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Recent advances in three-dimensional microscopy enable imaging of whole-
organ microvascular networks in small animals. Since microvasculature plays
a crucial role in tissue development and function, its structure may provide
diagnostic biomarkers and insight into disease progression. However, the
microscopy community currently lacks benchmarks for scalable algorithms
to measure these potential biomarkers. While many algorithms exist for
segmenting vessel-like structures and extracting their surface features and
connectivity, they have not been thoroughly evaluated on modern gigavoxel-
scale images. In this paper, we propose a comprehensive yet compact survey of
available algorithms. We focus on essential features for microvascular analysis,
including extracting vessel surfaces and the network’s associated connectivity.
We select a series of algorithms based on popularity and availability and provide a
thorough quantitative analysis of their performance on datasets acquired using
light sheet fluorescence microscopy (LSFM), knife-edge scanning microscopy
(KESM), and X-ray microtomography (u-CT).
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1 Introduction

Microvasculature plays an important role in tissue development and function. While
its role is often complex, the shape and structure of microvascular networks are studied in
conjunction with disease. Due to imaging constraints, these studies largely focus on the local
network structure constrained to a limited field of view or tissue section. Recent advances
in three-dimensional microscopy, including light sheet fluorescence microscopy (LSFM)
(Kirst et al., 2020), knife-edge scanning microscopy (KESM) (Mayerich et al., 2008), and
X-ray microtomography (u-CT) (Hong et al., 2020; Quintana et al., 2019), overcome this
limitation by enabling whole-organ imaging in small animals. However, the microscopy
community currently lacks scalable algorithms and benchmarks to quantify microvascular
structure at such a large scale.

While many algorithms exist for segmenting vessel-like structures, their scalability
on modern whole-organ three-dimensional images has not been rigorously assessed.
In addition, segmentation errors can increase disproportionately with volume coverage
because acquiring larger volumes introduces trade-offs in SNR, resolution, and sampling
anisotropy. This requires more complex algorithms - including pre-processing and machine
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learning - that are not as scalable as traditional thresholding or
segmentation based on localized features (Daetwyler et al., 2019).

In this paper, we propose a comprehensive yet compact
survey of available algorithms. We focus on essential features for
microvascular analysis, including extracting vessel surfaces and the
network’s associated connectivity. Algorithms were selected based
on popularity and availability and provide a thorough quantitative
analysis of their performance on datasets acquired using emerging
techniques.

2 Microvascular models

Microvasculature is a meshwork of capillaries that penetrate
tissue to provide nutrients and remove cellular waste. The structure
of this mesh changes over time and plays a critical role in
tissue function and disease progression. Most current studies
are limited to small volumes, primarily characterizing vascular
density, along with morphological metrics such as capillary length,
radius, and tortuosity (Cassot et al., 2006). These metrics provide
fundamental information about the network’s geometric properties
and spatial organization. They also serve as the foundation for
more advanced analyses, such as quantifying flow dynamics,
assessing tissue perfusion, and understanding function. Moreover,
downstream pipelines such as computational flow modeling and
perfusion simulations can incorporate the segmentations and
skeletons to enable quantitative studies of hemodynamics and
tissue function (Vidotto et al., 2019).

As image sizes increase, researchers attempt to apply existing
metrics at larger scales using software packages like VesselVio
(Kirst et al, 2020) or multi-step pipelines such as TubeMap.
We expect new metrics and biomarkers to develop over time as
larger models are explored. For now, we focus on methods that
convert large-scale microvascular images into explicit models that
support existing analyses. This leads to two key representations: the
microvascular geometry and its skeleton (Figure 1).

The geometry of the network represents the vascular surface
that separates the region inside from the surrounding tissue.
This representation enables the calculation of metrics such as
vessel radii, surface area, and volume. The geometry is frequently
extracted by identifying these inside/outside regions and then
calculating the surface that separates them. Binarization is the
first step for resolving the microvascular geometry (Figures 2b,e).
These methods rely on separating pixels within the network
from the surrounding tissue, providing an implicit representation
of the geometry that can be readily converted to an explicit
surface mesh.

The network skeleton represents its topology, combining a
connectivity graph with vessel centerlines. This representation
enables the calculation of metrics such as tortuosity, vessel
length, and branching statistics. The skeleton is usually extracted
from the geometry using specialized thinning algorithms.
Skeletonization is used to extract vessel centerlines (Figures 2c,f)
and calculate a connectivity graph. Skeletonization methods
frequently rely on an initial binarized volume or surface mesh.
However, some techniques, such as tracing, can compute the
skeleton directly (Govyadinov et al., 2019).
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FIGURE 1

A microvascular model specifies both the geometry representing the
surface structure and connectivity in the form of a spatial graph.
Depending on the labeling method, the vascular geometry may
represent the vessel interior or include endothelial cells lining the
vessel and capillary walls. The vessel connectivity generally consists of
a graph of vessel centerlines joined at nodes where vessels
interconnect.

2.1 Geometry

Vessel geometry can be represented using implicit (voxel-
based) or explicit (mesh-based) data structures. In the implicit
network
surrounding tissue using a three-dimensional voxel grid similar

representation, the vascular is segmented from
to the original image, with individual voxels labeled as inside or
outside vessels. Voxels are convenient for calculating volumes or
performing voxel-wise statistical analyses.

Explicit representations, such as polygonal meshes, define vessel
surfaces through interconnected vertices and edges. Meshes facilitate
calculations of surface area and enable simulations requiring surface
geometry. In this survey, all segmentation algorithms produce voxel-
based results. We tested two skeletonization algorithms (tagliasacchi
and antiga) that require triangular meshes as input, which we produce
from segmentation results using the marching cubes algorithm.

This implicit representation can optionally be converted to a
surface mesh using algorithms such as marching cubes (Lorensen

and Cline, 1998). Measurements are taken across either structure
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(a) retinal fundus image

(d) mouse brain (LSFM)

FIGURE 2

(e) binarization

10.3389/fbinf.2025.1645520

(f) skeleton

Implicit representations of binarization and skeletonization in 2D and 3D images. Retinal fundus images are shown in 2D (a). The associated
binarization (b) indicates pixels that lie inside (white) and outside (black) of the vascular network. The skeletonization (c) shows the vessel paths and
points where they connect. The 3D case shows a volumetric visualization of an LSFM image (d) with the associated binarization (e) and centerlines (f)

as convenient. For example, surface area can be measured by
integrating across a surface mesh, while volume can be measured
by adding up the pixels within the network.

2.2 Skeleton

The vascular skeleton is almost always represented explicitly
for analysis using connected curves. This explicit representation is
fundamentally a connectivity graph, where each node represents
a bifurcation and each edge represents a single non-branching
vessel segment (Figure 1). The vessel centerlines are curves that can
be integrated to calculate features such as length and tortuosity.
Algorithms such as depth- and breadth-first searches can also be
applied to calculate path lengths and branching characteristics.

In this paper, we evaluate the performance of algorithms
for extracting the geometry and connectivity of a microvascular
network in large images on imaging methods applicable to whole
organs. Most algorithms first binarize the original image using
semantic segmentation, using the result as the foundation for medial
axis transforms that provide the skeleton (Figure 3).

3 Microvascular imaging
Microvascular imaging faces two competing challenges. First,

imaging systems must be capable of collecting ~1 mm? of tissue
to characterize network structure, with preferred volume coverages
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Connectivity
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FIGURE 3
Overview of the vascular modeling pipeline. The input image is first

processed (using various filtering or machine learning approaches) and
binarized to extract geometry. The medial axis is then calculated to
determine network connectivity. Tracing may also be applied directly
to the raw image as an alternative approach for skeletonization

of 1cm® for entire rodent organs. Second, the imaging system
must resolve microvessels that are less than 10 um in diameter.
Traditional techniques, such as widefield or confocal microscopy,
are limited to two-dimensional sections or small volumes. The
data in this paper were acquired using recent high-throughput
techniques, including (1) X-ray microtomography (u-CT), (2) light
sheet fluorescence microscopy (LSFM), and milling microscopy
(Mayerich et al., 2011; Guo et al., 2019).
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(b) X-ray microcomputed
tomography (u-CT)

(c) knife edge scanning microscopy (KESM)

FIGURE 4

Imaging techniques tested for microvascular reconstruction. (a) Light sheet fluorescence microscopy uses a laser-scanned light sheet to excite
fluorophores within a sample plane that are imaged through a high-NA objective. (b) X-ray micro-CT images the sample by rotating it within a
transmission X-ray beam. (c) Knife-edge scanning microscopy is a milling-based imaging system that images tissue slices as they are sequentially

ablated from a sample.

3.1 Imaging methods

Meeting the criteria for resolution and volume coverage
is challenging because microscopes are diffraction-limited and
tissue samples are highly scattering. However, recent advances
are starting to enable sufficient resolution and volume coverage.
This paper considers the following broadly-accessible imaging
methods:

X-ray microtomography (1-CT) is nondestructive and measures
the absorbance of X-rays incident on a sample to create three-
dimensional images (Ritman, 2004). While u-CT enables large-
volume imaging of whole mouse brains (Hong et al, 2020),
its low contrast limits spatial resolution. Recent advances in
vascular perfusion compounds such as Vascupaint 2 (MediLumine,
Montreal, Quebec, Canada) improve p-CT resolution to =20 +
4.0 um, whereas previous contrast agents limited features to ~92
25 pm (Margolis et al., 2024).

Light sheet fluorescence microscopy (LSFM) is characterized

+

by separating illumination and detection. A thin sheet of light
illuminates the sample (Hsu et al., 2022), and an orthogonally
oriented objective (Figure 4) collects the emitted two-dimensional
image using a CCD or CMOS camera. While the penetration depth
is traditionally limited by tissue scattering, recent developments in
clearing protocols (ex. CUBIC or iDISCO+) (Susaki et al., 2015;
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Renier et al.,, 2014) enable large-scale imaging of whole rodent
brains. Recent cleared-tissue implementations span a broad range
of resolutions. For example, hybrid open-top light sheet systems
can achieve lateral resolution of 0.45 pm and axial resolution of
2.9 um across millimeter-scale volumes (Glaser et al., 2022). When
combined with 4 x expansion microscopy, LSFM has reached
effective resolutions of 375 nm laterally and 750 nm axially in
centimeter-scale samples (Glaser et al., 2025). More recently, axially
swept LSFM designs have demonstrated nearly isotropic resolution
of approximately 300 nm in fixed and cleared tissues (Lin et al.,
2025). These gains in resolution typically trade off against imaging
volume coverage or acquisition speed, so whole-organ datasets still
exhibit significant anisotropy.

Milling microscopy removes layers of a sample during
the imaging process to expose deeper tissue volumes. Initial
experiments used on two-photon microscopy followed by photo-
ablation (Tsai et al., 2003), demonstrating that volume constraints
could be eliminated by systematically removing tissue. More
recent techniques separate tissue sections using physical cutting.
Knife-edge scanning microscopy (KESM) (Mayerich et al., 2008;
Mayerich et al, 2011) separates a tissue slice from the rest
of the block during imaging, while milling with ultraviolet
surface excitation (MUSE) performs block-face imaging followed
by ablation (Guo et al., 2019).
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Noise and systematic artifacts that occur in high-throughput imaging techniques. Limitations in resolution (a) reduced the ability to detect small vessels
that form connections in the network. Large vessels in LSFM are often hollow (b) because contrast is provided by labeling the vessel wall.
Misalignments during imaging can also produce blurry sections (c) that can confound segmentation algorithms. KESM introduces physical artifacts
such as variations in illumination across a slice (d) and physical streaks caused by the interaction between the sample and cutting tool (e,f).

3.2 Datasets

We evaluated our binarization and skeletonization methods on
three datasets representing the modalities described in Section 3.1.

X-ray microtomography (u-CT) scans of mouse brain
(Tg(Slcolc1-BAC-CreER); R2678HTdTom/+y - ascular networks were
acquired using a Skyscan 1276 (Bruker, Billerica, MA, United States)
at an isotropic sampling rate of 10 pm per voxel. Mice were prepared
based on previously published protocols (Suarez et al., 2024).
Briefly, the vasculature was perfused with Vascupaint (MediLumine,
Product number: MDL-121; Montreal, Quebec, Canada) to provide
vascular and microvascular X-ray contrast (Figure 5a).

Light sheet fluorescence microscopy (LSFM) images of mouse
brain microvasculature were acquired using a Cleared Tissue
LightSheet (CTLS) Microscopy Workstation XL (3i, Intelligent
Imaging Innovations, Denver, CO), equipped with a 30 fps Fusion
BT sCMOS camera (2304 x 2304 resolution, 6.5 um pixel size, 95%
quantum efficiency, cooled to —50 °C; Hamamatsu Photonics, Japan).
Adult C57BL/6N female mice (4.5 months old) were perfused with
fluorescently labeled lectin (488 nm; Vector Laboratories, DL-1174-1)
as previously described (Ahn et al., 2024), and brains were optically
cleared using the iDISCO protocol (Hsu et al., 2022). Imaging was
performed using a 1X (0.25 NA) objective and a 488 nm laser at
200 mW power with a 300 ms exposure time. Image stacks were
acquired at a 6 um step size in the Z-direction, with 15% right-side
overlap and 50% center tile overlap, making the voxel size 2.0 x 2.0 x

6.0 um. Images were stitched and reconstructed using SlideBook ™
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software (Intelligent Imaging Innovations) with the LightSheet module
for 3D multipoint acquisition. Raw image files were acquired in 16-
bit TIFF format and rescaled to 8-bit using Image] for downstream
processing. Final voxel spacing was adjusted to 1.0 x 1.0 x 0.75 pm
using linear interpolation.

Milling microscopy images were acquired using a knife edge
scanning microscope KESM at a voxel resolution of 0.6 x 0.7 x 1 pm,
covering a 0.6 x 0.6 x 2 mm volume. The tissue was acquired from a
normal mouse (C57BL/6]) perfused with India ink (Mayerich et al.,
2011). The entire dataset is available using the KESM Mouse
Brain Atlas (Chung et al., 2011).

Ground truth volumes for training and validation were
manually annotated in Slicer (Kikinis et al., 2013). Binarization and
skeletonization methods were evaluated on a 200 x 200 x 200 voxel
dataset. The machine learning models were trained on six separate
128 x 128 x 128 voxel sub-volumes for each dataset (distinct from
the 200% sample used for evaluation).

3.3 Noise and artifacts

Each of these imaging modalities introduces sources of noise and
other artifacts that challenge segmentation, including:
introduced due to both the
signal strength and diffraction limit. Standard LSFM is typically

Resolution limitations are

anisotropic, with poorer axial than lateral resolution. Recent
implementations (Glaser et al, 2022; Lin et al, 2025) can
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achieve sub-micron isotropic resolution, with trade-offs in
speed or volume coverage. W-CT is primarily limited by
SNR to =20um in all three dimensions. Both of these
constraints are larger than the diameter of the smallest
microvessels (Figure 5a).

Staining and labeling used in LSFM relies on targeting cells in
the vessel wall, producing hollow vessels when their diameter is
significantly larger than the diffraction limit (Figure 5b). In practice,
vascular perfusion with fluorescent compounds like dextran can
overcome these artifacts while improving contrast (at the expense
of molecular specificity). In that case we would expect images that
are more comparable to KESM.
in LSFM
during

Blurred vessels can occur images due to

temporary — misalignment long imaging periods
(Figure 5c).

Contrast variations are introduced by non-uniform illumination
and/or staining in both LSFM and KESM. Contrast is also reduced
in LSFM as a function of depth due to scattering.

Machining artifacts introduced by cutting tools in milling
microscopy can cause lines (Figure 5e¢) and streaks (Figure 5f) in

individual z-axis slices.

4 Evaluation methodology

We characterize each algorithm’s performance using established
metrics and perform an evaluation of adjustable parameters. All
algorithms were tested on 200 x 200 x 200 voxel volumes that were
manually segmented to create an implicit representation of the
geometry and skeleton. If an algorithm requires optimization (ex.
U-Net), training is performed on a separate volume acquired from
an independent dataset. The same training and validation sets are
used for all algorithms.

4.1 Selection criteria

We evaluate a subset of available algorithms based on multiple
criteria, prioritizing algorithms used in popular, domain-specific
vessel analysis software. This includes Slicer (Kikinis et al,
2013), the Vascular Modeling Toolkit (VMTK) (Izzo et al,
2018), and VesselVio (Bumgarner and Nelson, 2022). Second,
we prioritized algorithms with an established open-source
implementation that was preferably provided by the authors.
We selected representative algorithms from three classes of
methods, including: (1) classical thresholding methods, (2)
Hessian-based and gradient-based enhancement filters, and (3)
deep learning-based semantic segmentation models. We selected
skeletonization methods for a range of input data types, including:
(1) binarized images, (2) meshes, and (3) point clouds. Our
goal is to reflect diverse methodological approaches used for
microvascular modeling. This selection process ensures that our
evaluation adequately represents current best practices and popular
trends in the field, providing a robust benchmark for future
developments. Table 1 provides the dates and citations of the
proposed algorithms.

Otsu’s method was evaluated as a baseline binarization
algorithm (otsu3d), and used as the final binarization step
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TABLE 1 Algorithms assessed in this paper for performing binarization
(left) and skeletonization (right). The publication date is shown along
with their citation count as of this writing.

Segmentation

Method (year) Citations
otsu (1979) 58,569
frangi (1998) 5,580
oof (2008) 316
bfrangi (2015) 346
unet (2015) 116,836
nnunet (2021) 6,480
lee (1994) 2032
palagyi (1999) 275
antiga (2003) 62
Kline (2010) 52
tagliasacchi (2012) 316
kerautret (2016) 11

as required for other algorithms. Vesselness filters, including
both Frangi (frangi) and Beyond Frangi (bfrangi), were
included due to their overwhelming popularity for vessel
(oof) filters
included as a more recent innovation with the open-source

enhancement. Optimally oriented flux were
implementations provided by the authors. U-Net architectures
are extensively used for semantic segmentation in biomedical
imaging, so we elected to test a baseline U-Net architecture
(unet) while including recent work on self-configured U-Nets
(nnunet).

We selected the thinning algorithms by Lee (lee) and
Palagyi (palagyi) because of their popularity in skeletonization
literature. While the level-set method by Kline (kline) and the
confidence accumulation method by Kerautret (kerautret) are
not used in existing modeling packages, the authors provide
open-source implementations that were tested. We also selected
the most recent skeletonization methods available for meshes
(tagliasacchi). The selected methods and keywords are provided
in Table 2.

4.2 Geometry metric

~4% of the total
tissue volume, we focus on metrics that can accurately
characterize unbalanced classifications. The Jaccard similarity
index (J) and Dice similarity coeflicient (D) are the
most common for binarization. The Jaccard index is the

Since microvasculature accounts for
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TABLE 2 Algorithms evaluated in this paper, along with their classes and
output data types. Algorithm types are shown in the first column
alongside names used to reference the associated results. Remaining
columns show the algorithm output (geometry or skeleton).
Preprocessing methods such as “vesselness” filters and OOF are used to
enhance vessels prior to thresholding with Otsu’s method.

Algorithm Produces

Geometry

Skeleton  Preprocessing

Otsu’s Method
(otsu3d)

Vesselness filter
(frangi, bfrangi)

Optimally
Oriented Flux
(oof)

Machine Learning
(unet, nnunet)

Thinning (lee,
palagyi)

Gradient-Based
(kerautret, kline)

Mesh-Based
(tagliasacchi,
antiga)

normalized volume overlap between the binarization and
ground truth:

Y (ANB)
D (AUB)

The Jaccard index is in the range J € [0, 1], where ] = 0 indicates no

J(A,B) =

overlap and J =1 indicates that the binarization is identical to the
ground truth.

We also calculate the precision, emphasizing the accuracy of
the positive predictions, and recall, which quantifies the model’s
ability to identify true positives. The precision (p) and recall (r) are
often combined using the F-score (F), which is both equal to the
Dice coeflicient and a function of the Jaccard index in the case of
binarization:

_ 2

F= = J
p+r

D=—"—
1+]

4.3 Skeleton metric

We adopt the definition of the skeleton as: a set of curves that
have identical topology to the geometric surface and are equidistant
to the boundary (Wei et al., 2018). We enforce these conditions
by manually generating ground truth skeletons based on this
definition.

Skeletonization is evaluated using NetMets (Mayerich et al.,
2012), which calculates the similarity between two sets of curves A
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and B in 3D space:

M(A,B) = % >

dla(t),B]>
Je 22 dt
acA

where L is the total length of all curves in the set A, a(t) is a point
on the ith curve parameterized by t, and o is a sensitivity parameter.
The function d(x, B) is the distance between a point x and the closest
point in the set of curves B. Given two networks representing the
set of curves in the ground truth G and test case T, the precision
(positive predictive value) P and recall (true positive rate) R are
calculated:

P=M(T,G) R=M(G,T)

The precision is the percentage of the test skeleton that correctly
corresponds to the ground truth, and the recall is the percentage of
the ground truth skeleton that is correctly detected in the test case.
The sensitivity parameter o = 1 pum is used for all images.

5 Segmentation algorithms and
evaluation

The selected segmentation algorithms largely fall into three
groups that largely build on each other: (1) basic thresholding,
(2) vessel enhancement and preprocessing, (3) convolutional
neural networks.

Thresholding is the most basic approach to binarization, and in
many cases an optimal threshold can be calculated automatically.
Minimum cross entropy (Li and Tam, 1998), IsoData (Ridler and
Calvard, 1978), and Fuzzy thresholding (Huang and Wang, 1995)
are popular approaches (Kramer et al., 2022; Huang et al., 2019)
that exist in several software packages (Fedorov et al., 2012). The
most established algorithm is Otsu’s method, which determines
the optimal threshold to separate foreground and background
components.

Modern approaches rely on some form of image enhancement
that is applied prior to thresholding. This includes filters designed
to enhance the contrast of tube-like structures, as well as machine
learning to perform semantic segmentation. The methods tested
here include vesselness filters (Frangi et al., 1998; Jerman et al., 2016)
and optimally oriented flux (OOF) (Law and Chung, 2008).

Convolutional neural networks (CNNs) have taken a
prominent role in image segmentation. The U-Net architecture
(Ronneberger et al., 2015) and its self-configuring extension, nnU-
Net (Isensee et al., 2021), represent the current state-of-the-art
in semantic (pixel-level) segmentation. These architectures use a
symmetric U-shaped encoder-decoder design (Figure 10) to capture
details at multiple scales by processing progressively larger image
patches. While machine learning approaches tend to outperform
deterministic methods, a significant amount of effort must be
applied to annotation and training. As a result, the deterministic
approaches are still extensively used in popular software packages.

All methods that require thresholding use Otsu’s method (Otsu,
1979), which computes a threshold 6 that maximizes the between-
class variance. Otsu’s method was also tested alone (otsu3d) as a
baseline binarization method.

Several preprocessing methods use scale-space filtering (Witkin,
1987) to account for variations in vessel diameter. Scale-space
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FIGURE 6
Hessian-based filters emphasize (a) plate-like (green) and blob-like (blue) tensors as vessels and bifurcations, while stick-like (red) tensors emphasize

surfaces (including vessel surfaces). (b) The vesselness filter proposed (frangi, ofrangi) uses parameters «, f8, and ¢ to target voxels associated with
plate-like and blob-like features. « is used to discern between plate-like and line-like structures, g emphasizes the deviation from a blob-like structure,
and ¢ controls the Frobenius norm of the Hessian matrix and suppresses the noise. (c) bfrangi simplifies these tunable parameters into a single value t

to differentiate between vessels and background (composed of small and stick-like tensors).

approaches add a discrete dimension to a field (ex. I(x) — I(x,s))
that represents feature sizes. The new dimension is based on a pre-
selected set of scale-space parameters X € [0y, 0y, ...,05_;]. The same
scale range was used for frangi, ofrangi, and bfrangi. However,
the OOF method used slightly smaller values to reach better

performance.

5.1 Hessian-based vessel enhancement

The most popular method for enhancing vessels is the Hessian-
based approach described by Frangi et al. (1998), originally
designed for 2D retinal fundus images. The Hessian matrix
is calculated at each point in the image x € R® using finite
differences across S scales, creating a field H(x,s) € R>3. The
filter response V(x) € R is calculated using the Hessian matrix
eigenvalues (|A,| < |A,| <[A5]) (Supplementary Algorithm SI). In
this study, the method introduced by Yang and Cheng (2014) was
also used to accelerate the computations of the Hessian matrix by a
factor of two.

The original “vesselness” algorithm (frangi) is outlined in
Algorithm 1 and relies on four parameters: tuning parameters «,
B, ¢ that target the vessel shape, and a scale parameter y = 2. The
shape parameters are balanced to separate tube-like structures and
bifurcations from background pixels (Figure 6). The scalar y was
proposed earlier (Lindeberg, 1998) to tune the derivatives used in
the Hessian. Attempts to optimize this parameter yield a consistent
value of y = 2 in the literature. We found that this is due to the scale
factor 0¥ compensating for energy dissipation from the second-order
Gaussian scale-space filter. A value of y =2 ensures that the most
intense response comes from features near the scale-space parameter
o (Figure 7).

Since the parameters in the original algorithm can be
challenging to select, we provide two comparisons. First, we examine
binarization results based on parameters used in the original
paper (frangi), and after parameter optimization (ofrangi) for

Frontiers in Bioinformatics

each dataset using training data. A parallel implementation was
used to create sensitivity maps for each parameter (Figure 8).
The relationship between parameters for frangi is shown in
Figure 6a.

A modified implementation of the vesselness framework
replaces the parameters with a single normalization term 7
(Jerman et al, 2015). The Beyond Frangi (bfrangi) algorithm
(Supplementary Algorithm S2) regularizes the largest eigenvalue at
each scale, yielding a more uniform response across vessel cross-
sections and intensities. The sensitivity of each dataset to this
parameter is illustrated in Figure 9.

5.2 Optimally oriented flux

The second derivatives within the Hessian are numerically
calculated using finite-difference methods, introducing artifacts
when features are adjacent. An alternative approach proposes
optimally oriented flux (OOF) (Law and Chung, 2010), which
relies on first derivatives and integrating gradient information over
a spherical region. This applies a hard cut-off that localizes the
gradient information used.

Given a point x in the 3D image I(x) € R and a direction vector
p, the gradient flux aligned with p is integrated over a sphere Q with
radius o, (Figure 10).

F(x,1,p) = ”Q(VI(X) -p)p-ndA = pTQ (x,7)p

where dA is the differential area of the sphere and n is the sphere
normal at x. This integral is used to calculate the flux matrix Q.
The optimal vessel orientation is the vector p that maximizes the

outward-oriented flux:
max[p'Q(x1)p]

Our tests used the OOF method available in MATLAB (oof), where
the only tunable parameters are the sphere radii X. In our tests, we
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FIGURE 7
Effect of the scale-normalization exponent y on synthetic one-dimensional vessel cross-sections. The second-order Gaussian derivatives are shown
alongside the resulting vesselness response. (a—c) Second derivative responses to a 1D signal convolved with scale-normalized Gaussian second
derivatives at multiple scales (o = 1, 2, 3, 4), plotted for different normalization exponents: (a) y = 1, (b) y = 2, and (c) y = 3. (d) Maximum 1D vesselness
response (across all scales) for y = 1, 2, and 3. Only y = 2 yields consistent, scale-invariant responses.

use the same X values for OOF and scale-space arguments (frangi,
ofrangi, bfrangi).

5.3 Convolutional neural networks

The U-Net (unet) architecture uses parallel encoder/decoder
paths bridged by skip connections that merge high-resolution
features from the encoder into the decoder. The network
meta-parameters were determined through iterative trial and
error based on validation performance. This U-Net uses 3
x 3 x 3 convolutional layers, ReLU activation, and 2 x
2 x 2 max-pooling layers (Figure10). The data is divided
into smaller volumes, selecting only those with intensities
above the global mean to avoid empty or near-empty voxels
that reduce training quality (Cicek et al, 2016). The unet
model tested here is trained and tested on these selected
volumes using the Focal Tversky loss function (Abraham and
Khan, 2019).

The nnU-Net (nnunet) architecture builds on U-Net by
overcoming the need for manual meta-parameter tuning.
nnU-Net maintains the encoder-decoder structure with skip
connections while automatically adapting its architecture
and hyperparameters. Like U-Net, it employs 3 x 3 x 3
convolutional layers, ReLU activation, and pooling layers but
integrates additional strategies, such as ensemble modeling
and deep learning-based boundary enhancement to improve
segmentation accuracy (Schott et al., 2023). During training,

nnU-Net uses standard loss functions and ensemble modeling,

where multiple models are trained and combined. We
used the source code provided by the authors' for these
experiments.

1 https://github.com/MIC-DKFZ/nnUNet
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5.4 Geometry results

Our binarization results are shown in Table 3, providing the
Jaccard Index, precision, and recall. Otsu’s method (otsu) was
tested on raw data and used to select the final threshold for all
preprocessing algorithms. The vesselness filter was tested using
published parameters in the original paper (frangi) and after
optimization of all parameters (ofrangi), while Beyond Frangi
(bfrangi) was tested after optimization of 7. Optimally oriented
flux (oof) does not require parameter tuning outside of the scale-
space parameters used to select sphere radii. Precision-recall curves
are provided for the raw output so that the reader can evaluate
the results without Otsu’s method (Figure 11). Like most semantic
segmentation networks, unet and nnunet integrate binarization into
the model and do not require Otsu’s method for thresholding.

Raw image sections are provided from each dataset, along
with the best corresponding binarization result for each algorithm
(Figure 12). Further discussion is provided in Section 7.

6 Skeletonization algorithms and
evaluation

The presented skeletonization algorithms require either an
initial binary image or a geometric surface. Whenever the vascular
surface is required, it is extracted using the marching cubes
algorithm from the binarized output.

6.1 Skeletonization

Skeletonization is the method of determining the connected
vessel centerlines, usually based on the extracted geometry. A
binarized image is used as an input to thinning algorithms, while
other approaches calculate the skeleton (or medial axis) from an
explicit geometry.
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FIGURE 8

Sensitivity to a, B, and ¢ parameters in frangi method across the three datasets. Top row: Jaccard index (color-mapped) as a function of a and ¢
parameters, with  tuning factor held constant (effectively removed, i.e., set to 1). The red dot indicates the parameter combination yielding the
maximum Jaccard score for each dataset. Bottom row: Jaccard index (contours) as a function of precision and recall for varying f values, with « and ¢
fixed at their optimal values identified in the top row. The black dot marks the point of maximum Jaccard score, and the continuous line shows the

Thinning uses morphological erosion to calculate an implicit
representation of the skeleton from a binarized image. Voxels are
iteratively removed until a thin single-voxel skeleton remains. The
concept was originally proposed in Blum’s grassfire propagation
(Blum, 1967), while Tsao and Fu (1981) were the first to
introduce a three-dimensional algorithm based on formalized
topological and geometric rules. The main concept in erosion-
based methods is determining the “simple points” that can
be removed without changing the model topology. Thinning
algorithms usually differ in how they detect and remove simple
points. The most popular method used in current software
packages (Fedorov et al.,, 2012; Bumgarner and Nelson, 2022) is
Lee et al. (1994) approach.

Mesh-based medial axis transforms approximate the skeleton
from a geometric surface. These include point-sampling methods
that leverage ray casting Kerautret et al. (2016) to localize the
skeleton. While these methods face challenges when differentiating
the “inside” and “outside” of complex shapes (Wei et al., 2018),
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statistical methods can overcome these problems using vector
accumulation maps to probabilistically approximate the skeleton
(Kerautret et al., 2016). This can be overcome by directly
evolving the geometry towards its centerline using an active
contour model (Tagliasacchi et al., 2012).

Another subcategory of mesh-based transforms leverages
a Voronoi diagram of the surface (Antiga et al, 2003). The
boundaries of the Voronoi cells within vessels can be tracked to
extract the medial axis. Despite their precise results, Voronoi-
based techniques require careful handling of boundary conditions
and specifying seed points to avoid generating spurious
branches.

6.2 Thinning

Thinning algorithms reduce an object to a single-voxel-thick
centerline while maintaining topology (ex. connectivity, cavities,
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Sensitivity to 7 in the Beyond Frangi method for each dataset. Red curves represent contours where the Jaccard index is constant. Precision-recall
curves show the change of both metrics in response to varying 7. The indicated point is the maximum Jaccard index, corresponding to the best
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In Optimally Oriented Flux (a), the vessel orientation is determined by maximizing the outward-oriented gradient flux over a spherical region. Diagram
of the U-Net architecture (b). The network consists of convolutional layers with batch normalization, ReLU activation, and dropout (C-BN-R-D),
concatenation layers (Cat), max-pooling layers (MaxPool), up-convolutional layers (UpConv), and convolutional layers (Conv).
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tunnels). This is accomplished by examining the local neighborhood
of each voxel to identify simple points whose deletion preserves
topology. These points are iteratively removed until a thinned
skeleton remains.

The lee algorithm (Lee et al,
using an octree to recursively subdivide the local neighborhood
(Supplementary Algorithm S3). A later approach (Palagyi
and Kuba, 1999) uses predefined templates to detect and flag
simple points, which is easier to parallelize. Both the sequential
lee and parallel palagyi algorithms are parameter-free and
take a binarized image as input.

1994) identifies simple points

Frontiers in Bioinformatics

6.3 Gradient-based skeletonization

The Kerautret et al. (2015) algorithm extracts a centerline
from a surface mesh by casting rays from each surface point
along its normal. The rays are accumulated in a voxel grid
where the maximal ridges represent centerlines. The most recent
modification (Kerautret et al., 2016) determines an accumulation
confidence value for each voxel, where points with higher confidence
are more likely to be located on the centerline.

The only required parameter is the accumulation distance (d,.)
or ray length, which is slightly larger than the maximal radius of the
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TABLE 3 Segmentation results showing the Jaccard index, precision, and recall for each binarization algorithm (red = bad, green = good). The original
vesselness paper (frangi) recommends 0.5, 0.5, and half of the maximum value of the Hessian norm for «, B, and c, respectively. The standard deviation
(STD) values are computed as part of a statistical test across three non-overlapping volumes of equal size.

Binarization methods

otsu3d frangi ofrangi bfrangi oof unet nnunet

Jaccard
Index
KESM Precision
Jaccard 0.628 + 0.671 £ 0.638 + 0.696 + 0.804 + 0.764 £ 0.117
Index 0.063 0.037 0.069 0.013
LSEM Precision 0.822 + 0.756 + 0.806 + 0.875 +
0.021 0.058 0.133 0.013
0.786 + 0.803 + 0.837 + 0.908 + 0.783 + 0.109
0.070 0.019 0.040 0.003
Jaccard 0.698 + 0.623 + 0.724 +
Index 0.020 0.034 0.026
Precision 0.821 + 0.734 + 0.880 +
u-CT
0.004 0.013 0.013
Recall 0.823 £ 0.804 + 0.803 £
0.025 0.039 0.029
1.0 1.0 1.0
0.8 0.8 0.8
£0.6 0.6 506
j% ®  otsu3d j% otsu3d Kz otsu3d
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FIGURE 11
Precision-Recall curve of evaluated segmentation methods.

input shape. This value is straightforward to approximate for each
volume using the radius of the larger vessels.

The kline algorithm (Kline et al., 2010) calculates a distance
field using the fast marching method (FMM), and then internal
ridges (maxima) are followed from user-specified seed points.
This algorithm assumes that the geometry is a connected tree
of tubular structures branching from a single root point. Since
microvascular networks do not have a unique root, a large
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number of seed points are required to comprehensively trace
the network.

6.4 Mesh-based skeletonization

The tagliasacchi algorithm (Tagliasacchi et al., 2012) calculates
the skeleton from a closed mesh using mean curvature flow

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1645520
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Goharbavang et al.

10.3389/fbinf.2025.1645520

LSFM  KESM

SRR

u-CT

L] v g . L | T . L) BN T o|! . L]

frangi  ofrangi bfrangi oof unet  nnunet

Raw GT 0fsu3£1 '

FIGURE 12
Cross-sections of three-dimensional volumes showing segmentation results for each modality. Green pixels indicate correctly labeled vessels, while

white pixels show correctly detected background. Blue indicates undetected vessels (false negatives), while red indicates background pixels that are
incorrectly labeled as vessels (false positives). GT indicates the manually annotated ground truth.
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FIGURE 13
Overview of skeletonization methods. (a) Thinning-based methods: lee applies N(v)_labeling (red), and palagyi applies templates (blue) to detect simple

points. (b,c) Kerautret generates a confidence map and extracts the centerline using morphological operations, geodesic segmentation, and FMM. (d)
Kline computes a distance field and applies FMM to generate the skeleton through seed points. (e) Tagliasacchi contracts the input mesh iteratively. (f)
Antiga constructs a Voronoi diagram to extract centerlines using seed points.
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TABLE 4 Results of centerline extraction on binarization results (left columns: precision, right columns: recall). Thinning was performed using all

binarized data for each dataset (see Table 3).

Skeletonization

Binarization

P

nnunet

palagyi

kerautret ‘

P

otsu3d
ofrangi
bfrangi
LSFM
oof 0.884
unet 0.859 0.923 0.85
nnunet 0.856 0.895 0.896
otsu3d -l 0.821
ofrangi 0.914 0.938 0.893
bfrangi 0.919 0.916 0.896
u-CT
oof 0.852 0.913 0.831
unet 0.832 0.792
nnunet 0.889 0.855

0.808
0.808

(MCF). The medial axis is extracted by moving the mesh along its
surface normal proportional to the surface curvature. This iteratively
collapses the mesh into a one-dimensional curve (Figure 13).
We tested the tagliasacchi method using an implementation
provided by StarLab?, which requires a watertight manifold mesh
and is highly sensitive to mesh boundaries. We forced a watertight
mesh at all boundaries and applied the algorithm to each closed
mesh component separately.

The antiga algorithm (Antiga et al., 2003) builds a Voronoi
diagram from point samples of the vascular surface. The
intersections of each Voronoi region lie equidistant to the sampled
surface, such that medial axis curves can be traced between user-
specified seed points. The Delaunay tessellation is calculated from
a set of points P that densely samples the vascular surface, which
provides the vertices V for the Voronoi diagram. The user specifies
a set of seed points S that are connected by selecting points in V'

2 https://github.com/taiya/starlab-mcfskel
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that maximize the distance from the vascular surface. This is done
by solving an Eikonal equation using the fast sweeping method,
ensuring a maximum distance from the boundary surface and
providing stability in complex regions like bifurcations. This study
uses the implementation of antiga provided in Slicer®. However,
the method failed to process seed points or centerlines for messy
surfaces created in some LSFM datasets (Table 4).

6.5 Skeletonization results
The precision and recall for the proposed skeletonization
methods are shown in Table 4. The NetMets algorithm is used to

quantify performance using 0 = 1 um. The results are provided using
all binarization algorithms as input. The ground truth binarization is

3 https://www.slicer.org/
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TABLE 5 Results for skeletonization on the ground truth segmentations.

Skeletonization

palagyi kerautret tagliasacchi

P R

ground skeleton kerautret kline antiga

FIGURE 14
Skeletonization results on the ground truth segmentation of KESM dataset. The ground truth skeleton is colored green in each figure. The skeleton
obtained by each method is shown in blue, with false positives marked in red.

also provided as a baseline to demonstrate skeletonization from an 7 Discussion
“ideal” starting point (Table 5).

The lee and palagyi methods achieved the highest F-score Machine learning (unet, nnunet) achieved the best consistent
across all images, capturing vessel continuity at the cost of  performance across all images. This is expected given their
adding spurious branches to larger vessels. The antiga method  established performance on semantic segmentation (Wang et al.,
provided the highest precision, however, it identified fewer  2022). While U-Nets have been extensively explored in two-
vessels. The method failed to extract skeletons from binarized  dimensional images, recent advances that mitigate parameter
results using Otsu’s method due to the excessive number of  explosion (Saadatifard et al., 2020) make them more practical in 3D.
vertices and edges. Gradient-based methods (kerautret and kline) In our experiments, nnU-Net was run in its 3d_fullres mode, which
performed poorly across most images. While kline was designed  includesisotropic resampling and intensity normalization. Although
for vessels, it is poorly suited to microvascular networks since  effective for KESM and p-CT, this normalization likely suppressed
they are not tree-like. The difference in the performance of the  subtle variations unique to LSFM data, reducing the recall and
kerautret for KESM data also stands out, likely due to the higher  Jaccard index. It is possible that significantly larger training sets
resolution of KESM data. This provides (1) a more completely  could mitigate these issues.
connected mesh and (2) larger distances between adjacent KESM was generally easier to segment due to its high contrast
unconnected vessels. and spatial resolution. In fact, Otsu’s method (otsu3d) performed
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ground binarization

oof

ground skeleton

FIGURE 15

Skeleton extracted using lee using different binarizations. One problem frequently encountered in LSFM is hollow vessels that lead to poor recall in the
resulting skeletonization. This is due to regions inside large vessels that are misinterpreted as background. This is most commonly encountered in LSFM
because the endothelial cells at the vessel surface are common targets for fluorescent labels. This leads to a variety of incorrect “shells” or "networks”
that surround the internal gap. The correct medial axis of the hollow vessel is green in the ground truth image.

a
ofrangi bfrangi

unet (sliced) nnunet

similarly to CNNs on KESM data. KESM also exhibits noise and
imaging artifacts that are localized to individual slices, potentially
making them easier to ignore. The Vesselness algorithms proposed
by Frangi etal. (frangi), and later modified by Jerman etal.
(bfrangi), are the most popular for enhancing tubular structures.
While “out-of-the-box” parameters did not perform well, systematic
optimization of these parameters (ofrangi) provided reasonable
performance. However, this requires some form of optimization
or training that may not provide a benefit over U-Net. If training
data is unavailable, optimally oriented flux (oof) provides the best
performance.

For skeletonization (Table 4), both lee and palagyi provided
consistently good performance. The implementation that we tested
for lee* was significantly faster. The antiga algorithm provided
the best precision for both KESM and pu-CT data. However,
this came at a cost to recall since antiga tended to miss vessel
centerlines (Figure 14). It also performed poorly on LSFM data,
likely due to the surface complexity. In fact, the algorithm was
unable to skeletonize the LSFM data segmented using otsu3d, which
exceeded memory limits during the skeletonization process.

One of the more interesting findings was that the most accurate
binarization (generally a CNN) did not necessarily provide the best
input for skeletonization. For example, otsu3d p-CT provided better
precision than nnunet when used as an input for LSFM and p-
CT. The reduced precision is likely due to consistent mislabeling
of internal vessels (Figure 15). All skeletonization algorithms were
also tested on ground truth data (Table 5) to demonstrate potential
performance given a highly accurate segmentation.

4 skimage.morphology.skeletonize  function in  the  scikit-image

Python library.
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8 Conclusion

This work aims to quantify the performance of algorithms
for building large-scale microvascular networks. We focus on
data from microscopes with the potential for organ-scale vascular
imaging (LSFM, KESM, and p-CT). We tested two classes of
algorithms: binarization and skeletonization. These results can be
used to reconstruct microvascular surfaces and study network
properties. Importantly, the resulting models can feed directly into
post-processing frameworks (e.g., CFD-based flow simulations or
perfusion analysis) to facilitate functional interpretation and disease
modeling (Celaya-Alcala et al., 2021; Zhang et al., 2022). All of the
data, annotations, and links to algorithms are available in a public
Git repository.”

Although KESM and p-CT images share high contrast and SNR,
their disparate voxel resolutions yield very different results: a global
threshold such as otsu performs reliably in KESM, yet degrades in
u-CT where learning-based models like nnunet can incorporate
local intensity variations to recover performance. It is important
to note that this accuracy is quantified with respect to the ground
truth and does not account for the reduced resolution of u-CT:
the accuracy of the segmentation does not necessarily reflect the
accuracy of the final model. Modality-specific features, such as pixel
sizes, ultimately bound the fidelity of the reconstructed vascular
model, even when segmentation metrics appear equivalent across
algorithms.

If the user can provide annotated training data, they will likely
see the best performance using nnunet (Isensee et al., 2021) for
binarization, followed by skeletonization with lee (Lee et al., 1994).

5 https://github.com/helia77/MicroVasc-Review
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Users may see an improvement in skeletonization results using
antiga, provided the vasculature has a lower total surface area.

If a significant amount of training data is unavailable, the
authors recommend oof (Law and Chung, 2008) for binarization,
followed by lee for skeletonization. The user may be able to achieve
better performance using frangi after significant optimization
(ofrangi) (Frangi et al., 1998).
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