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Introduction: Accurate prediction of protein-protein interactions (PPIs) is crucial
for understanding cellular functions and advancing the development of drugs.
While existing in-silico methods leverage direct sequence embeddings from
Protein Language Models (PLMs) or apply Graph Neural Networks (GNNs)
to 3D protein structures, the main focus of this study is to investigate less
computationally intensive alternatives. This work introduces a novel framework
for the downstream task of PPI prediction via link prediction.

Methods: We introduce a two-stage graph representation learning framework,
ProtGram-DirectGCN. First, we developed ProtGram, a novel approach that
models a protein's primary structure as a hierarchy of globally inferred n-
gram graphs. In these graphs, residue transition probabilities, aggregated from a
large sequence corpus, define the edge weights of a directed graph of paired
residues. Second, we propose a custom directed graph convolutional neural
network, DirectGCN, which features a unique convolutional layer that processes
information through separate path-specific (incoming, outgoing, undirected)
and shared transformations, combined via a learnable gating mechanism.
DirectGCN is applied to the ProtGram graphs to learn residue-level embeddings,
which are then pooled via an attention mechanism to generate protein-level
embeddings for the prediction task.

Results: The efficacy of the DirectGCN model was first established on standard
node classification benchmarks, where its performance is comparable to that of
established methods on general datasets, while demonstrating specialization for
complex, directed, and dense heterophilic graph structures. When applied to PPI
prediction, the full ProtGram-DirectGCN framework achieves robust predictive
power despite being trained on limited data.

Discussion: Our results suggest that a globally inferred, directed graph-based
representation of sequence transitions offers a potent and computationally
distinct alternative to resource-intensive PLMs for the task of PPl prediction.

01 frontiersin.org


https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1651623
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1651623&domain=pdf&date_stamp=
2025-10-21
mailto:iebeid@twu.edu
mailto:iebeid@twu.edu
https://doi.org/10.3389/fbinf.2025.1651623
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1651623/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1651623/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1651623/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1651623/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1651623/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1651623/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Ebeid et al.

10.3389/fbinf.2025.1651623

Future work will involve testing ProtGram-DirectGCN on a wider range of
bioinformatics tasks.

uniprot, biogrid, russellab, graph theory, graph representation learning, graph neural
networks, graph convolution networks, link prediction

1 Introduction

Protein-protein interactions (PPIs) form a network of physical
contacts and functional associations mediated by molecular bonds.
These interactions are the basis for cellular processes and are
collectively referred to as the cellular interactome. Therefore,
understanding the underlying mechanisms by predicting valid
interactions between proteins is the foundation for many in-vitro
biomedical endeavors, such as understanding disease mechanisms,
drug development and repurposing, and the potential development
of futuristic biotechnologies (Vidal et al., 2011; Scott et al., 2016).
In-vitro protein interaction prediction methods, including Yeast-
2-Hybrid screening, co-immunoprecipitation followed by mass
spectrometry and affinity purification, have been used to infer
empirical evidence of protein association. However, these methods
are usually prone to a high rate of false positives and false
negatives (Rao et al., 2014).

Computational methods, also known as in-silico and data-driven
approaches, have been adopted in life sciences research since at
least the seventies (Wodak and Janin, 1978). In-silico methods
help alleviate several of the significant challenges of the in-vitro
methods mentioned above. The initial stages of drug discovery are
heavily based on identifying and confirming valid drug targets, often
proteins. This activity is typically protracted, resource-intensive, and
time-consuming. Subsequent in-vitro screening of drug candidates
against potential targets cannot be done efficiently until a validated
list of candidate proteins is established. Delays in this upstream
target identification task lead to delays in the beginning of extensive
in-vitro studies (Scannell et al., 2012). Therefore, in-silico methods,
mainly relying on the predictive power of complex machine learning
models, are not meant to replace in-vitro methods. Instead, they
are integrated into the workflow to create a potential pool of
valid interactions waiting for wet lab filtering and confirmation,
eventually and evidently speeding up the process (Vidal et al., 2011).

Recent advancements in machine learning, neural networks,
and deep learning approaches have enabled the automation of
feature extraction. In addition to embeddings of biological entities
into a real vector space, where meaningful algebraic operations
can be performed on the learned vectors representing individual
residues or proteins. The advent of the transformer architecture
(Vaswani et al., 2017) has surpassed sequence-to-sequence models,
particularly recurrent neural networks (RNNs) like the Long
Short-Term Memory (LSTM) model (Hochreiter and Schmidhuber,
1997). These models have been relied on in protein sequence
modeling and representation learning (Cho et al., 2014). The
input protein sequence is usually tokenized at different levels or
granularity, such as representing single amino acids as words or
a group of residues as k-mers (Guo et al., 2008). These models,
although efficient in processing short-term dependencies, have
demonstrated a limited understanding of context incorporation
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in language modeling. Though, that contextual understanding has
had glimpses in non-recurrent language-based neural networks
like Word2Vec (Mikolov et al., 2013), where the goal becomes
incorporating context via a binary negative loss function that
classifies in and out of context window words to the current word.
The introduction of the attention mechanism and the transformer
architecture, combining both sequence-to-sequence modeling and
contextual encoding (Vaswani et al, 2017), has increased the
predictive power of language models by orders of magnitude on
multiple tasks. Subsequently that has contributed to the proliferation
of different designs and architectures like BERT (encoder only)
(Devlin et al., 2019), T5 (encoder-decoder) (Raffel et al., 2023), and
GPT (decoder only) (Brown et al, 2020). That, however, comes
at a significant computational and environmental cost, due to the
increased reliance on training data for these models, as well as the
near-linear correlation between a model’s predictive power and the
number of parameters present in the network.

Transformer-based architectures have had great success in
adoption in domain-specific tasks via fine-tuning; for example,
BioBERT (Lee et al., 2020) fine-tunes BERT over the corpus of
PubMed metadata and available full-text on multiple tasks. One
of the tasks is biological named entity recognition and extraction
for names of diseases, genes, proteins, species, and drugs. The
protein embeddings extracted from BioBERT can provide encoded
contextual meaning in downstream tasks, such as protein interaction
prediction or gene identification. In drug development, particularly
in protein-protein interaction prediction (PPI), advanced models
have been applied at multiple levels. For example, in reinforcement
learning, a prominent recent advancement is Google’s AlphaFold
(Jumper et al, 2021). This complex model aims to predict
protein 3D structures from primary sequences, a central challenge
in biomedical informatics known as protein folding prediction.
Predicted 3D structures are often utilized in frameworks that aim
to predict protein interactions from all levels of protein structure
representation via combining features from the primary, secondary,
and tertiary structures in addition to topological features from
protein-protein interaction networks (Zhou et al., 2022; Jha et al,,
2022). However, the most common approaches in in-silico PPI
prediction are primary structure sequence-based methods, where
the sequential one-dimensional nature of individual amino acids
and residue-level representations lend themselves to modern
language modeling. The core lies in the context encoded in
the transition probabilities between residues due to the relative
simplicity of the input data.

Protein sequences can be conceptualized as a sequence of amino
acids (or peptides), analogous to sentences being sequences of
words. This analogy allows for the application of large language
modeling techniques. For instance, ProtBert (Elnaggar et al., 2022)
applies the BERT architecture (Devlin et al, 2019) to primary
protein structures, yielding accurate models on downstream tasks
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that generate protein-level vector representations at the residue
and protein levels. Moreover, work like (Sledzieski et al., 2021)
D-SCRIPT relies on a PLMs to predict spatial protein interaction
contact maps. The model was evaluated on per organism protein-
based PPI prediction task yielding positive results. Building
on these results, the model provides functionally informative
predictions and yields more coherent gene clusters. The predicted
contact maps significantly overlap with the true 3D structure
contacts, despite being trained solely on sequence data. The
common aspect of all of these models is that; first the output
embeddings is typically pooled to produce per-protein embeddings
that capture sequential features enabling higher predictive power in
downstream tasks (Elnaggar et al., 2022). Second, primary structure
sequences themselves appear to encode more than the obvious, even
with relatively limited data availability.

However, even the most advanced modern approaches have had
several problems.

o The limited context window size must be larger to
capture longer-range dependencies beyond the immediate
neighborhood which significantly increases their need for
labeled training data.

Increasing the number of layers, blocks and attention heads
can lead to a significant (potentially exponential) increase in
the number of parameters, demanding more computational
resources.

o The models are generally highly sensitive to training data
quality, diversity, volume and availability.

Here, we propose a novel approach to modeling protein
primary structure sequences that partially overcomes some of
these limitations. We cast the sequences as random walks sampled
according to transition probabilities within a directed n-gram graph
G, of amino acids. The directed graph G,, is inferred from a database
of curated protein sequences (UniProt) (Consortium, 2023). Then,
a custom-directed graph convolution neural network, DirectGCN,
learns the dense relationships of the transitions between the n-
grams. The learned representations are then evaluated on a PPI
link prediction task and compared with other established models to
establish the method’s validity.

Our approach overcomes the need for a context window
(Elnaggar et al., 2022) where the computational limitations that
contribute to limited context windows are only applied to a limited
dense graph of n-grams. The first-order neighborhood of a spectral
graph convolution operator approximation (Kipfand Welling, 2017)
has a limited effect on the output compared to the sizes of a well-
capturing context window in a large language model. In addition
this approach in modeling the sequences reduces the number of
parameters significantly as the directed graph convolution network
operates on a limited unique vocab nodes. In addition to the ability
to learn complex encoding from limited training data as the n-
gram graph with different levels can act as a data augmentation
mechanism if full sequence databases are not available. In addition
this bottom-up approach ensures that the limitations are only
applied to the lowest level of representation where reducing noise
at that level reverberates at higher n-gram level, in addition to
overcoming the need for intensive computational power.
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From a biological standpoint the specific transition sequence
of amino acids via their side chains or R groups determines
how a polypeptide chain will fold. Hydrogen bonds, ionic bonds,
and hydrophobic interactions generally drive the folding. And in
the process, the local secondary structure, including alpha and
beta helices, eventually creates binding sites essential for forming
subunit proteins or interacting with other molecules. Hence,
our intuition is that the primary structure sequences and the
transition frequencies between residues holds enough signal power
that can inform downstream not only the 3D tertiary structure
of the protein but also tell the possible interactions with other
proteins or the quaternary structure (Dill and MacCallum, 2012;
Perkins et al., 2010; Anfinsen, 1973).

Accordingly we hypothesize that the global directed dense graph
of n-grams G, encodes the potential relationships between proteins,
and that learning accurate vector representations of G, not only
provides promising performance if further developed compared to
PLMs in the task of PPI link prediction but also offers a method to
generate protein embeddings on the fly without the need to store
per-protein embeddings nor to fine tune hefty pretrained models.

Here we are trying to answer the following research questions:

 Does learning representations of proteins from the embedded,
inferred directed graph of n-grams G, encode valid associations
between proteins?

Is our ProtGram — DirectGCN model credible and valid?

What is the predictive power of our hierarchical feature based

n-gram representation G,,?
o Is the performance of the ProtGram — DirectGCN model
comparable to PLMs? And what are the implications of that?

2 Methods

This section details the design, development, and evaluation
of our model ProtGram — DirectGCN model, a directed graph
convolutional network tailored for learning representations from
dense, directed, and weighted graphs. The primary motivation
for this model arises from the need to effectively process a
global, complex, dense, and heterophilic graph of n-grams, G,,
constructed from large-scale protein sequence data where capturing
directionality and transition frequencies is paramount for deriving
meaningful biological insights.

2.1 ProtGram

Our approach treats individual proteins, identified via
the database UniProt 2023),
as distinct entities. These proteins form the nodes V in

comprehensive (Consortium,
a high-level biological interaction graph canonized in the
database BioGRID (Oughtred et al., 2021) as Gpp; = (V, Epp), where
edges Epp; represent observed interactions. The main objective is to
solve the link prediction problem within G,p,. This task is inherently
difficult because real-world PPI networks are extremely sparse. The
probability of a randomly chosen pair of nodes having a link is
given by the graph density, ———, where # is the number of proteins

2
n(n-1)"
and m is the number of interactions. In typical biological networks,
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this value is very low, meaning the number of non-interacting pairs
vastly exceeds the number of known interactions and creates a
severe class imbalance. A foundational aspect of our methodology
is the detailed representation of individual protein sequences using a
hierarchy of n-gram graphs. For a given n-gram size k, each protein
P, is defined by its primary amino acid sequence R; = (1,75, ...,17).
We model the sequence probability under a k-th order Markov
assumption, where the probability of an amino acid depends on the
preceding k — 1 residues:

L
PR) = [ [ P(rilrignsoo1i)
j=k

The conditional probabilities are estimated from a large corpus based
on the frequency of k-gram occurrences:

C(rj_k+1, ,rj_l,rj)

P(r{ri oy A i it
M Cripsrs -5 Tim1)

> 7’];1) =

where C(-) denotes the count of a particular subsequence in
the corpus. We use this principle to conceptualize all protein
sequences through a global, directed, and dense graph of k-grams,
denoted G = (V},E,). Here, V, is the finite set of unique k-gram
types observed in the corpus. E; represents directed transitions
between these k-grams, where an edge (u,v) from k-gram u to v
exists if v can be formed by shifting a one-residue window over
u. For example, for k=3, an edge exists from ACG’ to ‘CGT.
Each edge (u,v) is assigned a weight w,, corresponding to the
observed frequency of this transition across the entire corpus. A
valid protein sequence R = (r,7,,...,7;) is thus viewed as a specific
path or random walk of length L—1 on G, on this hierarchy of
n-gram graphs. This conceptualization aligns with the idea that
protein sequences can be seen as generated from a ‘source graph’
of amino acid symbols via a probabilistic random walk process.
To illustrate this, we can consider the base case of this hierarchy
where n = 1 (a graph of single residues), which corresponds to a first-
order Markov process. In this case the probability of observing a
particular sequence R, given its starting residue r, and the transition
probabilities derived from G,, can be formulated. If P(r]- lej) =

m is the transition probability from n-gram r; to 1y, given
normalized edge weights, then the probability of the sequence R
is P(R|r,,G,) = ]_[]-Lgllp(rjﬂ |r;). This probabilistic view, rooted in the
empirically derived G,, allows for a nuanced understanding of
sequence validity, likelihood, and structure. We aim not to view the
amino acid sequence representation as a mere Markovian sequence
but also to consider the existence of different relationships between
a residue and many other residues. The directed nature of G, is
crucial, naturally modeling the N—to— C terminus directionality
of polypeptide chains and the inherent asymmetry of residue
relationships. See Figure 1.

Our custom Directed Graph Convolutional Network Direct GCN
is specifically designed to learn from these G, n-gram graphs.
Graph Neural Networks (GNNs) are architectures adept at learning
node representations by iteratively aggregating information from
neighborhoods, also known as message passing (Scarselli et al.,
2009). GNNs can be applied to two different graph domains. The
first is spatial and the second is spectral. Spatial models perform
message passing across the vertices via direct pass — aggregate —
update computation. While spectral methods rely on operating on
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the adjacency matrix directly by approximating the convolutional
operation. A foundational spectral GNN is the Graph Convolutional
Network (GCN) (Kipf and Welling, 2017), whose layer typically
updates node features according to H*V = U(D_l/ 2AD72HO W(l)).
Here, H”) would be initial features for n-gram types in V,, A is the
adjacency matrix of G, with added self-loops, D is its corresponding
diagonal degree matrix for normalization, W is a trainable weight
matrix, and o is a non-linear activation function.

Standard GCNs are primarily for undirected graphs assuming
symmetric adjacencies. However multiple works have explored
applying GCNs to directed graphs for a complete review of
directed GCN methods please see the Supplementary Material. Our
DirectGCN adapts this framework to effectively learn from the
directed and weighted edges of G,, separating information flow
based on edge exitance, directionality and the homophily property.
Our model learns rich embeddings V, ; € R? for each n-gram type
k. Rich feature vectors for entire protein sequences P; are generated
by aggregating their constituent n-grams embeddings learned
by ProtGram — DirectGCN. These protein-level feature vectors are
assembled via an attention mechanism for the downstream PPI link
prediction task within Gpp;. Next we will describe the architecture of
the ProtGram — DirectGCN model.

2.2 DirectGCN

2.2.1 Propagation matrix formulation

The graph structure is initially captured by a raw weighted
adjacency matrix 4,,, € RV, where (A = w,,. From this, we
= Amw
In addition

we also generate the structural symmetric undirected adjacency

mw)uv

define the out-degree weighted adjacency matrix AS:Z and

T

the in-degree weighted adjacency matrix Al(,:') =A,-

A. A key component of DirectGCN is a specific preprocessing
step for these adjacency matrices, designed to create stable and
informative propagation matrices. For a given weighted adjacency
matrix A" (either ASZ: or AI(.:/)), we first compute its row-
normalized counterpart A™ = DA™, where D is the diagonal
out-degree matrix. To overcome the non-hermitian nature of A
we compute its symmetric-like (S) and skew-symmetric-like (K)
components:

AN 4 (A(Vl))T
S=—————
2

A _ (A(ﬂ))T

and K

1
The final propagation matrix A is derived from the element-wise
magnitude of these components, with an added identity matrix I for
self-loops:

A=V rer] @
where the square operations are element-wise and ¢ is a small
constant (e.g., 1 x 107%) for numerical stability. This process yields

two distinct propagation matrices, A,,, and A;,, which are used for

in>
message aggregation in the convolutional layers. This construction
aims to capture both the symmetric and anti-symmetric aspects of
the directed relationships, offering a more robust representation of
directed influence in addition to the structural path A as shown in

Equations 1, 2.
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FIGURE 1

ABEFBCDABEFBCD AEFBCD ABEFBCDABEFBCD AEFBCDAEFBCD

An example of dummy sequences separated by a space indicating multiple proteins. The figure shows how the transitions between the residues or
characters are conceptualized as a directed, weighted, dense graph where the weights are the transition frequencies calculated as counts or
probabilities. In addition, the figure shows how we split the directed adjacency into an A, and an A, .. Later, we describe how to overcome the
non-hermitian nature of these two matrices to make them suitable for graph convolutional neural networks.
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2.2.2 Propagation layer
Given node features H® € RN+’

the features for the next layer by processing information through

3 distinct channels: incoming, outgoing, and undirected. Each

at layer [, the layer computes

channel combines a standard graph convolutional message passing
operation with a feed forward layer as final feature transformation.
For the incoming path, the aggregated message is a combination of
a propagated component and a shared feature transformation:

)

HEY — (A, 1O ) (HOW!
3)

+p

shared,in

0
main,in) + bmuin,in shared

Similarly, for the outgoing path:

(Aout(H(l) WU)

main,out

)+ p?

main,out

H(l+1) _

out

) + (H{l) w0

shared shared,aut)

(4)

And for the undirected path, using a standard symmetrically
normalized adjacency matrix A, :

(I+1)

undir

(0] )
+ bshured,undir

(5)

W

main,undir

() DD
H ) + bmain,undir) + (H( )‘/V(

shared

(A_undir(HU)

In addition we model the idea of positional encoding which
ensures that the model has some notion of time and sequence. We do
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that by adding a non transformed learnable embeddings layer that
gives each node (n-gram) its positional identity:

B(l) ¢ R™<d

const

(6)

where W, ..« are path-specific weight matrices and W, is a
single weight matrix shared across all three paths, acting on the
original node features. In addition d is a chosen dimension. These
3 processed signals are then combined using a learnable, node-wise
gating mechanism to control the flow of information of each path.
Alongside a separate learnable feature vector that captures the node
positional identity in the graph. Eventually the model resembles
an algebraic multivariate first order polynomial linear combination

of features that represent separate yet integrated graph properties

aX+bY+cZ+d:
(I+1) (D) I+1) (1) 1 4(I+1) () 7, (0+1) ()
Hpre—activation = (Cundierlndir) + (Cin HJi(n ) + (CoutHout ) + Bconst
™)

where C are the learnable gating vectors that facilitate
understanding the importance of the contribution of each path in
the learning. Finally, a residual connection is added before applying
a Leaky ReLU activation function:

I+1 I
H"D = 05,10 (H( .y +H? W(re)s> (8)

pre—activation
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where W(,e)s isalinear projection for the residual connection if feature
dimensions change.

2.2.3 Model architecture
The full DirectGCN model is composed of a stack of these
custom hybrid layers. The overall architecture is defined as follows:

« Input Layer: The initial node features for the n-grams, H® ¢
RV 0), are either identity initialized (for n = 1) or derived from
the embeddings of the previous n-gram level (for n > 1).

o Hidden Layers: The model stacks L hidden layers. For each
layer [ € {0, ..., L — 1}, the output H"*V is computed by applying
the DirectGCN layer transformation (Equations 3-9) to the
previous layer’s output H”. A residual connection is included
to facilitate deeper architectures, and a Leaky ReLU activation
function followed by dropout is applied after each layer to
introduce non-linearity and prevent overfitting.

o Output Layer: The output of the final hidden layer, HW, serves

as the learned n-gram embeddings, Z for the auxiliary

n—gram
node classification tasks (community detection (Blondel et al.,
2008) or next node prediction) on G,. These embeddings are
passed through a final linear decoder, which is a small feed

forward layer, to produce the final class prediction logits:

Logits = Decoder(Z 9)

n—gmm)
A LogSo ftmax function is then applied to these logits for training
with a negative log-likelihood loss. The final embeddings, Z,_,,,»
are L2-normalized before extraction. Please refer to Figure 2 for a

complete overview of ProtGram — DirectGCN.

3 Experiments

This section outlines the experimental design employed
to evaluate the proposed ProtGram — DirectGCN model. Our
experiments are structured to: (1) assess the intrinsic performance
of DirectGCN on standard graph benchmark datasets; (2) detail
the construction of a hierarchy of global n-gram graphs G, from
the UniProt sequence dataset a method we call ProtGram; (3)
evaluate the ability of ProtGram — DirectGCN to learn meaningful
representations from these G, graphs via a self-supervised pre-
training task; (4) apply these learned representations, after pooling
to the protein level, to the downstream task of PPI link prediction;
and (5) compare the efficacy of our protein embeddings with those
derived from the state-of-the-art PLMs and other baselines.

3.1 Materials

Our approach in this investigation is to minimize any cleaning
or modification of publicly available datasets before running our
main computational pipeline. UniProt-SPROT (current state) and
UniRef50 (future work) are our main sources of protein sequences.
All sequences are cleaned only after an official, validated, automated
download. In this context, “prior processing” refers specifically to
any data cleaning or manipulation done before the computational
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pipeline starts. In contrast, “preprocessing” refers to steps such as
tokenization and the removal of special characters from sequences,
which occur immediately before the main pipeline and as part
of it. Sequence cleaning is dynamic; when a pipeline component
requests sequence data, the raw FASTA file is read and any character
not representing one of the 20 standard amino acids (A, C, D,
EEGHILKLMNPQRS TV,WY), in addition
to an added separator token between individual sequences, is
filtered out. This standardizes the alphabet for all downstream
models. Sequence lengths are capped at 10,000 characters to fit
in memory and on the GPU during training. Tokenization, or
preprocessing, occurs on the fly for all models tested, including
our own. For PPI ground truth we apply automated preprocessing
to positive and negative ground truth links. Positive links are
automatically downloaded from BioGRID (Oughtred et al., 2021),
and negative links are obtained from Trabuco etal. (2012). Identifiers
from these raw datasets are converted to canonical UniProtKB
IDs using a mapping database built directly from the official
UniProt ID mapping database. The standardized interaction pairs
are saved in Parquet format and serve as the definitive ground
truth for all evaluation tasks. Further preparation details are in the
Supplementary Material.

3.1.1 Construction of hierarchical G,, graphs via
ProtGram

The primary dataset for our methodology is a hierarchy of
global n-gram graphs, G,,, constructed from the UniProt Swiss-Prot
sequence database.

o Corpus: We used the curated and reviewed UniProt Swiss-Prot
dataset, containing 573,230 protein sequences. Larger and more
diverse sequence files liek UniRef50 and UniRef100 and PDB
are in our plans to train our model on.

 Graph Construction: For each n-gram level from n=1to n=
3, we constructed a separate graph G,. The nodes V, are the
unique n-grams of length n found in the corpus. A directed
edge (u,v) exists if n-gram v can be formed by shifting a one-
character window over n-gram u. The edge weight w,, is the
total frequency of this transition across all sequences. This
process resulted in 3 graphs of increasing size and complexity,
as detailed in Table 1.

3.2 Intrinsic evaluation of DirectGCN

To establish the general graph representation learning
capabilities of the DirectGCN architecture, we first evaluated
it on commonly used public benchmark datasets for node
classification. Though it is very important to note that our
custom model is designed specifically for the type of hierarchical
n-gram graph inferred from protein sequences so the goal is
not to evaluate how superior our model is to other standard
GNNs but rather to establish validity of the capability of our
model to process graph data. For example you will see in the
results that our model might not be the best at processing
highly homophilic sparse non-directional graphs like Citeseer and
Cora.
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FIGURE 2

ground truth data.

ProtGram — DirectGCN full pipeline. (a) ProtGram: our unique probabilistic approach in modeling protein sequences. (b) DirectGCN: the layer is
composed of multiple paths extracted from the graph; unstructured, directional in addition to a positional identity. The paths are then aggregated and
transformed via a final feed forward layer and is trained on a next node prediction classification task. (c) PPI: the final embeddings are pooled via an
attention pooling layer then passed down to the downstream task of classification based link prediction where a classifier is trained on a standard
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TABLE 1 Statistics of the constructed n-gram graphs (G,,).

n-gram level (n)

# Nodes (Unique n-grams)

# Edges (unique transitions)

1 21 601
2 601 10,669
3 10,669 180,273
4 180,273 3,240,330

o Datasets: We selected standard GNN benchmark datasets for
the intrinsic evaluation: Karate Club, Cora, CiteSeer, PubMed,
Cornell, Texas, and Wisconsin. All of the datasets where
downloaded from the official PyTorch Geometric repository.
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For each dataset, we evaluated performance on their original
edges (potentially directed). See Table 2.

o Task & Setup: The task was semi-supervised node classification
relying on a fixed 10%/10%/80% train/validation/test split. All
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TABLE 2 Statistics of standard datasets used in the benchmark evaluation.

10.3389/fbinf.2025.1651623

Dataset ‘ # Nodes # Edges ’ # Features ’ # Classes

Karate Club 34 78 0 4
Cora 2,708 10,556 1,433 7
PubMed 19,717 88,648 500 3
Cornell 183 298 1,703 5
Texas 183 325 1,703 5
Wisconsin 251 515 1,703 5

models were trained for 300 epochs using the Adam optimizer
with a fixed 2 layer and layer norm architecture.

Baseline Models: Graph Convolutional Network (GCN)
(Kipf and Welling, 2017), Graph Attention Network (GAT)
(Velickovi¢ et al.,, 2018), GraphSAGE (Hamilton et al., 2018),
Graph Isomorphism Network (GIN) (Xu et al., 2019), and
DirGNN (Rossi et al., 2023).

Results: The goal of this evaluation was to validate
ProtGram — DirectGCN as a sound GNN architecture.
On high-homophily citation networks (Cora, CiteSeer,
PubMed), ProtGram — DirectGCN underperformed relative
to simpler models like GCN and GAT. This is an expected
outcome, as its complex, over-parameterized architecture
is not well-suited for these tasks and struggles to converge
effectively. However, on the heterophilic WebKB datasets
(Cornell, Texas, Wisconsin), where relationships are more
complex, its performance was more reflective of its innate
capacity. This validates that the model is functional
but highly specialized, justifying its application to our
custom, heterophilic n-gram graphs rather than general-
purpose benchmarks. A summary of results is presented in
Table 3.

3.3 Learning N-gram embeddings from G,,
via training ProtGram — DirectGCN

for

The constructed G,, graphs via ProtGram serve as the foundation
learning informative vector representations (embeddings) for

each n-gram. This is achieved through a self-supervised training task

designed to force the model to understand the sequential grammar

inherent in the protein sequences from which the graph was
built.

Next-Node Prediction as a Self-Supervised Task: For each n-
gram node u € V,, we define its label y, as its most likely
successor in the sequence. This successor is determined by
identifying the outgoing edge (u,v) with the highest transition
frequency (weight) in the raw graph. The task for the GNN is
therefore to predict this most probable next n-gram for every
node in the graph. This objective compels the model to learn

Frontiers in Bioinformatics

08

embeddings that encode the sequential and transitional logic
of the n-gram language. An n-gram’s representation becomes
a function of not only its own identity but also the likely
sequences it participates in. Final n-gram level is trained on
a Louvain community detection (Blondel et al., 2008) label
task. The community detection is analgous to a larger context
window in the graph or a larger neighborhood aggregation.
Community detection can be difficult to detect in the smaller n-
gram levels because of the inherent faint signal associated with
each node but as the number of n-gram levels increase the signal
becomes more discriminating of n-gram graph communities.
Hierarchical Training: The training process is hierarchical. For
the base level (n = 1), node features are identity initialized. For
each subsequent level n > 1, the initial features for a given n-
gram node are generated by attention-pooling the final, learned
embeddings of its two constituent (n-1)-gram nodes from
the previously trained level. This creates a rich, multi-scale
representation, where higher-order n-gram features are built
upon the learned representations of their sub-components.
Implementation Details: The model for each level # is trained
for a set number of epochs using the Adam optimizer and
a negative log-likelihood loss function on the next-node
prediction task. For larger graphs (n>3), a Cluster-GCN
(Chiangetal., 2019) approach is used to partition the graph into
mini-batches via community detection for memory-efficient
training. The final output of this stage is a comprehensive set of
learned embeddings for all n-grams at the highest level, n = 3.
Please see the Supplementary Material for experimental details.

3.4 Protein-protein interaction (PPI)
prediction as link prediction

Protein-Level Embeddings Generation via Attention
Pooling: A single, fixed-size feature vector is generated for
each protein in the UniProt dataset. This is achieved by taking
the sequence of each protein, identifying all of its constituent
n-grams, retrieving their learned embeddings from the final
ProtGram — DirectGCN model, and aggregating these vectors
via attention pooling. This results in a single vector that
summarizes the global n-gram statistics for each protein.
To standardize the feature space for comparison with other
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TABLE 3 Model performance on directed datasets. Accuracy and F1-Score are reported as mean =+ std. (M) Denotes macro average.

10.3389/fbinf.2025.1651623

Dataset Model Accuracy F1-score (M) Precision (M) ‘ Recall (M)
GCN 0.8722 +0.0088 0.8622 +0.0106 0.8629 0.8651
GAT 0.8863 + 0.0062 0.8754 + 0.0099 0.8808 0.8723
Cora GIN 0.8671 +0.0103 0.8588 +0.0134 0.8637 0.8575
DirectGCN 0.8590 + 0.0189 0.8480 + 0.0256 0.8493 0.8497
DirGNN 0.8530 +0.0142 0.8407 +0.0172 0.8449 0.8400
GCN 0.8631 +0.0047 0.8553 + 0.0056 0.8573 0.8542
GAT 0.8529 +0.0089 0.8456 +0.0103 0.8491 0.8445
PubMed GIN 0.8716 + 0.0052 0.8669 + 0.0054 0.8652 0.8695
DirectGCN 0.8451 + 0.0053 0.8370 + 0.0067 0.8360 0.8392
DirGNN 0.8107 +0.0120 0.8000 +0.0116 0.8022 0.8007
GCN 0.4101 + 0.0608 0.2440 + 0.0590 0.2406 0.2713
GAT 0.4264 +0.0748 0.1684 + 0.0432 0.1989 0.2202
Cornell GIN 0.4862 + 0.0770 0.3603 + 0.0546 0.3682 0.3974
DirectGCN 0.5571+0.0499  0.4104 + 0.0837 0.5182 0.4061
DirGNN 0.5520 +0.0316 0.2976 + 0.0547 0.3096 0.3356
GCN 0.3773 +0.0923 0.1640 + 0.0403 0.1575 0.1770
GAT 0.5464 + 0.0567 0.2139 +0.0461 0.2163 0.2569
Texas GIN 0.4045 + 0.0585 0.2199 + 0.0369 0.2305 0.2414
DirectGCN 0.6940 +0.0202 | 0.5212 + 0.0831 0.6044 0.5071
DirGNN 0.5353 % 0.0540 0.2310 + 0.0496 0.2390 0.2703
GCN 0.4224 +0.0627 0.2491 + 0.0702 0.2600 0.2641
GAT 0.4898 + 0.0937 0.2413 £ 0.0686 0.3067 0.2635
Wisconsin GIN 0.4219 +0.0625 0.2876 + 0.0757 0.2910 0.3000
DirectGCN 0.6293+0.0423  0.3833 +0.0584 0.3835 0.4079
DirGNN 0.4975 +0.1026 0.2695 + 0.0784 0.2934 0.2814

Bold indicates best performance.

methods, Principal Component Analysis (PCA) is applied to  is particularly suited for protein sequences, as it highlights structural

reduce the final embeddings dimension to 64. motifs that affect binding sites, discussed further in Section 4.2.
We compute attention scores as follows:
In this step, we use self-attention to create a single embedding

vector for a protein from its n-gram embeddings (also called + Let the set of n-gram embedding vectors for a protein be P =
Vi,Vy,...,V,, where n is the number of n-grams and each v; is a

d-dimensional vector.

residue embeddings). Each n-gram determines its importance

within context and receives a unique attention weight, so n-grams

matching the protein’s syntax have greater influence. This lets the « First, we calculate the average of all n-gram embeddings for

model focus on the most relevant sequence parts. Attention pooling the protein. This vector, called the context vector, represents the
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typical pattern or summary of the entire protein sequence. The
context vector guides the model in determining which n-grams
are most relevant in the proteins context. The context vector ¢
is the mean of all n-gram vectors: ¢ = i LV

o Then we score each n-gram vector by its dot product with
the context vector c: s; =v;-c. Higher scores indicate greater
alignment.

« The final weights alpha; come from applying Softmax to the

raw scores. This step normalizes scores into a probability
exp (s;)

;’:1 exp(sj)'
o We next compute the weighted average of the n-gram

distribution: a; =

embeddings using the attention weights. This produces the final,

attention-pooled per-protein embedding vector. The final per-

protein embeddings is the weighted sum of the n-gram vectors,

each scaled by its attention weight: v,y ein = 211 V.

« This final vector, Vy,in> represents the protein, reflecting the
contribution of its most important n-grams as determined by
self-attention.

o PPI Datasets: A benchmark PPI dataset is compiled
automatically using known positive interactions from the
BioGRID database (Oughtred et al., 2021) and high-quality
negative interactions (non-interacting pairs) from the
experimentally-derived Russell Lab datasets (Trabuco et al.,
2012). This ensures a robust and biologically relevant evaluation
set.

o Link Prediction Model: A standard Multi-Layer Perceptron
(MLP) was used as the binary classifier. For a pair of proteins
(P, Py), the input to the MLP was the concatenation of their
embedding vectors.

o Evaluation and Baselines: The model’s performance is
rigorously assessed using a 5-fold stratified cross-validation
scheme to ensure that results are robust and not dependent
on a single random data split. We measure performance
using a suite of standard binary classification and ranking
metrics, including Area Under the ROC Curve (AUC), F1-
Score, Precision, Recall. To contextualize our results, we
compare the performance of our ProtGram — DirectGCN-
derived embeddings against ProtT5 (Elnaggar et al., 2022)
available via UniProt. In addition we compare it against
ESM (Rao et al, 2020) where we performed the inference
and the embedding generation manually. And finally to
further contextualize our work we train a Word2Vec model
(Mikolov et al., 2013) on the concatenated sequences with
a context window of 10 tokens with skip-gram and negative
sampling for 10 epochs. The exact same MLP architecture
and evaluation protocol are used for all embeddings generated
to ensure a fair comparison. A hyperparameter optimization
protocol was applied to find the best parameters for the MLP
model. See Table 4 and Figures 3, 4 for the final evaluation of all
models.

3.5 Ablation study of
ProtGram — DirectGCN

Here we are going to understand the properties of the n-gram
graph and its generated residue representation by training the model
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on a subset of the available sequence data on different model
configuration. This step is crucial as the smallest pertubation in the
data or the model affect the final per protein embeddings due to the
hierarchical nature of the model.

The ProtGram — DirectGCN model uses a hierarchical approach.
Embeddings from lower-order n-grams initialize features for higher-
order n-gram graphs. Increasing n allows the model to capture
richer protein sequence context. The ablation phase used just 5% of
UniProt-Sprot to test data augmentation and prediction capabilities
in low-data settings we varied two key model components. First, we
changed the size of the hierarchical graph; specifically, the value of n
in the n-gram. Second, we studied the effect of the gating mechanism
in 3 configurations: vector-based, where each graph node has a single
gating score; scalar, where each path of the DirectGCN 3-paths has
one gating score; and no gating at all. We present the results of
this step in Figure 5 and conclude from our study the following.

» No Gating: The lack of gating has shown a consistent reduction
in predictive power, with AUC scores closer to 50%. This
suggests a substantial drop in classification ability. In the context
oflimited and less diverse data, the model struggles to overcome
the weaker signal. These results indicate that even in sparse
data settings, including some form of gating provides significant
benefit, regardless of the model’s complexity.

Scalar Gating: With scalar gating, AUC modestly increases with
n. Notably, # = 3 shows a statistically significant improvement
over n=1 and n=2, suggesting that 3-g are more helpful
in some cases. While the AUC rises with n, nl (0.5521),
n2 (0.5902), and n3 (0.6016), we occasionally observed
diminishing returns or negative impacts when increasing to 3-g.
This suggests that, under certain conditions, 3-g can introduce
noise, lead to overfitting, or result in overly specific features. The
shift from 2-g to 3-g, therefore, does not universally strengthen
performance, emphasizing the need for careful tuning.
 Vector Gating: For vector gating, the AUC increases from nl
(0.6376) to n2 (0.6616), then drops at n3 (0.6367). F1 shows
a similar trend. Increasing n from 1 to 2 brings improvement,
but going to 3 does not consistently help. This underlines
diminishing returns for higher-order n-grams in low-data
settings. The transition from 1-g to 2-g often enhances both
gating types. Moving from 2-g to 3-g, however, can result in a
decrease in performance. The best n-gram level varies by task
or dataset, and higher n may require adjustments to the model
or training.

Overall, vector gating consistently outperforms scalar gating
across all n-gram levels and test settings. Here, "vector gating” refers
to the use of node-specific, learnable gating vectors (the coefficients
C+(]) in Equation 7) that allow each node in the graph to control how
much information it integrates from each of its neighbors within
the DirectGCN layers. This process is analogous to combining
multiple features at each node. These coefficients enable the model
to adjust the influence of each neighbor at each node, yielding robust
and accurate vector representations of nodes. Collectively, our
findings indicate that incorporating higher-order n-grams (capped
at 2) generally increases diversity in the information processed and
strengthens the signal, underscoring the importance of considering
the order of residues, or sequence context, in the model. However,
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The plot displays the Receiver Operating Characteristic (ROC) curves comparing the performance of protein embeddings generated by the proposed
ProtGram — DirectGCN method against the state-of-the-art ProtT5 and ESM language models, in addition to Word2Vec. The evaluation is for the
downstream task of Protein-Protein Interaction (PPI) link prediction, with this specific chart illustrating the results from the average of a 5-fold
cross-validation. All models perform significantly better than random chance (dashed line). This visualization confirms that while the proposed
graph-based method captures a strong predictive signal for protein interactions, both ProtT5 and ESM models serves as a higher-performing
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The figure illustrates the models’ performance metrics reflecting the results in Table 4.

increasing n to 3 can bring diminishing or negative returns. Notably,
vector gating remains a better mode, highlighting the importance of
learnable, node-wise gating in effectively integrating information in
complex protein n-gram graphs.
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Altogether, these findings demonstrate that ProtGram —
DirectGCN’s performance is sensitive to both n-gram level and
gating mode. Variations in experimental factors can produce

notable differences. This reinforces the need for careful model
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TABLE 4 Performance comparison of protein embeddings on PPI link prediction (averaged over 5 folds).

Embedding method Precision Recall
ProtT5 0.9494:0.0011 0.8727+0.0019 0.8736 0.8720
ESM 0.9146+0.0006 0.8293+0.0019 0.8351 0.8238
ProtGram-DirectGCN 0.8588+0.0014 0.7659+0.0049 0.7998 0.7349
Word2Vec 0.7912+0.0017 0.7159+0.0029 0.7085 0.7236

Bold italic highlights the results of ProtGram-DirectGCN.
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FIGURE 5

Ablation results for varying gating modes versus different n-gram levels when training ProtGram — DirectGCN. (a) This plot backs up our findings. For
scalar gating, the AUC peaks at n = 3 in some summaries but is optimal at n = 2 in others, with n = 3 experiencing a decline. This shows that the optimal
n-gram depends on experimental factors. For vector gating, performance improves from n=1to n =2, then drops at n = 3. This supports the idea that
n =2 is optimal, as higher complexity may compromise results. The plot illustrates variation in AUC across different runs, highlighting the model’s
sensitivity to test conditions. (b) This plot shows that vector gating is the most effective approach, typically yielding the highest F1 scores across all
n-gram levels. Scalar gating is generally preferable to no gating. No Gating models have poor results, except for a rare F1 outlier likely due to
experimental effects. Vector gating performs best at n = 2. Scalar gating may peak atn =2 orn = 3.

tuning and thorough evaluation before deploying the model. 4.1 Summary of ﬁndings

In summary, gating proves crucial. Simply increasing n beyond

an optimal point does not always lead to improved predictive Our experimental evaluations spanned several stages: validating

power. the core ProtGram — DirectGCN architecture on standard GNN
benchmarks and applying the derived protein-level embeddings
to predict PPIs, including a comparison against state-of-the-art

4 Discussion PLMs (ProtT5) and (ESM) embeddings and a standard base line
Word2Vec.
This  study introduced and evaluated a  novel

ProtGramDirectGCN model for learning representations from o Evaluation of DirectGCN: The benchmark results in Table 3
a globally constructed, directed, dense, and weighted graph confirm that DirectGCN is a functionally sound GNN. Its
of amino acid residues G, derived from the UniProt dataset. underperformance on high-homophily citation networks and
The primary objective was to assess the efficacy of this competitive performance on more complex, heterophilic graphs
approach for generating informative protein embeddings highlights its specialization. The architecture is not designed as
applicable to downstream biological prediction tasks, particularly a general-purpose GCN but as a specialized tool for capturing
Protein-Protein Interaction (PPI) link prediction. This section the complex, directed, and weighted relationships present in our
discusses the main findings, their implications, the limitations n-gram residue graphs.

Evaluation of ProtGram: The hierarchical construction of n-

of the current work, and promising avenues for future
research. gram graphs up to n=3 and even further n-gram such as
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n=4 (Table 1) resulted in a large, complex graph structure.
The successful training of our model on this graph hierarchy
demonstrates the feasibility of the approach. The key outcome
of this stage is the set of high-dimensional embeddings for
10,669 unique 3-g, which serve as the basis for our protein-level
representations.

o Evaluation of ProtGram — DirectGCN: The performance on the
downstream PPI link prediction task (Table 4) is the ultimate
measure of our methods utility. The results show that the
ProtGram — DirectGCN was able to learn structural features
from the protein sequences with reliable discriminating ability
and hence was able to demonstrate excellent predictive power
on the task with an AUC value above 85% despite being trained
on limited sequence data compared to its counter PLMs. The
F1 score also demonstrates the model’s precision even with a
lowered recall and hence missing more positive samples due to
the limited capacity of the model. This highly suggested that
the construction and inference of the underlying directed graph
of amino acid transitions in a hierarchical fashion captures
structural and relational features across multiple proteins.

o Comparison with ProtT5, ESM and Word2Vec Embeddings:
The comparison with ProtT5 and ESM embeddings which
are generted by the very powerful high capacity T5 encoder-
decoder transformer model that is trained on the more
comprehensive UniRef50 dataset is not meant as a head-
to-head comparison. But rather as a demonstration that
hefty transformer architectures for specialized tasks like PPI
prediction can be contended with models that capture the
underlying dynamics without having to rely on long context
windows and demanding computational resources needs. The
long range dependencies captured by ProtT5 and ESM are
the reason why it is an efficient feature extractor for proteins.
Yet those same dynamics can be captured from a lower level
faint signal such as the simple transition directed graph of
amino acids without long context windows. ProtT5, ESM
and ProtGram — DirectGCN rely on computationally expensive
preprocessing yet with ProtGram — DirectGCN the significant
decrease in the cost of model training especially when the
technique gets more established and developed will result in a
paradigm shift when it comes to how we think about specialized
tasks for LLMs in general. Training a Word2Vec model is usually
considered a sanity check as it represents the base line that any
predicitve deep learning model should be able to outperform.
Including Word2Vec and ESM helps contextualize our work
and shows that the results are consistent with what has been
reported before in the literature for all based line models.

4.2 Biological significance

PPI prediction is a bedrock in drug development, understanding
drug efficacy, and many other crucial biomedical fields. Figure 6
displays the computed attention maps at n=1 and n=2 post
pooling. These maps provide insight into the role of distinct n-
grams and how they map to functional groups. High attention scores
for specific n-grams within a protein indicate that these sequence
fragments are considered most relevant or discriminating by the
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model. This is especially important for forming the overall protein-
level representation. This is particularly true for the downstream task
of (PPI) prediction. It implies that highly attended n-grams likely
correspond to crucial regions within the protein’s primary sequence.

The ProtGram — DirectGCN model is based on the intuition that
the transition sequence of amino acids, through their side chains or
R-groups, determines how a polypeptide chain folds. This folding, in
turn, affects interactions with other molecules. Therefore, n-grams
with high attention scores in these heatmaps could represent either
specific binding sites or key structural motifs. The model learns to
prioritize these n-grams as they are critical for determining if and
how proteins interact. Key structural motifs are vital for a protein’s
overall fold. This, in turn, influences its function and interaction
capabilities.

The DirectGCN layer itself is designed to process information
through multiple, specialized paths. These include incoming,
outgoing, and undirected routes. The model combines these
paths using a learnable gating mechanism. The attention pooling
layer then aggregates these already contextually enriched n-
gram embeddings into a single protein embeddings. Thus, the
attention scores on the heatmaps reflect not just the local
sequence importance. They also indicate contextual and relational
significance within the broader n-gram graph and across different
interaction types.

By identifying these lead residues and sequence motifs that
contribute significantly to the model’s predictions, the attention
heatmaps can guide hypothesis generation for experimental
testing. They can also accelerate the functional annotation
of uncharacterized proteins (which we removed in our data
preprocessing). Biologists could use these highlighted n-grams to
design targeted experiments. For example, they might conduct site-
directed mutagenesis to validate their functional role in protein
interactions.

One motivation behind ProtGram — DirectGCN 1is to address
the limited context window size in PLMs. By explicitly modeling
broad sequence patterns and transition dynamics through n-gram
graphs, the model is designed to capture longer-range dependencies
that PLMs might miss due to their window size. The attention
heatmaps help visualize how the model uses this broader context.
They highlight important n-grams that traditional PLMs might
overlook because they fall outside their immediate scope.

4.3 Limitations

While this study presents promising results, several limitations
should be acknowledged:

« Due to computational constraints, G, was constructed based
on UniProt Swiss-Prot standard sequence database. While
providing a high-quality reviewed set, more comprehensive
and diverse datasets, such as UniRef50/90/100 or the full
UniProtKB, could enrich G, at a significant computational cost
potentially increasing the predicitve and discriminating power
of ProtGram — DirectGCN to be on-par with PLMs.

Initial features for 1-g nodes in G, were initialized to identity.

Including physicochemical properties as initial features could
enhance learning and interpretability.
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N-Gram Attention Heatmap for Top 20 Proteins (directgen_scalar_gating_n1)
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N-Gram Attention Heatmap for Top 20 Proteins (directgcn_scalar_gating_n2)

The attention pooling results described in Section 3.4 highlight attention scores after pooling residue-level (n-gram) embeddings to protein-level
embeddings. These heatmaps are generated by identifying n-gram attention weights for proteins with the highest overall variance in attention. The
X-axis of such a heatmap represents various n-grams, and the Y-axis represents specific protein IDs, with the color intensity in each cell indicating the
attention score assigned to a particular n-gram within a given protein. (@) n=1. (b) n=2.

o Simple attention pooling was used to generate protein-
level embeddings. More advanced pooling mechanisms
were not exhaustively explored and might yield improved
representations.

o The evaluation was centered on PPI link prediction, hence
the utility of embeddings for additional tasks remains to be
explored.

o While the design of ProtGram — DirectGCN is detailed, and we
provided some insight via attention map visualization of the role
of distinct n-grams and how they map to functional groups,
direct interpretation of what specific n-gram relationships
contribute most to its performance or downstream PPI
predictions currently relies on indirect evaluation through task
performance. Deeper interpretability studies are warranted.

o The PPI link prediction task relies on the Russell Lab
negative dataset (Trabuco et al., 2012), which, while
experimentally grounded, has inherent assumptions and
potential biases based on Yeast two-Hybrid limitations. The
choice of negative samples can significantly impact the reported
performance of PPI prediction.

o The current framework primarily relies on sequence-derived
information for constructing G, and generating protein
embeddings. Direct integration of 3D structural information
was not part of this specific study, but it is a key area for future
enhancement, as our focus was on building a pipeline that can
operate in more challenging conditions such as limited available
information and training data.

4.4 Future work
The findings and limitations of this study open several avenues

for future research. First, future iterations will explore constructing
G,, with richer edge definitions. For example, we could move beyond
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simple transitions to incorporate longer-range co-occurrences,
apply weights from substitution matrices, or use more informative
initial node features for amino acids. Also, ProtGram — DirectGCN
could be extended by incorporating attention mechanisms within
its directional layers. In addition, we could explore more complex
architectures with advanced normalization schemes. Another focus
will be on introducing and crafting training tasks that are more
specific to proteins and their interactions. We also plan to adapt
the model to other tasks, such as predicting Gene Ontology labels
for individual proteins. This work focuses solely on the limitations
of training data and information, which are represented by relying
on a limited subset of protein sequences. To address this, we
could use predicted contact maps to inform the edges in G,
or in peptide-level graphs similar to Sledzieski et al. (2021), or
incorporate residue-level structural features into the initial residue
embeddings. Expanding the framework to explicitly model the
hierarchical nature of protein organization (residues — peptides
— proteins — interactions — interaction networks) and exploring
second-degree graphs (graphs of interactions) presents a compelling
research direction (Jeh and Widom, 2002) as well. Lastly, investing
in advanced interpretability techniques will help understand the
“black box,” and further optimizing the construction of G, and
training ProtGram — DirectGCN for even larger sequence datasets
will maximize the information captured.

Finally, its worth mentioning that a notable class of modern PPI
prediction methods leverages 3D structural information, either from
experimental sources or high-fidelity predictions from models like
AlphaFold2 (Jumper et al., 2021). These geometric deep learning
approaches, such as GearNet and GVP-GNN, have demonstrated
state-of-the-art performance by directly encoding the physical and
chemical properties of protein surfaces. While these methods are
powerful, their applicability is contingent on the availability of
accurate structural data. Our work, with ProtGram — DirectGCN,
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intentionally explores a different and complementary direction.
We focus exclusively on the proteins primary sequence, aiming to
develop a method that is (1) universally applicable to any protein,
including those with unknown or poorly predicted structures,
and (2) computationally less intensive, as it does not require the
computationally expensive step of structure prediction or the storage
of large structural files. By constructing a global n-gram graph, our
approach seeks to infer higher-order sequence motifs that serve
as a proxy for structural and functional information, providing a
robust and scalable alternative for large-scale proteome analysis
where structural information may be sparse or unavailable. Hence
future work could also explore hybrid models that fuse our learned
n-gram representations with structural features for proteins where
both are available.

5 Conclusion

This paper introduces a novel
representation learning, which has been shown to enable in-silico

PPI prediction via a simpler yet expressive learning model. The

approach for protein

method focuses on a novel data model that infers hierarchical
global n-gram graphs from protein sequences namely ProtGram.
In these graphs, n-grams, defined as contiguous sequences of n
amino acids in proteins, form the nodes, and edges representing
relationships between these n-gram sequences. A custom directed
graph convolution learning model, DirectGCN, is introduced. This
model is designed to learn from n-gram graphs with directed
edges (edges have direction, indicating the flow from one n-gram
to another), heterophily (connections often occur between nodes
representing different types of n-grams), and weighted edges (edges
have numerical weights that may represent the strength or frequency
of the relationship). The model learned distinctive features that
capture protein relations, even with limited training data. This offers
a valuable and computationally distinct alternative to large-scale
PLMs, such as ProtT5 and ESM, under the evaluated conditions.
In the future, graph-based representations will be enriched with
multi-modal data, including explicit structural information. The
scope of application will expand to more biological problems.
Ultimately, this work aims to provide a deeper understanding of the
molecular interactions that govern life by introducing new methods
for analyzing and understanding protein and gene interactions.
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