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Comprehensive analysis of 
multi-omics vaccine response 
data using MOFA and Stabl 
algorithms

Aanya Gupta, Koji Abe and Holden T. Maecker*

Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation, and Infection (ITI), 
Stanford University, Stanford, CA, United States

Introduction: FluPRINT is a multi-omics dataset that measures donors’ protein 
expression and cell counts across various assays. Donors were also assigned a 
binary value (0 or 1), being labeled as high responders if they had a fold change ≥4 
of the antibody titer for hemagglutination inhibition (HAI) from day 0 to day 28, 
and low responders otherwise (0). In this project, we used the MOFA and Stabl 
algorithms to analyze FluPRINT, estimate the population structure from the data, 
and identify the most important features for predicting response to the vaccine.
Methods: The preprocessing of the dataset included removing repeat features, 
scaling by assay, and removing outliers. Since Stabl does not directly address 
missing values, features with high amounts of missing values were removed and 
the remaining were ignored.
Results: MOFA identified the top feature in structure extraction as IL neg 2 CD4 
pos CD45Ra neg pSTAT5. MOFA explains well the variance of the data while also 
choosing features that have good significance, as illustrated by their significant 
p-values (p < 0.05). Stabl found the top feature for explaining the outcome to be 
CD33− CD3+ CD4+ CD25hiCD127low CD161+ CD45RA + Tregs, which matched 
the top result of previously published analysis. MOFA’s features achieved an 
AUROC of 0.616 (95% CI of 0.426–0.806), and Stabl’s achieved an AUROC of 
0.634 (95% CI of 0.432–0.823).
Discussion: Our research addresses a key knowledge gap: understanding how 
these fundamentally different analytical approaches perform when analyzing 
the same complex dataset. Our exploration evaluates their respective strengths, 
limitations, and biological insights and provides guidance on using MOFA and 
Stabl to find the best predictive cell subsets and features for understanding large 
immunological multi-omics data. The code for this project can be found at 
https://github.com/aanya21gupta/fluprint.
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 1 Introduction

Technological advances now allow for multi-omics data, down to the single-cell 
level, and pave the way for genomic, transcriptomic, proteomic, and metabolomic 
profiling. With the rise of such highly complex, large amounts of immunological 
data, the potential to build a much more comprehensive and integrative biological 
analysis has grown (Wörheide et al., 2021). These analyses can be key tools for areas
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such as systems vaccinology, where large datasets on the immune 
states of individuals before and after vaccination are generated.

Before the rise of such datasets, it was hard to pinpoint specific 
cell subsets and cellular features that would be most important in 
predicting vaccine response. Now, several computational, machine 
learning-based approaches have aimed to use these datasets to 
either identify factors that drive differences in individual vaccine 
responses or create candidate biomarkers at much faster rate, 
accelerating the overall process of scientific discovery (Table 1). For 
example, the SIMON (Sequential Iterative Modeling OverNight) 
algorithm, an automated machine learning system, has been 
used to identify predictive biomarkers by comparing results from 
multiple algorithms and effectively handling missing data through 
subset creation (Tomic et al., 2019a). SIMON has successfully 
identified several predictive cell subsets and biomarkers associated 
with influenza vaccine response, demonstrating the potential of 
computational methods in biomarker discovery.

However, there are many issues that come with the massive 
amounts of data available today, as seen in Table 1. High 
dimensionality relative to the number of samples can lead to 
overfitting. Ways of handling missing data and difference of units 
between assays are also variables that can yield large differences 
in findings. Missing values can derive from aggregation of studies 
with variations in the assays applied, a common situation in large 
longitudinal studies. Existing models can also suffer from lack of 
explainability and sparsity, which then also reduces interpretability 
in real-world context. These models face a ‘black box’ problem, 
where their complex internal workings make it hard to decipher 
their understanding of the complex relationships in both the 
proteomics and cell count data. They can also be extremely 
computationally intensive and highly sensitive to parameter 
choices. Thus, existing methods, including SIMON, often face 
challenges related to handling missing data and integrating 

heterogeneous multi-omics data, limiting their practical utility and 
biological insight.

In this study, we aim to address these limitations by exploring 
two complementary computational methods, Multi-Omics Factor 
Analysis (MOFA) and Stabl, to analyze the FluPRINT dataset. 
Our primary goal is to identify key biological features and cell 
subsets predictive of differential influenza vaccine responses (high 
vs. low responders). MOFA, or multi-omics factor analysis, discovers 
the principal sources of variation in multi‐omics data sets by an 
unsupervised creation of a set of latent factors that capture biological 
and technical sources of variability, working well with multi-
omics data (Argelaguet et al., 2018). MOFA utilizes likelihoods 
in estimation, and can effectively deal with missing values by 
not including in the likelihood (with the assumption of data 
being missing at random). Stabl takes a different approach, as 
a supervised machine-learning based algorithm that identifies a 
very sparse, reliable set of predictive biomarkers using a unique 
threshold determined by the data and noise injection done by the 
algorithm (Hédou et al., 2024).

MOFA and Stabl were designed especially to deal with these 
important and common problems that arise with other machine 
learning and statistical approaches. MOFA’s PCA-like unsupervised 
approach is not very sensitive to model parameters and provides for 
easy interpretability of results through simple correlations or weights 
(Argelaguet et al., 2018). Stabl also addresses these issues, ensuring 
a robust process of feature selection using bootstrapping and ridge 
regularization (Hédou et al., 2024). Logistic regression coupled with 
ridge regularization is uniquely equipped to handle feature selection 
due to its increased emphasis on the sparsity of the model. Due 
to its ElasticNet penalty, it also has the advantage of balancing 
between L1 and L2 regularization, encouraging a smaller number 
of features without making the model too dependent on a few 
features. Additionally, a direct methodological comparison between 

TABLE 1  Common methods of feature selection & predictive models.

Approach category Examples Pros Cons Handling of missing 
data

Statistical Tests t-test, ANOVA, correlation simple, interpretable 
(Peng et al., 2005)

cannot capture complex 
relationships (Radovic et al., 
2017)

limited options 
(removal/imputation)

Tree-based Ensemble Random Forest, Gradient 
Boosting

Handles non-linearity, 
captures interactions (Li et al., 
2022)

Less stable with small sample 
sizes (Han et al., 2021)

Can handle through surrogate 
splits

Regularization LASSO, Ridge, Elastic Net Controls overfitting, handles 
high dimensionality

Instability and inconsistency 
with large number of features 
(Khaire and Dhanalakshmi, 
2019)

Generally requires imputation

Support Vector Methods SVM, SVR Effective in high-dimensional 
spaces (Guido et al., 2024)

Sensitive to hyperparameter 
tuning (Guido et al., 2024)

Requires imputation

Dimensionality Reduction 
(Unsupervised)

PCA, MOFA Reduces complexity, handles 
correlations (Shafizadeh-Mog 
and hadam, 2021)

Not outcome-focused 
(Shafizadeh-Mog and hadam, 
2021)

MOFA accommodates missing 
values

Stability Selection (Supervised) Stabl, Boruta Robust feature selection 
(Manikandan et al., 2024)

Computationally intensive 
(Manikandan et al., 2024)

Requires pre-processing for 
missing values
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unsupervised and supervised approaches remains unexplored. 
Such a comparison is crucial for understanding how algorithmic 
selection impacts feature identification and interpretation in vaccine 
response studies. Here, we address this gap by implementing both 
MOFA (unsupervised) and Stabl (supervised) on the same dataset, 
evaluating their performance, concordance with previous findings, 
and unique contributions to understanding vaccine response 
predictors. Thus, in this paper, we explore these two complementary 
algorithms by analyzing the unique benefits and results of each on 
FluPRINT, an influenza vaccine dataset, to gain deeper biological 
insights and identify robust predictive biomarkers of influenza 
vaccine response. 

2 Materials and methods

2.1 Subjects, sample, and data collection

The FluPRINT dataset was created by combining the results 
of eight clinical studies from 2007 to 2015 (Tomic et al., 2019b). 
There were 740 individuals undergoing influenza vaccination (either 
IIV or LAIV) who had blood and serum samples taken at both 
baseline and post-vaccination timepoints (Tomic et al., 2019b). 
The original population had donors from ages 1–90 years, with 
a median age of 27 years, a distribution of 446 females and 294 
males, and had a majority of Caucasians (Tomic et al., 2019b). 
Response was recorded as a binary value, with an individual 
considered a high responder (Wörheide et al., 2021) if they had 
a fold change greater than or equal to four in the antibody titer 
(HAI) from day 0 to day 28 and a low responder otherwise (0). 
Ideally, individuals in training data would be labeled as protected 
and unprotected following vaccination, but that cannot be the 
case for flu infection. Instead, hemagglutination inhibition (HAI) 
titer is very commonly used as a surrogate marker of protection 
and a fold-change (day 28/day 0 HAI) is often used to assess 
vaccine efficacy (e.g., high and low responders based on 4-fold 
change relative to pre-vaccination titer) (Parvandeh et al., 2019). 
Other factors that were recorded with each individual included 
gender, race, visit age, BMI, vaccine history, influenza history, 
cytomegalovirus (CMV) status, Epstein-Barr Virus (EBV) status, 
and statin use. The various assays included multiple cytokine assays 
(Luminex), hemagglutination inhibition assay, serological assays 
for CMV and EBV antibodies, phosphoepitope flow cytometry, 
and mass cytometry immunophenotyping, creating a heterogenous 
dataset with data from different assays, with both proteomics and 
cell count assays that also differed in units and thus ranges of their 
measurements.

For this project, the subset of individuals ranging from age 
8–40 who received inactivated influenza vaccine (IIV) was taken, 
resulting in 187 donors (Tomic et al., 2019a). All assays were 
taken for each donor’s first visit, and this subset of the data 
was taken to minimize missing values (Tomic et al., 2019a). For 
this dataset, the “name” and “subset” columns were combined 
to create the features for MOFA and Stabl. Three assays were 
dropped, as documentation suggests that MOFA struggles to 
learning meaningful factors from assays with less than 15 features
(Argelaguet et al., 2018). 

2.2 Pre-processing of data prior to model 
input

For both MOFA and Stabl analyses, the input data consisted 
of a data matrix with dimensions 162 × 3,091, where each row 
represented one donor and each column represented a biological 
feature measured by one of the assays. The dataset included 162 
donors selected from the original FluPRINT dataset. Each donor 
had multi-omics measurements taken at baseline (pre-vaccination) 
and post-vaccination timepoints. For the analyses presented here, 
we specifically used data from baseline measurements only. 
Demographic and clinical variables such as BMI, sex, age, vaccine 
history, influenza history, CMV and EBV status, and statin use were 
not included as input features. Supplementary Table S1 details the 
original assays and number of features for each.

MOFA takes as input the multi-omics data described above and 
outputs a set of latent factors, each representing a principal source 
of variation. The output from MOFA included factor loadings for 
each feature, indicating the contribution of each feature to each 
latent factor. To identify features potentially predictive of vaccine 
response, we correlated the latent factors identified by MOFA with 
the vaccine response outcome (high vs. low responders), and then 
selected the features with the highest loadings on the most strongly 
correlated factors.

The input to Stabl was the same multi-omics data matrix 
described above, along with the binary vaccine response outcome 
(high vs. low responders) for each donor, defined based on 
fold-change in antibody titers from pre-to post-vaccination. Stabl 
identified a sparse set of features most predictive of vaccine response 
by employing logistic regression with ridge regularization and 
bootstrapping to ensure robustness and stability of selected features. 
The output from Stabl included a sparse set of predictive features and 
predictive performance metrics (e.g., AUROC) for classifying high 
vs. low vaccine responders.

The various transformations that were applied to the data which 
was input into each algorithm are described below. Each assay used 
a single unit of measurement, allowing the data from each assay to 
be normalized consistently. Each assay used only one unit, allowing 
for the data to be scaled to a normal model, by assay. Outliers were 
then removed from each assay using the interquartile range method, 
with outliers being counted as data beyond 1.5∗IQR (interquartile 
range, data between the 25th and 75th percentile) of Q1 and Q3 
(the 25th and 75th percentile of the data). This was done to prevent 
influential points that might have high leverage or be erroneous 
values from having a very large effect on the model. The Luminex 
assays (Human_Luminex 50, 51, and 62_63) were combined into 
one assay that only contained features that had been present in all 
three assays, while the rest were dropped. Afterwards, out of 16 
assays, three were dropped for having fewer than 15 features. The 
only preprocessing that was different between the models was that 
Stabl required additional preprocessing. Features that had a fraction 
of missing values above a given threshold (40%) were dropped (Low 
Info Filter) and zero variance features were also removed, before 
imputing the remaining missing values using a KNN Imputer with 
three neighbors. The resulting eight assays, and number of features 
for each, are shown in Table 2.

The assay Other_Luminex represents was performed only for 
one of the studies included in the FluPRINT dataset (study SLVP015 
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TABLE 2  List of final assays (and corresponding number of features) for 
input data into MOFA and Stabl algorithms.

Assay Number of features

CBC with Differential 18

Other_Luminex 38

Luminex_combined 47

Lyoplate_1 65

CyTOF_phenotyping 76

Phospho_flow_cytokine_stim_(PBMC) 274

pCyTOF_(whole_blood)_pheno 312

pCyTOF_(whole_blood)_phospho 2,286

in 2007 using the Human 42-Plex Polystyrene Kit), and was 
preprocessed in the same way as the other Luminex assays. 

2.3 Overview of MOFA, multi-omics factor 
analysis

MOFA, or Multi-Omics Factor Analysis, infers a 
PCA-like representation of the data through a few 
latent factors (Argelaguet et al., 2018). It uses an unsupervised 
model to perform principal component analysis and learn latent 
factors from the data. To address the heterogeneity of the data due 
to multiple assays, MOFA allows for preprocessing and viewing of 
data and results by assay, allowing each assay to be scaled separately 
and its influence on each factor to be considered separately from 
other assays. The data is arranged in a matrix, where each row is a 
feature measured for a specific donor. If a feature is not measured 
for a sample, then that value in the matrix is considered missing. 
MOFA’s goal is then to use matrix algebra and machine learning 
to decompose the matrix into two matrices, which represent the 
relationships between the latent factors and the features and the 
factors and the samples. 

2.4 Latent factor creation using MOFA

The model, given a set number of maximum factors, computes 
each factor as a linear combination of all the features. It does 
matrix factorization on the large matrix of all the data, where the 
structure of the data is specified in the prior distributions of the 
Bayesian model (Argelaguet et al., 2018). ARD (automatic relevance 
determination) of the factors is done by sparsity priors, and the 
algorithm automatically drops any factors that explain less than 2% 
of the variance in the data (Argelaguet et al., 2018). MOFA can 
handle missing values during model training, unlike some other 
methods which may require complete datasets. MOFA employs 
likelihoods in estimation, and missing data are not included in the 
likelihood calculations. These missing values are natively accounted 

for within the probabilistic framework of MOFA. Once the MOFA 
model is fit, missing values can be imputed by the MOFA pipeline. 
The resulting factors can then be further investigated using MOFA, 
to find the factors and corresponding features that are most related 
to the vaccine outcome. 

2.5 Overview of Stabl

The Stabl algorithm, on the other hand, utilizes a different 
method for feature selection (Hédou et al., 2024). Stabl inputs 
data as a matrix with each row representing one donor and each 
column representing a feature. Stabl takes random sampling of 
donors (with replacement) at a time, via bootstrapping and then 
on each subset of data, it uses an algorithm such as Lasso or 
ElasticNet to perform feature selection. To ensure the stability of 
these features, artificial noise (through artificial features) is added to 
the data, and then for varying values of lambda, the regularization 
parameter, the base model selects features out of this new, combined 
data. A feature is considered more robust, and more likely to be 
connected to outcome, if it is selected more times (in multiple 
samples). This process is repeated over values of lambda, a parameter 
which controls the amount of regularization of the base algorithm 
to ensure that the model is sparse while penalizing larger weights, 
which are the coefficients of the features in Stabl’s regression model. 
Features that have a probability of selection higher than a threshold 
are considered the most important features and then can be used 
for building a predictive model. The threshold is chosen as the 
threshold at the minimum of the FDP+ (false discovery proportion 
surrogate), which compares the number of artificial features injected 
to the number of selected actual molecular features, occurs. A Low 
Info Filter was also applied, which dropped features which had a 
percentage of missing values higher than a specified threshold before 
applying the feature selection process. 

2.6 Criteria for significance of chosen 
features

For MOFA, all features had a weight for each factor which 
represented their correlation, or importance, to that factor. To 
extract the final subset of features for MOFA, the factor most 
correlated to outcome was found (based on correlation coefficient 
to outcome), and its most weighted features were taken as the only 
input for the final regression model. For Stabl, the features that 
surpassed the established threshold were considered significant and 
used exclusively in the model. Overall, the features selected by both 
MOFA and Stabl were then noted as significant to the outcome if a 
p-value <0.05 was observed with a t-test for a significant difference 
in the means of the two independent samples of values. 

2.7 Code and data availability

The code for this project is linked at https://github.com/
aanya21gupta/fluprint. For this project, Python version 3.13.0 
was used. Additionally, Mofapy2 version 0.7.2 and Stabl 1.0.1 
were utilized. 
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3 Results

3.1 Application of MOFA model for 
all-relevant cellular predictors

The model was set to create 10 latent factors, training with 
100 iterations in the ‘fast’ convergence mode. Ten factors were 
chosen as a starting value. The subsequent MOFA model had only 
five factors, indicating that more factors were not needed as they 
were dropped by the algorithm due to low variability explained. 
Fewer factors were not taken as this would make it harder to 
extract the most important features as the model would be forced 
to ignore potentially important variability to fit into a lesser number 
of factors. The final results were saved in a separate file to obtain the 
final model.

Figure 1A displays the R2 values for each of the five factors 
separated by group. R2 is a statistical concept that measures level 
of correlation in the association between two variables; specifically, 
it is the percent of the variability in Y that can be explained by 
the equation built to predict Y using x. Factor 5 has the highest R2

value for group 0 and a negative value for group 1. This indicates 
that Factor 5 explains the most variance in group 0 but does not 
explain any of the variance in group 1, and thus is unlikely to 
explain outcome. Figure 1B displays the average factor value for each 
group (outcome). Factor 1 was shown to have the sharpest difference 
in average factor value per group, having a positive average value 
for an outcome of 0 (0.085) and a negative average value for an 
outcome of 1 (−0.124). Figure 1C demonstrates the correlation 
between the factors and the groups (outcome). Factor 1 had the 
strongest correlation (calculated Pearson correlation coefficient) to 
the outcome, with the highest positive correlation with an outcome 
of 0 (low responder) and highest negative correlation with an 
outcome of 1 (high responder).

Each factor is a linear, weighted combination of all features 
based on their importance in determining that factor. Therefore, the 
highest weighted features of Factor 1, the most correlated feature to 
outcome, were considered by MOFA to be the most highly correlated 
to response. Table 3 displays the top ten features (and respective 
assays) of Factor 1 (ordered by magnitude of weight). Figure 2 
displays the violin plots showing the distribution of these across 
outcomes along with if these two distributions are significantly 
different using a t-test for the means of two independent samples 
of values, indicating whether the feature actually differentiates 
outcome using p-value. The top weighted feature, IL neg 2 CD4 
pos CD45RA neg pSTAT5 had a small p-value of 0.003 (assay: 
PBMC), while the most significant p-value (0.002) was that of IL 
neg 2 CD8 pos CD45RA neg pSTAT5 (assay: PBMC). The p-values 
were calculated using independent two-sample t-tests comparing 
the distributions of features and were unadjusted.

3.2 Predictive modeling using MOFA top 
features

To test the reliability of MOFA’s features in predicting response, 
we predicted outcome using only the top ten features that MOFA had 
found, since this number gave the best AUROC. These were the top 
ten most features with the highest magnitudes of weight in Factor 1. 

The data from only these factors was isolated from the dataset and 
then was split into a train-test split of 0.8:0.2. Any missing values 
were imputed using the KNN imputer with three neighbors, as it uses 
the similarity of nearby data points to account for the connectedness 
and intricate relationships between the complex data. The final 
predictive model was a logistic regression with an ElasticNet penalty, 
saga solver, and L1 to L2 regularization ratio of 0.5. The ROC curves 
for the training and testing data are shown below in Figure 3. MOFA’s 
top features achieved an AUROC of 0.616 on both the testing (95% 
CI of 0.426–0.806) and training data (95% CI of 0.521–0.711). The 
confidence interval of the AUROC in MOFA was calculated using 
a 95% confidence interval with the standard error of the AUROC 
calculated using the AUROC and the sample sizes of both classes 
(outcomes).

3.3 Application of Stabl model for 
all-relevant cellular predictors

For Stabl, after the zero variance features were removed and 
the Low Info Filter of 0.4 was applied, the remaining missing 
values were imputed with a KNN imputer that used three 
neighbors. The data was then scaled again, and split into train 
and test with 0.8:0.2 split. The Stabl algorithm was performed 
with a base estimator, or model, of a Logistic Regression with 
L1 penalty, liblinear solver, and balanced class weights. Balanced 
class weights ensured that the class frequencies (number of donors 
for each group) were taken into account when adjusting model 
weights. The Stabl class was run on the training data with 1,000 
bootstrap resamples and knockoff artificial features, which is noise 
injected into the input data as features that mimic those of 
the actual dataset. It tested out 20 lambdas, or level of overall 
regularization, automatically spaced out between 0 and 1. The 
same top features were found with a Logistic Regression with 
ElasticNet penalty, saga solver, and alpha (L1:L2 regularization ratio)
of 0.5.

The top features for this version were CD14− CD33− CD3+ 
CD4+ CD25hiCD127low CD161+ CD45RA + Tregs, CD14+ CD33+ 
monocytes, and CD4− CD33− CD3+ CD56+ NKT cells. These are 
decided as the features whose frequency of selection are greater than 
the FDP + threshold (0.82), which is the threshold at which the 
rate at which false positives (Stabl-injected features) are chosen is 
minimized (Figure 4).

CD14− CD33− CD3+ CD4+ CD25hi CD127low CD161+ 
CD45RA + Tregs was given with all random states taken, with 
varying amounts of other features. Overall, the different top 
features found were: CD14− CD33− CD3+ CD4+ CD25hi CD127low 
CD161+ CD45RA + Tregs, CD14+ CD33+ monocytes, CD4− CD33− 
CD3+ CD56+ NKT cells, and CD14− CD33− CD3+ CD4− CD8+ 
Non-naive CD8+ CXCR5+ TFH T cells. To identify the features that 
were significant predictors, we calculated the p-value to determine 
significant differences in values for donors with outcome of 0 versus
donors with outcome of 1. The p-value for the top three features 
found with the initial random seed are shown below (Figure 5). 
CD14− CD3− CD3+ CD4+ CD25hi CD127low CD161+ CD45RA 
+ Tregs had an especially low p-value of approximately
0.0007.
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FIGURE 1
(A) R2 barplot - R2 values for all factors for group 0 (low responder) and 1 (high responder). Factor 5 displays the highest R2 in group 0 and negative R2

in group 1, indicating it is likely unimportant in explaining outcome. (B) Factors matrix - Average value of factor for group 0 and 1. Factor 1 has the 
largest difference in values, being strongly positive for group 0 (0.085) and strongly negative for group 1 (−0.124). (C) Correlation - shows the Pearson 
correlation coefficient calculated between the continuous factor values (scores) for each donor and the binary outcome variable.

3.4 Predictive modeling using Stabl 
features

To test the top features found by Stabl, the three features that 
were found on the same random seed were taken (CD161+ CD45RA 
+ Tregs, CD14+ CD33+ monocytes, and NKT cells). An overall 
pipeline was created with the preprocessing used earlier, feature 
selection determined by the features found by Stabl, and a final 
model. The final model was a Logistic Regression with ElasticNet 
penalty, saga solver, balanced class weights, and max iterations of 
one∗e6. The model described in the pipeline was fitted to the 
training data, and the ROC curves were displayed for both the 
training and testing data, as shown in Figure 6. The Stabl features 
achieved an AUROC of 0.673 (95% CI of 0.553–0.774) on the 
training data, and 0.634 (95% CI of 0.432–0.823) on the testing 
data. Stabl employed bootstrapping to calculate the confidence 
interval, repeatedly resampling the data with replacement and 

using the distribution of the AUROC across 1,000 iterations to
estimate it.

4 Discussion and conclusion

Overall, this project proved useful in exploring MOFA and Stabl 
as complementary algorithms for exploring the underlying trends in 
heterogeneous data collected across years and from different sources 
like the FluPRINT dataset. We demonstrate the utility of MOFA and 
Stabl in discovering the principal features that correlate with high vs. 
low influenza vaccine responders. By applying both unsupervised 
(MOFA) and supervised (Stabl) approaches to comprehensively 
analyze the FluPRINT dataset, we identify novel biomarkers through 
complementary analytical perspectives.

As an unsupervised model that is not specifically looking 
for top features for outcome, MOFA was used to examine the 
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TABLE 3  Top 10 most weighted features of MOFA Factor 1, and therefore the most important features for determining outcome according to MOFA.

Feature Subset Weight Assay

IL_neg_2_CD4_pos_CD45RA_neg_pSTAT5 CD4+CD45RA-: pSTAT5 0.467 PBMC

IL_neg_10_CD4_pos_CD45RA_neg_pSTAT1 CD4+CD45RA-: pSTAT1 0.375 PBMC

IL_neg_2_CD4_pos_pSTAT5 CD4+: pSTAT5 0.356 PBMC

IL_neg_10_CD4_pos_pSTAT1 CD4+: pSTAT1 0.347 PBMC

IL_neg_10_CD8_pos_CD45RA_pos_pSTAT1 CD8+CD45RA-: pSTAT1 0.334 PBMC

IFNa_B_cell_pSTAT1 B cell: pSTAT1 0.316 PBMC

IL_neg_10_CD8_pos_pSTAT1 CD8+: pSTAT1 0.312 PBMC

IL_neg_7_CD8_pos_CD45RA_neg_pSTAT5 CD8+CD45RA-: pSTAT5 0.308 PBMC

IL_neg_10_CD8_pos_CD45RA_neg_pSTAT1 CD8+CD45RA-: pSTAT1 0.307 PBMC

IL_neg_2_CD8_pos_CD45RA_neg_pSTAT5 CD8+CD45RA-: pSTAT5 0.294 PBMC

FIGURE 2
Violinplot distributions for group 0 vs. group 1 and p-values for a significant difference in distribution, for each of the top 10 weighted features of Factor 
1. All features are from the PBMC assay, and their weights for Factor 1 are found in Table 3.

structure of the data and find if there were any connections or 
similarities between the top features for decomposition versus
outcome. MOFA’s interpretability and various graphs made it easier 
to view the connections between factors, features, group, and 
the data as a whole. Due to its exclusion of missing values in 
likelihood estimations when performing the decomposition into 
the latent factors, it was especially useful for FluPRINT due to 
the high portions of missing values as there was no need for 
imputation and then chance of bias that could then throw off the
model.

Meanwhile, Stabl was used to find the top features across 
the entire dataset that were most significant in predicting the flu 
vaccine response, rather than in estimating the population structure. 

Stabl’s thorough model produced results that allowed for better 
visibility of the top feature’s performance on a general scale and 
compared to other features, giving a better understanding of the 
significance (measured through p-value) and accuracy (measured 
through AUROC of predictive models) of the features found. It also 
had a higher AUROC (0.673–95% CI of 0.432–0.823, 0.634–95% 
CI of 0.553–0.774) as compared to MOFA (0.616, 0.616) on both 
training and testing data. This is due to being designed specifically 
for feature selection and using a supervised approach, while top 
features were instead extracted from MOFA’s decomposition of the 
data, which was found through unsupervised machine learning 
methods. The higher AUROC achieved with Stabl’s features are 
likely due to the advantage of knowing the outcome, which was 
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FIGURE 3
The ROC curve of the model trained by MOFA features. (A) The ROC curve on testing data. The AUROC of the testing data using exclusively the 
features found by MOFA is 0.616 (95% CI of 0.426–0.806) and training data. (B) The ROC curve on training data. The AUROC of the training data using 
exclusively the features found by MOFA is 0.616 (95% CI of 0.521–0.711).

FIGURE 4
(A) Stabl path showing the frequency of selection for each feature indicating how many features made it above FDP + threshold (0.82). The three lines 
are features whose probability of being selected is higher than the threshold, and thus represent the top features found by Stabl. (B) FDR graph, which 
displays the FDR estimate across different FDP + thresholds, to determine the threshold where the chance of choosing a false positive/Stabl-injected 
feature (called the FDR estimate) is minimized, at 0.82 for FluPRINT.

discrete and easily defined through a binary outcome, in a dataset 
that otherwise has considerable noise because of missing values.

The Stabl algorithm selects features based on their stability 
and predictive value across multiple bootstrap resamples and 
regularization paths, rather than solely on individual statistical 
significance (p-values). Thus, it is possible for certain features 
to be consistently selected by Stabl due to their contribution 
to the predictive performance of the model when considered 
jointly with other features, even if individually they do not 

show strong statistical significance when tested independently. In 
other words, these features may provide complementary predictive 
information when combined with other selected features, improving 
the overall predictive accuracy of the model. Also, the relatively 
small sample size and inherent variability in the data may limit the 
statistical power to detect significant differences for some individual
features.

In explaining the structure of the data, MOFA found many 
features with highly significant p-values (calculated through a t-test 
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FIGURE 5
Violinplot distributions for group 0 vs. group 1 and p-values for a significant difference in distribution, for each of the top features found by the Stabl 
algorithm. All features are from the CyTOF phenotyping assay.

FIGURE 6
The ROC curve of the model trained by Stabl features. (A) The ROC curve on testing data. The AUROC of the testing data using exclusively the features 
found by Stabl is 0.673 (95% CI of 0.553–0.774) and training data. (B) The ROC curve on training data. The AUROC of the training data using exclusively 
the features found by Stabl is 0.634 (95% CI of 0.432–0.823).

on the two distributions of the value of the features (i.e., the group 
0 and group 1 samples)), including IL neg 2 CD4 pos CD45RA 
neg pSTAT5 and IL neg 2 CD8 pos CD45RA neg pSTAT5. The 
importance of these features has been suggested by recent research, 
which indicated that a subset of effector memory CD8 T cells 
produce IL-2, whose signaling contributes to protection against 
a chronic viral challenge (Kahan et al., 2022). These results were 
not similar to the features of Stabl or the results of the previously 
published SIMON study. However, this is expected due to MOFA 
being designed to serve a purpose similar to principal component 
analysis rather than outcome prediction. Since the algorithm does 
not directly search for features that accurately predict response, 
these features had to be isolated using the correlation between 
factors and outcome, followed then by taking the most weighted 
features for the most highly correlated factor. This provides a likely 
explanation as to why MOFA’s results differ from those of Stabl and
SIMON.

On the other hand, Stabl’s selected group of features 
proved to be effective in predicting response. All results 
were T cells (either CD4+ or CD8+ subsets), expected due 
to their key role in boosting immunity by recognizing and 
targeting conserved epitopes of similar viruses (Hayward et al., 
2015). Some of the results corroborated by the SIMON study, 
proving the validity of the algorithm, which also found novel 
features. Overall, the top features found by Stabl were: CD161+ 
CD45RA + Tregs, CD14+ CD33+ monocytes, NKT cells, and 
CXCR5+ CD8+ TFH T cells, which were all higher in high
responders.

The most significant feature found by Stabl was CD161+ 
CD45RA + Tregs, whose validity was proved as it appeared in 
multiple trials with many different random seeds. It was supported 
by the SIMON algorithm which found the same feature as most 
important. This indicates the likelihood of this feature to be a 
top indicator of vaccine response, especially as they are IL-17A 
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producing memory cells that have proved to be beneficial in other 
pathogenic conditions. It has also previously been associated with 
the influenza virus in mice (Wang et al., 2016).

Our t-test analysis for individual features confirmed Stabl’s 
top finding, with CD161+ CD45RA + Tregs showing the most 
significant difference between high and low responders (p < 
0.05). This concordance between simple univariate statistics and 
our more sophisticated algorithm validates the robustness of this 
particular feature. However, while t-tests can identify individual 
differentially expressed features, they’re fundamentally limited 
when applied to multi-omics datasets with thousands of features 
due to multiple testing issues and inability to capture feature 
interactions. Stabl provides critical advantages for multi-omics 
analysis through its stability selection framework, which protects 
against spurious correlations through bootstrapping and artificial 
feature injection. While simple statistical tests may identify key 
individual markers, algorithmic approaches like Stabl are necessary 
to build robust predictive models from high-dimensional data while 
controlling false discovery rates. The AUROC of the predictive 
model using just the CD161+ CD45RA + Tregs was 0.563 
(95% CI of 0.412–0.703), lower than that of the model with 
Stabl’s top features, which includes the other features it found as
well.

Stabl also found CD14− CD33− CD3+ CD4− CD8+ Non-naive 
CD8+ CXCR5+ TFH T cells, which were found to share a parent 
population with a feature from the previously published SIMON 
study and has previously been connected to viral infections by 
influencing antibody response through B cell interactions. The 
other 2 cell subsets it highlighted included CD14+ CD33+ classical 
monocytes and NKT cells. Monocytes can be important for their 
ability to recognize antibody-bound target cells via Fc receptors 
(Masuta et al., 2022). Similarly, NKT cells have direct correlations to 
better immune response through their release of multiple cytokines 
and chemokines that boost adaptive responses (Leibinger et al., 
2021). Although the results prove promising, there is considerable 
uncertainty, as the models may be random since the AUROC 
confidence intervals fall below 0.5.

Still, MOFA and Stabl were extremely beneficial in this deeper 
examination of FluPRINT, displaying their potential to contribute to 
progress by providing an easier, accurate way of understanding data. 
In conclusion, these algorithms helped to gain valuable knowledge 
about the underlying population structure of this flu vaccine dataset 
by working together to explain the biological reasons behind the 
makeup of the existing data collected from large populations and 
taking a step forward in working towards accurate future prediction 
of response.
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