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Background: Gastric cancer (GC) remains a major global health burden
despite advances in diagnosis and treatment. In recent years, natural products
have gained increasing attention as promising sources of anticancer agents,
including GC.

Methods: In this study, we applied an in silico ensemble-based modeling
strategy to predict compounds with potential inhibitory effects against four GC-
related cell lines: AGS, NCI-N87, BGC-823, and SNU-16. Individual predictive
models were developed using several algorithms and further integrated into
two consensus ensemble multi-objective models. A comprehensive database
of over 100,000 natural compounds from 21,665 plant species, was screened
for validation and to identify potential molecular candidates.

Results: The ensemble models demonstrated a 12-15-fold improvement in
identifying active molecules compared to random selection. A total of 340
molecules were prioritized, many belonging to bioactive classes such as
taxane diterpenoids, flavonoids, isoflavonoids, phloroglucinols, and tryptophan
alkaloids. Known anticancer compounds, including paclitaxel, orsaponin (OSW-
1), glycybenzofuran, and glyurallin A, were successfully retrieved, reinforcing
the validity of the approach. Species from the genera Taxus, Glycyrrhiza,
Elaphoglossum, and Seseli emerged as particularly relevant sources of bioactive
candidates.

Conclusion: While some genera, such as Taxus and Glycyrrhiza, have well-
documented anticancer properties, others, including Elaphoglossum and Seseli,
require further experimental validation. These findings highlight the potential of
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combining multi-objectives ensemble modeling with natural product databases
to discover novel phytochemicals relevant to GC treatment.

gastric cancer prevention, plant-derived compounds, in silico screening, compound
discovery, bioactive plant species, secondary metabolites

1 Background

Despite significant advances in medicine, gastric cancer remains
a major global public health challenge, characterized by a dynamic
historical evolution in its incidence, diagnosis, and treatment.
Traditionally, it has ranked among the leading causes of cancer-
related mortality, particularly in regions with a high prevalence of
Helicobacter pylori infection and unhealthy dietary patterns. During
the 20th century, the incidence of gastric cancer markedly declined
in developed countries, primarily due to improvements in hygiene,
widespread use of food refrigeration, and reduced consumption
of salted and smoked foods (Kang et al., 2024). However, it
remains a substantial cause of cancer-related deaths worldwide,
with a heterogeneous geographical distribution. East Asia, Latin
America, and Eastern Europe report the highest incidence rates,
whereas North America and Western Europe have experienced a
continuous downward trend (Mithany et al., 2024). In 2020, more
than 1 million new cases of gastric cancer were diagnosed globally,
accompanied by approximately 769,000 deaths, underscoring the
persistent magnitude of this disease (Sung et al., 2021). Notably,
the epidemiological profile of gastric cancer has undergone a
significant shift in recent decades, with an increasing incidence
observed among younger populations. This trend has prompted
a reevaluation of preventive strategies and emphasizes the critical
need for early-life interventions targeting modifiable risk factors
(Kang et al., 2024). Several determinants of gastric cancer have
been well-established. Infection with H. pylori remains the most
prominent biological risk factor, often acting synergistically with
behavioral and environmental influences (Poorolajal et al., 2020).
Socioeconomic disparities further modulate the burden of disease.
Lower educational attainment and limited access to healthcare
services are associated with unhealthy lifestyles and delayed
diagnosis, ultimately impacting survival outcomes (Alicandro et al.,
2022). These complex, interrelated factors highlight the necessity
for comprehensive, multidisciplinary approaches to the prevention,
early detection, and management of gastric cancer globally.

In the treatment of gastric cancer, various chemotherapeutic
agents have demonstrated significant efficacy in both in vitro
cellular model systems and preclinical studies. Capecitabine, a
prodrug of 5-fluorouracil (5-FU), has been shown to inhibit
cell proliferation and angiogenesis in experimental models using
BGC-823 cells, improving survival outcomes with low toxicity
(Yuan et al, 2015). Similarly, docetaxel, an agent that disrupts
microtubule polymerization, has proven effective by inducing G,/M
phase cell cycle arrest in AGS cells and exhibiting antiangiogenic
and synergistic effects when combined with compounds such as
gambogic acid in BGC-823 cells (Grabarska et al., 2023). Additional
chemotherapeutic agents and alternative treatment strategies for
gastric cancer have been extensively reviewed (Sexton et al,
2020; Guan et al.,, 2023). In parallel with the search for effective
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chemotherapeutic agents, increasing attention has been given to
natural compounds. Curcumin, the principal bioactive component
of turmeric, has demonstrated notable anti-inflammatory and
antiproliferative properties relevant to the prevention and treatment
of gastric cancer (Zhang et al, 2022). Various formulations of
curcumin are currently being evaluated in clinical trials, such as
NCT02782949, further supporting its potential application in gastric
cancer management (Warias et al., 2024). Other natural molecules,
including resveratrol, quercetin, and piceatannol, found in a variety
of plant-derived products, have also shown the ability to modulate
inflammatory processes and oncogenic pathways involved in gastric
cancer progression (Zhao et al., 2023; Warias et al., 2024).

In the context of the discovery of novel natural products, in
silico predictive modeling has emerged as a powerful methodology
for identifying bioactive compounds. This approach employs
computational tools to predict interactions between natural
molecules and target proteins implicated in carcinogenesis, thereby
accelerating the identification of novel therapeutic candidates
(Liu et al, 2024a). Predictive modeling has been particularly
instrumental in uncovering anticancer agents derived from food
sources, notably polyphenols, which exhibit antioxidant and
anti-inflammatory properties capable of reducing gastric cancer
risk (Zheng et al, 2024). Computational strategies have been
used to predict new drug targets, such as the epidermal growth
factor receptor (EGFR) (Mashima et al., 2019), and to identify
natural compounds, such as coumarin derivatives, capable of
interacting with BCL2 and inducing apoptosis in gastric cancer
cells (Perumalsamy et al., 2018). Moreover, the integration of
network pharmacology approaches has enabled the identification of
bioactive molecules like dehydroxy-isocalamendiol and spathulenol,
which bind to critical cancer-related proteins, further highlighting
their therapeutic potential (Pradhan et al., 2024). However,
despite these advances, few studies have focused on large-scale
screening of natural product libraries using phenotypic models,
(Dai et al., 2016; Jin et al., 2020), as opposed to traditional target-
centered modeling strategies (Jalali et al., 2023). Expanding the
use of phenotypic screening could enhance the discovery of
multifunctional compounds with broader mechanisms of action
against gastric cancer. In this context, the present in silico study
aims to identify effective molecules against gastric cancer (GC) cell
lines, specifically AGS, NCI-N87, SNU-16, and BGC-823. Building
upon our previous work (Perez-Castillo et al., 2018), we employed a
consensus approach based on ensemble modeling, where individual
predictive models were constructed and subsequently integrated
to generate a final consensus probability for each compound. This
methodology was applied to screen more than 100,000 molecules
derived from 21,665 plant species. The ultimate objective is to
pinpoint potential natural sources and plant species that could serve
as promising candidates for further research in drug discovery and
drug design collectively targeting GC cell lines.
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FIGURE 1
Flow diagram of the presented methodology.

cell lines inhibition

2 Materials and methods

A full schematic representation of the methodology is
presented in Figure 1. This representation will be described in detail
across this section.

2.1 Database'’s description and curation

Four gastric cancer-related cell lines were selected for modeling:
AGS (ChEMBL 3308078), NCI-N87 (ChEMBL 3307326), BGC-
823 (ChEMBL 3307635), and SNU-16 (ChEMBL 3307273). All
compounds with reported IC;, values were retrieved from the
ChEMBL database, version 35 (Zdrazil et al, 2024). The data
curation process followed a strategy similar to that described in
previous studies (Perez-Castillo et al., 2018; Tejera et al., 2021).
An ICs, threshold of 10 uM was employed to classify compounds
as active (<10 uM) or inactive (>10 pM). When a molecule had
multiple IC;, values reported for the same cell line across different
studies, it was included only if all reports consistently classified it
in the same activity class (i.e., all experiments agreed on its active
or inactive status). If this criterion was not met, the compound-cell
line pair was excluded. Additionally, compounds evaluated in more
than two cell lines were excluded from the training sets and instead
reserved for virtual screening purposes.

2.2 Modeling strategies and predictions

All molecules were described using ECFP4 fingerprints (1,024
bits) computed with RDKit (RDKit, 2018). Only ECFP4 description
was used in this work. We had used this type of description
previously in molecule-cell lines interaction across several cell lines
(Tejera et al., 2019). However, we agree that it is not the only
option available. Given that class imbalance is commonly observed,
typically favoring either the inactive or active class, data balancing
was performed through data reduction by applying a clustering
algorithm to the majority class, following a strategy similar to that
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used in previous work (Tejera et al., 2021). Specifically, all molecules
in the majority class (represented by their ECFP4 fingerprints)
were clustered using the k-means algorithm (KMeans function from
sklearn. cluster), incrementally increasing the number of clusters
from 2 up to the number of compounds in the minority class. For
each clustering step, the silhouette score was calculated (using the
silhouette_score function from sklearn. metrics), and the number of
clusters yielding the highest silhouette score was selected as optimal.
Once the optimal number of clusters was determined, a proportional
number of compounds was randomly selected from each cluster to
match the size of the minority class. The final balanced datasets for
each cell line are presented in Supplementary Material S1.

After balancing the data, a random split was performed for
each cell line dataset into training, test, and external sets, following
a 60%-20%-20% ratio. Prior to modeling, variable reduction was
applied by removing all descriptors with a variance lower than
0.05 within the training subset. An important aspect of model
evaluation (for both test and external sets) is the consideration of the
applicability domain. To define this domain, a principal component
analysis (PCA) was conducted on the training subset, extracting the
principal components that together explained more than 90% of
the cumulative variance. The maximum Euclidean distance between
individual compounds and the centroid (computed using the
selected principal components) was used to define the applicability
domain. Any compound whose distance exceeded this maximum
value was excluded from further analysis. The reason to use
Euclidian distance is that the principal components are normalized
numerically continuing description and it is fast, intuitive and simple
to compute. In previous works we used the Tanimoto distance
directly on the ECFP4 fingerprint (Jimenes-Vargas et al., 2024). This
approach could be robust but computing the similarity matrix is
computationally expensive over large datasets.

We evaluated four modeling strategies: random forest (RF),
decision trees (DTREE), k-nearest neighbors (KNN), and an
ensemble modeling approach combining models derived from
RE DTREE, and KNN. In the case of RF and DTREE we used
Gini impurity to measure the quality of the split. Regarding the
maximum depth of the tree, we initially explored several values
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and decided to restrain to 100 for RE. In the case of DTREE all
nodes are expanded until all leaves contain less than 2 samples.
These parameters were not modified further in the analysis or
optimization. Additionally, for variable selection in the RF, DTREE,
and KNN models, a genetic algorithm was employed (Perez-
Castillo et al., 2018; Tejera et al., 2021). The genetic algorithm
was performed with an initial population of 1,000 individuals and
was executed over 5,000 generations. To ensure model simplicity
and prevent overfitting, the number of variables selected in each
generated model was restricted to between 4 and 25. The balanced
classification rate (BCR) was used as the fitness function for the
genetic algorithm (Equation 1) (Perez-Castillo et al., 2018).

Se+ S
BCR = 62 P

(1-1Se—-Spl) (1)
where Se and Sp are the sensitivity and specificity respectively. For
each model, we computed: BRC, Se, Sp, F1-score, and accuracy for
the test and external validation.

2.3 Ensemble modeling and virtual
screening

For ensemble modeling, an initial population of 200 individual
models was generated, each fulfilling the following criteria: (i)
each model randomly used one of the RE DTREE, or KNN
algorithms; (ii) each model included between 4 and 25 variables;
and (iii) each model achieved a BCR higher than 0.65 when
evaluated on the test set. Based on these individual models, an
initial ensemble population of 1,000 random combinations was
created, with each ensemble comprising between 2 and 20 models.
This initial ensemble population was further optimized using a
genetic algorithm aimed at maximizing the BCR metric over 5,000
generations. In the final ensemble models, the mean probability
of the individual models was used as the aggregation function to
compute the final prediction.

For the virtual screening phase, several considerations must
be addressed. The primary objective of the final models is to
evaluate the probability that a compound exhibits anticancer activity,
specifically against gastric cancer. Thus, the main challenge lies
in accurately ranking compounds according to this criterion.
However, defining anticancer activity based solely on cell line
data presents difficulties, as (a) we are evaluating effects across
four different gastric cancer cell lines, and (b) most compounds
do not have activity data reported for all four cell lines, indeed,
only two compounds in the ChEMBL database were found to
have information across all four. To assess the performance of
the combined cell line models in identifying potentially useful
molecules, a virtual screening dataset was constructed. This
dataset included: (i) 51 compounds from ChEMBL with reported
activity against at least three of the four cell lines. Of these, 25
compounds were classified as active (active in at least two cell
lines), while the remaining compounds were classified as inactive
(active in only one or none of the cell lines). Additionally, (ii)
compounds from the Genomics of Drug Sensitivity in Cancer
(GDSC) database (Yang et al., 2012) were retrieved, specifically those
evaluated across AGS, NCI-N87, and SNU-16 cell lines (BGC-823
data were not available in GDSC). A total of 125 compounds were
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identified and classified as active or inactive based on a z-score
threshold of —1.5. Following a similar approach as with the ChREMBL
dataset, 62 compounds were classified as active (active in at least two
cell lines), and the remainder as inactive.

Finall, we also consulted the National Cancer
Institute database (National Cancer Institute, 2025) and included
four of the 22 small-molecule drugs currently used in the treatment
of GC: capecitabine, docetaxel, doxorubicin, and mitomycin.
Fluorouracil was not included, as it is already present in the GDSC
database and was found to be inactive against the three gastric
cancer cell lines evaluated. With this additional information, a total
of 178 molecules were compiled for the virtual screening dataset, of
which 86 were labeled as “active;” indicating a higher likelihood of
exhibiting anticancer activity.

One limitation of the constructed dataset is its relatively small
size, which restricts the evaluation of enrichment metrics for virtual
screening. For a robust calculation of virtual screening performance,
a larger number of inactive (negative) molecules is required. As
previously described (Perez-Castillo et al., 2018), decoy molecules
were generated from the 86 active compounds. To this end, the
DUD-E web service (Mysinger et al., 2012) was utilized, resulting
in the generation of 4,357 decoy molecules, leading to a final dataset
comprising 4,535 compounds. The early recognition metrics used to
evaluate the models’ performance in virtual screening are defined in
Equations 2, 3 (Truchon and Bayly, 2007).

C ke ke
If RIE,;, = Rl and RIE,, = Ree )’ then we can
define BEDROC as:
RIE-RIE,,,
BEDROC = )

RIEmax - RIEmin

In these equations, Ra = n/N, where n is the number of
active compounds and N is the total number of molecules. The
a-value corresponds to the portion of the ranked dataset where
the recovery of active compounds is evaluated, representing early
recognition performance. Mathematically, the « -value is associated
with a fraction 0<x<I, indicating the segment of the ranked list
within which the active compounds are retrieved. This fraction is
also necessary for computing the enrichment factor (EF), which
is defined as:

n
Zi=18i I r,<xN

—,whered; = 3)
0 r>xN

EF =

Here, N represents the total number of compounds in the virtual
screening list. Higher values of « correspond to smaller fractions of
the ranked list used to retrieve active compounds, emphasizing early
recognition. The computation of « can be adjusted depending on
specific evaluation goals (Truchon and Bayly, 2007). For example,
to evaluate enrichment within the top 1% of the ordered list while
aiming for this fraction to contribute approximately 80% of the
overall enrichment, an a-value of 160.9 is used. In our study,
enrichment metrics were computed under different a-value and x
conditions to thoroughly assess model performance.

2.4 Compound-plants databases curation

information
COCONUT

To «create a compound-plant database,
was integrated from FOODB (Foodb, 2025),
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(Sorokina et al., 2021), and LOTUS (Rutz et al., 2022) databases.
COCONUT and LOTUS are specialized in natural products.
In both the COCONUT and FOODB databases, full taxonomic
identification of the source species is not always available. FOODB
includes entries corresponding not to specific species but rather
to processed or mixed foods (e.g., popcorn, cheese, milk), which
were excluded from this analysis. To standardize species names, we
used the National Center for Biotechnology Information (NCBI)
taxonomy database ( fullnamelineage.dmp), considering only plant
species (Viridiplantae) that could be matched in NCBI records.
Regarding compound curation, the RDKit package for Python
was employed to perform the following operations: (1) removal of
chiral information, (2) generation of InChIKeys, and (3) molecule
sanitization. The removal of chiral information was based on
two key considerations: (i) chiral descriptors are inconsistently
reported across databases, either because the absolute configuration
is unknown or because compounds exist as racemic mixtures, and
(ii) the predictive models developed in this study do not account
for chirality. Thus, treating enantiomers as distinct entities could
artificially inflate the number of predicted active compounds.
Consequently, enantiomers were considered duplicate entries when
found within the same plant species. After filtering and cleaning
the data, the final database included 21,665 plant species, 105,938
unique compounds, and 2,251,567 compound-species associations.

3 Results

Following the curation and balancing procedures,
we characterized the datasets based on their active
and inactive compound distributions. The final datasets

(provided in Supplementary Material S1, SM1) comprised SNU-
16 (n = 2105 100 active, 110 inactive), NCI-N87 (n = 247; 130 active,
117 inactive), BGC-823 (n = 1,565; 746 active, 819 inactive), and
AGS (n =791; 396 active, 395 inactive).

3.1 Predictive models and virtual screening

The performance of each applied algorithm is summarized
in Table 1. We report both the best model identified within
the final the
performance population.

genetic algorithm populations and
the final

Complete performance data for all models and ROC curves

mean
metrics  across entire
representations are provided in Supplementary Table S2.1 and
Supplementary Figure S2.1 of Supplementary Material S2(SM2).
The selection of the best model from all models after genetic
algorithm optimization is supervised. We consider a high BCR value
in the test and external partitions. However, we also consider similar
values between the mean BCR value from the genetic algorithm
population and the BCR obtained in the external partition. This
similarity is extended to other metrics like sensitivity, specificity
and Fl-score that can be consulted in SM2. We observe that, in
some cases, ensemble models perform slightly better than the other
models. For instance, this is the case for the AGS and BGC-827
cell lines. However, for the NCI-N87 cell line, decision tree models
appear to outperform ensembles, while in the SNU-16 cell line,
random forest and KNN models also seem to perform better. It
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is important to notice that we did not use cross-validation. The
models are trained using the “training” partition and the fitness
functions during model evolution are obtained by evaluation in
the “test” group. The final models are evaluated in the “external”
partition which is not used at any moment of the training or
variable selection (Tropsha, 2010; Castillo-Gonzélez et al., 2015).
We can notice that the performance metrics are quite similar
across the test group (presented as the average across the entire
population), and the external partition which is a good indicator
of the model’s stability and generalization. All compounds used for
virtual screening (n = 4,535) were evaluated with all models. To
select the best combination of models providing the highest initial
enrichment, we evaluated all possible model combinations (256
combinations) and computed the BEDROC score and enrichment
factor (EF) across several initial enrichment fractions. The best
combinations are presented in Figure 2 (individual model values are
detailed in Supplementary Table S2.2; Supplementary Material S2).

Higher a-values assign greater weight to the BEDROC score in
the early enrichment regions of the ranked dataset. Values around
a = 160 correspond approximately to the top 1% fraction (0.01 in
Figure 2, Right) (Zhang et al., 2017). Notably, the EF results for the
combinations E, DTREE, E, RF (dark blue line) and E, E, E, E (green
line) are identical. In the screening procedure we desire models
capable of correctly identifying (or retrieving) most of the active
molecules (it is what BEDROC and EF quantify) in the minimal
portion of the ranked list (it is computed by the fraction and/or
the « -value). Analysis of the profiles in Figure 2 suggests that the
two best-performing combinations are: C1) E, E, E, E (green line)
and C2) E, E, E, RF (orange line). C2 exhibits a superior BEDROC
score at o = 160 and across higher a-values, while C1 achieves a
higher EF. The enrichment factors (EF) of C1 and C2 in the top
0.5%-1% (x = 0.005-0.01) of the ranked list are between 12 and 16,
suggesting suggestion 12 to 16 times better enrichment that what
we should expect from random. In our case, we had a total of 86
active molecules in a total of 4,535, so in the top 1% (45 molecules),
we ranked 14 and around 7 in the top 22 (close to 0.5%) ranked
molecules. The maximum average probabilities obtained across the
entire virtual screening dataset for C1 and C2 were 0.651 and 0.641,
respectively.

3.2 Molecules and plants sources

After database curation as described, a total of 105,938 unique
SMILES were obtained. However, after applying the applicability
domain filters of the models comprising C1 and C2, 104,408 SMILES
remained. Among these, 6,736 molecules (6.45%) in C1 and 5,512
(5.28%) in C2 exhibited a predicted probability greater than 0.5.
The maximum predicted probabilities for C1 and C2 were 0.681
and 0.626, respectively, consistent with the peak values observed
in the virtual screening dataset. Interestingly, only 91 molecules
had a probability >0.6 in C1, compared to just 23 in C2, with only
8 compounds shared between the two models. This discrepancy
suggests that the C2 model is more restrictive. The number of
shared molecules between C1 and C2 at probability thresholds >0.5,
>0.55, and >0.6 were 3,778, 340, and 8, respectively. No compounds
were shared above the 0.65 threshold, as only C1 identified three
molecules at that level. The 340 shared molecules at the 0.55
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TABLE 1 Performance metrics of the different modeling strategies, including ensemble approaches.

Cell Lines Models GA results Best model
Test External
ACC BCR

RF 0.825 0.806 0.857 0.776 0.810 0.793 19
DTREE 0.796 0.778 0.786 0.748 0.857 0.825 26

SNU-16
KNN 0.834 0.814 0.810 0.810 0.810 0.793 17
ENSEMBLES 0.861 0.857 0.857 0.857 0.762 0.759 6
RF 0.847 0.822 0.816 0.802 0.816 0.802 23
DTREE 0.840 0.816 0.816 0.802 0.837 0.819 36

NCI-N87
KNN 0.812 0.787 0.816 0.802 0.837 0.819 25
ENSEMBLES 0.929 0.915 0.918 0.909 0.857 0.838 11
RF 0.688 0.667 0.703 0.687 0.709 0.705 17
DTREE 0.786 0.774 0.789 0.764 0.802 0.795 42

BGC-827
KNN 0.788 0.775 0.792 0.782 0.805 0.782 33
ENSEMBLES 0.858 0.851 0.863 0.853 0.815 0.809 15
RF 0.749 0.736 0.759 0.740 0.772 0.772 25
DTREE 0.768 0.753 0.766 0.737 0.778 0.769 23

AGS

KNN 0.764 0.749 0.753 0.744 0.778 0.769 36
ENSEMBLES 0.856 0.845 0.880 0.869 0.823 0.823 8

“NV: Number of variables included in each model. For ensembles, this number indicates the number of models integrated into the final ensemble.
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FIGURE 2
Left: Variation of the BEDROC values across different a-values for various model combinations. Right: Variation of the enrichment factor (EF) across
different top fractions (x) for the same model combinations. Each line represents a model combination from Table 1 for each cell line. The notation "E”
denotes the ensemble model corresponding to each cell line, as described in Table 1.
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Molecules M1-M3 represent the top-ranked compounds in the C1 model (score >0.65). Molecules M1, M2, and M4-M?9 are the eight compounds
identified in both C1 and C2 models with scores >0.6. These represent the highest-scoring molecules across both models.

threshold were classified using NPClassifier (Kim et al., 2021),
and their chemical classes, as well as the associated C1 and C2
probabilities, are provided in Supplementary Material S3 (SM3).

The top-ranked molecules (the top 3 from the C1 model and the
8 common molecules identified by both C1 and C2) are shown in
Figure 3, along with their corresponding chemical classes. Molecule
M3 is the only compound predicted by the C1 model with a
score >0.65 that is not among the 8 shared molecules. Notably,
M1 corresponds to orsaponin (PubChem CID: 72612554), M6 to
7-epi-10-Deacetyl Cephalomannine (PubChem CID: 72738999),
and M9 to paclitaxel (PubChem CID: 23509308). The remaining
molecules do not have common names or standardized notations
in PubChem. It is also worth noting that M5 displays strong
structural similarity to both M6 and M9. Flavonoids, isoflavonoids,
di- and triterpenoids, sesquiterpenoids, and tryptophan-derived
alkaloids represent the majority of the 340 molecules with combined
probabilities greater than 0.55 (Figure 4A). Among the diterpenoids,
taxane-type diterpenoids are the most abundant; this subclass
includes compounds whose names are derived from the plant genus
Taxus (to be discussed later). Within the flavonoid class, flavanones
are the most represented subclass, followed by chalcones. In the
isoflavonoid group, isoflavanones and pterocarpans are the most
common. Pterocarpans are typically found in the Fabaceae family,
while isoflavanones are broadly distributed, as are agarofuran and
daucane (carotane-type) sesquiterpenoids.

The classes with the highest number of molecules, namely,
flavonoids and diterpenoids, do not necessarily contain the
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compounds with the highest predicted probabilities (Figures 4B,C).
The coefficient of determination (R%) between the predicted
probabilities of the C1 and C2 models across the entire set of
104,408 molecules is 0.743. However, this value drops substantially
to R?> = 0.108 when considering only the 340 shared molecules
with a probability cutoff >0.55, suggesting that although the
models are overall similar, they are specialized in distinct regions
of chemical space. For instance, both models tend to assign
higher probabilities to steroids and chromanes (Figure 4B), while
phloroglucinols, coumarins, and diterpenoids are more highly
ranked by the C2 model. In contrast, naphthalenes and linear
polyketides are more strongly favored by the C1 model. Regarding
maximum predicted probabilities, there is better consistency
between C1 and C2 (Figure 4C), although phloroglucinols continue
to be among the top-ranked classes in the C2 model. To identify
the most relevant plant species, it is necessary to consider
the number of potentially active compounds, their predicted
probabilities, and the total number of compounds reported for each
species. Some species are well-represented in the database, such as
Garcinia mangostana and Syzygium aromaticum, while others are
represented by only a few compounds, such as Melicope durifolia
and Turraea obtusifolia. Out of a total of 21,665 species, only 1,045
(4.82%) contain at least one compound among the 340 molecules
commonly identified by C1 and C2 models with a probability
greater than 0.55. Moreover, only 215 species (0.99%) have two
or more such compounds, and just 37 species (0.17%) have five
or more. The average predicted probabilities from the C1 and C2
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Analysis of molecular classes and subclasses. (A) Distribution of molecules by chemical class and subclass. (B) Average probabilities predicted by the C1
and C2 models for each chemical class. (C) Maximum probabilities predicted by the C1 and C2 models for each class. Bubble sizes in panels B and C
represent are proportional to the number of compounds within each chemical class.

models, the number of identified active compounds, and the total
number of compounds reported for each species are presented
in SM3.

Several species from the genus Taxus (e.g., Taxus baccata,
Taxus cuspidata) contain the highest number of predicted active
compounds (Figure 5A), although the proportion of active
compounds relative to the total number of molecules reported
per species varies considerably (from 10% to 100%) (Figure 5B).
In contrast, several species from the genus Elaphoglossum (E.
spatulatum, E. gayanum, and E. piloselloides), despite having
fewer compounds reported in the database (between 3 and 6),
exhibit a high proportion (40-100%) of compounds with predicted
probabilities >0.55.

Considering both absolute and relative representations, as well
as the compound class results shown in Figure 4, the genera Taxus,
Elaphoglossum, Glycyrrhiza, and Seseli appear particularly relevant
for gastric cancer-related bioprospecting. In general, some chemical
subclasses are distributed across various plant species, while others
are more genus- or family-specific. For further analysis, all species
from the aforementioned genera were grouped, resulting in 36,
20, 11, and 1 identified active compounds for Taxus, Glycyrrhiza,
Elaphoglossum, and Seseli, respectively. Although several Seseli
species appear in Figure 5B, they are all associated with a single
compound (PubChem CID: 163026028), a tryptophan alkaloid.
The dominant chemical classes identified within each genus
were: 97.22% diterpenoids in Taxus, 85.00% isoflavonoids in
Glycyrrhiza, 90.91% phloroglucinols in Elaphoglossum, and 100%
tryptophan alkaloids in Seseli. This distribution highlights the
presence of distinct bioactive scaffolds across different botanical
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lineages, underscoring their potential for targeted pharmacological
exploration.

4 Discussion

In the individual models developed for each cell line, at least
one modeling strategy achieved an accuracy greater than 0.8,
although none surpassed 0.9. This trend was also observed in
a previous study on the same cell lines (Perez-Castillo et al,
2018), except for one newly included cell line in the present work.
In the previous work of (Perez-Castillo et al., 2018) we used a
different fingerprint representation. Even though the objective is
not focused on the analysis of the best chemical representation
for this type of interactions, our results seem to indicate that
ECFP4 description is slightly better than the description previously
used. The ISIDA Fragmentor software (Varnek et al., 2008) was
previously used to obtain 2D derived fingerprints descriptors
that are quite different to the ECFP4. Even when the presented
work is not directly comparable (i.e., different datasets) to our
previous work, the performance metrics in the presented modelling
are better. Our consensus models showed an accuracy range of
0.759-0.838 compared to 0.624-0.768 in the external dataset in
our previous work (Perez-Castillo et al., 2018) while four and
not three cell lines were used (we added the BGC-827). Several
factors could explain this behavior including the increment of the
compounds in the database. However, we should keep in mind
that when modeling compound-cell line interactions, multiple
mechanisms may underlie cell mortality and each mechanism could
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be potentially associated with distinct chemical spaces (i.e., targeting
different molecular pathways or proteins). Moreover, the chemical
space represented in the database for each cell line likely does
not capture all these mechanisms uniformly. This hidden structure
will increase the challenge for machine learning models to fully
recognize and balance the internal chemical diversity. Notably,
combining the models for different cell lines during virtual screening
improved the chances of identifying active molecules by 12-15 times
compared to random selection.

Despite  the  therapeutic with
chemotherapeutic agents such as capecitabine and docetaxel in the

advances  achieved
treatment of gastric cancer, significant clinical limitations persist,
warranting the exploration of new pharmacological strategies.
Treatment efficacy remains limited in patients with advanced-
stage disease, and a high incidence of acquired resistance leads
to early relapses and reduced overall survival (Liu et al., 2024b).
Moreover, the cumulative toxicity associated with prolonged
chemotherapy compromises quality of life, particularly in elderly
patients or those with comorbidities (Rupp and Stengel, 2021).
These challenges highlight the urgent need to investigate alternative
or complementary therapies. Moreover, the research on natural
products could also reveal new avenues on potential alternative
mechanisms in gastric cancer inhibition or provide a synergic
complement (Mao et al., 2020).

In the presented work, the goal of this virtual screening
experiment was to evaluate the models’ ability to retrieve
compounds exhibiting inhibitory effects across more than two
gastric cancer cell lines. Rather than relying on a single ensemble
model, we employed the two best model combinations (C1 and
C2) to enhance robustness. The observed differences in the
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average and maximum rankings of chemical classes between the
two ensemble models (Figures 4B,C) suggest that the chemical
space—activity relationship is represented differently in each model.
This finding supports the strategy of combining both ensemble
models during virtual screening to improve candidate molecule
selection and decision-making processes.

The first noteworthy observation is that several of the molecules
with the highest predicted probabilities in the C1 and C2 models
are either well-known anticancer agents or structurally similar to
such drugs. This result, independently, strengthens the reliability
of the virtual screening approach but also indicates that some of
the screened drugs could be acting as anticancer drugs but not
necessarily specific to gastric cancer. For example, orsaponin and
paclitaxel (Figure 3) have well-documented anticancer properties.
Orsaponin (OSW-1) is a saponin isolated from Ornithogalum
saundersiae that has demonstrated the ability to induce apoptosis
in cancer cells in both in vitro and in vivo (xenograft) models
(Zhang et al., 2017; Zhan et al.,, 2021). Although OSW-1 has been
evaluated against several cancer types, such as colorectal and breast
cancer, to our knowledge, it has not yet been studied in the context
of gastric cancer or their cell lines. In contrast, paclitaxel is a
broad-spectrum anticancer drug (Sharifi-Rad et al., 2021) that is
also used in gastric cancer treatment, where it has been shown to
improve overall survival (Fountzilas et al., 2024). In our database,
paclitaxel was identified in Corylus avellana, Taxus baccata, Taxus
wallichiana, Taxus canadensis, and other species of the Taxus genus.
The detection of paclitaxel in Corylus avellana offers promising
alternatives for biotechnological production through the cell culture
of this species (Farhadi et al., 2020). Interestingly, Corylus avellana
nuts are widely used in food products, and several studies, including
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clinical trials, have suggested a positive effect of these products
in reducing the risk of esophageal and gastric adenocarcinomas
(Hashemian et al., 2017; Cao et al.,, 2023). Molecules M5 and
M6 (7-epi-10-Deacetyl Cephalomannine) are structurally related to
paclitaxel (as taxane diterpenoids), but no previous studies were
found specifically addressing their bioactivity. A similar situation
applies to the other top-ranked molecules selected by the C1 and
C2 models and presented in Figure 3.

Among the 340 molecules with predicted probabilities

greater than 0.55, the most abundant subclasses are
taxane diterpenoids (diterpenoids), flavanones (flavonoids),
isoflavanones  (isoflavonoids),  agarofuran and  daucane
sesquiterpenoids  (sesquiterpenoids), dimeric phloroglucinols

(phloroglucinols), various subclasses of tryptophan alkaloids,
limonoids (triterpenoids), and plant xanthones (xanthones
class) (Figure 4A). However, when considering the predicted
probabilities, the dominant groups are steroids, tryptophan
alkaloids, sesquiterpenoids, phloroglucinols, and isoflavonoids
(Figures 4B,C). This trend is also reflected in the predominant
genera identified in Figures 5A,B. Genera such as Taxus,
Elaphoglossum, Glycyrrhiza, Seseli, along with specific species like
Turraea obtusifolia and Melicope durifolia, appear highly relevant
not only for phytotherapy but also for the discovery of new bioactive
molecules targeting gastric cancer.

As previously mentioned, the genera Taxus, Glycyrrhiza,
Elaphoglossum, and Seseli comprise groups of diterpenoids,
isoflavonoids, phloroglucinols, and tryptophan alkaloids, many
of which correspond to the chemical classes with the highest
predicted probabilities. Among the isoflavonoids predicted at
the top by the C2 model, we identified 2’,4',7-trihydroxy-
5-methoxy-3',6-diprenylisoflavan, glycybenzofuran, glyurallin A,
and 4-[4-hydroxy-6-methoxy-5-(3-methylbut-2-enyl)-1-benzofuran-
2-yl]benzene-1,3-diol. All of these compounds are found within the
Glycyrrhiza genus, and some have documented anticancer properties
(Tto et al., 2020; Wu et al,, 2022). Indeed, flavonoids (particularly
flavanones) and isoflavonoids from various Glycyrrhiza species have
been widely regarded as key contributors to the anticancer activity
associated with these plants (Jain et al., 2022; Frattaruolo et al,
2024). In the phloroglucinol group, compounds with high predicted
probabilities (especially from the C2 model) were predominantly
identified in Elaphoglossum, including elaphopilosins A, B, and D,
along with structurally related molecules. To our knowledge, these
specific elaphopilosins have not yet been directly associated with
anticancer activity; however, related phloroglucinols and extracts from
the same genus have demonstrated inhibitory effects against several
cancer cell lines (Arvizu-Espinosa et al., 2019). Taxane diterpenoids,
as previously discussed, were strongly favored by both C1 and C2
models, and are abundant in Taxus species. In the case of Seseli,
published evidence supports the anticancer activity of several species,
although most studies have focused on essential oils (Cinar et al., 2020;
Chenetal., 2024; Vaglica et al., 2024) or coumarins (Zengin etal., 2021;
Onder et al., 2023), with no specific tryptophan alkaloids identified
as responsible for the observed effects (Zengin et al., 2021). In our
study, the compounds identified in Seseli belong to the tryptophan
alkaloid class. Although tryptophan alkaloids are known to have pro-
apoptotic effects in cancer cells (Guo et al.,, 2022), we did not find
specific reports linking the particular molecule identified in Seseli
species to anticancer activity.
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Unfortunately, the molecules belonging to the steroid group
(Figure 3, M1) and the tryptophan alkaloids (Figure 3, M2, M4,
and M7) do not have any specific reports of biological activity.
Among the plant groups identified, the genera Elaphoglossum
and Seseli show the least available evidence regarding potential
anticancer effects, both at the plant level and for the molecules
identified (elaphopilosins and certain tryptophan alkaloids). A
closer examination of our results also highlights additional plants
and molecules that could serve as promising candidates for future
experimental anticancer screening efforts.

5 Limitations and future perspectives

The integration of in silico ensemble-based modeling with
natural product databases offers a powerful approach for
accelerating the discovery of novel bioactive compounds against
gastric cancer. However, several critical steps remain necessary
to translate these computational predictions into therapeutic
advances. First, we can’t be sure that these molecules will show
specific activity to gastric cancer cell lines. It could be possible to
display a wide anticarcinogenic effect not only focused on gastric
cells and even normal vs. pathological cells. In the future, the
inclusion of other cell lines could open the possibility to explore
these specificities. Second, in vitro validation of the prioritized
molecules, particularly those from underexplored genera (such as
Elaphoglossum and Seseli), is essential to confirm their anticancer
potential and to elucidate their mechanisms of action. Parallel
assessment of cytotoxicity against normal gastric epithelial cells
will be crucial to identify compounds with favorable therapeutic
windows. Third, the incorporation of toxicity prediction models
and absorption, distribution, metabolism, excretion, and toxicity
(ADMET) profiling into future virtual screening pipelines will
enhance the reliability and safety of selected candidates. Expanding
the modeling framework to include additional gastric cancer
subtypes and drug resistance models could further refine compound
selection and clinical relevance. Moreover, future studies could
explore the synergistic effects of compound mixtures, particularly
from the same plant source, reflecting the complexity of natural
extracts traditionally used in phytotherapy. Integration of multi-
omics data (e.g., transcriptomics and proteomics) and systems
biology approaches may also provide deeper insights into the
multi-target potential of selected natural compounds. Ultimately,
the combination of computational, experimental, and systems
biology methodologies will be critical to fully exploit the therapeutic
potential of plant-derived molecules, offering promising new
strategies for gastric cancer prevention and treatment.

6 Conclusions

In this study, we developed and validated two ensemble-
based predictive models targeting the inhibitory effects of natural
compounds on four gastric cancer cell lines: AGS, NCI-N87,
BGC-823, and SNU-16. The models achieved robust predictive
performance and significantly enhanced the identification of
bioactive molecules 12-15 times greater than random selection.
Virtual screening of over 100,000 natural compounds from 21,665
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plant species revealed both known anticancer agents (e.g., paclitaxel
and orsaponin) and novel candidates belonging to underexplored
chemical classes such as phloroglucinols and tryptophan alkaloids.
The genera Taxus, Glycyrrhiza, Elaphoglossum, and Seseli emerged
as promising botanical sources. While some have established
pharmacological profiles, others represent untapped resources
with limited or no prior evidence of anticancer activity. These
findings highlight the potential of phenotypic in silico screening
for uncovering multifunctional compounds of natural origin.
Further experimental validation, including cytotoxicity assays
and mechanistic studies, is essential. Moreover, the inclusion of
predicting models related to ADMET and cells selectivity could
improve these predictions and advance the discovery of safe and
effective plant-derived agents for gastric cancer therapy.
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