02 (7.873e-06)
Transformer 1.532e-02 (4.477¢-06) 1.394e-02 (4.304¢-06) 2.392e-02 (2.663e-03) 5.495e-02 (2.959¢-03)

having more input LD matrices will results in more parameters in
deep learning models to train. Therefore, how to keep the balance
between reducing potential information loss and how to develop
strategies to efficiently handle genome-wide LD matrices as input
will be one of our future research directions. Furthermore, to
address the limited sample size problem, one potential approach
is to use Al-based tools [e.g., TabDDPM (Kotelnikov et al., 2024)]
to generate synthetic tabular data. Nevertheless, such approaches
require rigorous validation before they can be widely applied.
While Alzheimer’s disease is a polygenic disorder involving
numerous loci across the genome, our real data analysis focused
on SNPs adjacent to the APOE gene. This region was chosen
because of its well-established and strong association with AD,
as well as to reduce the computational burden of training
deep learning models on genome-wide data. As a result, the
analysis serves primarily as a proof-of-concept, demonstrating the
model’s ability to capture nonlinear SNP-phenotype relationships
within a biologically relevant region. Future work will extend
this approach to genome-wide analyses, which will provide a

Frontiers in Bioinformatics 11

more comprehensive assessment of the model’s predictive ability
for polygenic traits. Such extensions will also enable a direct
comparison of predictive performance and computational efficiency
with polygenic risk scores and other nonlinear models, including
kernel-based approaches.

Although the focus of this paper is to compare the performance
of deep learning models when only LD matrices are available as
inputs with that when individual-level SNP data are available, we
would like to briefly discuss the difference between our approach
and PRS-based methods, since PRS also relies on genetic summary
data. In general, a polygenic risk score for a disease is obtained
by aggregating the effects of SNPs across the genome, where the
effect sizes of individual SNPs are estimated from genome-wide
association studies (GWAS). Therefore, an implicit assumption
underlying PRS is that SNP effects are additive and linear, which
prevents PRS from capturing nonlinear genetic effects or SNP-SNP
interactions (Elgart et al., 2022). In contrast, the proposed deep
learning framework learns nonlinear, high-dimensional mappings
from SNPs or LD matrices to the phenotype directly, enabling

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

it to capture complex genetic architectures such as SNP-SNP
interactions, local LD structure, and potential non-additive effects
that PRS cannot model.

Recently, there has been extensive research aimed at opening
the black box and making deep learning models more interpretable.
According to the survey by Rauker et al. (2023), interpretability
techniques can be classified into intrinsic and post hoc approaches.
Intrinsic techniques involve training models that are inherently
more interpretable or possess natural explanations, whereas post
hoc methods aim to interpret a model after it has been trained.
From a statistical perspective, one post hoc approach to understand
a deep learning model is to use the trained model for statistical
inference, such as hypothesis testing or variable selection. Many
recent studies have explored such possibilities. For instance, multiple
hypothesis testing procedures based on neural networks have been
proposed in recent years, with some applied to detecting significant
disease-related genes (Horel and Giesecke, 2020; Shen et al., 2021;
Shen et al., 2022a; Shen and Wang, 2024; Dai et al., 2024). Although
this paper mainly focuses on the predictive performance of deep
learning models, the explainability of the proposed methods is also
an important topic and will be considered in future research.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

AW: Writing - review and editing, Formal Analysis, Writing -
original draft, Software. EX: Software, Writing - review and editing,

References

Bai, C., Dallasega, P, Orzes, G., and Sarkis, J. (2020). Industry 4.0 technologies
assessment: a sustainability perspective. Int. J. Prod. Econ. 229, 107776.
doi:10.1016/].ijpe.2020.107776

Bengio, Y., Simard, P,, and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157-166.
doi:10.1109/72.279181

Campos, G. de los, Vazquez, A. I, Fernando, R., Klimentidis, Y. C., and Sorensen,
D. (2013). Prediction of complex human traits using the genomic best linear unbiased
predictor. PLOS Genet. 9, €1003608. doi:10.1371/journal.pgen.1003608

Collins, E S., and Varmus, H. (2015). A new initiative on precision medicine. N. Engl.
J. Med. 372, 793-795. doi:10.1056/NEJMp1500523

Consortium, W. T. C. C,, Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas,
P, Duncanson, A., et al. (2007). Genome-wide association study of 14,000 cases

Frontiers in Bioinformatics

12

10.3389/fbinf.2025.1657021

Writing — original draft, Formal Analysis. JC: Writing — original
draft, Software, Formal Analysis, Writing - review and editing.
XS: Methodology, Conceptualization, Writing — review and editing,
Writing — original draft, Supervision.

Funding

The author(s) declared that financial support was not received
for this work and/or its publication.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that generative AI was used in the
creation of this manuscript. ChatGPT 40 was used to correct
grammatical mistakes.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,

the editors and the reviewers. Any product that may be

affiliated organizations, or
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

of seven common diseases and 3,000 shared controls. Nature 447, 661-678.
doi:10.1038/nature05911

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math.
Control Signal Syst. 2, 303-314. doi:10.1007/BF02551274

Dai, B., Shen, X,, and Pan, W. (2024). Significance tests of feature relevance
for a black-box learner. IEEE Trans. Neural Netw. Learn. Syst. 35, 1898-1911.
doi:10.1109/TNNLS.2022.3185742

Efron, B., and Tibshirani, R. J. (1994). An introduction to the bootstrap. New York:
Chapman and Hall/CRC. doi:10.1201/9780429246593

Elgart, M., Lyons, G., Romero-Brufau, S., Kurniansyah, N., Brody, J. A., Guo,
X., et al. (2022). Non-linear machine learning models incorporating SNPs and PRS
improve polygenic prediction in diverse human populations. Commun. Biol. 5, 856.
doi:10.1038/s42003-022-03812-2

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://doi.org/10.1016/j.ijpe.2020.107776
https://doi.org/10.1109/72.279181
https://doi.org/10.1371/journal.pgen.1003608
https://doi.org/10.1056/NEJMp1500523
https://doi.org/10.1038/nature05911
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/TNNLS.2022.3185742
https://doi.org/10.1201/9780429246593
https://doi.org/10.1038/s42003-022-03812-z
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Wang et al.

Gabriel, S. B., Schaffner, S. E, Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B.,
et al. (2002). The structure of haplotype blocks in the human genome. Science 296,
2225-2229. doi:10.1126/science.1069424

Graga, M., Nobre, R., Sousa, L., and Ilic, A. (2024). Distributed transformer for high
order epistasis detection in large-scale datasets. Sci. Rep. 14, 14579. d0i:10.1038/s41598-
024-65317-5

Graves, A., and Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Netw. [JCNN 18,
602-610. doi:10.1016/j.neunet.2005.06.042

Guo, B., and Wu, B. (2019). Powerful and efficient SNP-Set association tests
across multiple phenotypes using GWAS summary data. Bioinformatics 35, 1366-1372.
doi:10.1093/bioinformatics/bty811

Hibar, D. P, Stein, J. L., Jahanshad, N., Kohannim, O., Hua, X., Toga, A. W, et al.
(2015). Genome-wide interaction analysis reveals replicated epistatic effects on brain
structure. Neurobiol. Aging 36, S151-S158. doi:10.1016/j.neurobiolaging.2014.02.033

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735-1780. d0i:10.1162/neco0.1997.9.8.1735

Hofmann, T., Schélkopf, B., and Smola, A. J. (2008). Kernel methods in machine
learning. Ann. Statistics 36, 1171-1220. d0i:10.1214/009053607000000677

Horel, E., and Giesecke, K. (2020). Significance tests for neural networks. J. Mach.
Learn. Res. 21, 1-29.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks 2, 359-366. d0i:10.1016/0893-
6080(89)90020-8

Hostage, C. A., Choudhury, K. R., Doraiswamy, P. M., Petrella, J. R., and Initiative,
for the A. D. N. (2013). Dissecting the gene dose-effects of the APOE &4 and £2
alleles on hippocampal volumes in aging and alzheimer’s disease. PLOS ONE 8, €54483.
doi:10.1371/journal.pone.0054483

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to
statistical learning, springer texts in statistics. New York, NY: Springer. doi:10.1007/978-
1-4614-7138-7

Jostins, L., and Barrett, J. C. (2011). Genetic risk prediction in complex disease. Hum.
Mol. Genet. 20, R182-R188. doi:10.1093/hmg/ddr378

Karch, C. M., Cruchaga, C., and Goate, A. M. (2014). Alzheimer’s disease genetics:
from the bench to the clinic. Neuron 83, 11-26. doi:10.1016/j.neuron.2014.05.041

Kingma, D. P, and Ba, J. (2017). Adam: a method for stochastic optimization.
doi:10.48550/arXiv.1412.6980

Kotelnikov, A., Baranchuk, D., Rubachey, 1., and Babenko, A. (2024). TabDDPM:
modelling tabular data with diffusion models. doi:10.5555/3618408.3619133

Kwak, L.-Y., and Pan, W. (2016). Adaptive gene- and pathway-trait association
testing with GWAS summary statistics. Bioinformatics 32, 1178-1184.
doi:10.1093/bioinformatics/btv719

LeCun, Y. (1989). Generalization and network design strategies. In Editor R. Pfeifer,
Z. Schreter, F. Fogelman, and L. Steels (Connectionism in perspective Elsevier).

Li, M., He, Z., Zhang, M., Zhan, X., Wei, C., Elston, R. C,, et al. (2014). A generalized
genetic random field method for the genetic association analysis of sequencing data.
Genet. Epidemiol. 38, 242-253. doi:10.1002/gepi.21790

Li, Z., Liu, E, Yang, W,, Peng, S., and Zhou, J. (2022). A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33,
6999-7019. doi:10.1109/TNNLS.2021.3084827

Li, H., Mazumder, R., and Lin, X. (2023). Accurate and efficient estimation of
local heritability using summary statistics and the linkage disequilibrium matrix. Nat.
Commun. 14, 7954. doi:10.1038/s41467-023-43565-9

Li,S., Arora, S., Attaoua, R., Hamet, P, Tremblay, ., Bihlo, A., et al. (2025). Leveraging
hierarchical structures for genetic block interaction studies using the hierarchical
transformer. medRxiv. 11, 24317486. d0i:10.1101/2024.11.18.24317486

Liu, L., Meng, Q., Weng, C., Lu, Q, Wang, T., and Wen, Y. (2022). Explainable deep

transfer learning model for disease risk prediction using high-dimensional genomic
data. PLOS Comput. Biol. 18, €1010328. doi:10.1371/journal.pcbi. 1010328

Mather, K. A., Armstrong, N. J., Wen, W,, Kwok, J. B., Assareh, A. A., Thalamuthu, A.,
etal. (2015). Investigating the genetics of hippocampal volume in older adults without
dementia. PLOS ONE 10, e0116920. doi:10.1371/journal.pone.0116920

Mu, Y, and Gage, E H. (2011). Adult hippocampal neurogenesis and its role in
Alzheimer’s disease. Mol. Neurodegener. 6, 85. doi:10.1186/1750-1326-6-85

Nazarian, A., Cook, B., Morado, M., and Kulminski, A. M. (2023). Interaction analysis
reveals complex genetic associations with alzheimer’s disease in the CLU and ABCA7
gene regions. Genes 14, 1666. doi:10.3390/genes14091666

Rauker, T., Ho, A., Casper, S., and Hadfield-Menell, D. (2023). “Toward transparent
Al a survey on interpreting the inner structures of deep neural networks,” in Presented
at the 2023 IEEE conference on secure and trustworthy machine learning (SaTML).
IEEE Computer Society, 464-483. d0i:10.1109/SaTML54575.2023.00039

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychol. Review 65, 386-408. doi:10.1037/h0042519

Frontiers in Bioinformatics

13

10.3389/fbinf.2025.1657021

Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q.,
et al. (2009). MRI of hippocampal volume loss in early Alzheimer’s disease in relation
to ApoE genotype and biomarkers. Brain 132, 1067-1077. doi:10.1093/brain/awp007

Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C.], Li, Y., Duren, W. L., et al.
(2007). A genome-wide association study of type 2 diabetes in finns detects multiple
susceptibility variants. Science 316, 1341-1345. doi:10.1126/science.1142382

Shen, X., and Wang, X. (2024). An exploration of testing genetic associations using
goodness-of-fit statistics based on deep ReLU neural networks. Front. Syst. Biol. 4,
1460369. doi:10.3389/fsysb.2024.1460369

Shen, X., Jiang, C., Sakhanenko, L., and Lu, Q. (2021). A goodness-of-fit test based
on neural network sieve estimators. Statistics and Probability Letters 174, 109100.
doi:10.1016/.sp.2021.109100

Shen, X,, Jiang, C., Sakhanenko, L., and Lu, Q. (2022a). A sieve quasi-likelihood
ratio test for neural networks with applications to genetic association studies.
doi:10.48550/arXiv.2212.08255

Shen, X., Jiang, C., Wen, Y, Li, C, and Lu, Q. (2022b). A brief review
on deep learning applications in genomic studies. Front. Syst. Biol. 2, 877717.
doi:10.3389/fsysb.2022.877717

Shen, X., Wen, Y., Cui, Y., and Lu, Q. (2022¢c). A conditional autoregressive model
for genetic association analysis accounting for genetic heterogeneity. Stat. Med. 41,
517-542. doi:10.1002/sim.9257

Siami-Namini, S., Tavakoli, N., and Namin, A. S. (2019). “The performance
of LSTM and BiLSTM in forecasting time series,” in 2019 IEEE international
conference on big data (big data). Presented at the 2019 IEEE international
conference on big data (big data), 3285-3292. doi:10.1109/BigData47090.2019.
9005997

Sims, R., Hill, M., and Williams, J. (2020). The multiplex model of the genetics of
Alzheimer’s disease. Nat. Neurosci. 23, 311-322. d0i:10.1038/s41593-020-0599-5

Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D, et al. (2007). A
genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445,
881-885. d0i:10.1038/nature05616

Speed, D., and Balding, D. J. (2014). MultiBLUP: improved SNP-Based prediction for
complex traits. Genome Res. 24, 1550-1557. doi:10.1101/gr.169375.113

Speed, D., and Balding, D. J. (2019). SumHer better estimates the SNP heritability of
complex traits from summary statistics. Nat. Genet. 51, 277-284. doi:10.1038/s41588-
018-0279-5

Speed, D., Holmes, J., and Balding, D. J. (2020). Evaluating and improving heritability
models using summary statistics. Nat. Genet. 52, 458-462. doi:10.1038/s41588-020-
0600-y

Sullivan, E. V., Pfefferbaum, A., Swan, G. E., and Carmelli, D. (2001). Heritability
of hippocampal size in elderly twin men: equivalent influence from genes and
environment. Hippocampus 11, 754-762. doi:10.1002/hipo.1091

Svishcheva, G. R., Belonogova, N. M., Zorkoltseva, I. V., Kirichenko, A. V,, and
Axenovich, T. I. (2019). Gene-based association tests using GWAS summary statistics.
Bioinformatics 35, 3701-3708. doi:10.1093/bioinformatics/btz172

The 1000 Genomes Project Consortium, Abecasis, G. R., Altshuler, D., Auton, A.,
Brooks, L. D., Durbin, R. M, et al. (2010). A map of human genome variation from
population scale sequencing. Nature 467, 1061-1073. doi:10.1038/nature09534

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems 30: Annual Conferenceon Neural Information Processing Systems 2017, Long
Beach, CA, December 4-9, 2017. Editor I. Guyon, U. von Luxburg, S. Bengio, H. M.
Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, 5998-6008.

Wu, M. C, Lee, S., Cai, T, Li, Y., Boehnke, M., and Lin, X. (2011). Rare-variant
association testing for sequencing data with the sequence kernel association test. Am. J.
Hum. Genet. 89, 82-93. doi:10.1016/j.ajhg.2011.05.029

Xue, H., and Pan, W. (2020). Inferring causal direction between two traits in
the presence of horizontal pleiotropy with GWAS summary data. PLOS Genet. 16,
€1009105. doi:10.1371/journal.pgen.1009105

Yang, J., Benyamin, B., McEvoy, B. P, Gordon, S., Henders, A. K., Nyholt, D. R,, et al.
(2010). Common SNPs explain a large proportion of the heritability for human height.
Nat. Genet. 42, 565-569. doi:10.1038/ng.608

Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks.
Neural Netw. 94, 103-114. doi:10.1016/j.neunet.2017.07.002

Yarotsky, D., and Zhevnerchuk, A. (2020). “The phase diagram of approximation
rates for deep neural networks,” in Proceedings of the 34th International Conference on
Neural Information Processing Systems (NIPS *20) (Red Hook, NY: Curran Associates,
Inc.), 13005-13015.

Zhou, X., Chen, Yu, Ip, E. C. E, Jiang, Y., Cao, H., Lv, G,, et al. (2023). Deep learning-
based polygenic risk analysis for Alzheimer’s disease prediction. Commun. Med. 3, 1-20.
doi:10.1038/543856-023-00269-x

Zhu, Z., Zheng, 7., Zhang, F, Wu, Y., Trzaskowski, M., Maier, R., et al. (2018). Causal
associations between risk factors and common diseases inferred from GWAS summary
data. Nat. Commun. 9, 224. doi:10.1038/s41467-017-02317-2

frontiersin.org

https://doi.org/10.3389/fbinf.2025.1657021
https://doi.org/10.1126/science.1069424
https://doi.org/10.1038/s41598-024-65317-5
https://doi.org/10.1038/s41598-024-65317-5
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1093/bioinformatics/bty811
https://doi.org/10.1016/j.neurobiolaging.2014.02.033
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1371/journal.pone.0054483
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1093/hmg/ddr378
https://doi.org/10.1016/j.neuron.2014.05.041
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.5555/3618408.3619133
https://doi.org/10.1093/bioinformatics/btv719
https://doi.org/10.1002/gepi.21790
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1038/s41467-023-43565-9
https://doi.org/10.1101/2024.11.18.24317486
https://doi.org/10.1371/journal.pcbi.1010328
https://doi.org/10.1371/journal.pone.0116920
https://doi.org/10.1186/1750-1326-6-85
https://doi.org/10.3390/genes14091666
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1037/h0042519
https://doi.org/10.1093/brain/awp007
https://doi.org/10.1126/science.1142382
https://doi.org/10.3389/fsysb.2024.1460369
https://doi.org/10.1016/j.spl.2021.109100
https://doi.org/10.48550/arXiv.2212.08255
https://doi.org/10.3389/fsysb.2022.877717
https://doi.org/10.1002/sim.9257
https://doi.org/10.1109/BigData47090.2019.9005997
https://doi.org/10.1109/BigData47090.2019.9005997
https://doi.org/10.1038/s41593-020-0599-5
https://doi.org/10.1038/nature05616
https://doi.org/10.1101/gr.169375.113
https://doi.org/10.1038/s41588-018-0279-5
https://doi.org/10.1038/s41588-018-0279-5
https://doi.org/10.1038/s41588-020-0600-y
https://doi.org/10.1038/s41588-020-0600-y
https://doi.org/10.1002/hipo.1091
https://doi.org/10.1093/bioinformatics/btz172
https://doi.org/10.1038/nature09534
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1371/journal.pgen.1009105
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1038/s43856-023-00269-x
https://doi.org/10.1038/s41467-017-02317-2
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Simulation data
	2.1.1 Individual-level data
	2.1.2 Construction of LD matrices

	2.2 Real data
	2.3 Deep neural networks (DNNs)
	2.4 Convolutional neural networks (CNNs)
	2.5 Recurrent neural networks (RNNs)
	2.6 Transformers
	2.7 Applications to summary data

	3 Result
	4 Discussions and conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

