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Introduction: Accurate prediction of protein-protein interactions (PPIs) is crucial 
for understanding cellular functions and advancing the development of drugs. 
While existing in-silico methods leverage direct sequence embeddings from 
Protein Language Models (PLMs) or apply Graph Neural Networks (GNNs) 
to 3D protein structures, the main focus of this study is to investigate less 
computationally intensive alternatives. This work introduces a novel framework 
for the downstream task of PPI prediction via link prediction.
Methods: We introduce a two-stage graph representation learning framework,
ProtGram-DirectGCN. First, we developed ProtGram, a novel approach that 
models a protein's primary structure as a hierarchy of globally inferred n-
gram graphs. In these graphs, residue transition probabilities, aggregated from a 
large sequence corpus, define the edge weights of a directed graph of paired 
residues. Second, we propose a custom directed graph convolutional neural 
network, DirectGCN, which features a unique convolutional layer that processes 
information through separate path-specific (incoming, outgoing, undirected) 
and shared transformations, combined via a learnable gating mechanism.
DirectGCN is applied to the ProtGram graphs to learn residue-level embeddings, 
which are then pooled via an attention mechanism to generate protein-level 
embeddings for the prediction task.
Results: The efficacy of the DirectGCN model was first established on standard 
node classification benchmarks, where its performance is comparable to that of 
established methods on general datasets, while demonstrating specialization for 
complex, directed, and dense heterophilic graph structures. When applied to PPI 
prediction, the full ProtGram-DirectGCN framework achieves robust predictive 
power despite being trained on limited data.
Discussion: Our results suggest that a globally inferred, directed graph-based 
representation of sequence transitions offers a potent and computationally 
distinct alternative to resource-intensive PLMs for the task of PPI prediction.  
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Future work will involve testing ProtGram-DirectGCN on a wider range of 
bioinformatics tasks.
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uniprot, biogrid, russellab, graph theory, graph representation learning, graph neural 
networks, graph convolution networks, link prediction  

1 Introduction

Protein-protein interactions (PPIs) form a network of physical 
contacts and functional associations mediated by molecular bonds. 
These interactions are the basis for cellular processes and are 
collectively referred to as the cellular interactome. Therefore, 
understanding the underlying mechanisms by predicting valid 
interactions between proteins is the foundation for many in-vitro
biomedical endeavors, such as understanding disease mechanisms, 
drug development and repurposing, and the potential development 
of futuristic biotechnologies (Vidal et al., 2011; Scott et al., 2016). 
In-vitro protein interaction prediction methods, including Yeast-
2-Hybrid screening, co-immunoprecipitation followed by mass 
spectrometry and affinity purification, have been used to infer 
empirical evidence of protein association. However, these methods 
are usually prone to a high rate of false positives and false 
negatives (Rao et al., 2014).

Computational methods, also known as in-silico and data-driven 
approaches, have been adopted in life sciences research since at 
least the seventies (Wodak and Janin, 1978). In-silico methods 
help alleviate several of the significant challenges of the in-vitro
methods mentioned above. The initial stages of drug discovery are 
heavily based on identifying and confirming valid drug targets, often 
proteins. This activity is typically protracted, resource-intensive, and 
time-consuming. Subsequent in-vitro screening of drug candidates 
against potential targets cannot be done efficiently until a validated 
list of candidate proteins is established. Delays in this upstream 
target identification task lead to delays in the beginning of extensive 
in-vitro studies (Scannell et al., 2012). Therefore, in-silico methods, 
mainly relying on the predictive power of complex machine learning 
models, are not meant to replace in-vitro methods. Instead, they 
are integrated into the workflow to create a potential pool of 
valid interactions waiting for wet lab filtering and confirmation, 
eventually and evidently speeding up the process (Vidal et al., 2011).

Recent advancements in machine learning, neural networks, 
and deep learning approaches have enabled the automation of 
feature extraction. In addition to embeddings of biological entities 
into a real vector space, where meaningful algebraic operations 
can be performed on the learned vectors representing individual 
residues or proteins. The advent of the transformer architecture 
(Vaswani et al., 2017) has surpassed sequence-to-sequence models, 
particularly recurrent neural networks (RNNs) like the Long 
Short-Term Memory (LSTM) model (Hochreiter and Schmidhuber, 
1997). These models have been relied on in protein sequence 
modeling and representation learning (Cho et al., 2014). The 
input protein sequence is usually tokenized at different levels or 
granularity, such as representing single amino acids as words or 
a group of residues as k-mers (Guo et al., 2008). These models, 
although efficient in processing short-term dependencies, have 
demonstrated a limited understanding of context incorporation 

in language modeling. Though, that contextual understanding has 
had glimpses in non-recurrent language-based neural networks 
like Word2Vec (Mikolov et al., 2013), where the goal becomes 
incorporating context via a binary negative loss function that 
classifies in and out of context window words to the current word. 
The introduction of the attention mechanism and the transformer 
architecture, combining both sequence-to-sequence modeling and 
contextual encoding (Vaswani et al., 2017), has increased the 
predictive power of language models by orders of magnitude on 
multiple tasks. Subsequently that has contributed to the proliferation 
of different designs and architectures like BERT (encoder only) 
(Devlin et al., 2019), T5 (encoder-decoder) (Raffel et al., 2023), and 
GPT (decoder only) (Brown et al., 2020). That, however, comes 
at a significant computational and environmental cost, due to the 
increased reliance on training data for these models, as well as the 
near-linear correlation between a model’s predictive power and the 
number of parameters present in the network.

Transformer-based architectures have had great success in 
adoption in domain-specific tasks via fine-tuning; for example, 
BioBERT (Lee et al., 2020) fine-tunes BERT over the corpus of 
PubMed metadata and available full-text on multiple tasks. One 
of the tasks is biological named entity recognition and extraction 
for names of diseases, genes, proteins, species, and drugs. The 
protein embeddings extracted from BioBERT can provide encoded 
contextual meaning in downstream tasks, such as protein interaction 
prediction or gene identification. In drug development, particularly 
in protein-protein interaction prediction (PPI), advanced models 
have been applied at multiple levels. For example, in reinforcement 
learning, a prominent recent advancement is Google’s AlphaFold 
(Jumper et al., 2021). This complex model aims to predict 
protein 3D structures from primary sequences, a central challenge 
in biomedical informatics known as protein folding prediction. 
Predicted 3D structures are often utilized in frameworks that aim 
to predict protein interactions from all levels of protein structure 
representation via combining features from the primary, secondary, 
and tertiary structures in addition to topological features from 
protein-protein interaction networks (Zhou et al., 2022; Jha et al., 
2022). However, the most common approaches in in-silico PPI 
prediction are primary structure sequence-based methods, where 
the sequential one-dimensional nature of individual amino acids 
and residue-level representations lend themselves to modern 
language modeling. The core lies in the context encoded in 
the transition probabilities between residues due to the relative 
simplicity of the input data.

Protein sequences can be conceptualized as a sequence of amino 
acids (or peptides), analogous to sentences being sequences of 
words. This analogy allows for the application of large language 
modeling techniques. For instance, ProtBert (Elnaggar et al., 2022) 
applies the BERT architecture (Devlin et al., 2019) to primary 
protein structures, yielding accurate models on downstream tasks 
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that generate protein-level vector representations at the residue 
and protein levels. Moreover, work like (Sledzieski et al., 2021) 
D-SCRIPT relies on a PLMs to predict spatial protein interaction 
contact maps. The model was evaluated on per organism protein-
based PPI prediction task yielding positive results. Building 
on these results, the model provides functionally informative 
predictions and yields more coherent gene clusters. The predicted 
contact maps significantly overlap with the true 3D structure 
contacts, despite being trained solely on sequence data. The 
common aspect of all of these models is that; first the output 
embeddings is typically pooled to produce per-protein embeddings 
that capture sequential features enabling higher predictive power in 
downstream tasks (Elnaggar et al., 2022). Second, primary structure 
sequences themselves appear to encode more than the obvious, even 
with relatively limited data availability.

However, even the most advanced modern approaches have had 
several problems.

• The limited context window size must be larger to 
capture longer-range dependencies beyond the immediate 
neighborhood which significantly increases their need for 
labeled training data.

• Increasing the number of layers, blocks and attention heads 
can lead to a significant (potentially exponential) increase in 
the number of parameters, demanding more computational 
resources.

• The models are generally highly sensitive to training data 
quality, diversity, volume and availability.

Here, we propose a novel approach to modeling protein 
primary structure sequences that partially overcomes some of 
these limitations. We cast the sequences as random walks sampled 
according to transition probabilities within a directed n-gram graph 
Gn of amino acids. The directed graph Gn is inferred from a database 
of curated protein sequences (UniProt) (Consortium, 2023). Then, 
a custom-directed graph convolution neural network, DirectGCN, 
learns the dense relationships of the transitions between the n-
grams. The learned representations are then evaluated on a PPI 
link prediction task and compared with other established models to 
establish the method’s validity.

Our approach overcomes the need for a context window 
(Elnaggar et al., 2022) where the computational limitations that 
contribute to limited context windows are only applied to a limited 
dense graph of n-grams. The first-order neighborhood of a spectral 
graph convolution operator approximation (Kipf and Welling, 2017) 
has a limited effect on the output compared to the sizes of a well-
capturing context window in a large language model. In addition 
this approach in modeling the sequences reduces the number of 
parameters significantly as the directed graph convolution network 
operates on a limited unique vocab nodes. In addition to the ability 
to learn complex encoding from limited training data as the n-
gram graph with different levels can act as a data augmentation 
mechanism if full sequence databases are not available. In addition 
this bottom-up approach ensures that the limitations are only 
applied to the lowest level of representation where reducing noise 
at that level reverberates at higher n-gram level, in addition to 
overcoming the need for intensive computational power.

From a biological standpoint the specific transition sequence 
of amino acids via their side chains or R groups determines 
how a polypeptide chain will fold. Hydrogen bonds, ionic bonds, 
and hydrophobic interactions generally drive the folding. And in 
the process, the local secondary structure, including alpha and 
beta helices, eventually creates binding sites essential for forming 
subunit proteins or interacting with other molecules. Hence, 
our intuition is that the primary structure sequences and the 
transition frequencies between residues holds enough signal power 
that can inform downstream not only the 3D tertiary structure 
of the protein but also tell the possible interactions with other 
proteins or the quaternary structure (Dill and MacCallum, 2012; 
Perkins et al., 2010; Anfinsen, 1973).

Accordingly we hypothesize that the global directed dense graph 
of n-grams Gn encodes the potential relationships between proteins, 
and that learning accurate vector representations of Gn not only 
provides promising performance if further developed compared to 
PLMs in the task of PPI link prediction but also offers a method to 
generate protein embeddings on the fly without the need to store 
per-protein embeddings nor to fine tune hefty pretrained models.

Here we are trying to answer the following research questions:

• Does learning representations of proteins from the embedded, 
inferred directed graph of n-grams Gn encode valid associations 
between proteins?

• Is our ProtGram−DirectGCN model credible and valid?
• What is the predictive power of our hierarchical feature based 

n-gram representation Gn?
• Is the performance of the ProtGram−DirectGCN model 

comparable to PLMs? And what are the implications of that?

2 Methods

This section details the design, development, and evaluation 
of our model ProtGram−DirectGCN model, a directed graph 
convolutional network tailored for learning representations from 
dense, directed, and weighted graphs. The primary motivation 
for this model arises from the need to effectively process a 
global, complex, dense, and heterophilic graph of n-grams, Gn, 
constructed from large-scale protein sequence data where capturing 
directionality and transition frequencies is paramount for deriving 
meaningful biological insights. 

2.1 ProtGram

Our approach treats individual proteins, identified via 
the comprehensive database UniProt (Consortium, 2023), 
as distinct entities. These proteins form the nodes V in 
a high-level biological interaction graph canonized in the 
database BioGRID (Oughtred et al., 2021) as GPPI = (V,EPPI), where 
edges EPPI represent observed interactions. The main objective is to 
solve the link prediction problem within GPPI. This task is inherently 
difficult because real-world PPI networks are extremely sparse. The 
probability of a randomly chosen pair of nodes having a link is 
given by the graph density, 2m

n(n−1)
, where n is the number of proteins 

and m is the number of interactions. In typical biological networks, 
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this value is very low, meaning the number of non-interacting pairs 
vastly exceeds the number of known interactions and creates a 
severe class imbalance. A foundational aspect of our methodology 
is the detailed representation of individual protein sequences using a 
hierarchy of n-gram graphs. For a given n-gram size k, each protein 
Pi is defined by its primary amino acid sequence Ri = (r1, r2,…, rL). 
We model the sequence probability under a k-th order Markov 
assumption, where the probability of an amino acid depends on the 
preceding k− 1 residues:

P(Ri) ≈
L

∏
j=k

P(rj|rj−k+1,…, rj−1)

The conditional probabilities are estimated from a large corpus based 
on the frequency of k-gram occurrences:

P(rj|rj−k+1,…, rj−1) =
C(rj−k+1,…, rj−1, rj)

C(rj−k+1,…, rj−1)

where C(⋅) denotes the count of a particular subsequence in 
the corpus. We use this principle to conceptualize all protein 
sequences through a global, directed, and dense graph of k-grams, 
denoted Gk = (Vk,Ek). Here, Vk is the finite set of unique k-gram 
types observed in the corpus. Ek represents directed transitions 
between these k-grams, where an edge (u,v) from k-gram u to v
exists if v can be formed by shifting a one-residue window over 
u. For example, for k = 3, an edge exists from ‘ACG’ to ‘CGT’. 
Each edge (u,v) is assigned a weight wuv corresponding to the 
observed frequency of this transition across the entire corpus. A 
valid protein sequence R = (r1, r2,…, rL) is thus viewed as a specific 
path or random walk of length L− 1 on Gn on this hierarchy of 
n-gram graphs. This conceptualization aligns with the idea that 
protein sequences can be seen as generated from a ‘source graph’ 
of amino acid symbols via a probabilistic random walk process. 
To illustrate this, we can consider the base case of this hierarchy 
where n = 1 (a graph of single residues), which corresponds to a first-
order Markov process. In this case the probability of observing a 
particular sequence R, given its starting residue r1 and the transition 
probabilities derived from Gn, can be formulated. If P(rj+1|rj) =
wrjrj+1

∑kwrjk
 is the transition probability from n-gram rj to rj+1 given 

normalized edge weights, then the probability of the sequence R
is P(R|r1,Gn) = ∏L−1

j=1 P(rj+1|rj). This probabilistic view, rooted in the 
empirically derived Gn, allows for a nuanced understanding of 
sequence validity, likelihood, and structure. We aim not to view the 
amino acid sequence representation as a mere Markovian sequence 
but also to consider the existence of different relationships between 
a residue and many other residues. The directed nature of Gn is 
crucial, naturally modeling the N− to−C terminus directionality 
of polypeptide chains and the inherent asymmetry of residue 
relationships. See Figure 1.

Our custom Directed Graph Convolutional Network DirectGCN
is specifically designed to learn from these Gn n-gram graphs. 
Graph Neural Networks (GNNs) are architectures adept at learning 
node representations by iteratively aggregating information from 
neighborhoods, also known as message passing (Scarselli et al., 
2009). GNNs can be applied to two different graph domains. The 
first is spatial and the second is spectral. Spatial models perform 
message passing across the vertices via direct pass → aggregate →
update computation. While spectral methods rely on operating on 

the adjacency matrix directly by approximating the convolutional 
operation. A foundational spectral GNN is the Graph Convolutional 
Network (GCN) (Kipf and Welling, 2017), whose layer typically 
updates node features according to H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W(l)). 
Here, H(0) would be initial features for n-gram types in Vn, Ã is the 
adjacency matrix of Gn with added self-loops, D̃ is its corresponding 
diagonal degree matrix for normalization, W(l) is a trainable weight 
matrix, and σ is a non-linear activation function.

Standard GCNs are primarily for undirected graphs assuming 
symmetric adjacencies. However multiple works have explored 
applying GCNs to directed graphs for a complete review of 
directed GCN methods please see the Supplementary Material. Our 
DirectGCN adapts this framework to effectively learn from the 
directed and weighted edges of Gn, separating information flow 
based on edge exitance, directionality and the homophily property. 
Our model learns rich embeddings Vn,k ∈ ℝd′  for each n-gram type 
k. Rich feature vectors for entire protein sequences Pi are generated 
by aggregating their constituent n-grams’ embeddings learned 
by ProtGram−DirectGCN. These protein-level feature vectors are 
assembled via an attention mechanism for the downstream PPI link 
prediction task within GPPI. Next we will describe the architecture of 
the ProtGram−DirectGCN model. 

2.2 DirectGCN

2.2.1 Propagation matrix formulation
The graph structure is initially captured by a raw weighted 

adjacency matrix Araw ∈ ℝN×N, where (Araw)uv = wuv. From this, we 
define the out-degree weighted adjacency matrix A(w)out = Araw and 
the in-degree weighted adjacency matrix A(w)in = AT

raw. In addition 
we also generate the structural symmetric undirected adjacency 
A. A key component of DirectGCN is a specific preprocessing 
step for these adjacency matrices, designed to create stable and 
informative propagation matrices. For a given weighted adjacency 
matrix A(w) (either A(w)out  or A(w)in ), we first compute its row-
normalized counterpart A(n) = D−1A(w), where D is the diagonal 
out-degree matrix. To overcome the non-hermitian nature of A(n), 
we compute its symmetric-like (S) and skew-symmetric-like (K)
components:

S =
A(n) + (A(n))T

2
and K =

A(n) − (A(n))T

2
(1)

The final propagation matrix A is derived from the element-wise 
magnitude of these components, with an added identity matrix I for 
self-loops:

A = √S2 +K2 + ϵ+ I (2)

where the square operations are element-wise and ϵ is a small 
constant (e.g., 1× 10−9) for numerical stability. This process yields 
two distinct propagation matrices, Aout and Ain, which are used for 
message aggregation in the convolutional layers. This construction 
aims to capture both the symmetric and anti-symmetric aspects of 
the directed relationships, offering a more robust representation of 
directed influence in addition to the structural path A as shown in 
Equations 1, 2. 
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FIGURE 1
An example of dummy sequences separated by a space indicating multiple proteins. The figure shows how the transitions between the residues or 
characters are conceptualized as a directed, weighted, dense graph where the weights are the transition frequencies calculated as counts or 
probabilities. In addition, the figure shows how we split the directed adjacency into an Ain and an Aout. Later, we describe how to overcome the 
non-hermitian nature of these two matrices to make them suitable for graph convolutional neural networks.

2.2.2 Propagation layer
Given node features H(l) ∈ ℝN×F(l)  at layer l, the layer computes 

the features for the next layer by processing information through 
3 distinct channels: incoming, outgoing, and undirected. Each 
channel combines a standard graph convolutional message passing 
operation with a feed forward layer as final feature transformation. 
For the incoming path, the aggregated message is a combination of 
a propagated component and a shared feature transformation:

H(l+1)in = (Ain(H(l)W
(l)
main,in) + b(l)main,in) + (H

(l)W(l)shared + b(l)shared,in)
(3)

Similarly, for the outgoing path:

H(l+1)out = (Aout(H(l)W
(l)
main,out) + b(l)main,out) + (H

(l)W(l)shared + b(l)shared,out)
(4)

And for the undirected path, using a standard symmetrically 
normalized adjacency matrix Ãundir:

H(l+1)undir = (Ãundir(H(l)W
(l)
main,undir) + b(l)main,undir) + (H

(l)W(l)shared + b(l)shared,undir)
(5)

In addition we model the idea of positional encoding which 
ensures that the model has some notion of time and sequence. We do 

that by adding a non transformed learnable embeddings layer that 
gives each node (n-gram) its positional identity:

B(l)const ∈ Rn×d (6)

where Wmain,∗  are path-specific weight matrices and Wshared is a 
single weight matrix shared across all three paths, acting on the 
original node features. In addition d is a chosen dimension. These 
3 processed signals are then combined using a learnable, node-wise 
gating mechanism to control the flow of information of each path. 
Alongside a separate learnable feature vector that captures the node 
positional identity in the graph. Eventually the model resembles 
an algebraic multivariate first order polynomial linear combination 
of features that represent separate yet integrated graph properties 
aX+ bY+ cZ+ d:

H(l+1)pre−activation = (C
(l)
undirH

(l+1)
undir) + (C

(l)
in H(l+1)in ) + (C

(l)
outH
(l+1)
out ) +B(l)const

(7)

where C(l)∗  are the learnable gating vectors that facilitate 
understanding the importance of the contribution of each path in 
the learning. Finally, a residual connection is added before applying 
a Leaky ReLU activation function:

H(l+1) = σLReLU (H
(l+1)
pre−activation +H(l)W(l)res) (8)
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where W(l)res is a linear projection for the residual connection if feature 
dimensions change. 

2.2.3 Model architecture
The full DirectGCN model is composed of a stack of these 

custom hybrid layers. The overall architecture is defined as follows:

• Input Layer: The initial node features for the n-grams, H(0) ∈
ℝN×F(0) , are either identity initialized (for n = 1) or derived from 
the embeddings of the previous n-gram level (for n > 1).

• Hidden Layers: The model stacks L hidden layers. For each 
layer l ∈ {0,…,L− 1}, the output H(l+1) is computed by applying 
the DirectGCN layer transformation (Equations 3–9) to the 
previous layer’s output H(l). A residual connection is included 
to facilitate deeper architectures, and a Leaky ReLU activation 
function followed by dropout is applied after each layer to 
introduce non-linearity and prevent overfitting.

• Output Layer: The output of the final hidden layer, H(L), serves 
as the learned n-gram embeddings, Zn−gram for the auxiliary 
node classification tasks (community detection (Blondel et al., 
2008) or next node prediction) on Gn. These embeddings are 
passed through a final linear decoder, which is a small feed 
forward layer, to produce the final class prediction logits:

Logits = Decoder(Zn−gram) (9)

A LogSo ftmax function is then applied to these logits for training 
with a negative log-likelihood loss. The final embeddings, Zn−gram, 
are L2-normalized before extraction. Please refer to Figure 2 for a 
complete overview of ProtGram−DirectGCN.

3 Experiments

This section outlines the experimental design employed 
to evaluate the proposed ProtGram−DirectGCN model. Our 
experiments are structured to: (1) assess the intrinsic performance 
of DirectGCN on standard graph benchmark datasets; (2) detail 
the construction of a hierarchy of global n-gram graphs Gn from 
the UniProt sequence dataset a method we call ProtGram; (3) 
evaluate the ability of ProtGram−DirectGCN to learn meaningful 
representations from these Gn graphs via a self-supervised pre-
training task; (4) apply these learned representations, after pooling 
to the protein level, to the downstream task of PPI link prediction; 
and (5) compare the efficacy of our protein embeddings with those 
derived from the state-of-the-art PLMs and other baselines. 

3.1 Materials

Our approach in this investigation is to minimize any cleaning 
or modification of publicly available datasets before running our 
main computational pipeline. UniProt-SPROT (current state) and 
UniRef50 (future work) are our main sources of protein sequences. 
All sequences are cleaned only after an official, validated, automated 
download. In this context, “prior processing” refers specifically to 
any data cleaning or manipulation done before the computational 

pipeline starts. In contrast, “preprocessing” refers to steps such as 
tokenization and the removal of special characters from sequences, 
which occur immediately before the main pipeline and as part 
of it. Sequence cleaning is dynamic; when a pipeline component 
requests sequence data, the raw FASTA file is read and any character 
not representing one of the 20 standard amino acids (A, C, D, 
E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y), in addition 
to an added separator token between individual sequences, is 
filtered out. This standardizes the alphabet for all downstream 
models. Sequence lengths are capped at 10,000 characters to fit 
in memory and on the GPU during training. Tokenization, or 
preprocessing, occurs on the fly for all models tested, including 
our own. For PPI ground truth we apply automated preprocessing 
to positive and negative ground truth links. Positive links are 
automatically downloaded from BioGRID (Oughtred et al., 2021), 
and negative links are obtained from Trabuco et al. (2012). Identifiers 
from these raw datasets are converted to canonical UniProtKB 
IDs using a mapping database built directly from the official 
UniProt ID mapping database. The standardized interaction pairs 
are saved in Parquet format and serve as the definitive ground 
truth for all evaluation tasks. Further preparation details are in the
Supplementary Material. 

3.1.1 Construction of hierarchical Gn graphs via 
ProtGram

The primary dataset for our methodology is a hierarchy of 
global n-gram graphs, Gn, constructed from the UniProt Swiss-Prot 
sequence database.

• Corpus: We used the curated and reviewed UniProt Swiss-Prot 
dataset, containing 573,230 protein sequences. Larger and more 
diverse sequence files liek UniRef50 and UniRef100 and PDB 
are in our plans to train our model on.

• Graph Construction: For each n-gram level from n = 1 to n =
3, we constructed a separate graph Gn. The nodes Vn are the 
unique n-grams of length n found in the corpus. A directed 
edge (u,v) exists if n-gram v can be formed by shifting a one-
character window over n-gram u. The edge weight wuv is the 
total frequency of this transition across all sequences. This 
process resulted in 3 graphs of increasing size and complexity, 
as detailed in Table 1.

3.2 Intrinsic evaluation of DirectGCN

To establish the general graph representation learning 
capabilities of the DirectGCN architecture, we first evaluated 
it on commonly used public benchmark datasets for node 
classification. Though it is very important to note that our 
custom model is designed specifically for the type of hierarchical 
n-gram graph inferred from protein sequences so the goal is 
not to evaluate how superior our model is to other standard 
GNNs but rather to establish validity of the capability of our 
model to process graph data. For example you will see in the 
results that our model might not be the best at processing 
highly homophilic sparse non-directional graphs like Citeseer and
Cora.
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FIGURE 2
ProtGram−DirectGCN full pipeline. (a) ProtGram: our unique probabilistic approach in modeling protein sequences. (b) DirectGCN: the layer is 
composed of multiple paths extracted from the graph; unstructured, directional in addition to a positional identity. The paths are then aggregated and 
transformed via a final feed forward layer and is trained on a next node prediction classification task. (c) PPI: the final embeddings are pooled via an 
attention pooling layer then passed down to the downstream task of classification based link prediction where a classifier is trained on a standard 
ground truth data.

TABLE 1  Statistics of the constructed n-gram graphs (Gn).

n-gram level (n) # Nodes (Unique n-grams) # Edges (unique transitions)

1 21 601

2 601 10,669

3 10,669 180,273

4 180,273 3,240,330

• Datasets: We selected standard GNN benchmark datasets for 
the intrinsic evaluation: Karate Club, Cora, CiteSeer, PubMed, 
Cornell, Texas, and Wisconsin. All of the datasets where 
downloaded from the official PyTorch Geometric repository. 

For each dataset, we evaluated performance on their original 
edges (potentially directed). See Table 2.

• Task & Setup: The task was semi-supervised node classification 
relying on a fixed 10%/10%/80% train/validation/test split. All 
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TABLE 2  Statistics of standard datasets used in the benchmark evaluation.

Dataset # Nodes # Edges # Features # Classes

Karate Club 34 78 0 4

Cora 2,708 10,556 1,433 7

PubMed 19,717 88,648 500 3

Cornell 183 298 1,703 5

Texas 183 325 1,703 5

Wisconsin 251 515 1,703 5

models were trained for 300 epochs using the Adam optimizer 
with a fixed 2 layer and layer norm architecture.

• Baseline Models: Graph Convolutional Network (GCN) 
(Kipf and Welling, 2017), Graph Attention Network (GAT) 
(Veličković et al., 2018), GraphSAGE (Hamilton et al., 2018), 
Graph Isomorphism Network (GIN) (Xu et al., 2019), and 
DirGNN (Rossi et al., 2023).

• Results: The goal of this evaluation was to validate 
ProtGram−DirectGCN as a sound GNN architecture. 
On high-homophily citation networks (Cora, CiteSeer, 
PubMed), ProtGram−DirectGCN underperformed relative 
to simpler models like GCN and GAT. This is an expected 
outcome, as its complex, over-parameterized architecture 
is not well-suited for these tasks and struggles to converge 
effectively. However, on the heterophilic WebKB datasets 
(Cornell, Texas, Wisconsin), where relationships are more 
complex, its performance was more reflective of its innate 
capacity. This validates that the model is functional 
but highly specialized, justifying its application to our 
custom, heterophilic n-gram graphs rather than general-
purpose benchmarks. A summary of results is presented in
Table 3.

3.3 Learning N-gram embeddings from Gn
via training ProtGram−DirectGCN

The constructed Gn graphs via ProtGram serve as the foundation 
for learning informative vector representations (embeddings) for 
each n-gram. This is achieved through a self-supervised training task 
designed to force the model to understand the sequential grammar 
inherent in the protein sequences from which the graph was
built.

• Next-Node Prediction as a Self-Supervised Task: For each n-
gram node u ∈ Vn, we define its label yu as its most likely 
successor in the sequence. This successor is determined by 
identifying the outgoing edge (u,v) with the highest transition 
frequency (weight) in the raw graph. The task for the GNN is 
therefore to predict this most probable next n-gram for every 
node in the graph. This objective compels the model to learn 

embeddings that encode the sequential and transitional logic 
of the n-gram language. An n-gram’s representation becomes 
a function of not only its own identity but also the likely 
sequences it participates in. Final n-gram level is trained on 
a Louvain community detection (Blondel et al., 2008) label 
task. The community detection is analgous to a larger context 
window in the graph or a larger neighborhood aggregation. 
Community detection can be difficult to detect in the smaller n-
gram levels because of the inherent faint signal associated with 
each node but as the number of n-gram levels increase the signal 
becomes more discriminating of n-gram graph communities.

• Hierarchical Training: The training process is hierarchical. For 
the base level (n = 1), node features are identity initialized. For 
each subsequent level n > 1, the initial features for a given n-
gram node are generated by attention-pooling the final, learned 
embeddings of its two constituent (n-1)-gram nodes from 
the previously trained level. This creates a rich, multi-scale 
representation, where higher-order n-gram features are built 
upon the learned representations of their sub-components.

• Implementation Details: The model for each level n is trained 
for a set number of epochs using the Adam optimizer and 
a negative log-likelihood loss function on the next-node 
prediction task. For larger graphs (n ≥ 3), a Cluster-GCN 
(Chiang et al., 2019) approach is used to partition the graph into 
mini-batches via community detection for memory-efficient 
training. The final output of this stage is a comprehensive set of 
learned embeddings for all n-grams at the highest level, n = 3. 
Please see the Supplementary Material for experimental details.

3.4 Protein-protein interaction (PPI) 
prediction as link prediction

• Protein-Level Embeddings Generation via Attention 
Pooling: A single, fixed-size feature vector is generated for 
each protein in the UniProt dataset. This is achieved by taking 
the sequence of each protein, identifying all of its constituent 
n-grams, retrieving their learned embeddings from the final 
ProtGram−DirectGCN model, and aggregating these vectors 
via attention pooling. This results in a single vector that 
summarizes the global n-gram statistics for each protein. 
To standardize the feature space for comparison with other 

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1651623
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ebeid et al. 10.3389/fbinf.2025.1651623

TABLE 3  Model performance on directed datasets. Accuracy and F1-Score are reported as mean± std. (M) Denotes macro average.

Dataset Model Accuracy F1-score (M) Precision (M) Recall (M)

Cora

GCN 0.8722 ± 0.0088 0.8622 ± 0.0106 0.8629 0.8651

GAT 0.8863 ± 0.0062 0.8754 ± 0.0099 0.8808 0.8723

GIN 0.8671 ± 0.0103 0.8588 ± 0.0134 0.8637 0.8575

DirectGCN 0.8590 ± 0.0189 0.8480 ± 0.0256 0.8493 0.8497

DirGNN 0.8530 ± 0.0142 0.8407 ± 0.0172 0.8449 0.8400

PubMed

GCN 0.8631 ± 0.0047 0.8553 ± 0.0056 0.8573 0.8542

GAT 0.8529 ± 0.0089 0.8456 ± 0.0103 0.8491 0.8445

GIN 0.8716 ± 0.0052 0.8669 ± 0.0054 0.8652 0.8695

DirectGCN 0.8451 ± 0.0053 0.8370 ± 0.0067 0.8360 0.8392

DirGNN 0.8107 ± 0.0120 0.8000 ± 0.0116 0.8022 0.8007

Cornell

GCN 0.4101 ± 0.0608 0.2440 ± 0.0590 0.2406 0.2713

GAT 0.4264 ± 0.0748 0.1684 ± 0.0432 0.1989 0.2202

GIN 0.4862 ± 0.0770 0.3603 ± 0.0546 0.3682 0.3974

DirectGCN 0.5571 ± 0.0499 0.4104 ± 0.0837 0.5182 0.4061

DirGNN 0.5520 ± 0.0316 0.2976 ± 0.0547 0.3096 0.3356

Texas

GCN 0.3773 ± 0.0923 0.1640 ± 0.0403 0.1575 0.1770

GAT 0.5464 ± 0.0567 0.2139 ± 0.0461 0.2163 0.2569

GIN 0.4045 ± 0.0585 0.2199 ± 0.0369 0.2305 0.2414

DirectGCN 0.6940 ± 0.0202 0.5212 ± 0.0831 0.6044 0.5071

DirGNN 0.5353 ± 0.0540 0.2310 ± 0.0496 0.2390 0.2703

Wisconsin

GCN 0.4224 ± 0.0627 0.2491 ± 0.0702 0.2600 0.2641

GAT 0.4898 ± 0.0937 0.2413 ± 0.0686 0.3067 0.2635

GIN 0.4219 ± 0.0625 0.2876 ± 0.0757 0.2910 0.3000

DirectGCN 0.6293 ± 0.0423 0.3833 ± 0.0584 0.3835 0.4079

DirGNN 0.4975 ± 0.1026 0.2695 ± 0.0784 0.2934 0.2814

Bold indicates best performance.

methods, Principal Component Analysis (PCA) is applied to 
reduce the final embeddings dimension to 64.

In this step, we use self-attention to create a single embedding 
vector for a protein from its n-gram embeddings (also called 
residue embeddings). Each n-gram determines its importance 
within context and receives a unique attention weight, so n-grams 
matching the protein’s syntax have greater influence. This lets the 
model focus on the most relevant sequence parts. Attention pooling 

is particularly suited for protein sequences, as it highlights structural 
motifs that affect binding sites, discussed further in Section 4.2.

We compute attention scores as follows:

• Let the set of n-gram embedding vectors for a protein be P =
v1,v2,…,vn, where n is the number of n-grams and each vi is a 
d-dimensional vector.

• First, we calculate the average of all n-gram embeddings for 
the protein. This vector, called the context vector, represents the 
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typical pattern or summary of the entire protein sequence. The 
context vector guides the model in determining which n-grams 
are most relevant in the protein’s context. The context vector c
is the mean of all n-gram vectors: c = 1

n
∑n

i=1vi.
• Then we score each n-gram vector by its dot product with 

the context vector c: si = vi ⋅ c. Higher scores indicate greater 
alignment.

• The final weights alphai come from applying Softmax to the 
raw scores. This step normalizes scores into a probability 
distribution: αi =

exp (si)
∑n

j=1 exp (sj)
.

• We next compute the weighted average of the n-gram 
embeddings using the attention weights. This produces the final, 
attention-pooled per-protein embedding vector. The final per-
protein embeddings is the weighted sum of the n-gram vectors, 
each scaled by its attention weight: vprotein = ∑

n
i=1αivi.

• This final vector, vprotein, represents the protein, reflecting the 
contribution of its most important n-grams as determined by 
self-attention.

• PPI Datasets: A benchmark PPI dataset is compiled 
automatically using known positive interactions from the 
BioGRID database (Oughtred et al., 2021) and high-quality 
negative interactions (non-interacting pairs) from the 
experimentally-derived Russell Lab datasets (Trabuco et al., 
2012). This ensures a robust and biologically relevant evaluation 
set.

• Link Prediction Model: A standard Multi-Layer Perceptron 
(MLP) was used as the binary classifier. For a pair of proteins 
(Pa,Pb), the input to the MLP was the concatenation of their 
embedding vectors.

• Evaluation and Baselines: The model’s performance is 
rigorously assessed using a 5-fold stratified cross-validation 
scheme to ensure that results are robust and not dependent 
on a single random data split. We measure performance 
using a suite of standard binary classification and ranking 
metrics, including Area Under the ROC Curve (AUC), F1-
Score, Precision, Recall. To contextualize our results, we 
compare the performance of our ProtGram−DirectGCN-
derived embeddings against ProtT5 (Elnaggar et al., 2022) 
available via UniProt. In addition we compare it against 
ESM (Rao et al., 2020) where we performed the inference 
and the embedding generation manually. And finally to 
further contextualize our work we train a Word2Vec model 
(Mikolov et al., 2013) on the concatenated sequences with 
a context window of 10 tokens with skip-gram and negative 
sampling for 10 epochs. The exact same MLP architecture 
and evaluation protocol are used for all embeddings generated 
to ensure a fair comparison. A hyperparameter optimization 
protocol was applied to find the best parameters for the MLP 
model. See Table 4 and Figures 3, 4 for the final evaluation of all
models.

3.5 Ablation study of 
ProtGram−DirectGCN

Here we are going to understand the properties of the n-gram 
graph and its generated residue representation by training the model 

on a subset of the available sequence data on different model 
configuration. This step is crucial as the smallest pertubation in the 
data or the model affect the final per protein embeddings due to the 
hierarchical nature of the model.

The ProtGram−DirectGCN model uses a hierarchical approach. 
Embeddings from lower-order n-grams initialize features for higher-
order n-gram graphs. Increasing n allows the model to capture 
richer protein sequence context. The ablation phase used just 5% of 
UniProt-Sprot to test data augmentation and prediction capabilities 
in low-data settings we varied two key model components. First, we 
changed the size of the hierarchical graph; specifically, the value of n 
in the n-gram. Second, we studied the effect of the gating mechanism 
in 3 configurations: vector-based, where each graph node has a single 
gating score; scalar, where each path of the DirectGCN 3-paths has 
one gating score; and no gating at all. We present the results of 
this step in Figure 5 and conclude from our study the following.

• No Gating: The lack of gating has shown a consistent reduction 
in predictive power, with AUC scores closer to 50%. This 
suggests a substantial drop in classification ability. In the context 
of limited and less diverse data, the model struggles to overcome 
the weaker signal. These results indicate that even in sparse 
data settings, including some form of gating provides significant 
benefit, regardless of the model’s complexity.

• Scalar Gating: With scalar gating, AUC modestly increases with 
n. Notably, n = 3 shows a statistically significant improvement 
over n = 1 and n = 2, suggesting that 3-g are more helpful 
in some cases. While the AUC rises with n, n1 (0.5521), 
n2 (0.5902), and n3 (0.6016), we occasionally observed 
diminishing returns or negative impacts when increasing to 3-g. 
This suggests that, under certain conditions, 3-g can introduce 
noise, lead to overfitting, or result in overly specific features. The 
shift from 2-g to 3-g, therefore, does not universally strengthen 
performance, emphasizing the need for careful tuning.

• Vector Gating: For vector gating, the AUC increases from n1 
(0.6376) to n2 (0.6616), then drops at n3 (0.6367). F1 shows 
a similar trend. Increasing n from 1 to 2 brings improvement, 
but going to 3 does not consistently help. This underlines 
diminishing returns for higher-order n-grams in low-data 
settings. The transition from 1-g to 2-g often enhances both 
gating types. Moving from 2-g to 3-g, however, can result in a 
decrease in performance. The best n-gram level varies by task 
or dataset, and higher n may require adjustments to the model 
or training.

Overall, vector gating consistently outperforms scalar gating 
across all n-gram levels and test settings. Here, ”vector gating” refers 
to the use of node-specific, learnable gating vectors (the coefficients 
C∗(l) in Equation 7) that allow each node in the graph to control how 
much information it integrates from each of its neighbors within 
the DirectGCN layers. This process is analogous to combining 
multiple features at each node. These coefficients enable the model 
to adjust the influence of each neighbor at each node, yielding robust 
and accurate vector representations of nodes. Collectively, our 
findings indicate that incorporating higher-order n-grams (capped 
at 2) generally increases diversity in the information processed and 
strengthens the signal, underscoring the importance of considering 
the order of residues, or sequence context, in the model. However, 
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FIGURE 3
The plot displays the Receiver Operating Characteristic (ROC) curves comparing the performance of protein embeddings generated by the proposed 
ProtGram−DirectGCN method against the state-of-the-art ProtT5 and ESM language models, in addition to Word2Vec. The evaluation is for the 
downstream task of Protein-Protein Interaction (PPI) link prediction, with this specific chart illustrating the results from the average of a 5-fold 
cross-validation. All models perform significantly better than random chance (dashed line). This visualization confirms that while the proposed 
graph-based method captures a strong predictive signal for protein interactions, both ProtT5 and ESM models serves as a higher-performing 
benchmark in this experiment.

FIGURE 4
The figure illustrates the models’ performance metrics reflecting the results in Table 4.

increasing n to 3 can bring diminishing or negative returns. Notably, 
vector gating remains a better mode, highlighting the importance of 
learnable, node-wise gating in effectively integrating information in 
complex protein n-gram graphs.

Altogether, these findings demonstrate that ProtGram−
DirectGCN’s performance is sensitive to both n-gram level and 
gating mode. Variations in experimental factors can produce 
notable differences. This reinforces the need for careful model 

Frontiers in Bioinformatics 11 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1651623
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ebeid et al. 10.3389/fbinf.2025.1651623

TABLE 4  Performance comparison of protein embeddings on PPI link prediction (averaged over 5 folds).

Embedding method AUC F1 Precision Recall

ProtT5 0.9494±0.0011 0.8727±0.0019 0.8736 0.8720

ESM 0.9146±0.0006 0.8293±0.0019 0.8351 0.8238

ProtGram-DirectGCN 0.8588±0.0014 0.7659±0.0049 0.7998 0.7349

Word2Vec 0.7912±0.0017 0.7159±0.0029 0.7085 0.7236

Bold italic highlights the results of ProtGram-DirectGCN.

FIGURE 5
Ablation results for varying gating modes versus different n-gram levels when training ProtGram−DirectGCN. (a) This plot backs up our findings. For 
scalar gating, the AUC peaks at n = 3 in some summaries but is optimal at n = 2 in others, with n = 3 experiencing a decline. This shows that the optimal 
n-gram depends on experimental factors. For vector gating, performance improves from n = 1 to n = 2, then drops at n = 3. This supports the idea that 
n = 2 is optimal, as higher complexity may compromise results. The plot illustrates variation in AUC across different runs, highlighting the model’s 
sensitivity to test conditions. (b) This plot shows that vector gating is the most effective approach, typically yielding the highest F1 scores across all 
n-gram levels. Scalar gating is generally preferable to no gating. No Gating models have poor results, except for a rare F1 outlier likely due to 
experimental effects. Vector gating performs best at n = 2. Scalar gating may peak at n = 2 or n = 3.

tuning and thorough evaluation before deploying the model. 
In summary, gating proves crucial. Simply increasing n beyond 
an optimal point does not always lead to improved predictive
power. 

4 Discussion

This study introduced and evaluated a novel 
ProtGramDirectGCN model for learning representations from 
a globally constructed, directed, dense, and weighted graph 
of amino acid residues Gn derived from the UniProt dataset. 
The primary objective was to assess the efficacy of this 
approach for generating informative protein embeddings 
applicable to downstream biological prediction tasks, particularly 
Protein-Protein Interaction (PPI) link prediction. This section 
discusses the main findings, their implications, the limitations 
of the current work, and promising avenues for future
research.

4.1 Summary of findings

Our experimental evaluations spanned several stages: validating 
the core ProtGram−DirectGCN architecture on standard GNN 
benchmarks and applying the derived protein-level embeddings 
to predict PPIs, including a comparison against state-of-the-art 
PLMs (ProtT5) and (ESM) embeddings and a standard base line 
Word2Vec.

• Evaluation of DirectGCN: The benchmark results in Table 3 
confirm that DirectGCN is a functionally sound GNN. Its 
underperformance on high-homophily citation networks and 
competitive performance on more complex, heterophilic graphs 
highlights its specialization. The architecture is not designed as 
a general-purpose GCN but as a specialized tool for capturing 
the complex, directed, and weighted relationships present in our 
n-gram residue graphs.

• Evaluation of ProtGram: The hierarchical construction of n-
gram graphs up to n = 3 and even further n-gram such as

Frontiers in Bioinformatics 12 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1651623
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ebeid et al. 10.3389/fbinf.2025.1651623

n = 4 (Table 1) resulted in a large, complex graph structure. 
The successful training of our model on this graph hierarchy 
demonstrates the feasibility of the approach. The key outcome 
of this stage is the set of high-dimensional embeddings for 
10,669 unique 3-g, which serve as the basis for our protein-level 
representations.

• Evaluation of ProtGram−DirectGCN: The performance on the 
downstream PPI link prediction task (Table 4) is the ultimate 
measure of our method’s utility. The results show that the 
ProtGram−DirectGCN was able to learn structural features 
from the protein sequences with reliable discriminating ability 
and hence was able to demonstrate excellent predictive power 
on the task with an AUC value above 85% despite being trained 
on limited sequence data compared to its counter PLMs. The 
F1 score also demonstrates the model’s precision even with a 
lowered recall and hence missing more positive samples due to 
the limited capacity of the model. This highly suggested that 
the construction and inference of the underlying directed graph 
of amino acid transitions in a hierarchical fashion captures 
structural and relational features across multiple proteins.

• Comparison with ProtT5, ESM and Word2Vec Embeddings: 
The comparison with ProtT5 and ESM embeddings which 
are generted by the very powerful high capacity T5 encoder-
decoder transformer model that is trained on the more 
comprehensive UniRef50 dataset is not meant as a head-
to-head comparison. But rather as a demonstration that 
hefty transformer architectures for specialized tasks like PPI 
prediction can be contended with models that capture the 
underlying dynamics without having to rely on long context 
windows and demanding computational resources needs. The 
long range dependencies captured by ProtT5 and ESM are 
the reason why it is an efficient feature extractor for proteins. 
Yet those same dynamics can be captured from a lower level 
faint signal such as the simple transition directed graph of 
amino acids without long context windows. ProtT5, ESM 
and ProtGram−DirectGCN rely on computationally expensive 
preprocessing yet with ProtGram−DirectGCN the significant 
decrease in the cost of model training especially when the 
technique gets more established and developed will result in a 
paradigm shift when it comes to how we think about specialized 
tasks for LLMs in general. Training a Word2Vec model is usually 
considered a sanity check as it represents the base line that any 
predicitve deep learning model should be able to outperform. 
Including Word2Vec and ESM helps contextualize our work 
and shows that the results are consistent with what has been 
reported before in the literature for all based line models.

4.2 Biological significance

PPI prediction is a bedrock in drug development, understanding 
drug efficacy, and many other crucial biomedical fields. Figure 6 
displays the computed attention maps at n = 1 and n = 2 post 
pooling. These maps provide insight into the role of distinct n-
grams and how they map to functional groups. High attention scores 
for specific n-grams within a protein indicate that these sequence 
fragments are considered most relevant or discriminating by the 

model. This is especially important for forming the overall protein-
level representation. This is particularly true for the downstream task 
of (PPI) prediction. It implies that highly attended n-grams likely 
correspond to crucial regions within the protein’s primary sequence.

The ProtGram−DirectGCN model is based on the intuition that 
the transition sequence of amino acids, through their side chains or 
R-groups, determines how a polypeptide chain folds. This folding, in 
turn, affects interactions with other molecules. Therefore, n-grams 
with high attention scores in these heatmaps could represent either 
specific binding sites or key structural motifs. The model learns to 
prioritize these n-grams as they are critical for determining if and 
how proteins interact. Key structural motifs are vital for a protein’s 
overall fold. This, in turn, influences its function and interaction 
capabilities.

The DirectGCN layer itself is designed to process information 
through multiple, specialized paths. These include incoming, 
outgoing, and undirected routes. The model combines these 
paths using a learnable gating mechanism. The attention pooling 
layer then aggregates these already contextually enriched n-
gram embeddings into a single protein embeddings. Thus, the 
attention scores on the heatmaps reflect not just the local 
sequence importance. They also indicate contextual and relational 
significance within the broader n-gram graph and across different 
interaction types.

By identifying these lead residues and sequence motifs that 
contribute significantly to the model’s predictions, the attention 
heatmaps can guide hypothesis generation for experimental 
testing. They can also accelerate the functional annotation 
of uncharacterized proteins (which we removed in our data 
preprocessing). Biologists could use these highlighted n-grams to 
design targeted experiments. For example, they might conduct site-
directed mutagenesis to validate their functional role in protein 
interactions.

One motivation behind ProtGram−DirectGCN is to address 
the limited context window size in PLMs. By explicitly modeling 
broad sequence patterns and transition dynamics through n-gram 
graphs, the model is designed to capture longer-range dependencies 
that PLMs might miss due to their window size. The attention 
heatmaps help visualize how the model uses this broader context. 
They highlight important n-grams that traditional PLMs might 
overlook because they fall outside their immediate scope. 

4.3 Limitations

While this study presents promising results, several limitations 
should be acknowledged:

• Due to computational constraints, Gn was constructed based 
on UniProt Swiss-Prot standard sequence database. While 
providing a high-quality reviewed set, more comprehensive 
and diverse datasets, such as UniRef50/90/100 or the full 
UniProtKB, could enrich Gn at a significant computational cost 
potentially increasing the predicitve and discriminating power 
of ProtGram−DirectGCN to be on-par with PLMs.

• Initial features for 1-g nodes in G1 were initialized to identity. 
Including physicochemical properties as initial features could 
enhance learning and interpretability.
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FIGURE 6
The attention pooling results described in Section 3.4 highlight attention scores after pooling residue-level (n-gram) embeddings to protein-level 
embeddings. These heatmaps are generated by identifying n-gram attention weights for proteins with the highest overall variance in attention. The 
X-axis of such a heatmap represents various n-grams, and the Y-axis represents specific protein IDs, with the color intensity in each cell indicating the 
attention score assigned to a particular n-gram within a given protein. (a) n = 1. (b) n = 2.

• Simple attention pooling was used to generate protein-
level embeddings. More advanced pooling mechanisms 
were not exhaustively explored and might yield improved 
representations.

• The evaluation was centered on PPI link prediction, hence 
the utility of embeddings for additional tasks remains to be 
explored.

• While the design of ProtGram−DirectGCN is detailed, and we 
provided some insight via attention map visualization of the role 
of distinct n-grams and how they map to functional groups, 
direct interpretation of what specific n-gram relationships 
contribute most to its performance or downstream PPI 
predictions currently relies on indirect evaluation through task 
performance. Deeper interpretability studies are warranted.

• The PPI link prediction task relies on the Russell Lab 
negative dataset (Trabuco et al., 2012), which, while 
experimentally grounded, has inherent assumptions and 
potential biases based on Yeast two-Hybrid limitations. The 
choice of negative samples can significantly impact the reported 
performance of PPI prediction.

• The current framework primarily relies on sequence-derived 
information for constructing Gn and generating protein 
embeddings. Direct integration of 3D structural information 
was not part of this specific study, but it is a key area for future 
enhancement, as our focus was on building a pipeline that can 
operate in more challenging conditions such as limited available 
information and training data.

4.4 Future work

The findings and limitations of this study open several avenues 
for future research. First, future iterations will explore constructing 
Gn with richer edge definitions. For example, we could move beyond 

simple transitions to incorporate longer-range co-occurrences, 
apply weights from substitution matrices, or use more informative 
initial node features for amino acids. Also, ProtGram−DirectGCN
could be extended by incorporating attention mechanisms within 
its directional layers. In addition, we could explore more complex 
architectures with advanced normalization schemes. Another focus 
will be on introducing and crafting training tasks that are more 
specific to proteins and their interactions. We also plan to adapt 
the model to other tasks, such as predicting Gene Ontology labels 
for individual proteins. This work focuses solely on the limitations 
of training data and information, which are represented by relying 
on a limited subset of protein sequences. To address this, we 
could use predicted contact maps to inform the edges in Gn
or in peptide-level graphs similar to Sledzieski et al. (2021), or 
incorporate residue-level structural features into the initial residue 
embeddings. Expanding the framework to explicitly model the 
hierarchical nature of protein organization (residues → peptides 
→ proteins → interactions → interaction networks) and exploring 
second-degree graphs (graphs of interactions) presents a compelling 
research direction (Jeh and Widom, 2002) as well. Lastly, investing 
in advanced interpretability techniques will help understand the 
”black box,” and further optimizing the construction of Gn and 
training ProtGram−DirectGCN for even larger sequence datasets 
will maximize the information captured.

Finally, its worth mentioning that a notable class of modern PPI 
prediction methods leverages 3D structural information, either from 
experimental sources or high-fidelity predictions from models like 
AlphaFold2 (Jumper et al., 2021). These geometric deep learning 
approaches, such as GearNet and GVP-GNN, have demonstrated 
state-of-the-art performance by directly encoding the physical and 
chemical properties of protein surfaces. While these methods are 
powerful, their applicability is contingent on the availability of 
accurate structural data. Our work, with ProtGram−DirectGCN,
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intentionally explores a different and complementary direction. 
We focus exclusively on the protein’s primary sequence, aiming to 
develop a method that is (1) universally applicable to any protein, 
including those with unknown or poorly predicted structures, 
and (2) computationally less intensive, as it does not require the 
computationally expensive step of structure prediction or the storage 
of large structural files. By constructing a global n-gram graph, our 
approach seeks to infer higher-order sequence motifs that serve 
as a proxy for structural and functional information, providing a 
robust and scalable alternative for large-scale proteome analysis 
where structural information may be sparse or unavailable. Hence 
future work could also explore hybrid models that fuse our learned 
n-gram representations with structural features for proteins where 
both are available. 

5 Conclusion

This paper introduces a novel approach for protein 
representation learning, which has been shown to enable in-silico
PPI prediction via a simpler yet expressive learning model. The 
method focuses on a novel data model that infers hierarchical 
global n-gram graphs from protein sequences namely ProtGram. 
In these graphs, n-grams, defined as contiguous sequences of n 
amino acids in proteins, form the nodes, and edges representing 
relationships between these n-gram sequences. A custom directed 
graph convolution learning model, DirectGCN, is introduced. This 
model is designed to learn from n-gram graphs with directed 
edges (edges have direction, indicating the flow from one n-gram 
to another), heterophily (connections often occur between nodes 
representing different types of n-grams), and weighted edges (edges 
have numerical weights that may represent the strength or frequency 
of the relationship). The model learned distinctive features that 
capture protein relations, even with limited training data. This offers 
a valuable and computationally distinct alternative to large-scale 
PLMs, such as ProtT5 and ESM, under the evaluated conditions. 
In the future, graph-based representations will be enriched with 
multi-modal data, including explicit structural information. The 
scope of application will expand to more biological problems. 
Ultimately, this work aims to provide a deeper understanding of the 
molecular interactions that govern life by introducing new methods 
for analyzing and understanding protein and gene interactions.
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