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Introduction: FIUPRINT is a multi-omics dataset that measures donors’ protein
expression and cell counts across various assays. Donors were also assigned a
binary value (0 or 1), being labeled as high responders if they had a fold change >4
of the antibody titer for hemagglutination inhibition (HAI) from day O to day 28,
and low responders otherwise (0). In this project, we used the MOFA and Stabl
algorithms to analyze FIUPRINT, estimate the population structure from the data,
and identify the most important features for predicting response to the vaccine.
Methods: The preprocessing of the dataset included removing repeat features,
scaling by assay, and removing outliers. Since Stabl does not directly address
missing values, features with high amounts of missing values were removed and
the remaining were ignored.

Results: MOFA identified the top feature in structure extraction as IL neg 2 CD4
pos CD45Ra neg pSTATS5. MOFA explains well the variance of the data while also
choosing features that have good significance, as illustrated by their significant
p-values (p < 0.05). Stabl found the top feature for explaining the outcome to be
CD33™ CD3" CD4* CD25hiCD127low CD161+ CD45RA + Tregs, which matched
the top result of previously published analysis. MOFA's features achieved an
AUROC of 0.616 (95% CI of 0.426-0.806), and Stabl's achieved an AUROC of
0.634 (95% Cl of 0.432-0.823).

Discussion: Our research addresses a key knowledge gap: understanding how
these fundamentally different analytical approaches perform when analyzing
the same complex dataset. Our exploration evaluates their respective strengths,
limitations, and biological insights and provides guidance on using MOFA and
Stabl to find the best predictive cell subsets and features for understanding large
immunological multi-omics data. The code for this project can be found at
https://github.com/aanya2lgupta/fluprint.

influenza, fluprint, MOFA, Stabl, multi-omics, vaccine, flu vaccine

1 Introduction

Technological advances now allow for multi-omics data, down to the single-cell
level, and pave the way for genomic, transcriptomic, proteomic, and metabolomic
profiling. With the rise of such highly complex, large amounts of immunological
data, the potential to build a much more comprehensive and integrative biological
analysis has grown (Worheide et al., 2021). These analyses can be key tools for areas
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such as systems vaccinology, where large datasets on the immune
states of individuals before and after vaccination are generated.

Before the rise of such datasets, it was hard to pinpoint specific
cell subsets and cellular features that would be most important in
predicting vaccine response. Now, several computational, machine
learning-based approaches have aimed to use these datasets to
either identify factors that drive differences in individual vaccine
responses or create candidate biomarkers at much faster rate,
accelerating the overall process of scientific discovery (Table 1). For
example, the SIMON (Sequential Iterative Modeling OverNight)
algorithm, an automated machine learning system, has been
used to identify predictive biomarkers by comparing results from
multiple algorithms and effectively handling missing data through
subset creation (Tomic et al., 2019a). SIMON has successfully
identified several predictive cell subsets and biomarkers associated
with influenza vaccine response, demonstrating the potential of
computational methods in biomarker discovery.

However, there are many issues that come with the massive
amounts of data available today, as seen in Table 1. High
dimensionality relative to the number of samples can lead to
overfitting. Ways of handling missing data and difference of units
between assays are also variables that can yield large differences
in findings. Missing values can derive from aggregation of studies
with variations in the assays applied, a common situation in large
longitudinal studies. Existing models can also suffer from lack of
explainability and sparsity, which then also reduces interpretability
in real-world context. These models face a ‘black box’ problem,
where their complex internal workings make it hard to decipher
their understanding of the complex relationships in both the
proteomics and cell count data. They can also be extremely
computationally intensive and highly sensitive to parameter
choices. Thus, existing methods, including SIMON, often face
challenges related to handling missing data and integrating

TABLE1 Common methods of feature selection & predictive models.

Approach category

Examples

10.3389/fbinf.2025.1636240

heterogeneous multi-omics data, limiting their practical utility and
biological insight.

In this study, we aim to address these limitations by exploring
two complementary computational methods, Multi-Omics Factor
Analysis (MOFA) and Stabl, to analyze the FIuPRINT dataset.
Our primary goal is to identify key biological features and cell
subsets predictive of differential influenza vaccine responses (high
vs. low responders). MOFA, or multi-omics factor analysis, discovers
the principal sources of variation in multi-omics data sets by an
unsupervised creation of a set of latent factors that capture biological
and technical sources of variability, working well with multi-
omics data (Argelaguet et al,, 2018). MOFA utilizes likelihoods
in estimation, and can effectively deal with missing values by
not including in the likelihood (with the assumption of data
being missing at random). Stabl takes a different approach, as
a supervised machine-learning based algorithm that identifies a
very sparse, reliable set of predictive biomarkers using a unique
threshold determined by the data and noise injection done by the
algorithm (Hédou et al., 2024).

MOFA and Stabl were designed especially to deal with these
important and common problems that arise with other machine
learning and statistical approaches. MOFAs PCA-like unsupervised
approach is not very sensitive to model parameters and provides for
easy interpretability of results through simple correlations or weights
(Argelaguet et al., 2018). Stabl also addresses these issues, ensuring
a robust process of feature selection using bootstrapping and ridge
regularization (Hédou et al., 2024). Logistic regression coupled with
ridge regularization is uniquely equipped to handle feature selection
due to its increased emphasis on the sparsity of the model. Due
to its ElasticNet penalty, it also has the advantage of balancing
between L1 and L2 regularization, encouraging a smaller number
of features without making the model too dependent on a few
features. Additionally, a direct methodological comparison between

Handling of missing
data

Statistical Tests

t-test, ANOVA, correlation

simple, interpretable
(Peng et al., 2005)

cannot capture complex
relationships (Radovic et al.,
2017)

limited options
(removal/imputation)

Tree-based Ensemble

Random Forest, Gradient
Boosting

Handles non-linearity,
captures interactions (Li et al.,
2022)

Less stable with small sample
sizes (Han et al., 2021)

Can handle through surrogate
splits

(Unsupervised)

correlations (Shafizadeh-Mog
and hadam, 2021)

Regularization LASSO, Ridge, Elastic Net Controls overfitting, handles Instability and inconsistency Generally requires imputation
high dimensionality with large number of features
(Khaire and Dhanalakshmi,
2019)
Support Vector Methods SVM, SVR Effective in high-dimensional Sensitive to hyperparameter Requires imputation
spaces (Guido et al., 2024) tuning (Guido et al., 2024)
Dimensionality Reduction PCA, MOFA Reduces complexity, handles Not outcome-focused MOFA accommodates missing

(Shafizadeh-Mog and hadam,
2021)

values

Stability Selection (Supervised)

Stabl, Boruta

Robust feature selection
(Manikandan et al., 2024)

Computationally intensive
(Manikandan et al., 2024)

Requires pre-processing for
missing values
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unsupervised and supervised approaches remains unexplored.
Such a comparison is crucial for understanding how algorithmic
selection impacts feature identification and interpretation in vaccine
response studies. Here, we address this gap by implementing both
MOFA (unsupervised) and Stabl (supervised) on the same dataset,
evaluating their performance, concordance with previous findings,
and unique contributions to understanding vaccine response
predictors. Thus, in this paper, we explore these two complementary
algorithms by analyzing the unique benefits and results of each on
FIuPRINT, an influenza vaccine dataset, to gain deeper biological
insights and identify robust predictive biomarkers of influenza
vaccine response.

2 Materials and methods
2.1 Subjects, sample, and data collection

The FIuPRINT dataset was created by combining the results
of eight clinical studies from 2007 to 2015 (Tomic et al., 2019b).
There were 740 individuals undergoing influenza vaccination (either
IIV or LAIV) who had blood and serum samples taken at both
baseline and post-vaccination timepoints (Tomic et al., 2019b).
The original population had donors from ages 1-90 years, with
a median age of 27 years, a distribution of 446 females and 294
males, and had a majority of Caucasians (Tomic et al.,, 2019b).
Response was recorded as a binary value, with an individual
considered a high responder (Worheide et al., 2021) if they had
a fold change greater than or equal to four in the antibody titer
(HAI) from day 0 to day 28 and a low responder otherwise (0).
Ideally, individuals in training data would be labeled as protected
and unprotected following vaccination, but that cannot be the
case for flu infection. Instead, hemagglutination inhibition (HAI)
titer is very commonly used as a surrogate marker of protection
and a fold-change (day 28/day 0 HAI) is often used to assess
vaccine efficacy (e.g., high and low responders based on 4-fold
change relative to pre-vaccination titer) (Parvandeh et al., 2019).
Other factors that were recorded with each individual included
gender, race, visit age, BMI, vaccine history, influenza history,
cytomegalovirus (CMV) status, Epstein-Barr Virus (EBV) status,
and statin use. The various assays included multiple cytokine assays
(Luminex), hemagglutination inhibition assay, serological assays
for CMV and EBV antibodies, phosphoepitope flow cytometry,
and mass cytometry immunophenotyping, creating a heterogenous
dataset with data from different assays, with both proteomics and
cell count assays that also differed in units and thus ranges of their
measurements.

For this project, the subset of individuals ranging from age
8-40 who received inactivated influenza vaccine (IIV) was taken,
resulting in 187 donors (Tomic et al, 2019a). All assays were
taken for each donor’s first visit, and this subset of the data
was taken to minimize missing values (Tomic et al., 2019a). For
this dataset, the “name” and “subset” columns were combined
to create the features for MOFA and Stabl. Three assays were
dropped, as documentation suggests that MOFA struggles to
learning meaningful factors from assays with less than 15 features
(Argelaguet et al., 2018).
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2.2 Pre-processing of data prior to model
input

For both MOFA and Stabl analyses, the input data consisted
of a data matrix with dimensions 162 x 3,091, where each row
represented one donor and each column represented a biological
feature measured by one of the assays. The dataset included 162
donors selected from the original FIuPRINT dataset. Each donor
had multi-omics measurements taken at baseline (pre-vaccination)
and post-vaccination timepoints. For the analyses presented here,
we specifically used data from baseline measurements only.
Demographic and clinical variables such as BMI, sex, age, vaccine
history, influenza history, CMV and EBV status, and statin use were
not included as input features. Supplementary Table S1 details the
original assays and number of features for each.

MOFA takes as input the multi-omics data described above and
outputs a set of latent factors, each representing a principal source
of variation. The output from MOFA included factor loadings for
each feature, indicating the contribution of each feature to each
latent factor. To identify features potentially predictive of vaccine
response, we correlated the latent factors identified by MOFA with
the vaccine response outcome (high vs. low responders), and then
selected the features with the highest loadings on the most strongly
correlated factors.

The input to Stabl was the same multi-omics data matrix
described above, along with the binary vaccine response outcome
(high vs. low responders) for each donor, defined based on
fold-change in antibody titers from pre-to post-vaccination. Stabl
identified a sparse set of features most predictive of vaccine response
by employing logistic regression with ridge regularization and
bootstrapping to ensure robustness and stability of selected features.
The output from Stabl included a sparse set of predictive features and
predictive performance metrics (e.g., AUROC) for classifying high
vs. low vaccine responders.

The various transformations that were applied to the data which
was input into each algorithm are described below. Each assay used
a single unit of measurement, allowing the data from each assay to
be normalized consistently. Each assay used only one unit, allowing
for the data to be scaled to a normal model, by assay. Outliers were
then removed from each assay using the interquartile range method,
with outliers being counted as data beyond 1.5°IQR (interquartile
range, data between the 25th and 75th percentile) of QI and Q3
(the 25th and 75th percentile of the data). This was done to prevent
influential points that might have high leverage or be erroneous
values from having a very large effect on the model. The Luminex
assays (Human_Luminex 50, 51, and 62_63) were combined into
one assay that only contained features that had been present in all
three assays, while the rest were dropped. Afterwards, out of 16
assays, three were dropped for having fewer than 15 features. The
only preprocessing that was different between the models was that
Stabl required additional preprocessing. Features that had a fraction
of missing values above a given threshold (40%) were dropped (Low
Info Filter) and zero variance features were also removed, before
imputing the remaining missing values using a KNN Imputer with
three neighbors. The resulting eight assays, and number of features
for each, are shown in Table 2.

The assay Other_Luminex represents was performed only for
one of the studies included in the FluPRINT dataset (study SLVP015
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TABLE 2 List of final assays (and corresponding number of features) for
input data into MOFA and Stabl algorithms.

Assay Number of features

CBC with Differential 18
Other_Luminex 38
Luminex_combined 47
Lyoplate_1 65
CyTOF_phenotyping 76
Phospho_flow_cytokine_stim_(PBMC) 274
pCyTOF_(whole_blood)_pheno 312
pCyTOF_(whole_blood)_phospho 2,286

in 2007 using the Human 42-Plex Polystyrene Kit), and was
preprocessed in the same way as the other Luminex assays.

2.3 Overview of MOFA, multi-omics factor
analysis
infers a

Multi-Omics  Factor

representation of the

MOFA, or Analysis,
PCA-like data
latent factors (Argelaguet et al., 2018). It uses an unsupervised

through a few

model to perform principal component analysis and learn latent
factors from the data. To address the heterogeneity of the data due
to multiple assays, MOFA allows for preprocessing and viewing of
data and results by assay, allowing each assay to be scaled separately
and its influence on each factor to be considered separately from
other assays. The data is arranged in a matrix, where each row is a
feature measured for a specific donor. If a feature is not measured
for a sample, then that value in the matrix is considered missing.
MOFA’s goal is then to use matrix algebra and machine learning
to decompose the matrix into two matrices, which represent the
relationships between the latent factors and the features and the
factors and the samples.

2.4 Latent factor creation using MOFA

The model, given a set number of maximum factors, computes
each factor as a linear combination of all the features. It does
matrix factorization on the large matrix of all the data, where the
structure of the data is specified in the prior distributions of the
Bayesian model (Argelaguet et al., 2018). ARD (automatic relevance
determination) of the factors is done by sparsity priors, and the
algorithm automatically drops any factors that explain less than 2%
of the variance in the data (Argelaguet et al., 2018). MOFA can
handle missing values during model training, unlike some other
methods which may require complete datasets. MOFA employs
likelihoods in estimation, and missing data are not included in the
likelihood calculations. These missing values are natively accounted
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for within the probabilistic framework of MOFA. Once the MOFA
model is fit, missing values can be imputed by the MOFA pipeline.
The resulting factors can then be further investigated using MOFA,
to find the factors and corresponding features that are most related
to the vaccine outcome.

2.5 Overview of Stabl

The Stabl algorithm, on the other hand, utilizes a different
method for feature selection (Hédou et al, 2024). Stabl inputs
data as a matrix with each row representing one donor and each
column representing a feature. Stabl takes random sampling of
donors (with replacement) at a time, via bootstrapping and then
on each subset of data, it uses an algorithm such as Lasso or
ElasticNet to perform feature selection. To ensure the stability of
these features, artificial noise (through artificial features) is added to
the data, and then for varying values of lambda, the regularization
parameter, the base model selects features out of this new, combined
data. A feature is considered more robust, and more likely to be
connected to outcome, if it is selected more times (in multiple
samples). This process is repeated over values of lambda, a parameter
which controls the amount of regularization of the base algorithm
to ensure that the model is sparse while penalizing larger weights,
which are the coefficients of the features in Stabl’s regression model.
Features that have a probability of selection higher than a threshold
are considered the most important features and then can be used
for building a predictive model. The threshold is chosen as the
threshold at the minimum of the FDP, (false discovery proportion
surrogate), which compares the number of artificial features injected
to the number of selected actual molecular features, occurs. A Low
Info Filter was also applied, which dropped features which had a
percentage of missing values higher than a specified threshold before
applying the feature selection process.

2.6 Criteria for significance of chosen
features

For MOFA, all features had a weight for each factor which
represented their correlation, or importance, to that factor. To
extract the final subset of features for MOFA, the factor most
correlated to outcome was found (based on correlation coefficient
to outcome), and its most weighted features were taken as the only
input for the final regression model. For Stabl, the features that
surpassed the established threshold were considered significant and
used exclusively in the model. Overall, the features selected by both
MOFA and Stabl were then noted as significant to the outcome if a
p-value <0.05 was observed with a t-test for a significant difference
in the means of the two independent samples of values.

2.7 Code and data availability

The code for this project is linked at https://github.com/
aanya2lgupta/fluprint. For this project, Python version 3.13.0
was used. Additionally, Mofapy2 version 0.7.2 and Stabl 1.0.1
were utilized.
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3 Results

3.1 Application of MOFA model for
all-relevant cellular predictors

The model was set to create 10 latent factors, training with
100 iterations in the ‘fast’ convergence mode. Ten factors were
chosen as a starting value. The subsequent MOFA model had only
five factors, indicating that more factors were not needed as they
were dropped by the algorithm due to low variability explained.
Fewer factors were not taken as this would make it harder to
extract the most important features as the model would be forced
to ignore potentially important variability to fit into a lesser number
of factors. The final results were saved in a separate file to obtain the
final model.

Figure 1A displays the R? values for each of the five factors
separated by group. R? is a statistical concept that measures level
of correlation in the association between two variables; specifically,
it is the percent of the variability in Y that can be explained by
the equation built to predict Y using x. Factor 5 has the highest R
value for group 0 and a negative value for group 1. This indicates
that Factor 5 explains the most variance in group 0 but does not
explain any of the variance in group 1, and thus is unlikely to
explain outcome. Figure 1B displays the average factor value for each
group (outcome). Factor 1 was shown to have the sharpest difference
in average factor value per group, having a positive average value
for an outcome of 0 (0.085) and a negative average value for an
outcome of 1 (—0.124). Figure 1C demonstrates the correlation
between the factors and the groups (outcome). Factor 1 had the
strongest correlation (calculated Pearson correlation coeflicient) to
the outcome, with the highest positive correlation with an outcome
of 0 (low responder) and highest negative correlation with an
outcome of 1 (high responder).

Each factor is a linear, weighted combination of all features
based on their importance in determining that factor. Therefore, the
highest weighted features of Factor 1, the most correlated feature to
outcome, were considered by MOFA to be the most highly correlated
to response. Table 3 displays the top ten features (and respective
assays) of Factor 1 (ordered by magnitude of weight). Figure 2
displays the violin plots showing the distribution of these across
outcomes along with if these two distributions are significantly
different using a t-test for the means of two independent samples
of values, indicating whether the feature actually differentiates
outcome using p-value. The top weighted feature, IL neg 2 CD4
pos CD45RA neg pSTAT5 had a small p-value of 0.003 (assay:
PBMC), while the most significant p-value (0.002) was that of IL
neg 2 CD8 pos CD45RA neg pSTATS5 (assay: PBMC). The p-values
were calculated using independent two-sample t-tests comparing
the distributions of features and were unadjusted.

3.2 Predictive modeling using MOFA top
features

To test the reliability of MOFAs features in predicting response,
we predicted outcome using only the top ten features that MOFA had
found, since this number gave the best AUROC. These were the top
ten most features with the highest magnitudes of weight in Factor 1.
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The data from only these factors was isolated from the dataset and
then was split into a train-test split of 0.8:0.2. Any missing values
were imputed using the KNN imputer with three neighbors, as it uses
the similarity of nearby data points to account for the connectedness
and intricate relationships between the complex data. The final
predictive model was a logistic regression with an ElasticNet penalty,
saga solver, and L1 to L2 regularization ratio of 0.5. The ROC curves
for the training and testing data are shown below in Figure 3. MOFA's
top features achieved an AUROC of 0.616 on both the testing (95%
CI of 0.426-0.806) and training data (95% CI of 0.521-0.711). The
confidence interval of the AUROC in MOFA was calculated using
a 95% confidence interval with the standard error of the AUROC
calculated using the AUROC and the sample sizes of both classes
(outcomes).

3.3 Application of Stabl model for
all-relevant cellular predictors

For Stabl, after the zero variance features were removed and
the Low Info Filter of 0.4 was applied, the remaining missing
values were imputed with a KNN imputer that used three
neighbors. The data was then scaled again, and split into train
and test with 0.8:0.2 split. The Stabl algorithm was performed
with a base estimator, or model, of a Logistic Regression with
L1 penalty, liblinear solver, and balanced class weights. Balanced
class weights ensured that the class frequencies (number of donors
for each group) were taken into account when adjusting model
weights. The Stabl class was run on the training data with 1,000
bootstrap resamples and knockoff artificial features, which is noise
injected into the input data as features that mimic those of
the actual dataset. It tested out 20 lambdas, or level of overall
regularization, automatically spaced out between 0 and 1. The
same top features were found with a Logistic Regression with
ElasticNet penalty, saga solver, and alpha (L1:L2 regularization ratio)
of 0.5.

The top features for this version were CD14~ CD33~ CD3*
CD4* CD25hiCD127low CD161+ CD45RA + Tregs, CD14* CD33"
monocytes, and CD4~ CD33~ CD3" CD56" NKT cells. These are
decided as the features whose frequency of selection are greater than
the FDP + threshold (0.82), which is the threshold at which the
rate at which false positives (Stabl-injected features) are chosen is
minimized (Figure 4).

CD14~ CD33” CD3* CD4" CD25hi CDI127low CD161+
CD45RA + Tregs was given with all random states taken, with
varying amounts of other features. Overall, the different top
features found were: CD14~ CD33~ CD3* CD4* CD25hi CD127low
CD161+ CD45RA + Tregs, CD14" CD33" monocytes, CD4~ CD33~
CD3" CD56" NKT cells, and CD14~ CD33~ CD3* CD4~ CD8"
Non-naive CD8" CXCR5+ TFH T cells. To identify the features that
were significant predictors, we calculated the p-value to determine
significant differences in values for donors with outcome of 0 versus
donors with outcome of 1. The p-value for the top three features
found with the initial random seed are shown below (Figure 5).
CD14™ CD3~ CD3" CD4" CD25hi CD127low CD161+ CD45RA
+ Tregs had an especially low p-value of approximately
0.0007.

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1636240
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Gupta et al. 10.3389/fbinf.2025.1636240
Factor
s Factorl
0.020 A B Factor2
s Factor3
N Factord
0.015 A B Factor5
& 0.010
0.005 1
Factorl -
0.000 1 —
A) ol .l‘ Factor2 - 0.10 1
Group '8
0.05 &
19
8
Factor3 - -0.00 ¢
]
©
. . -0.05p
actor L =
0.05 Factor4 - 8
-0.10
Factor4 0.00
Factor5 -
o -0.05
5 ! '
© Factor3 0 1
i
-0.10
Factor2
-0.15
Factorl - —-0.20
0 1
B) Group
FIGURE 1
(A) R? barplot - R? values for all factors for group 0 (low responder) and 1 (high responder). Factor 5 displays the highest R? in group 0 and negative R?
in group 1, indicating it is likely unimportant in explaining outcome. (B) Factors matrix - Average value of factor for group 0 and 1. Factor 1 has the
largest difference in values, being strongly positive for group 0 (0.085) and strongly negative for group 1 (—0.124). (C) Correlation - shows the Pearson
correlation coefficient calculated between the continuous factor values (scores) for each donor and the binary outcome variable.

3.4 Predictive modeling using Stabl
features

To test the top features found by Stabl, the three features that
were found on the same random seed were taken (CD161+ CD45RA
+ Tregs, CD14* CD33" monocytes, and NKT cells). An overall
pipeline was created with the preprocessing used earlier, feature
selection determined by the features found by Stabl, and a final
model. The final model was a Logistic Regression with ElasticNet
penalty, saga solver, balanced class weights, and max iterations of
one*e®. The model described in the pipeline was fitted to the
training data, and the ROC curves were displayed for both the
training and testing data, as shown in Figure 6. The Stabl features
achieved an AUROC of 0.673 (95% CI of 0.553-0.774) on the
training data, and 0.634 (95% CI of 0.432-0.823) on the testing
data. Stabl employed bootstrapping to calculate the confidence
interval, repeatedly resampling the data with replacement and

Frontiers in Bioinformatics

using the distribution of the AUROC across 1,000 iterations to
estimate it.

4 Discussion and conclusion

Overall, this project proved useful in exploring MOFA and Stabl
as complementary algorithms for exploring the underlying trends in
heterogeneous data collected across years and from different sources
like the FluPRINT dataset. We demonstrate the utility of MOFA and
Stablin discovering the principal features that correlate with high vs.
low influenza vaccine responders. By applying both unsupervised
(MOFA) and supervised (Stabl) approaches to comprehensively
analyze the FIuPRINT dataset, we identify novel biomarkers through
complementary analytical perspectives.

As an unsupervised model that is not specifically looking
for top features for outcome, MOFA was used to examine the
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TABLE 3 Top 10 most weighted features of MOFA Factor 1, and therefore the most important features for determining outcome according to MOFA.

Feature Subset Weight Assay
IL_neg_2_CD4_pos_CD45RA_neg_pSTAT5 CD4"CD45RA-: pSTAT5 0.467 PBMC
IL_neg_10_CD4_pos_CD45RA_neg pSTAT1 CD4"CD45RA-: pSTAT1 0.375 PBMC
IL_neg_2_CD4_pos_pSTAT5 CD4+: pSTAT5 0.356 PBMC
IL_neg_10_CD4_pos_pSTAT1 CD4+: pSTAT1 0.347 PBMC
IL_neg 10_CD8_pos_CD45RA_pos_pSTAT1 CD8"CD45RA-: pSTAT1 0.334 PBMC
IFNa_B_cell_pSTAT1 B cell: pSTAT1 0.316 PBMC
IL_neg 10_CD8_pos_pSTAT1 CD8+: pSTAT1 0.312 PBMC
IL_neg_7_CD8_pos_CD45RA_neg_pSTAT5 CD8"CD45RA-: pSTAT5 0.308 PBMC
IL_neg 10_CD8_pos_CD45RA_neg pSTAT1 CD8"CD45RA-: pSTAT1 0.307 PBMC
IL_neg_2_CDS$_pos_CD45RA_neg_pSTAT5 CD8*CD45RA-: pSTAT5 0.294 PBMC
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FIGURE 2

Violinplot distributions for group 0 vs. group 1 and p-values for a significant difference in distribution, for each of the top 10 weighted features of Factor
1. All features are from the PBMC assay, and their weights for Factor 1 are found in Table 3.
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structure of the data and find if there were any connections or
similarities between the top features for decomposition versus
outcome. MOFASs interpretability and various graphs made it easier
to view the connections between factors, features, group, and
the data as a whole. Due to its exclusion of missing values in
likelihood estimations when performing the decomposition into
the latent factors, it was especially useful for FIuPRINT due to
the high portions of missing values as there was no need for
imputation and then chance of bias that could then throw off the
model.

Meanwhile, Stabl was used to find the top features across
the entire dataset that were most significant in predicting the flu
vaccine response, rather than in estimating the population structure.

Frontiers in Bioinformatics

Stabl’s thorough model produced results that allowed for better
visibility of the top feature’s performance on a general scale and
compared to other features, giving a better understanding of the
significance (measured through p-value) and accuracy (measured
through AUROC of predictive models) of the features found. It also
had a higher AUROC (0.673-95% CI of 0.432-0.823, 0.634-95%
CI of 0.553-0.774) as compared to MOFA (0.616, 0.616) on both
training and testing data. This is due to being designed specifically
for feature selection and using a supervised approach, while top
features were instead extracted from MOFAs decomposition of the
data, which was found through unsupervised machine learning
methods. The higher AUROC achieved with Stabl’s features are
likely due to the advantage of knowing the outcome, which was
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FIGURE 3
The ROC curve of the model trained by MOFA features. (A) The ROC curve on testing data. The AUROC of the testing data using exclusively the
features found by MOFA is 0.616 (95% Cl of 0.426-0.806) and training data. (B) The ROC curve on training data. The AUROC of the training data using
exclusively the features found by MOFA is 0.616 (95% Cl of 0.521-0.711).
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feature (called the FDR estimate) is minimized, at 0.82 for FIUPRINT.

(A) Stabl path showing the frequency of selection for each feature indicating how many features made it above FDP + threshold (0.82). The three lines
are features whose probability of being selected is higher than the threshold, and thus represent the top features found by Stabl. (B) FDR graph, which
displays the FDR estimate across different FDP + thresholds, to determine the threshold where the chance of choosing a false positive/Stabl-injected

0.2 0.4 0.6 1.0
Threshold

discrete and easily defined through a binary outcome, in a dataset
that otherwise has considerable noise because of missing values.
The Stabl algorithm selects features based on their stability
and predictive value across multiple bootstrap resamples and
regularization paths, rather than solely on individual statistical
significance (p-values). Thus, it is possible for certain features
to be consistently selected by Stabl due to their contribution
to the predictive performance of the model when considered
jointly with other features, even if individually they do not
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show strong statistical significance when tested independently. In
other words, these features may provide complementary predictive
information when combined with other selected features, improving
the overall predictive accuracy of the model. Also, the relatively
small sample size and inherent variability in the data may limit the
statistical power to detect significant differences for some individual
features.

In explaining the structure of the data, MOFA found many
features with highly significant p-values (calculated through a t-test
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algorithm. All features are from the CyTOF phenotyping assay.

Violinplot distributions for group 0 vs. group 1 and p-values for a significant difference in distribution, for each of the top features found by the Stabl
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the features found by Stabl is 0.634 (95% Cl of 0.432-0.823).

The ROC curve of the model trained by Stabl features. (A) The ROC curve on testing data. The AUROC of the testing data using exclusively the features
found by Stablis 0.673 (95% Cl of 0.553-0.774) and training data. (B) The ROC curve on training data. The AUROC of the training data using exclusively
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on the two distributions of the value of the features (i.e., the group
0 and group 1 samples)), including IL neg 2 CD4 pos CD45RA
neg pSTAT5 and IL neg 2 CD8 pos CD45RA neg pSTAT5. The
importance of these features has been suggested by recent research,
which indicated that a subset of effector memory CD8 T cells
produce IL-2, whose signaling contributes to protection against
a chronic viral challenge (Kahan et al., 2022). These results were
not similar to the features of Stabl or the results of the previously
published SIMON study. However, this is expected due to MOFA
being designed to serve a purpose similar to principal component
analysis rather than outcome prediction. Since the algorithm does
not directly search for features that accurately predict response,
these features had to be isolated using the correlation between
factors and outcome, followed then by taking the most weighted
features for the most highly correlated factor. This provides a likely
explanation as to why MOFAs results differ from those of Stabl and
SIMON.

Frontiers in Bioinformatics

On the other hand, Stabl's selected group of features
proved to be effective in predicting response. All results
were T cells (either CD4" or CD8" subsets), expected due
to their key role in boosting immunity by recognizing and
targeting conserved epitopes of similar viruses (Hayward et al.,
2015). Some of the results corroborated by the SIMON study,
proving the validity of the algorithm, which also found novel
features. Overall, the top features found by Stabl were: CD161+
CD45RA + Tregs, CD14" CD33" monocytes, NKT cells, and
CXCR5+ CD8* TFH T cells, which were all higher in high
responders.

The most significant feature found by Stabl was CDI161+
CD45RA + Tregs, whose validity was proved as it appeared in
multiple trials with many different random seeds. It was supported
by the SIMON algorithm which found the same feature as most
important. This indicates the likelihood of this feature to be a
top indicator of vaccine response, especially as they are IL-17A
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producing memory cells that have proved to be beneficial in other
pathogenic conditions. It has also previously been associated with
the influenza virus in mice (Wang et al., 2016).

Our t-test analysis for individual features confirmed Stabl’s
top finding, with CD161+ CD45RA + Tregs showing the most
significant difference between high and low responders (p <
0.05). This concordance between simple univariate statistics and
our more sophisticated algorithm validates the robustness of this
particular feature. However, while t-tests can identify individual
differentially expressed features, theyre fundamentally limited
when applied to multi-omics datasets with thousands of features
due to multiple testing issues and inability to capture feature
interactions. Stabl provides critical advantages for multi-omics
analysis through its stability selection framework, which protects
against spurious correlations through bootstrapping and artificial
feature injection. While simple statistical tests may identify key
individual markers, algorithmic approaches like Stabl are necessary
to build robust predictive models from high-dimensional data while
controlling false discovery rates. The AUROC of the predictive
model using just the CD161+ CD45RA + Tregs was 0.563
(95% CI of 0.412-0.703), lower than that of the model with
Stabl's top features, which includes the other features it found as
well.

Stabl also found CD14~ CD33~ CD3" CD4~ CD8" Non-naive
CD8" CXCR5+ TFH T cells, which were found to share a parent
population with a feature from the previously published SIMON
study and has previously been connected to viral infections by
influencing antibody response through B cell interactions. The
other 2 cell subsets it highlighted included CD14* CD33" classical
monocytes and NKT cells. Monocytes can be important for their
ability to recognize antibody-bound target cells via Fc receptors
(Masuta et al., 2022). Similarly, NKT cells have direct correlations to
better immune response through their release of multiple cytokines
and chemokines that boost adaptive responses (Leibinger et al.,
2021). Although the results prove promising, there is considerable
uncertainty, as the models may be random since the AUROC
confidence intervals fall below 0.5.

Still, MOFA and Stabl were extremely beneficial in this deeper
examination of FluPRINT, displaying their potential to contribute to
progress by providing an easier, accurate way of understanding data.
In conclusion, these algorithms helped to gain valuable knowledge
about the underlying population structure of this flu vaccine dataset
by working together to explain the biological reasons behind the
makeup of the existing data collected from large populations and
taking a step forward in working towards accurate future prediction
of response.
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