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Background: Gastric cancer (GC) remains a major global health burden 
despite advances in diagnosis and treatment. In recent years, natural products 
have gained increasing attention as promising sources of anticancer agents, 
including GC.
Methods: In this study, we applied an in silico ensemble-based modeling 
strategy to predict compounds with potential inhibitory effects against four GC-
related cell lines: AGS, NCI-N87, BGC-823, and SNU-16. Individual predictive 
models were developed using several algorithms and further integrated into 
two consensus ensemble multi-objective models. A comprehensive database 
of over 100,000 natural compounds from 21,665 plant species, was screened 
for validation and to identify potential molecular candidates.
Results: The ensemble models demonstrated a 12–15-fold improvement in 
identifying active molecules compared to random selection. A total of 340 
molecules were prioritized, many belonging to bioactive classes such as 
taxane diterpenoids, flavonoids, isoflavonoids, phloroglucinols, and tryptophan 
alkaloids. Known anticancer compounds, including paclitaxel, orsaponin (OSW-
1), glycybenzofuran, and glyurallin A, were successfully retrieved, reinforcing 
the validity of the approach. Species from the genera Taxus, Glycyrrhiza,
Elaphoglossum, and Seseli emerged as particularly relevant sources of bioactive 
candidates.
Conclusion: While some genera, such as Taxus and Glycyrrhiza, have well-
documented anticancer properties, others, including Elaphoglossum and Seseli, 
require further experimental validation. These findings highlight the potential of
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combining multi-objectives ensemble modeling with natural product databases 
to discover novel phytochemicals relevant to GC treatment.
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discovery, bioactive plant species, secondary metabolites 

1 Background

Despite significant advances in medicine, gastric cancer remains 
a major global public health challenge, characterized by a dynamic 
historical evolution in its incidence, diagnosis, and treatment. 
Traditionally, it has ranked among the leading causes of cancer-
related mortality, particularly in regions with a high prevalence of 
Helicobacter pylori infection and unhealthy dietary patterns. During 
the 20th century, the incidence of gastric cancer markedly declined 
in developed countries, primarily due to improvements in hygiene, 
widespread use of food refrigeration, and reduced consumption 
of salted and smoked foods (Kang et al., 2024). However, it 
remains a substantial cause of cancer-related deaths worldwide, 
with a heterogeneous geographical distribution. East Asia, Latin 
America, and Eastern Europe report the highest incidence rates, 
whereas North America and Western Europe have experienced a 
continuous downward trend (Mithany et al., 2024). In 2020, more 
than 1 million new cases of gastric cancer were diagnosed globally, 
accompanied by approximately 769,000 deaths, underscoring the 
persistent magnitude of this disease (Sung et al., 2021). Notably, 
the epidemiological profile of gastric cancer has undergone a 
significant shift in recent decades, with an increasing incidence 
observed among younger populations. This trend has prompted 
a reevaluation of preventive strategies and emphasizes the critical 
need for early-life interventions targeting modifiable risk factors 
(Kang et al., 2024). Several determinants of gastric cancer have 
been well-established. Infection with H. pylori remains the most 
prominent biological risk factor, often acting synergistically with 
behavioral and environmental influences (Poorolajal et al., 2020). 
Socioeconomic disparities further modulate the burden of disease. 
Lower educational attainment and limited access to healthcare 
services are associated with unhealthy lifestyles and delayed 
diagnosis, ultimately impacting survival outcomes (Alicandro et al., 
2022). These complex, interrelated factors highlight the necessity 
for comprehensive, multidisciplinary approaches to the prevention, 
early detection, and management of gastric cancer globally.

In the treatment of gastric cancer, various chemotherapeutic 
agents have demonstrated significant efficacy in both in vitro
cellular model systems and preclinical studies. Capecitabine, a 
prodrug of 5-fluorouracil (5-FU), has been shown to inhibit 
cell proliferation and angiogenesis in experimental models using 
BGC-823 cells, improving survival outcomes with low toxicity 
(Yuan et al., 2015). Similarly, docetaxel, an agent that disrupts 
microtubule polymerization, has proven effective by inducing G2/M 
phase cell cycle arrest in AGS cells and exhibiting antiangiogenic 
and synergistic effects when combined with compounds such as 
gambogic acid in BGC-823 cells (Grabarska et al., 2023). Additional 
chemotherapeutic agents and alternative treatment strategies for 
gastric cancer have been extensively reviewed (Sexton et al., 
2020; Guan et al., 2023). In parallel with the search for effective 

chemotherapeutic agents, increasing attention has been given to 
natural compounds. Curcumin, the principal bioactive component 
of turmeric, has demonstrated notable anti-inflammatory and 
antiproliferative properties relevant to the prevention and treatment 
of gastric cancer (Zhang et al., 2022). Various formulations of 
curcumin are currently being evaluated in clinical trials, such as 
NCT02782949, further supporting its potential application in gastric 
cancer management (Warias et al., 2024). Other natural molecules, 
including resveratrol, quercetin, and piceatannol, found in a variety 
of plant-derived products, have also shown the ability to modulate 
inflammatory processes and oncogenic pathways involved in gastric 
cancer progression (Zhao et al., 2023; Warias et al., 2024).

In the context of the discovery of novel natural products, in 
silico predictive modeling has emerged as a powerful methodology 
for identifying bioactive compounds. This approach employs 
computational tools to predict interactions between natural 
molecules and target proteins implicated in carcinogenesis, thereby 
accelerating the identification of novel therapeutic candidates 
(Liu et al., 2024a). Predictive modeling has been particularly 
instrumental in uncovering anticancer agents derived from food 
sources, notably polyphenols, which exhibit antioxidant and 
anti-inflammatory properties capable of reducing gastric cancer 
risk (Zheng et al., 2024). Computational strategies have been 
used to predict new drug targets, such as the epidermal growth 
factor receptor (EGFR) (Mashima et al., 2019), and to identify 
natural compounds, such as coumarin derivatives, capable of 
interacting with BCL2 and inducing apoptosis in gastric cancer 
cells (Perumalsamy et al., 2018). Moreover, the integration of 
network pharmacology approaches has enabled the identification of 
bioactive molecules like dehydroxy-isocalamendiol and spathulenol, 
which bind to critical cancer-related proteins, further highlighting 
their therapeutic potential (Pradhan et al., 2024). However, 
despite these advances, few studies have focused on large-scale 
screening of natural product libraries using phenotypic models, 
(Dai et al., 2016; Jin et al., 2020), as opposed to traditional target-
centered modeling strategies (Jalali et al., 2023). Expanding the 
use of phenotypic screening could enhance the discovery of 
multifunctional compounds with broader mechanisms of action 
against gastric cancer. In this context, the present in silico study 
aims to identify effective molecules against gastric cancer (GC) cell 
lines, specifically AGS, NCI-N87, SNU-16, and BGC-823. Building 
upon our previous work (Perez-Castillo et al., 2018), we employed a 
consensus approach based on ensemble modeling, where individual 
predictive models were constructed and subsequently integrated 
to generate a final consensus probability for each compound. This 
methodology was applied to screen more than 100,000 molecules 
derived from 21,665 plant species. The ultimate objective is to 
pinpoint potential natural sources and plant species that could serve 
as promising candidates for further research in drug discovery and 
drug design collectively targeting GC cell lines. 
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FIGURE 1
Flow diagram of the presented methodology.

2 Materials and methods

A full schematic representation of the methodology is 
presented in Figure 1. This representation will be described in detail 
across this section.

2.1 Database’s description and curation

Four gastric cancer-related cell lines were selected for modeling: 
AGS (ChEMBL 3308078), NCI-N87 (ChEMBL 3307326), BGC-
823 (ChEMBL 3307635), and SNU-16 (ChEMBL 3307273). All 
compounds with reported IC50 values were retrieved from the 
ChEMBL database, version 35 (Zdrazil et al., 2024). The data 
curation process followed a strategy similar to that described in 
previous studies (Perez-Castillo et al., 2018; Tejera et al., 2021). 
An IC50 threshold of 10 µM was employed to classify compounds 
as active (<10 µM) or inactive (>10 µM). When a molecule had 
multiple IC50 values reported for the same cell line across different 
studies, it was included only if all reports consistently classified it 
in the same activity class (i.e., all experiments agreed on its active 
or inactive status). If this criterion was not met, the compound–cell 
line pair was excluded. Additionally, compounds evaluated in more 
than two cell lines were excluded from the training sets and instead 
reserved for virtual screening purposes. 

2.2 Modeling strategies and predictions

All molecules were described using ECFP4 fingerprints (1,024 
bits) computed with RDKit (RDKit, 2018). Only ECFP4 description 
was used in this work. We had used this type of description 
previously in molecule-cell lines interaction across several cell lines 
(Tejera et al., 2019). However, we agree that it is not the only 
option available. Given that class imbalance is commonly observed, 
typically favoring either the inactive or active class, data balancing 
was performed through data reduction by applying a clustering 
algorithm to the majority class, following a strategy similar to that 

used in previous work (Tejera et al., 2021). Specifically, all molecules 
in the majority class (represented by their ECFP4 fingerprints) 
were clustered using the k-means algorithm (KMeans function from 
sklearn. cluster), incrementally increasing the number of clusters 
from 2 up to the number of compounds in the minority class. For 
each clustering step, the silhouette score was calculated (using the 
silhouette_score function from sklearn. metrics), and the number of 
clusters yielding the highest silhouette score was selected as optimal. 
Once the optimal number of clusters was determined, a proportional 
number of compounds was randomly selected from each cluster to 
match the size of the minority class. The final balanced datasets for 
each cell line are presented in Supplementary Material S1.

After balancing the data, a random split was performed for 
each cell line dataset into training, test, and external sets, following 
a 60%-20%-20% ratio. Prior to modeling, variable reduction was 
applied by removing all descriptors with a variance lower than 
0.05 within the training subset. An important aspect of model 
evaluation (for both test and external sets) is the consideration of the 
applicability domain. To define this domain, a principal component 
analysis (PCA) was conducted on the training subset, extracting the 
principal components that together explained more than 90% of 
the cumulative variance. The maximum Euclidean distance between 
individual compounds and the centroid (computed using the 
selected principal components) was used to define the applicability 
domain. Any compound whose distance exceeded this maximum 
value was excluded from further analysis. The reason to use 
Euclidian distance is that the principal components are normalized 
numerically continuing description and it is fast, intuitive and simple 
to compute. In previous works we used the Tanimoto distance 
directly on the ECFP4 fingerprint (Jimenes-Vargas et al., 2024). This 
approach could be robust but computing the similarity matrix is 
computationally expensive over large datasets.

We evaluated four modeling strategies: random forest (RF), 
decision trees (DTREE), k-nearest neighbors (KNN), and an 
ensemble modeling approach combining models derived from 
RF, DTREE, and KNN. In the case of RF and DTREE we used 
Gini impurity to measure the quality of the split. Regarding the 
maximum depth of the tree, we initially explored several values 
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and decided to restrain to 100 for RF. In the case of DTREE all 
nodes are expanded until all leaves contain less than 2 samples. 
These parameters were not modified further in the analysis or 
optimization. Additionally, for variable selection in the RF, DTREE, 
and KNN models, a genetic algorithm was employed (Perez-
Castillo et al., 2018; Tejera et al., 2021). The genetic algorithm 
was performed with an initial population of 1,000 individuals and 
was executed over 5,000 generations. To ensure model simplicity 
and prevent overfitting, the number of variables selected in each 
generated model was restricted to between 4 and 25. The balanced 
classification rate (BCR) was used as the fitness function for the 
genetic algorithm (Equation 1) (Perez-Castillo et al., 2018).

BCR =
Se+ Sp

2
(1− |Se− Sp|) (1)

where Se and Sp are the sensitivity and specificity respectively. For 
each model, we computed: BRC, Se, Sp, F1-score, and accuracy for 
the test and external validation. 

2.3 Ensemble modeling and virtual 
screening

For ensemble modeling, an initial population of 200 individual 
models was generated, each fulfilling the following criteria: (i) 
each model randomly used one of the RF, DTREE, or KNN 
algorithms; (ii) each model included between 4 and 25 variables; 
and (iii) each model achieved a BCR higher than 0.65 when 
evaluated on the test set. Based on these individual models, an 
initial ensemble population of 1,000 random combinations was 
created, with each ensemble comprising between 2 and 20 models. 
This initial ensemble population was further optimized using a 
genetic algorithm aimed at maximizing the BCR metric over 5,000 
generations. In the final ensemble models, the mean probability 
of the individual models was used as the aggregation function to 
compute the final prediction.

For the virtual screening phase, several considerations must 
be addressed. The primary objective of the final models is to 
evaluate the probability that a compound exhibits anticancer activity, 
specifically against gastric cancer. Thus, the main challenge lies 
in accurately ranking compounds according to this criterion. 
However, defining anticancer activity based solely on cell line 
data presents difficulties, as (a) we are evaluating effects across 
four different gastric cancer cell lines, and (b) most compounds 
do not have activity data reported for all four cell lines, indeed, 
only two compounds in the ChEMBL database were found to 
have information across all four. To assess the performance of 
the combined cell line models in identifying potentially useful 
molecules, a virtual screening dataset was constructed. This 
dataset included: (i) 51 compounds from ChEMBL with reported 
activity against at least three of the four cell lines. Of these, 25 
compounds were classified as active (active in at least two cell 
lines), while the remaining compounds were classified as inactive 
(active in only one or none of the cell lines). Additionally, (ii) 
compounds from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database (Yang et al., 2012) were retrieved, specifically those 
evaluated across AGS, NCI-N87, and SNU-16 cell lines (BGC-823 
data were not available in GDSC). A total of 125 compounds were 

identified and classified as active or inactive based on a z-score 
threshold of −1.5. Following a similar approach as with the ChEMBL 
dataset, 62 compounds were classified as active (active in at least two 
cell lines), and the remainder as inactive.

Finally, we also consulted the National Cancer 
Institute database (National Cancer Institute, 2025) and included 
four of the 22 small-molecule drugs currently used in the treatment 
of GC: capecitabine, docetaxel, doxorubicin, and mitomycin. 
Fluorouracil was not included, as it is already present in the GDSC 
database and was found to be inactive against the three gastric 
cancer cell lines evaluated. With this additional information, a total 
of 178 molecules were compiled for the virtual screening dataset, of 
which 86 were labeled as “active,” indicating a higher likelihood of 
exhibiting anticancer activity.

One limitation of the constructed dataset is its relatively small 
size, which restricts the evaluation of enrichment metrics for virtual 
screening. For a robust calculation of virtual screening performance, 
a larger number of inactive (negative) molecules is required. As 
previously described (Perez-Castillo et al., 2018), decoy molecules 
were generated from the 86 active compounds. To this end, the 
DUD-E web service (Mysinger et al., 2012) was utilized, resulting 
in the generation of 4,357 decoy molecules, leading to a final dataset 
comprising 4,535 compounds. The early recognition metrics used to 
evaluate the models’ performance in virtual screening are defined in 
Equations 2, 3 (Truchon and Bayly, 2007).

If RIEmin =
1−e−αRa

Ra(1−eα)
 and RIEmax =

1−e−αRa

Ra(1−e−α)
, then we can 

define BEDROC as:

BEDROC =
RIE−RIEmin

RIEmax −RIEmin
(2)

In these equations, Ra = n/N, where n is the number of 
active compounds and N is the total number of molecules. The 
α-value corresponds to the portion of the ranked dataset where 
the recovery of active compounds is evaluated, representing early 
recognition performance. Mathematically, the α -value is associated 
with a fraction 0<χ≤1, indicating the segment of the ranked list 
within which the active compounds are retrieved. This fraction is 
also necessary for computing the enrichment factor (EF), which 
is defined as:

EF =
∑n

i=1
δi

χn ,whereδi =
{
{
{

1 ri ≤ χN

0 ri > χN
(3)

Here, N represents the total number of compounds in the virtual 
screening list. Higher values of α correspond to smaller fractions of 
the ranked list used to retrieve active compounds, emphasizing early 
recognition. The computation of α can be adjusted depending on 
specific evaluation goals (Truchon and Bayly, 2007). For example, 
to evaluate enrichment within the top 1% of the ordered list while 
aiming for this fraction to contribute approximately 80% of the 
overall enrichment, an α-value of 160.9 is used. In our study, 
enrichment metrics were computed under different α-value and χ 
conditions to thoroughly assess model performance. 

2.4 Compound-plants databases curation

To create a compound–plant database, information 
was integrated from FOODB (Foodb, 2025), COCONUT 
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(Sorokina et al., 2021), and LOTUS (Rutz et al., 2022) databases. 
COCONUT and LOTUS are specialized in natural products. 
In both the COCONUT and FOODB databases, full taxonomic 
identification of the source species is not always available. FOODB 
includes entries corresponding not to specific species but rather 
to processed or mixed foods (e.g., popcorn, cheese, milk), which 
were excluded from this analysis. To standardize species names, we 
used the National Center for Biotechnology Information (NCBI) 
taxonomy database ( fullnamelineage.dmp), considering only plant 
species (Viridiplantae) that could be matched in NCBI records. 
Regarding compound curation, the RDKit package for Python 
was employed to perform the following operations: (1) removal of 
chiral information, (2) generation of InChIKeys, and (3) molecule 
sanitization. The removal of chiral information was based on 
two key considerations: (i) chiral descriptors are inconsistently 
reported across databases, either because the absolute configuration 
is unknown or because compounds exist as racemic mixtures, and 
(ii) the predictive models developed in this study do not account 
for chirality. Thus, treating enantiomers as distinct entities could 
artificially inflate the number of predicted active compounds. 
Consequently, enantiomers were considered duplicate entries when 
found within the same plant species. After filtering and cleaning 
the data, the final database included 21,665 plant species, 105,938 
unique compounds, and 2,251,567 compound–species associations. 

3 Results

Following the curation and balancing procedures, 
we characterized the datasets based on their active 
and inactive compound distributions. The final datasets 
(provided in Supplementary Material S1, SM1) comprised SNU-
16 (n = 210; 100 active, 110 inactive), NCI-N87 (n = 247; 130 active, 
117 inactive), BGC-823 (n = 1,565; 746 active, 819 inactive), and 
AGS (n = 791; 396 active, 395 inactive). 

3.1 Predictive models and virtual screening

The performance of each applied algorithm is summarized 
in Table 1. We report both the best model identified within 
the final genetic algorithm populations and the mean 
performance metrics across the entire final population. 
Complete performance data for all models and ROC curves 
representations are provided in Supplementary Table S2.1 and 
Supplementary Figure S2.1 of Supplementary Material S2(SM2).

The selection of the best model from all models after genetic 
algorithm optimization is supervised. We consider a high BCR value 
in the test and external partitions. However, we also consider similar 
values between the mean BCR value from the genetic algorithm 
population and the BCR obtained in the external partition. This 
similarity is extended to other metrics like sensitivity, specificity 
and F1-score that can be consulted in SM2. We observe that, in 
some cases, ensemble models perform slightly better than the other 
models. For instance, this is the case for the AGS and BGC-827 
cell lines. However, for the NCI-N87 cell line, decision tree models 
appear to outperform ensembles, while in the SNU-16 cell line, 
random forest and KNN models also seem to perform better. It 

is important to notice that we did not use cross-validation. The 
models are trained using the “training” partition and the fitness 
functions during model evolution are obtained by evaluation in 
the “test” group. The final models are evaluated in the “external” 
partition which is not used at any moment of the training or 
variable selection (Tropsha, 2010; Castillo-González et al., 2015). 
We can notice that the performance metrics are quite similar 
across the test group (presented as the average across the entire 
population), and the external partition which is a good indicator 
of the model’s stability and generalization. All compounds used for 
virtual screening (n = 4,535) were evaluated with all models. To 
select the best combination of models providing the highest initial 
enrichment, we evaluated all possible model combinations (256 
combinations) and computed the BEDROC score and enrichment 
factor (EF) across several initial enrichment fractions. The best 
combinations are presented in Figure 2 (individual model values are 
detailed in Supplementary Table S2.2; Supplementary Material S2).

Higher α-values assign greater weight to the BEDROC score in 
the early enrichment regions of the ranked dataset. Values around 
α = 160 correspond approximately to the top 1% fraction (0.01 in 
Figure 2, Right) (Zhang et al., 2017). Notably, the EF results for the 
combinations E, DTREE, E, RF (dark blue line) and E, E, E, E (green 
line) are identical. In the screening procedure we desire models 
capable of correctly identifying (or retrieving) most of the active 
molecules (it is what BEDROC and EF quantify) in the minimal 
portion of the ranked list (it is computed by the fraction and/or 
the α -value). Analysis of the profiles in Figure 2 suggests that the 
two best-performing combinations are: C1) E, E, E, E (green line) 
and C2) E, E, E, RF (orange line). C2 exhibits a superior BEDROC 
score at α = 160 and across higher α-values, while C1 achieves a 
higher EF. The enrichment factors (EF) of C1 and C2 in the top 
0.5%–1% (χ = 0.005–0.01) of the ranked list are between 12 and 16, 
suggesting suggestion 12 to 16 times better enrichment that what 
we should expect from random. In our case, we had a total of 86 
active molecules in a total of 4,535, so in the top 1% (45 molecules), 
we ranked 14 and around 7 in the top 22 (close to 0.5%) ranked 
molecules. The maximum average probabilities obtained across the 
entire virtual screening dataset for C1 and C2 were 0.651 and 0.641, 
respectively. 

3.2 Molecules and plants sources

After database curation as described, a total of 105,938 unique 
SMILES were obtained. However, after applying the applicability 
domain filters of the models comprising C1 and C2, 104,408 SMILES 
remained. Among these, 6,736 molecules (6.45%) in C1 and 5,512 
(5.28%) in C2 exhibited a predicted probability greater than 0.5. 
The maximum predicted probabilities for C1 and C2 were 0.681 
and 0.626, respectively, consistent with the peak values observed 
in the virtual screening dataset. Interestingly, only 91 molecules 
had a probability >0.6 in C1, compared to just 23 in C2, with only 
8 compounds shared between the two models. This discrepancy 
suggests that the C2 model is more restrictive. The number of 
shared molecules between C1 and C2 at probability thresholds >0.5, 
>0.55, and >0.6 were 3,778, 340, and 8, respectively. No compounds 
were shared above the 0.65 threshold, as only C1 identified three 
molecules at that level. The 340 shared molecules at the 0.55 
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TABLE 1  Performance metrics of the different modeling strategies, including ensemble approaches.

Cell Lines Models GA results Best model

Test Test External

Mean
ACC

Mean
BCR

ACC BCR ACC BCR NVa

SNU-16

RF 0.825 0.806 0.857 0.776 0.810 0.793 19

DTREE 0.796 0.778 0.786 0.748 0.857 0.825 26

KNN 0.834 0.814 0.810 0.810 0.810 0.793 17

ENSEMBLES 0.861 0.857 0.857 0.857 0.762 0.759 6

NCI-N87

RF 0.847 0.822 0.816 0.802 0.816 0.802 23

DTREE 0.840 0.816 0.816 0.802 0.837 0.819 36

KNN 0.812 0.787 0.816 0.802 0.837 0.819 25

ENSEMBLES 0.929 0.915 0.918 0.909 0.857 0.838 11

BGC-827

RF 0.688 0.667 0.703 0.687 0.709 0.705 17

DTREE 0.786 0.774 0.789 0.764 0.802 0.795 42

KNN 0.788 0.775 0.792 0.782 0.805 0.782 33

ENSEMBLES 0.858 0.851 0.863 0.853 0.815 0.809 15

AGS

RF 0.749 0.736 0.759 0.740 0.772 0.772 25

DTREE 0.768 0.753 0.766 0.737 0.778 0.769 23

KNN 0.764 0.749 0.753 0.744 0.778 0.769 36

ENSEMBLES 0.856 0.845 0.880 0.869 0.823 0.823 8

aNV: Number of variables included in each model. For ensembles, this number indicates the number of models integrated into the final ensemble.

FIGURE 2
Left: Variation of the BEDROC values across different α-values for various model combinations. Right: Variation of the enrichment factor (EF) across 
different top fractions (χ) for the same model combinations. Each line represents a model combination from Table 1 for each cell line. The notation “E” 
denotes the ensemble model corresponding to each cell line, as described in Table 1.
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FIGURE 3
Molecules M1–M3 represent the top-ranked compounds in the C1 model (score >0.65). Molecules M1, M2, and M4–M9 are the eight compounds 
identified in both C1 and C2 models with scores >0.6. These represent the highest-scoring molecules across both models.

threshold were classified using NPClassifier (Kim et al., 2021), 
and their chemical classes, as well as the associated C1 and C2 
probabilities, are provided in Supplementary Material S3 (SM3).

The top-ranked molecules (the top 3 from the C1 model and the 
8 common molecules identified by both C1 and C2) are shown in 
Figure 3, along with their corresponding chemical classes. Molecule 
M3 is the only compound predicted by the C1 model with a 
score >0.65 that is not among the 8 shared molecules. Notably, 
M1 corresponds to orsaponin (PubChem CID: 72612554), M6 to 
7-epi-10-Deacetyl Cephalomannine (PubChem CID: 72738999), 
and M9 to paclitaxel (PubChem CID: 23509308). The remaining 
molecules do not have common names or standardized notations 
in PubChem. It is also worth noting that M5 displays strong 
structural similarity to both M6 and M9. Flavonoids, isoflavonoids, 
di- and triterpenoids, sesquiterpenoids, and tryptophan-derived 
alkaloids represent the majority of the 340 molecules with combined 
probabilities greater than 0.55 (Figure 4A). Among the diterpenoids, 
taxane-type diterpenoids are the most abundant; this subclass 
includes compounds whose names are derived from the plant genus 
Taxus (to be discussed later). Within the flavonoid class, flavanones 
are the most represented subclass, followed by chalcones. In the 
isoflavonoid group, isoflavanones and pterocarpans are the most 
common. Pterocarpans are typically found in the Fabaceae family, 
while isoflavanones are broadly distributed, as are agarofuran and 
daucane (carotane-type) sesquiterpenoids.

The classes with the highest number of molecules, namely, 
flavonoids and diterpenoids, do not necessarily contain the 

compounds with the highest predicted probabilities (Figures 4B,C). 
The coefficient of determination (R2) between the predicted 
probabilities of the C1 and C2 models across the entire set of 
104,408 molecules is 0.743. However, this value drops substantially 
to R2 = 0.108 when considering only the 340 shared molecules 
with a probability cutoff >0.55, suggesting that although the 
models are overall similar, they are specialized in distinct regions 
of chemical space. For instance, both models tend to assign 
higher probabilities to steroids and chromanes (Figure 4B), while 
phloroglucinols, coumarins, and diterpenoids are more highly 
ranked by the C2 model. In contrast, naphthalenes and linear 
polyketides are more strongly favored by the C1 model. Regarding 
maximum predicted probabilities, there is better consistency 
between C1 and C2 (Figure 4C), although phloroglucinols continue 
to be among the top-ranked classes in the C2 model. To identify 
the most relevant plant species, it is necessary to consider 
the number of potentially active compounds, their predicted 
probabilities, and the total number of compounds reported for each 
species. Some species are well-represented in the database, such as 
Garcinia mangostana and Syzygium aromaticum, while others are 
represented by only a few compounds, such as Melicope durifolia
and Turraea obtusifolia. Out of a total of 21,665 species, only 1,045 
(4.82%) contain at least one compound among the 340 molecules 
commonly identified by C1 and C2 models with a probability 
greater than 0.55. Moreover, only 215 species (0.99%) have two 
or more such compounds, and just 37 species (0.17%) have five 
or more. The average predicted probabilities from the C1 and C2 
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FIGURE 4
Analysis of molecular classes and subclasses. (A) Distribution of molecules by chemical class and subclass. (B) Average probabilities predicted by the C1 
and C2 models for each chemical class. (C) Maximum probabilities predicted by the C1 and C2 models for each class. Bubble sizes in panels B and C 
represent are proportional to the number of compounds within each chemical class.

models, the number of identified active compounds, and the total 
number of compounds reported for each species are presented
in SM3.

Several species from the genus Taxus (e.g., Taxus baccata, 
Taxus cuspidata) contain the highest number of predicted active 
compounds (Figure 5A), although the proportion of active 
compounds relative to the total number of molecules reported 
per species varies considerably (from 10% to 100%) (Figure 5B). 
In contrast, several species from the genus Elaphoglossum (E. 
spatulatum, E. gayanum, and E. piloselloides), despite having 
fewer compounds reported in the database (between 3 and 6), 
exhibit a high proportion (40–100%) of compounds with predicted 
probabilities >0.55.

Considering both absolute and relative representations, as well 
as the compound class results shown in Figure 4, the genera Taxus, 
Elaphoglossum, Glycyrrhiza, and Seseli appear particularly relevant 
for gastric cancer-related bioprospecting. In general, some chemical 
subclasses are distributed across various plant species, while others 
are more genus- or family-specific. For further analysis, all species 
from the aforementioned genera were grouped, resulting in 36, 
20, 11, and 1 identified active compounds for Taxus, Glycyrrhiza, 
Elaphoglossum, and Seseli, respectively. Although several Seseli
species appear in Figure 5B, they are all associated with a single 
compound (PubChem CID: 163026028), a tryptophan alkaloid. 
The dominant chemical classes identified within each genus 
were: 97.22% diterpenoids in Taxus, 85.00% isoflavonoids in 
Glycyrrhiza, 90.91% phloroglucinols in Elaphoglossum, and 100% 
tryptophan alkaloids in Seseli. This distribution highlights the 
presence of distinct bioactive scaffolds across different botanical 

lineages, underscoring their potential for targeted pharmacological 
exploration. 

4 Discussion

In the individual models developed for each cell line, at least 
one modeling strategy achieved an accuracy greater than 0.8, 
although none surpassed 0.9. This trend was also observed in 
a previous study on the same cell lines (Perez-Castillo et al., 
2018), except for one newly included cell line in the present work. 
In the previous work of (Perez-Castillo et al., 2018) we used a 
different fingerprint representation. Even though the objective is 
not focused on the analysis of the best chemical representation 
for this type of interactions, our results seem to indicate that 
ECFP4 description is slightly better than the description previously 
used. The ISIDA Fragmentor software (Varnek et al., 2008) was 
previously used to obtain 2D derived fingerprints descriptors 
that are quite different to the ECFP4. Even when the presented 
work is not directly comparable (i.e., different datasets) to our 
previous work, the performance metrics in the presented modelling 
are better. Our consensus models showed an accuracy range of 
0.759–0.838 compared to 0.624–0.768 in the external dataset in 
our previous work (Perez-Castillo et al., 2018) while four and 
not three cell lines were used (we added the BGC-827). Several 
factors could explain this behavior including the increment of the 
compounds in the database. However, we should keep in mind 
that when modeling compound–cell line interactions, multiple 
mechanisms may underlie cell mortality and each mechanism could 
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FIGURE 5
(A) Species with five or more active compounds, sorted by the total number of active compounds (orange bars) and the percentage of active 
compounds relative to the total number of molecules reported for the species (blue line). (B) Species sorted by the fraction of active compounds (blue 
line) and the corresponding number of active compounds (orange bars).

be potentially associated with distinct chemical spaces (i.e., targeting 
different molecular pathways or proteins). Moreover, the chemical 
space represented in the database for each cell line likely does 
not capture all these mechanisms uniformly. This hidden structure 
will increase the challenge for machine learning models to fully 
recognize and balance the internal chemical diversity. Notably, 
combining the models for different cell lines during virtual screening 
improved the chances of identifying active molecules by 12–15 times 
compared to random selection.

Despite the therapeutic advances achieved with 
chemotherapeutic agents such as capecitabine and docetaxel in the 
treatment of gastric cancer, significant clinical limitations persist, 
warranting the exploration of new pharmacological strategies. 
Treatment efficacy remains limited in patients with advanced-
stage disease, and a high incidence of acquired resistance leads 
to early relapses and reduced overall survival (Liu et al., 2024b). 
Moreover, the cumulative toxicity associated with prolonged 
chemotherapy compromises quality of life, particularly in elderly 
patients or those with comorbidities (Rupp and Stengel, 2021). 
These challenges highlight the urgent need to investigate alternative 
or complementary therapies. Moreover, the research on natural 
products could also reveal new avenues on potential alternative 
mechanisms in gastric cancer inhibition or provide a synergic 
complement (Mao et al., 2020).

In the presented work, the goal of this virtual screening 
experiment was to evaluate the models’ ability to retrieve 
compounds exhibiting inhibitory effects across more than two 
gastric cancer cell lines. Rather than relying on a single ensemble 
model, we employed the two best model combinations (C1 and 
C2) to enhance robustness. The observed differences in the 

average and maximum rankings of chemical classes between the 
two ensemble models (Figures 4B,C) suggest that the chemical 
space–activity relationship is represented differently in each model. 
This finding supports the strategy of combining both ensemble 
models during virtual screening to improve candidate molecule 
selection and decision-making processes.

The first noteworthy observation is that several of the molecules 
with the highest predicted probabilities in the C1 and C2 models 
are either well-known anticancer agents or structurally similar to 
such drugs. This result, independently, strengthens the reliability 
of the virtual screening approach but also indicates that some of 
the screened drugs could be acting as anticancer drugs but not 
necessarily specific to gastric cancer. For example, orsaponin and 
paclitaxel (Figure 3) have well-documented anticancer properties. 
Orsaponin (OSW-1) is a saponin isolated from Ornithogalum 
saundersiae that has demonstrated the ability to induce apoptosis 
in cancer cells in both in vitro and in vivo (xenograft) models 
(Zhang et al., 2017; Zhan et al., 2021). Although OSW-1 has been 
evaluated against several cancer types, such as colorectal and breast 
cancer, to our knowledge, it has not yet been studied in the context 
of gastric cancer or their cell lines. In contrast, paclitaxel is a 
broad-spectrum anticancer drug (Sharifi-Rad et al., 2021) that is 
also used in gastric cancer treatment, where it has been shown to 
improve overall survival (Fountzilas et al., 2024). In our database, 
paclitaxel was identified in Corylus avellana, Taxus baccata, Taxus 
wallichiana, Taxus canadensis, and other species of the Taxus genus. 
The detection of paclitaxel in Corylus avellana offers promising 
alternatives for biotechnological production through the cell culture 
of this species (Farhadi et al., 2020). Interestingly, Corylus avellana
nuts are widely used in food products, and several studies, including 
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clinical trials, have suggested a positive effect of these products 
in reducing the risk of esophageal and gastric adenocarcinomas 
(Hashemian et al., 2017; Cao et al., 2023). Molecules M5 and 
M6 (7-epi-10-Deacetyl Cephalomannine) are structurally related to 
paclitaxel (as taxane diterpenoids), but no previous studies were 
found specifically addressing their bioactivity. A similar situation 
applies to the other top-ranked molecules selected by the C1 and 
C2 models and presented in Figure 3.

Among the 340 molecules with predicted probabilities 
greater than 0.55, the most abundant subclasses are 
taxane diterpenoids (diterpenoids), flavanones (flavonoids), 
isoflavanones (isoflavonoids), agarofuran and daucane 
sesquiterpenoids (sesquiterpenoids), dimeric phloroglucinols 
(phloroglucinols), various subclasses of tryptophan alkaloids, 
limonoids (triterpenoids), and plant xanthones (xanthones 
class) (Figure 4A). However, when considering the predicted 
probabilities, the dominant groups are steroids, tryptophan 
alkaloids, sesquiterpenoids, phloroglucinols, and isoflavonoids 
(Figures 4B,C). This trend is also reflected in the predominant 
genera identified in Figures 5A,B. Genera such as Taxus, 
Elaphoglossum, Glycyrrhiza, Seseli, along with specific species like 
Turraea obtusifolia and Melicope durifolia, appear highly relevant 
not only for phytotherapy but also for the discovery of new bioactive 
molecules targeting gastric cancer.

As previously mentioned, the genera Taxus, Glycyrrhiza, 
Elaphoglossum, and Seseli comprise groups of diterpenoids, 
isoflavonoids, phloroglucinols, and tryptophan alkaloids, many 
of which correspond to the chemical classes with the highest 
predicted probabilities. Among the isoflavonoids predicted at 
the top by the C2 model, we identified 2′,4′,7-trihydroxy-
5-methoxy-3′,6-diprenylisoflavan, glycybenzofuran, glyurallin A, 
and 4-[4-hydroxy-6-methoxy-5-(3-methylbut-2-enyl)-1-benzofuran-
2-yl]benzene-1,3-diol. All of these compounds are found within the 
Glycyrrhiza genus, and some have documented anticancer properties 
(Ito et al., 2020; Wu et al., 2022). Indeed, flavonoids (particularly 
flavanones) and isoflavonoids from various Glycyrrhiza species have 
been widely regarded as key contributors to the anticancer activity 
associated with these plants (Jain et al., 2022; Frattaruolo et al., 
2024). In the phloroglucinol group, compounds with high predicted 
probabilities (especially from the C2 model) were predominantly 
identified in Elaphoglossum, including elaphopilosins A, B, and D, 
along with structurally related molecules. To our knowledge, these 
specific elaphopilosins have not yet been directly associated with 
anticancer activity; however, related phloroglucinols and extracts from 
the same genus have demonstrated inhibitory effects against several 
cancer cell lines (Arvizu-Espinosa et al., 2019). Taxane diterpenoids, 
as previously discussed, were strongly favored by both C1 and C2 
models, and are abundant in Taxus species. In the case of Seseli, 
published evidence supports the anticancer activity of several species, 
although most studies have focused on essential oils (Cinar et al., 2020; 
Chen et al., 2024; Vaglica et al., 2024) or coumarins (Zengin et al., 2021; 
Onder et al., 2023), with no specific tryptophan alkaloids identified 
as responsible for the observed effects (Zengin et al., 2021). In our 
study, the compounds identified in Seseli belong to the tryptophan 
alkaloid class. Although tryptophan alkaloids are known to have pro-
apoptotic effects in cancer cells (Guo et al., 2022), we did not find 
specific reports linking the particular molecule identified in Seseli 
species to anticancer activity. 

Unfortunately, the molecules belonging to the steroid group 
(Figure 3, M1) and the tryptophan alkaloids (Figure 3, M2, M4, 
and M7) do not have any specific reports of biological activity. 
Among the plant groups identified, the genera Elaphoglossum
and Seseli show the least available evidence regarding potential 
anticancer effects, both at the plant level and for the molecules 
identified (elaphopilosins and certain tryptophan alkaloids). A 
closer examination of our results also highlights additional plants 
and molecules that could serve as promising candidates for future 
experimental anticancer screening efforts. 

5 Limitations and future perspectives

The integration of in silico ensemble-based modeling with 
natural product databases offers a powerful approach for 
accelerating the discovery of novel bioactive compounds against 
gastric cancer. However, several critical steps remain necessary 
to translate these computational predictions into therapeutic 
advances. First, we can´t be sure that these molecules will show 
specific activity to gastric cancer cell lines. It could be possible to 
display a wide anticarcinogenic effect not only focused on gastric 
cells and even normal vs. pathological cells. In the future, the 
inclusion of other cell lines could open the possibility to explore 
these specificities. Second, in vitro validation of the prioritized 
molecules, particularly those from underexplored genera (such as 
Elaphoglossum and Seseli), is essential to confirm their anticancer 
potential and to elucidate their mechanisms of action. Parallel 
assessment of cytotoxicity against normal gastric epithelial cells 
will be crucial to identify compounds with favorable therapeutic 
windows. Third, the incorporation of toxicity prediction models 
and absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) profiling into future virtual screening pipelines will 
enhance the reliability and safety of selected candidates. Expanding 
the modeling framework to include additional gastric cancer 
subtypes and drug resistance models could further refine compound 
selection and clinical relevance. Moreover, future studies could 
explore the synergistic effects of compound mixtures, particularly 
from the same plant source, reflecting the complexity of natural 
extracts traditionally used in phytotherapy. Integration of multi-
omics data (e.g., transcriptomics and proteomics) and systems 
biology approaches may also provide deeper insights into the 
multi-target potential of selected natural compounds. Ultimately, 
the combination of computational, experimental, and systems 
biology methodologies will be critical to fully exploit the therapeutic 
potential of plant-derived molecules, offering promising new 
strategies for gastric cancer prevention and treatment. 

6 Conclusions

In this study, we developed and validated two ensemble-
based predictive models targeting the inhibitory effects of natural 
compounds on four gastric cancer cell lines: AGS, NCI-N87, 
BGC-823, and SNU-16. The models achieved robust predictive 
performance and significantly enhanced the identification of 
bioactive molecules 12–15 times greater than random selection. 
Virtual screening of over 100,000 natural compounds from 21,665
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plant species revealed both known anticancer agents (e.g., paclitaxel 
and orsaponin) and novel candidates belonging to underexplored 
chemical classes such as phloroglucinols and tryptophan alkaloids. 
The genera Taxus, Glycyrrhiza, Elaphoglossum, and Seseli emerged 
as promising botanical sources. While some have established 
pharmacological profiles, others represent untapped resources 
with limited or no prior evidence of anticancer activity. These 
findings highlight the potential of phenotypic in silico screening 
for uncovering multifunctional compounds of natural origin. 
Further experimental validation, including cytotoxicity assays 
and mechanistic studies, is essential. Moreover, the inclusion of 
predicting models related to ADMET and cells selectivity could 
improve these predictions and advance the discovery of safe and 
effective plant-derived agents for gastric cancer therapy.
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