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Recent advances in three-dimensional microscopy enable imaging of whole-
organ microvascular networks in small animals. Since microvasculature plays 
a crucial role in tissue development and function, its structure may provide 
diagnostic biomarkers and insight into disease progression. However, the 
microscopy community currently lacks benchmarks for scalable algorithms 
to measure these potential biomarkers. While many algorithms exist for 
segmenting vessel-like structures and extracting their surface features and 
connectivity, they have not been thoroughly evaluated on modern gigavoxel-
scale images. In this paper, we propose a comprehensive yet compact survey of 
available algorithms. We focus on essential features for microvascular analysis, 
including extracting vessel surfaces and the network’s associated connectivity. 
We select a series of algorithms based on popularity and availability and provide a 
thorough quantitative analysis of their performance on datasets acquired using 
light sheet fluorescence microscopy (LSFM), knife-edge scanning microscopy 
(KESM), and X-ray microtomography (µ-CT).
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 1 Introduction

Microvasculature plays an important role in tissue development and function. While 
its role is often complex, the shape and structure of microvascular networks are studied in 
conjunction with disease. Due to imaging constraints, these studies largely focus on the local 
network structure constrained to a limited field of view or tissue section. Recent advances 
in three-dimensional microscopy, including light sheet fluorescence microscopy (LSFM) 
(Kirst et al., 2020), knife-edge scanning microscopy (KESM) (Mayerich et al., 2008), and 
X-ray microtomography (µ-CT) (Hong et al., 2020; Quintana et al., 2019), overcome this 
limitation by enabling whole-organ imaging in small animals. However, the microscopy 
community currently lacks scalable algorithms and benchmarks to quantify microvascular 
structure at such a large scale.

While many algorithms exist for segmenting vessel-like structures, their scalability 
on modern whole-organ three-dimensional images has not been rigorously assessed. 
In addition, segmentation errors can increase disproportionately with volume coverage 
because acquiring larger volumes introduces trade-offs in SNR, resolution, and sampling 
anisotropy. This requires more complex algorithms - including pre-processing and machine
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learning - that are not as scalable as traditional thresholding or 
segmentation based on localized features (Daetwyler et al., 2019).

In this paper, we propose a comprehensive yet compact 
survey of available algorithms. We focus on essential features for 
microvascular analysis, including extracting vessel surfaces and the 
network’s associated connectivity. Algorithms were selected based 
on popularity and availability and provide a thorough quantitative 
analysis of their performance on datasets acquired using emerging 
techniques. 

2 Microvascular models

Microvasculature is a meshwork of capillaries that penetrate 
tissue to provide nutrients and remove cellular waste. The structure 
of this mesh changes over time and plays a critical role in 
tissue function and disease progression. Most current studies 
are limited to small volumes, primarily characterizing vascular 
density, along with morphological metrics such as capillary length, 
radius, and tortuosity (Cassot et al., 2006). These metrics provide 
fundamental information about the network’s geometric properties 
and spatial organization. They also serve as the foundation for 
more advanced analyses, such as quantifying flow dynamics, 
assessing tissue perfusion, and understanding function. Moreover, 
downstream pipelines such as computational flow modeling and 
perfusion simulations can incorporate the segmentations and 
skeletons to enable quantitative studies of hemodynamics and 
tissue function (Vidotto et al., 2019).

As image sizes increase, researchers attempt to apply existing 
metrics at larger scales using software packages like VesselVio 
(Kirst et al., 2020) or multi-step pipelines such as TubeMap. 
We expect new metrics and biomarkers to develop over time as 
larger models are explored. For now, we focus on methods that 
convert large-scale microvascular images into explicit models that 
support existing analyses. This leads to two key representations: the 
microvascular geometry and its skeleton (Figure 1).

The geometry of the network represents the vascular surface 
that separates the region inside from the surrounding tissue. 
This representation enables the calculation of metrics such as 
vessel radii, surface area, and volume. The geometry is frequently 
extracted by identifying these inside/outside regions and then 
calculating the surface that separates them. Binarization is the 
first step for resolving the microvascular geometry (Figures 2b,e). 
These methods rely on separating pixels within the network 
from the surrounding tissue, providing an implicit representation 
of the geometry that can be readily converted to an explicit
surface mesh.

The network skeleton represents its topology, combining a 
connectivity graph with vessel centerlines. This representation 
enables the calculation of metrics such as tortuosity, vessel 
length, and branching statistics. The skeleton is usually extracted 
from the geometry using specialized thinning algorithms. 
Skeletonization is used to extract vessel centerlines (Figures 2c,f) 
and calculate a connectivity graph. Skeletonization methods 
frequently rely on an initial binarized volume or surface mesh. 
However, some techniques, such as tracing, can compute the 
skeleton directly (Govyadinov et al., 2019). 

FIGURE 1
A microvascular model specifies both the geometry representing the 
surface structure and connectivity in the form of a spatial graph. 
Depending on the labeling method, the vascular geometry may 
represent the vessel interior or include endothelial cells lining the 
vessel and capillary walls. The vessel connectivity generally consists of 
a graph of vessel centerlines joined at nodes where vessels 
interconnect.

2.1 Geometry

Vessel geometry can be represented using implicit (voxel-
based) or explicit (mesh-based) data structures. In the implicit 
representation, the vascular network is segmented from 
surrounding tissue using a three-dimensional voxel grid similar 
to the original image, with individual voxels labeled as inside or 
outside vessels. Voxels are convenient for calculating volumes or 
performing voxel-wise statistical analyses.

Explicit representations, such as polygonal meshes, define vessel 
surfaces through interconnected vertices and edges. Meshes facilitate 
calculations of surface area and enable simulations requiring surface 
geometry. In this survey, all segmentation algorithms produce voxel-
based results. We tested two skeletonization algorithms (tagliasacchi
and antiga) that require triangular meshes as input, which we produce 
from segmentation results using the marching cubes algorithm. 

This implicit representation can optionally be converted to a 
surface mesh using algorithms such as marching cubes (Lorensen 
and Cline, 1998). Measurements are taken across either structure 
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FIGURE 2
Implicit representations of binarization and skeletonization in 2D and 3D images. Retinal fundus images are shown in 2D (a). The associated 
binarization (b) indicates pixels that lie inside (white) and outside (black) of the vascular network. The skeletonization (c) shows the vessel paths and 
points where they connect. The 3D case shows a volumetric visualization of an LSFM image (d) with the associated binarization (e) and centerlines (f).

as convenient. For example, surface area can be measured by 
integrating across a surface mesh, while volume can be measured 
by adding up the pixels within the network. 

2.2 Skeleton

The vascular skeleton is almost always represented explicitly 
for analysis using connected curves. This explicit representation is 
fundamentally a connectivity graph, where each node represents 
a bifurcation and each edge represents a single non-branching 
vessel segment (Figure 1). The vessel centerlines are curves that can 
be integrated to calculate features such as length and tortuosity. 
Algorithms such as depth- and breadth-first searches can also be 
applied to calculate path lengths and branching characteristics.

In this paper, we evaluate the performance of algorithms 
for extracting the geometry and connectivity of a microvascular 
network in large images on imaging methods applicable to whole 
organs. Most algorithms first binarize the original image using 
semantic segmentation, using the result as the foundation for medial 
axis transforms that provide the skeleton (Figure 3).

3 Microvascular imaging

Microvascular imaging faces two competing challenges. First, 
imaging systems must be capable of collecting ≈1 mm3 of tissue 
to characterize network structure, with preferred volume coverages 

FIGURE 3
Overview of the vascular modeling pipeline. The input image is first 
processed (using various filtering or machine learning approaches) and 
binarized to extract geometry. The medial axis is then calculated to 
determine network connectivity. Tracing may also be applied directly 
to the raw image as an alternative approach for skeletonization.

of 1 cm3 for entire rodent organs. Second, the imaging system 
must resolve microvessels that are less than 10 µm in diameter. 
Traditional techniques, such as widefield or confocal microscopy, 
are limited to two-dimensional sections or small volumes. The 
data in this paper were acquired using recent high-throughput 
techniques, including (1) X-ray microtomography (µ-CT), (2) light 
sheet fluorescence microscopy (LSFM), and milling microscopy 
(Mayerich et al., 2011; Guo et al., 2019). 

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1645520
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Goharbavang et al. 10.3389/fbinf.2025.1645520

FIGURE 4
Imaging techniques tested for microvascular reconstruction. (a) Light sheet fluorescence microscopy uses a laser-scanned light sheet to excite 
fluorophores within a sample plane that are imaged through a high-NA objective. (b) X-ray micro-CT images the sample by rotating it within a 
transmission X-ray beam. (c) Knife-edge scanning microscopy is a milling-based imaging system that images tissue slices as they are sequentially 
ablated from a sample.

3.1 Imaging methods

Meeting the criteria for resolution and volume coverage 
is challenging because microscopes are diffraction-limited and 
tissue samples are highly scattering. However, recent advances 
are starting to enable sufficient resolution and volume coverage. 
This paper considers the following broadly-accessible imaging
methods:

X-ray microtomography (µ-CT) is nondestructive and measures 
the absorbance of X-rays incident on a sample to create three-
dimensional images (Ritman, 2004). While µ-CT enables large-
volume imaging of whole mouse brains (Hong et al., 2020), 
its low contrast limits spatial resolution. Recent advances in 
vascular perfusion compounds such as Vascupaint 2 (MediLumine, 
Montreal, Quebec, Canada) improve µ-CT resolution to ≈20 ±
4.0 µm, whereas previous contrast agents limited features to ≈92  ±
 25 µm (Margolis et al., 2024).

Light sheet fluorescence microscopy (LSFM) is characterized 
by separating illumination and detection. A thin sheet of light 
illuminates the sample (Hsu et al., 2022), and an orthogonally 
oriented objective (Figure 4) collects the emitted two-dimensional 
image using a CCD or CMOS camera. While the penetration depth 
is traditionally limited by tissue scattering, recent developments in 
clearing protocols (ex. CUBIC or iDISCO+) (Susaki et al., 2015; 

Renier et al., 2014) enable large-scale imaging of whole rodent 
brains. Recent cleared-tissue implementations span a broad range 
of resolutions. For example, hybrid open-top light sheet systems 
can achieve lateral resolution of 0.45 µm and axial resolution of 
2.9 µm across millimeter-scale volumes (Glaser et al., 2022). When 
combined with 4×  expansion microscopy, LSFM has reached 
effective resolutions of 375 nm laterally and 750 nm axially in 
centimeter-scale samples (Glaser et al., 2025). More recently, axially 
swept LSFM designs have demonstrated nearly isotropic resolution 
of approximately 300 nm in fixed and cleared tissues (Lin et al., 
2025). These gains in resolution typically trade off against imaging 
volume coverage or acquisition speed, so whole-organ datasets still 
exhibit significant anisotropy.

Milling microscopy removes layers of a sample during 
the imaging process to expose deeper tissue volumes. Initial 
experiments used on two-photon microscopy followed by photo-
ablation (Tsai et al., 2003), demonstrating that volume constraints 
could be eliminated by systematically removing tissue. More 
recent techniques separate tissue sections using physical cutting. 
Knife-edge scanning microscopy (KESM) (Mayerich et al., 2008; 
Mayerich et al., 2011) separates a tissue slice from the rest 
of the block during imaging, while milling with ultraviolet 
surface excitation (MUSE) performs block-face imaging followed 
by ablation (Guo et al., 2019). 
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FIGURE 5
Noise and systematic artifacts that occur in high-throughput imaging techniques. Limitations in resolution (a) reduced the ability to detect small vessels 
that form connections in the network. Large vessels in LSFM are often hollow (b) because contrast is provided by labeling the vessel wall. 
Misalignments during imaging can also produce blurry sections (c) that can confound segmentation algorithms. KESM introduces physical artifacts 
such as variations in illumination across a slice (d) and physical streaks caused by the interaction between the sample and cutting tool (e,f).

3.2 Datasets

We evaluated our binarization and skeletonization methods on 
three datasets representing the modalities described in Section 3.1.

X-ray microtomography (µ-CT) scans of mouse brain 
(Tg(Slco1c1-BAC-CreER); R26-lsl-TdTom/+) vascular networks were 
acquired using a Skyscan 1276 (Bruker, Billerica, MA, United States) 
at an isotropic sampling rate of 10 µm per voxel. Mice were prepared 
based on previously published protocols (Suarez et al., 2024). 
Briefly, the vasculature was perfused with Vascupaint (MediLumine, 
Product number: MDL-121; Montreal, Quebec, Canada) to provide 
vascular and microvascular X-ray contrast (Figure 5a).

Light sheet fluorescence microscopy (LSFM) images of mouse 
brain microvasculature were acquired using a Cleared Tissue 
LightSheet (CTLS) Microscopy Workstation XL (3i, Intelligent 
Imaging Innovations, Denver, CO), equipped with a 30 fps Fusion 
BT sCMOS camera (2304× 2304 resolution, 6.5 µm pixel size, 95% 
quantum efficiency, cooled to −50 °C; Hamamatsu Photonics, Japan). 
Adult C57BL/6N female mice (4.5 months old) were perfused with 
fluorescently labeled lectin (488 nm; Vector Laboratories, DL-1174-1) 
as previously described (Ahn et al., 2024), and brains were optically 
cleared using the iDISCO protocol (Hsu et al., 2022). Imaging was 
performed using a 1X (0.25 NA) objective and a 488 nm laser at 
200 mW power with a 300 ms exposure time. Image stacks were 
acquired at a 6 µm step size in the Z-direction, with 15% right-side 
overlap and 50% center tile overlap, making the voxel size 2.0× 2.0 ×
 6.0 µm. Images were stitched and reconstructed using SlideBook™ 

software (Intelligent Imaging Innovations) with the LightSheet module 
for 3D multipoint acquisition. Raw image files were acquired in 16-
bit TIFF format and rescaled to 8-bit using ImageJ for downstream 
processing. Final voxel spacing was adjusted to 1.0 ×  1.0 ×  0.75 µm 
using linear interpolation. 

Milling microscopy images were acquired using a knife edge 
scanning microscope KESM at a voxel resolution of 0.6× 0.7× 1 µm, 
covering a 0.6× 0.6× 2 mm volume. The tissue was acquired from a 
normal mouse (C57BL/6J) perfused with India ink (Mayerich et al., 
2011). The entire dataset is available using the KESM Mouse 
Brain Atlas (Chung et al., 2011).

Ground truth volumes for training and validation were 
manually annotated in Slicer (Kikinis et al., 2013). Binarization and 
skeletonization methods were evaluated on a 200× 200× 200 voxel 
dataset. The machine learning models were trained on six separate 
128× 128× 128 voxel sub-volumes for each dataset (distinct from 
the 2003 sample used for evaluation). 

3.3 Noise and artifacts

Each of these imaging modalities introduces sources of noise and 
other artifacts that challenge segmentation, including:

Resolution limitations are introduced due to both the 
signal strength and diffraction limit. Standard LSFM is typically 
anisotropic, with poorer axial than lateral resolution. Recent 
implementations (Glaser et al., 2022; Lin et al., 2025) can 
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achieve sub-micron isotropic resolution, with trade-offs in 
speed or volume coverage. µ-CT is primarily limited by 
SNR to ≈20 µm in all three dimensions. Both of these 
constraints are larger than the diameter of the smallest 
microvessels (Figure 5a).

Staining and labeling used in LSFM relies on targeting cells in 
the vessel wall, producing hollow vessels when their diameter is 
significantly larger than the diffraction limit (Figure 5b). In practice, 
vascular perfusion with fluorescent compounds like dextran can 
overcome these artifacts while improving contrast (at the expense 
of molecular specificity). In that case we would expect images that 
are more comparable to KESM.

Blurred vessels can occur in LSFM images due to 
temporary misalignment during long imaging periods
(Figure 5c).

Contrast variations are introduced by non-uniform illumination 
and/or staining in both LSFM and KESM. Contrast is also reduced 
in LSFM as a function of depth due to scattering.

Machining artifacts introduced by cutting tools in milling 
microscopy can cause lines (Figure 5e) and streaks (Figure 5f) in 
individual z-axis slices. 

4 Evaluation methodology

We characterize each algorithm’s performance using established 
metrics and perform an evaluation of adjustable parameters. All 
algorithms were tested on 200× 200× 200 voxel volumes that were 
manually segmented to create an implicit representation of the 
geometry and skeleton. If an algorithm requires optimization (ex. 
U-Net), training is performed on a separate volume acquired from 
an independent dataset. The same training and validation sets are 
used for all algorithms. 

4.1 Selection criteria

We evaluate a subset of available algorithms based on multiple 
criteria, prioritizing algorithms used in popular, domain-specific 
vessel analysis software. This includes Slicer (Kikinis et al., 
2013), the Vascular Modeling Toolkit (VMTK) (Izzo et al., 
2018), and VesselVio (Bumgarner and Nelson, 2022). Second, 
we prioritized algorithms with an established open-source 
implementation that was preferably provided by the authors. 
We selected representative algorithms from three classes of 
methods, including: (1) classical thresholding methods, (2) 
Hessian-based and gradient-based enhancement filters, and (3) 
deep learning-based semantic segmentation models. We selected 
skeletonization methods for a range of input data types, including: 
(1) binarized images, (2) meshes, and (3) point clouds. Our 
goal is to reflect diverse methodological approaches used for 
microvascular modeling. This selection process ensures that our 
evaluation adequately represents current best practices and popular 
trends in the field, providing a robust benchmark for future 
developments. Table 1 provides the dates and citations of the
proposed algorithms.

Otsu’s method was evaluated as a baseline binarization 
algorithm (otsu3d), and used as the final binarization step 

TABLE 1  Algorithms assessed in this paper for performing binarization 
(left) and skeletonization (right). The publication date is shown along 
with their citation count as of this writing.

Segmentation

Method (year) Citations

otsu (1979) 58,569

frangi (1998) 5,580

oof (2008) 316

bfrangi (2015) 346

unet (2015) 116,836

nnunet (2021) 6,480

Skeletonization

lee (1994) 2032

palagyi (1999) 275

antiga (2003) 62

kline (2010) 52

tagliasacchi (2012) 316

kerautret (2016) 11

as required for other algorithms. Vesselness filters, including 
both Frangi (frangi) and Beyond Frangi (bfrangi), were 
included due to their overwhelming popularity for vessel 
enhancement. Optimally oriented flux (oof) filters were 
included as a more recent innovation with the open-source 
implementations provided by the authors. U-Net architectures 
are extensively used for semantic segmentation in biomedical 
imaging, so we elected to test a baseline U-Net architecture 
(unet) while including recent work on self-configured U-Nets 
(nnunet).

We selected the thinning algorithms by Lee (lee) and 
Palágyi (palagyi) because of their popularity in skeletonization 
literature. While the level-set method by Kline (kline) and the 
confidence accumulation method by Kerautret (kerautret) are 
not used in existing modeling packages, the authors provide 
open-source implementations that were tested. We also selected 
the most recent skeletonization methods available for meshes 
(tagliasacchi). The selected methods and keywords are provided
in Table 2.

4.2 Geometry metric

Since microvasculature accounts for ≈4% of the total 
tissue volume, we focus on metrics that can accurately 
characterize unbalanced classifications. The Jaccard similarity 
index (J) and Dice similarity coefficient (D) are the 
most common for binarization. The Jaccard index is the 
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TABLE 2  Algorithms evaluated in this paper, along with their classes and 
output data types. Algorithm types are shown in the first column 
alongside names used to reference the associated results. Remaining 
columns show the algorithm output (geometry or skeleton). 
Preprocessing methods such as “vesselness” filters and OOF are used to 
enhance vessels prior to thresholding with Otsu’s method.

Algorithm Produces

Geometry Skeleton Preprocessing

Otsu’s Method 
(otsu3d)

X

Vesselness filter 
(frangi, bfrangi)

X

Optimally 
Oriented Flux 
(oof)

X

Machine Learning 
(unet, nnunet)

X X

Thinning (lee, 
palagyi)

X

Gradient-Based 
(kerautret, kline)

X

Mesh-Based 
(tagliasacchi, 
antiga)

X

normalized volume overlap between the binarization and 
ground truth:

J (A,B) =
∑(A∩B)

∑(A∪B)

The Jaccard index is in the range J ∈ [0,1], where J = 0 indicates no 
overlap and J = 1 indicates that the binarization is identical to the 
ground truth.

We also calculate the precision, emphasizing the accuracy of 
the positive predictions, and recall, which quantifies the model’s 
ability to identify true positives. The precision (p) and recall (r) are 
often combined using the F-score (F), which is both equal to the 
Dice coefficient and a function of the Jaccard index in the case of 
binarization:

F =
2pr
p+ r
= D = 2J

1+ J 

4.3 Skeleton metric

We adopt the definition of the skeleton as: a set of curves that 
have identical topology to the geometric surface and are equidistant 
to the boundary (Wei et al., 2018). We enforce these conditions 
by manually generating ground truth skeletons based on this
definition.

Skeletonization is evaluated using NetMets (Mayerich et al., 
2012), which calculates the similarity between two sets of curves A

and B in 3D space:

M (A,B) = 1
L
∑
a∈A
∫e

d[a(t),B]2

2σ2 dt

where L is the total length of all curves in the set A, a(t) is a point 
on the ith curve parameterized by t, and σ is a sensitivity parameter. 
The function d(x,B) is the distance between a point x and the closest 
point in the set of curves B. Given two networks representing the 
set of curves in the ground truth G and test case T, the precision 
(positive predictive value) P and recall (true positive rate) R are 
calculated:

P =M (T,G) R =M (G,T)

The precision is the percentage of the test skeleton that correctly 
corresponds to the ground truth, and the recall is the percentage of 
the ground truth skeleton that is correctly detected in the test case. 
The sensitivity parameter σ = 1 µm is used for all images. 

5 Segmentation algorithms and 
evaluation

The selected segmentation algorithms largely fall into three 
groups that largely build on each other: (1) basic thresholding, 
(2) vessel enhancement and preprocessing, (3) convolutional 
neural networks.

Thresholding is the most basic approach to binarization, and in 
many cases an optimal threshold can be calculated automatically. 
Minimum cross entropy (Li and Tam, 1998), IsoData (Ridler and 
Calvard, 1978), and Fuzzy thresholding (Huang and Wang, 1995) 
are popular approaches (Kramer et al., 2022; Huang et al., 2019) 
that exist in several software packages (Fedorov et al., 2012). The 
most established algorithm is Otsu’s method, which determines 
the optimal threshold to separate foreground and background 
components.

Modern approaches rely on some form of image enhancement 
that is applied prior to thresholding. This includes filters designed 
to enhance the contrast of tube-like structures, as well as machine 
learning to perform semantic segmentation. The methods tested 
here include vesselness filters (Frangi et al., 1998; Jerman et al., 2016) 
and optimally oriented flux (OOF) (Law and Chung, 2008).

Convolutional neural networks (CNNs) have taken a 
prominent role in image segmentation. The U-Net architecture 
(Ronneberger et al., 2015) and its self-configuring extension, nnU-
Net (Isensee et al., 2021), represent the current state-of-the-art 
in semantic (pixel-level) segmentation. These architectures use a 
symmetric U-shaped encoder-decoder design (Figure 10) to capture 
details at multiple scales by processing progressively larger image 
patches. While machine learning approaches tend to outperform 
deterministic methods, a significant amount of effort must be 
applied to annotation and training. As a result, the deterministic 
approaches are still extensively used in popular software packages.

All methods that require thresholding use Otsu’s method (Otsu, 
1979), which computes a threshold θ that maximizes the between-
class variance. Otsu’s method was also tested alone (otsu3d) as a 
baseline binarization method.

Several preprocessing methods use scale-space filtering (Witkin, 
1987) to account for variations in vessel diameter. Scale-space 
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FIGURE 6
Hessian-based filters emphasize (a) plate-like (green) and blob-like (blue) tensors as vessels and bifurcations, while stick-like (red) tensors emphasize 
surfaces (including vessel surfaces). (b) The vesselness filter proposed (frangi, ofrangi) uses parameters α, β, and c to target voxels associated with 
plate-like and blob-like features. α is used to discern between plate-like and line-like structures, β emphasizes the deviation from a blob-like structure, 
and c controls the Frobenius norm of the Hessian matrix and suppresses the noise. (c) bfrangi simplifies these tunable parameters into a single value τ
to differentiate between vessels and background (composed of small and stick-like tensors).

approaches add a discrete dimension to a field (ex. I(x) → I(x, s)) 
that represents feature sizes. The new dimension is based on a pre-
selected set of scale-space parameters Σ ∈ [σ0,σ1,…,σS−1]. The same 
scale range was used for frangi, ofrangi, and bfrangi. However, 
the OOF method used slightly smaller values to reach better 
performance. 

5.1 Hessian-based vessel enhancement

The most popular method for enhancing vessels is the Hessian-
based approach described by Frangi et al. (1998), originally 
designed for 2D retinal fundus images. The Hessian matrix 
is calculated at each point in the image x ∈ ℝ3 using finite 
differences across S scales, creating a field H(x, s) ∈ ℝ3×3. The 
filter response V(x) ∈ ℝ is calculated using the Hessian matrix 
eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|) (Supplementary Algorithm S1). In 
this study, the method introduced by Yang and Cheng (2014) was 
also used to accelerate the computations of the Hessian matrix by a
factor of two.

The original “vesselness” algorithm (frangi) is outlined in 
Algorithm 1 and relies on four parameters: tuning parameters α, 
β, c that target the vessel shape, and a scale parameter γ ≈ 2. The 
shape parameters are balanced to separate tube-like structures and 
bifurcations from background pixels (Figure 6). The scalar γ was 
proposed earlier (Lindeberg, 1998) to tune the derivatives used in 
the Hessian. Attempts to optimize this parameter yield a consistent 
value of γ = 2 in the literature. We found that this is due to the scale 
factor σγ compensating for energy dissipation from the second-order 
Gaussian scale-space filter. A value of γ = 2 ensures that the most 
intense response comes from features near the scale-space parameter 
σ (Figure 7).

Since the parameters in the original algorithm can be 
challenging to select, we provide two comparisons. First, we examine 
binarization results based on parameters used in the original 
paper (frangi), and after parameter optimization (ofrangi) for 

each dataset using training data. A parallel implementation was 
used to create sensitivity maps for each parameter (Figure 8). 
The relationship between parameters for frangi is shown in
Figure 6a.

A modified implementation of the vesselness framework 
replaces the parameters with a single normalization term τ
(Jerman et al., 2015). The Beyond Frangi (bfrangi) algorithm 
(Supplementary Algorithm S2) regularizes the largest eigenvalue at 
each scale, yielding a more uniform response across vessel cross-
sections and intensities. The sensitivity of each dataset to this 
parameter is illustrated in Figure 9. 

5.2 Optimally oriented flux

The second derivatives within the Hessian are numerically 
calculated using finite-difference methods, introducing artifacts 
when features are adjacent. An alternative approach proposes 
optimally oriented flux (OOF) (Law and Chung, 2010), which 
relies on first derivatives and integrating gradient information over 
a spherical region. This applies a hard cut-off that localizes the 
gradient information used.

Given a point x in the 3D image I(x) ∈ ℝ and a direction vector 
ρ, the gradient flux aligned with ρ is integrated over a sphere Ω with 
radius σs (Figure 10).

F (x, r,ρ) =∬
Ω
(∇I (x) ⋅ ρ)ρ ⋅ndA = ρTQ (x, r)ρ

where dA is the differential area of the sphere and n is the sphere 
normal at x. This integral is used to calculate the flux matrix Q. 
The optimal vessel orientation is the vector ρ that maximizes the 
outward-oriented flux:

max
ρ
[ρTQ (x, r)ρ]

Our tests used the OOF method available in MATLAB (oof), where 
the only tunable parameters are the sphere radii Σ. In our tests, we 
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FIGURE 7
Effect of the scale-normalization exponent γ on synthetic one-dimensional vessel cross-sections. The second-order Gaussian derivatives are shown 
alongside the resulting vesselness response. (a–c) Second derivative responses to a 1D signal convolved with scale-normalized Gaussian second 
derivatives at multiple scales (σ = 1, 2, 3, 4), plotted for different normalization exponents: (a) γ = 1, (b) γ = 2, and (c) γ = 3. (d) Maximum 1D vesselness 
response (across all scales) for γ = 1, 2, and 3. Only γ = 2 yields consistent, scale-invariant responses.

use the same Σ values for OOF and scale-space arguments (frangi,
ofrangi, bfrangi). 

5.3 Convolutional neural networks

The U-Net (unet) architecture uses parallel encoder/decoder 
paths bridged by skip connections that merge high-resolution 
features from the encoder into the decoder. The network 
meta-parameters were determined through iterative trial and 
error based on validation performance. This U-Net uses 3 
× 3 × 3 convolutional layers, ReLU activation, and 2 × 
2 × 2 max-pooling layers (Figure 10). The data is divided 
into smaller volumes, selecting only those with intensities 
above the global mean to avoid empty or near-empty voxels 
that reduce training quality (Çiçek et al., 2016). The unet 
model tested here is trained and tested on these selected 
volumes using the Focal Tversky loss function (Abraham and 
Khan, 2019).

The nnU-Net (nnunet) architecture builds on U-Net by 
overcoming the need for manual meta-parameter tuning. 
nnU-Net maintains the encoder-decoder structure with skip 
connections while automatically adapting its architecture 
and hyperparameters. Like U-Net, it employs 3 × 3 × 3 
convolutional layers, ReLU activation, and pooling layers but 
integrates additional strategies, such as ensemble modeling 
and deep learning-based boundary enhancement to improve 
segmentation accuracy (Schott et al., 2023). During training, 
nnU-Net uses standard loss functions and ensemble modeling, 
where multiple models are trained and combined. We 
used the source code provided by the authors1 for these 
experiments. 

1 https://github.com/MIC-DKFZ/nnUNet

5.4 Geometry results

Our binarization results are shown in Table 3, providing the 
Jaccard Index, precision, and recall. Otsu’s method (otsu) was 
tested on raw data and used to select the final threshold for all 
preprocessing algorithms. The vesselness filter was tested using 
published parameters in the original paper (frangi) and after 
optimization of all parameters (ofrangi), while Beyond Frangi 
(bfrangi) was tested after optimization of τ. Optimally oriented 
flux (oof) does not require parameter tuning outside of the scale-
space parameters used to select sphere radii. Precision-recall curves 
are provided for the raw output so that the reader can evaluate 
the results without Otsu’s method (Figure 11). Like most semantic 
segmentation networks, unet and nnunet integrate binarization into 
the model and do not require Otsu’s method for thresholding.

Raw image sections are provided from each dataset, along 
with the best corresponding binarization result for each algorithm 
(Figure 12). Further discussion is provided in Section 7. 

6 Skeletonization algorithms and 
evaluation

The presented skeletonization algorithms require either an 
initial binary image or a geometric surface. Whenever the vascular 
surface is required, it is extracted using the marching cubes 
algorithm from the binarized output. 

6.1 Skeletonization

Skeletonization is the method of determining the connected 
vessel centerlines, usually based on the extracted geometry. A 
binarized image is used as an input to thinning algorithms, while 
other approaches calculate the skeleton (or medial axis) from an 
explicit geometry.
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FIGURE 8
Sensitivity to α, β, and c parameters in frangi method across the three datasets. Top row: Jaccard index (color-mapped) as a function of α and c
parameters, with β tuning factor held constant (effectively removed, i.e., set to 1). The red dot indicates the parameter combination yielding the 
maximum Jaccard score for each dataset. Bottom row: Jaccard index (contours) as a function of precision and recall for varying β values, with α and c
fixed at their optimal values identified in the top row. The black dot marks the point of maximum Jaccard score, and the continuous line shows the 
score as β varies.

Thinning uses morphological erosion to calculate an implicit 
representation of the skeleton from a binarized image. Voxels are 
iteratively removed until a thin single-voxel skeleton remains. The 
concept was originally proposed in Blum’s grassfire propagation 
(Blum, 1967), while Tsao and Fu (1981) were the first to 
introduce a three-dimensional algorithm based on formalized 
topological and geometric rules. The main concept in erosion-
based methods is determining the “simple points” that can 
be removed without changing the model topology. Thinning 
algorithms usually differ in how they detect and remove simple 
points. The most popular method used in current software 
packages (Fedorov et al., 2012; Bumgarner and Nelson, 2022) is
Lee et al. (1994) approach.

Mesh-based medial axis transforms approximate the skeleton 
from a geometric surface. These include point-sampling methods 
that leverage ray casting Kerautret et al. (2016) to localize the 
skeleton. While these methods face challenges when differentiating 
the “inside” and “outside” of complex shapes (Wei et al., 2018), 

statistical methods can overcome these problems using vector 
accumulation maps to probabilistically approximate the skeleton 
(Kerautret et al., 2016). This can be overcome by directly 
evolving the geometry towards its centerline using an active 
contour model (Tagliasacchi et al., 2012).

Another subcategory of mesh-based transforms leverages 
a Voronoi diagram of the surface (Antiga et al., 2003). The 
boundaries of the Voronoi cells within vessels can be tracked to 
extract the medial axis. Despite their precise results, Voronoi-
based techniques require careful handling of boundary conditions 
and specifying seed points to avoid generating spurious
branches. 

6.2 Thinning

Thinning algorithms reduce an object to a single-voxel-thick 
centerline while maintaining topology (ex. connectivity, cavities, 
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FIGURE 9
Sensitivity to τ in the Beyond Frangi method for each dataset. Red curves represent contours where the Jaccard index is constant. Precision-recall 
curves show the change of both metrics in response to varying τ. The indicated point is the maximum Jaccard index, corresponding to the best 
parameter for τ using this metric.

FIGURE 10
In Optimally Oriented Flux (a), the vessel orientation is determined by maximizing the outward-oriented gradient flux over a spherical region. Diagram 
of the U-Net architecture (b). The network consists of convolutional layers with batch normalization, ReLU activation, and dropout (C-BN-R-D), 
concatenation layers (Cat), max-pooling layers (MaxPool), up-convolutional layers (UpConv), and convolutional layers (Conv).

tunnels). This is accomplished by examining the local neighborhood 
of each voxel to identify simple points whose deletion preserves 
topology. These points are iteratively removed until a thinned 
skeleton remains.

The lee algorithm (Lee et al., 1994) identifies simple points 
using an octree to recursively subdivide the local neighborhood 
(Supplementary Algorithm S3). A later approach (Palágyi 
and Kuba, 1999) uses predefined templates to detect and flag 
simple points, which is easier to parallelize. Both the sequential
lee and parallel palagyi algorithms are parameter-free and 
take a binarized image as input. 

6.3 Gradient-based skeletonization

The Kerautret et al. (2015) algorithm extracts a centerline 
from a surface mesh by casting rays from each surface point 
along its normal. The rays are accumulated in a voxel grid 
where the maximal ridges represent centerlines. The most recent 
modification (Kerautret et al., 2016) determines an accumulation 
confidence value for each voxel, where points with higher confidence 
are more likely to be located on the centerline.

The only required parameter is the accumulation distance (dacc)
or ray length, which is slightly larger than the maximal radius of the 
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TABLE 3  Segmentation results showing the Jaccard index, precision, and recall for each binarization algorithm (red = bad, green = good). The original 
vesselness paper (frangi) recommends 0.5, 0.5, and half of the maximum value of the Hessian norm for α, β, and c, respectively. The standard deviation 
(STD) values are computed as part of a statistical test across three non-overlapping volumes of equal size.

Binarization methods

otsu3d frangi ofrangi bfrangi oof unet nnunet

KESM

Jaccard 
Index

0.946 ±
0.030

0.403 ±
0.015

0.749 ±
0.005

0.645 ±
0.013

0.713 ±
0.017

0.904 ±
0.016

0.952 ± 0.010

Precision 0.989 ±
0.016

0.985 ±
0.001

0.877 ±
0.017

0.777 ±
0.030

0.828 ±
0.025

0.912 ±
0.014

0.990 ± 0.011

Recall 0.956 ±
0.022

0.405 ±
0.015

0.837 ±
0.020

0.791 ±
0.011

0.837 ±
0.043

0.989 ±
0.003

0.961 ± 0.001

LSFM

Jaccard 
Index

0.628 ±
0.151

0.183 ±
0.054

0.671 ±
0.063

0.638 ±
0.037

0.696 ±
0.069

0.804 ±
0.013

0.764 ± 0.117

Precision 0.984 ±
0.035

0.998 ±
0.000

0.822 ±
0.021

0.756 ±
0.058

0.806 ±
0.133

0.875 ±
0.013

0.969 ± 0.014

Recall 0.635 ±
0.188

0.184 ±
0.054

0.786 ±
0.070

0.803 ±
0.019

0.837 ±
0.040

0.908 ±
0.003

0.783 ± 0.109

μ-CT

Jaccard 
Index

0.454 ±
0.021

0.054 ±
0.003

0.698 ±
0.020

0.623 ±
0.034

0.724 ±
0.026

0.819 ±
0.013

0.963 ± 0.037

Precision 1.00 ± 0.000 1.00 ± 0.000 0.821 ±
0.004

0.734 ±
0.013

0.880 ±
0.013

0.822 ±
0.012

0.991 ± 0.014

Recall 0.454 ±
0.021

0.054 ±
0.003

0.823 ±
0.025

0.804 ±
0.039

0.803 ±
0.029

0.996 ±
0.003

0.966 ± 0.047

FIGURE 11
Precision-Recall curve of evaluated segmentation methods.

input shape. This value is straightforward to approximate for each 
volume using the radius of the larger vessels.

The kline algorithm (Kline et al., 2010) calculates a distance 
field using the fast marching method (FMM), and then internal 
ridges (maxima) are followed from user-specified seed points. 
This algorithm assumes that the geometry is a connected tree 
of tubular structures branching from a single root point. Since 
microvascular networks do not have a unique root, a large 

number of seed points are required to comprehensively trace
the network. 

6.4 Mesh-based skeletonization

The tagliasacchi algorithm (Tagliasacchi et al., 2012) calculates 
the skeleton from a closed mesh using mean curvature flow 

Frontiers in Bioinformatics 12 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1645520
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Goharbavang et al. 10.3389/fbinf.2025.1645520

FIGURE 12
Cross-sections of three-dimensional volumes showing segmentation results for each modality. Green pixels indicate correctly labeled vessels, while 
white pixels show correctly detected background. Blue indicates undetected vessels (false negatives), while red indicates background pixels that are 
incorrectly labeled as vessels (false positives). GT indicates the manually annotated ground truth.

FIGURE 13
Overview of skeletonization methods. (a) Thinning-based methods: lee applies N(v)_labeling (red), and palagyi applies templates (blue) to detect simple 
points. (b,c) Kerautret generates a confidence map and extracts the centerline using morphological operations, geodesic segmentation, and FMM. (d)
Kline computes a distance field and applies FMM to generate the skeleton through seed points. (e) Tagliasacchi contracts the input mesh iteratively. (f)
Antiga constructs a Voronoi diagram to extract centerlines using seed points.
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TABLE 4  Results of centerline extraction on binarization results (left columns: precision, right columns: recall). Thinning was performed using all 
binarized data for each dataset (see Table 3).

Skeletonization

Binarization lee palagyi kerautret kline tagliasacchi antiga

P R P R P R P R P R P R

KESM

otsu3d 0.985 0.991 0.967 0.987 0.856 0.898 0.598 0.704 0.94 0.689 0.995 0.934

ofrangi 0.992 0.975 0.98 0.982 0.875 0.891 0.584 0.707 0.944 0.969 0.996 0.955

bfrangi 0.979 0.985 0.967 0.987 0.872 0.897 0.576 0.743 0.946 0.694 0.997 0.939

oof 0.974 0.959 0.953 0.957 0.837 0.868 0.549 0.633 0.928 0.676 0.977 0.838

unet 0.986 0.988 0.971 0.984 0.859 0.896 0.54 0.644 0.937 0.695 0.993 0.957

nnunet 0.991 0.987 0.975 0.985 0.854 0.887 0.574 0.681 0.931 0.699 0.983 0.956

LSFM

otsu3d 0.873 0.841 0.882 0.852 0.647 0.62 0.581 0.518 0.884 0.354 - -

ofrangi 0.948 0.799 0.925 0.792 0.533 0.533 0.505 0.417 0.66 0.182 0.908 0.388

bfrangi 0.915 0.881 0.893 0.857 0.485 0.583 0.473 0.582 0.531 0.221 0.853 0.48

oof 0.884 0.795 0.863 0.783 0.432 0.514 0.427 0.459 0.786 0.386 0.873 0.336

unet 0.859 0.923 0.85 0.902 0.461 0.61 0.503 0.588 0.836 0.565 0.913 0.39

nnunet 0.856 0.895 0.896 0.894 0.6 0.64 0.552 0.574 0.886 0.612 0.721 0.4

µ-CT

otsu3d 0.963 0.821 0.959 0.857 0.791 0.466 0.69 0.481 0.912 0.55 0.994 0.73

ofrangi 0.914 0.938 0.893 0.948 0.69 0.483 0.519 0.556 0.848 0.574 0.978 0.821

bfrangi 0.919 0.916 0.896 0.931 0.659 0.489 0.45 0.506 0.854 0.574 0.981 0.852

oof 0.852 0.913 0.831 0.937 0.622 0.385 0.537 0.577 0.821 0.603 0.986 0.821

unet 0.832 0.967 0.792 0.969 0.503 0.284 0.473 0.576 0.808 0.581 0.984 0.937

nnunet 0.889 0.966 0.855 0.971 0.6 0.384 0.562 0.619 0.808 0.591 0.971 0.908

(MCF). The medial axis is extracted by moving the mesh along its 
surface normal proportional to the surface curvature. This iteratively 
collapses the mesh into a one-dimensional curve (Figure 13). 
We tested the tagliasacchi method using an implementation 
provided by StarLab2, which requires a watertight manifold mesh 
and is highly sensitive to mesh boundaries. We forced a watertight 
mesh at all boundaries and applied the algorithm to each closed 
mesh component separately.

The antiga algorithm (Antiga et al., 2003) builds a Voronoi 
diagram from point samples of the vascular surface. The 
intersections of each Voronoi region lie equidistant to the sampled 
surface, such that medial axis curves can be traced between user-
specified seed points. The Delaunay tessellation is calculated from 
a set of points P that densely samples the vascular surface, which 
provides the vertices V for the Voronoi diagram. The user specifies 
a set of seed points S that are connected by selecting points in V

2 https://github.com/taiya/starlab-mcfskel

that maximize the distance from the vascular surface. This is done 
by solving an Eikonal equation using the fast sweeping method, 
ensuring a maximum distance from the boundary surface and 
providing stability in complex regions like bifurcations. This study 
uses the implementation of antiga provided in Slicer3. However, 
the method failed to process seed points or centerlines for messy 
surfaces created in some LSFM datasets (Table 4).

6.5 Skeletonization results

The precision and recall for the proposed skeletonization 
methods are shown in Table 4. The NetMets algorithm is used to 
quantify performance using σ = 1 µm. The results are provided using 
all binarization algorithms as input. The ground truth binarization is 

3 https://www.slicer.org/
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TABLE 5  Results for skeletonization on the ground truth segmentations.

Skeletonization

lee palagyi kerautret kline tagliasacchi antiga

P R P R P R P R P R P R

GT

KESM 0.994 0.991 0.974 0.987 0.858 0.895 0.591 0.714 0.938 0.698 0.995 0.951

LSFM 0.919 0.994 0.912 0.962 0.510 0.653 0.534 0.744 0.817 0.625 0.934 0.475

µ-CT 0.874 0.968 0.840 0.969 0.603 0.429 0.559 0.650 0.796 0.584 0.987 0.951

FIGURE 14
Skeletonization results on the ground truth segmentation of KESM dataset. The ground truth skeleton is colored green in each figure. The skeleton 
obtained by each method is shown in blue, with false positives marked in red.

also provided as a baseline to demonstrate skeletonization from an 
“ideal” starting point (Table 5).

The lee and palagyi methods achieved the highest F-score 
across all images, capturing vessel continuity at the cost of 
adding spurious branches to larger vessels. The antiga method 
provided the highest precision, however, it identified fewer 
vessels. The method failed to extract skeletons from binarized 
results using Otsu’s method due to the excessive number of 
vertices and edges. Gradient-based methods (kerautret and kline) 
performed poorly across most images. While kline was designed 
for vessels, it is poorly suited to microvascular networks since 
they are not tree-like. The difference in the performance of the 
kerautret for KESM data also stands out, likely due to the higher 
resolution of KESM data. This provides (1) a more completely 
connected mesh and (2) larger distances between adjacent
unconnected vessels. 

7 Discussion

Machine learning (unet, nnunet) achieved the best consistent 
performance across all images. This is expected given their 
established performance on semantic segmentation (Wang et al., 
2022). While U-Nets have been extensively explored in two-
dimensional images, recent advances that mitigate parameter 
explosion (Saadatifard et al., 2020) make them more practical in 3D. 
In our experiments, nnU-Net was run in its 3d_fullres mode, which 
includes isotropic resampling and intensity normalization. Although 
effective for KESM and µ-CT, this normalization likely suppressed 
subtle variations unique to LSFM data, reducing the recall and 
Jaccard index. It is possible that significantly larger training sets 
could mitigate these issues.

KESM was generally easier to segment due to its high contrast 
and spatial resolution. In fact, Otsu’s method (otsu3d) performed 
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FIGURE 15
Skeleton extracted using lee using different binarizations. One problem frequently encountered in LSFM is hollow vessels that lead to poor recall in the 
resulting skeletonization. This is due to regions inside large vessels that are misinterpreted as background. This is most commonly encountered in LSFM 
because the endothelial cells at the vessel surface are common targets for fluorescent labels. This leads to a variety of incorrect “shells” or “networks” 
that surround the internal gap. The correct medial axis of the hollow vessel is green in the ground truth image.

similarly to CNNs on KESM data. KESM also exhibits noise and 
imaging artifacts that are localized to individual slices, potentially 
making them easier to ignore. The Vesselness algorithms proposed 
by Frangi et al. (frangi), and later modified by Jerman et al. 
(bfrangi), are the most popular for enhancing tubular structures. 
While “out-of-the-box” parameters did not perform well, systematic 
optimization of these parameters (ofrangi) provided reasonable 
performance. However, this requires some form of optimization 
or training that may not provide a benefit over U-Net. If training 
data is unavailable, optimally oriented flux (oof) provides the best 
performance.

For skeletonization (Table 4), both lee and palagyi provided 
consistently good performance. The implementation that we tested 
for lee4 was significantly faster. The antiga algorithm provided 
the best precision for both KESM and µ-CT data. However, 
this came at a cost to recall since antiga tended to miss vessel 
centerlines (Figure 14). It also performed poorly on LSFM data, 
likely due to the surface complexity. In fact, the algorithm was 
unable to skeletonize the LSFM data segmented using otsu3d, which 
exceeded memory limits during the skeletonization process.

One of the more interesting findings was that the most accurate 
binarization (generally a CNN) did not necessarily provide the best 
input for skeletonization. For example, otsu3d µ-CT provided better 
precision than nnunet when used as an input for LSFM and µ-
CT. The reduced precision is likely due to consistent mislabeling 
of internal vessels (Figure 15). All skeletonization algorithms were 
also tested on ground truth data (Table 5) to demonstrate potential 
performance given a highly accurate segmentation. 

4 skimage.morphology.skeletonize function in the scikit-image 

Python library.

8 Conclusion

This work aims to quantify the performance of algorithms 
for building large-scale microvascular networks. We focus on 
data from microscopes with the potential for organ-scale vascular 
imaging (LSFM, KESM, and µ-CT). We tested two classes of 
algorithms: binarization and skeletonization. These results can be 
used to reconstruct microvascular surfaces and study network 
properties. Importantly, the resulting models can feed directly into 
post-processing frameworks (e.g., CFD-based flow simulations or 
perfusion analysis) to facilitate functional interpretation and disease 
modeling (Celaya-Alcala et al., 2021; Zhang et al., 2022). All of the 
data, annotations, and links to algorithms are available in a public 
Git repository.5

Although KESM and µ-CT images share high contrast and SNR, 
their disparate voxel resolutions yield very different results: a global 
threshold such as otsu performs reliably in KESM, yet degrades in
µ-CT where learning-based models like nnunet can incorporate 
local intensity variations to recover performance. It is important 
to note that this accuracy is quantified with respect to the ground 
truth and does not account for the reduced resolution of µ-CT: 
the accuracy of the segmentation does not necessarily reflect the 
accuracy of the final model. Modality-specific features, such as pixel 
sizes, ultimately bound the fidelity of the reconstructed vascular 
model, even when segmentation metrics appear equivalent across 
algorithms.

If the user can provide annotated training data, they will likely 
see the best performance using nnunet (Isensee et al., 2021) for 
binarization, followed by skeletonization with lee (Lee et al., 1994).

5 https://github.com/helia77/MicroVasc-Review
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Users may see an improvement in skeletonization results using
antiga, provided the vasculature has a lower total surface area.

If a significant amount of training data is unavailable, the 
authors recommend oof (Law and Chung, 2008) for binarization, 
followed by lee for skeletonization. The user may be able to achieve 
better performance using frangi after significant optimization 
(ofrangi) (Frangi et al., 1998).
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