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T-cell receptor (TCR) sequencing has emerged as a powerful tool for 
understanding adaptive immune responses, yet challenges persist in deciphering 
the immense diversity of Complementarity-Determining Region 3 (CDR3) 
sequences. This study presents a novel natural language processing (NLP)-
based pipeline to cluster CDR3 sequences from TCR β-chain repertoires 
using Word2Vec embeddings, principal component analysis (PCA), and 
KMeans clustering. Focusing on Acute Respiratory Distress Syndrome 
(ARDS), a life-threatening inflammatory lung condition, we trained Word2Vec 
models on healthy controls and applied unsupervised clustering across 
ARDS, non-ARDS, and control datasets. Dimensionality-reduced embeddings 
revealed clear distinctions in repertoire structure: control samples exhibited 
tight, low-diversity clusters; ARDS patients showed high dispersion and 
numerous diffuse clusters indicative of repertoire disruption; and non-ARDS 
samples displayed intermediate organization. These differences suggest that 
immune activation states are embedded in the structural topology of the 
CDR3 space. Our framework successfully captured these latent patterns, 
offering a scalable approach to biomarker discovery. This study not only 
reinforces the utility of NLP in immunological analysis but also paves the 
way for data-driven immune monitoring in critical care and personalized
diagnostics.

KEYWORDS

acute respiratory disease syndrome (ARDS), BioNLP, bioinformatics & computational 
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Introduction

Acute respiratory distress syndrome (ARDS) is a life-threatening condition 
affecting nearly 190,000 individuals annually in the United States and nearly 10% 
of ICU patients globally, with high morbidity and mortality rates despite advances 
in supportive care (Bellani et al., 2016; Matthay et al., 2019). Clinically, ARDS 
is characterized by acute onset respiratory failure, bilateral infiltrates on chest 
imaging, and hypoxemia not fully explained by cardiac failure or fluid overload
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(Sharma and Toney, 2023). Its heterogeneous etiology, ranging 
from pneumonia and sepsis to aspiration and trauma, complicates 
therapeutic strategies (Fan et al., 2018). Although ventilatory 
support remains the cornerstone of ARDS management, the lack 
of targeted therapies underscores the need to better understand its 
pathophysiology (Ma et al., 2025).

Recent studies have begun to highlight the immunological 
underpinnings of ARDS, with particular attention to the role of T 
cells in mediating both lung injury and repair (Hey et al., 2023). 
Repertoire-level analysis of T-cell receptors (TCRs), especially the 
β-chain complementarity-determining region 3 (CDR3β), offers a 
window into the adaptive immune response in ARDS (Matthay et al., 
2023). The CDR3 region plays a central role in antigen specificity 
due to its high variability generated through V(D)J recombination 
(Reilly et al., 2018). This recombination process creates an 
enormous diversity of TCRs, enabling recognition of a vast array 
of antigens (Cave et al., 2024). Previous work has shown that 
profiling this diversity can reveal clonal expansion and antigen-
driven responses in diseases such as cancer and viral infections 
(Wick et al., 2024; Glanville et al., 2017).

Traditional alignment-based tools often fail to fully capture 
the nuanced similarities in TCR sequences, particularly for short 
and hypervariable regions like CDR3β (Dash et al., 2017). These 
limitations have prompted the adoption of natural language 
processing (NLP) techniques for biological sequence analysis. 
In particular, Word2Vec, a method originally developed for 
human language modeling, has been successfully applied to 
biological sequences, generating dense vector representations 
that preserve contextual relationships between amino acids 
(Emerson et al., 2017; Robins et al., 2009). When applied to 
immunological data, such representations have shown promise 
in identifying motifs and discriminating between immune states 
(Shugay et al., 2014; Mikolov et al., 2013).

Combining these embeddings with dimensionality reduction 
methods like principal component analysis (PCA) and clustering 
techniques such as KMeans has enabled more interpretable 
visualizations and subgroup discovery within immune repertoires 
(Heinzinger et al., 2019; Zhang et al., 2023). This approach has been 
applied in models such as DeepTCR, which uses deep learning to 
capture complex structural patterns in TCRs (Park et al., 2023), 
and TCRMatch, a tool that enables high-throughput similarity 
searches based on CDR3 content (Bolotin et al., 2015). While these 
frameworks have shown efficacy in oncology (Hou et al., 2021), 
infectious disease settings (Laing et al., 2020), and autoimmune 
profiling (Isacchini et al., 2024), their application in ARDS 
remains limited.

In this study, we utilize Word2Vec and KMeans to analyze 
CDR3β sequences derived from ARDS patients, non-ARDS 
ICU controls, and healthy individuals. By embedding and 
clustering sequences, we aim to identify structural shifts and 
repertoire disorganization indicative of disease state. Our 
approach builds on prior work in computational immunology 
(Larman et al., 2011; Vig et al., 2021), TCR repertoire analysis 
(Wolock and Klein, 2022; Katayama et al., 2022), and machine 
learning for immunoprofiling (Textor et al., 2023; Sidhom et al., 
2021), while addressing the pressing need for scalable and 
interpretable models in ARDS research (Mazzotti et al., 2022; 
Chronister et al., 2021; Alley et al., 2019).

Methods

Data acquisition

TCRβ immune sequencing data were obtained in FASTA 
format following high-throughput sequencing of genomic DNA 
extracted from lung fluid samples, as described in our previous 
work (Hey et al., 2023). Genomic DNA had been extracted 
using the Qiagen miniprep genomic DNA kit and submitted 
to Adaptive Biotechnologies for TCRβ profiling using their 
validated ImmunoSEQ®platform. This process yields annotated 
immune repertoire datasets with high accuracy and reproducibility, 
incorporating built-in controls to correct for PCR bias and 
ensure quantitative integrity. The resulting datasets included CDR3 
sequence information, V(D)J gene segment assignments, and 
repertoire metrics across all samples. Additionally, healthy control 
samples were concurrently extracted from NCBI for use in 
the study (Supplementary Tables S8–S10). 

Sequence annotation using IgBlast

For downstream analysis, raw TCRβ sequences in FASTA format 
were processed using NCBI’s IgBlast tool to annotate V, D, and J 
gene usage and to extract the complementarity-determining region 
3 (CDR3). IgBlast identifies CDR3 boundaries using conserved 
motifs, specifically a cysteine (C) residue at the start and a 
phenylalanine (F) or glycine (G) residue at the end of the region, 
consistent with established immunogenetic annotation criteria. The 
“Analyze T-cell receptor (TR) sequences” option was selected within 
the IgBlast interface, and sequences were uploaded for automated 
processing. Following alignment and annotation, output files were 
reviewed, and the clonotype summary tables were exported for 
further curation (Supplementary Tables S11–S17).

To ensure analytical focus on biologically functional sequences, 
the output was filtered to retain only productive rearrangements. 
Non-productive or incomplete rearrangements were excluded. The 
curated clonotype data were subsequently converted into CSV 
format and used for downstream applications, including embedding, 
clustering, and comparative analyses of CDR3 features across ARDS 
and non-ARDS cohorts. 

Data preprocessing

A Python script was developed to preprocess the cleaned 
TCRB sequence data by extracting the CDR3 amino acid sequences 
along with their corresponding V-gene annotations. Although the 
V-gene metadata was retained, it was not used directly in the 
clustering pipeline but preserved for potential future applications 
such as stratified analysis or supervised learning. The output of this 
preprocessing step was saved as CSV files, each containing only 
the relevant CDR3 sequences and V-gene information. The same 
IgBlast annotation and filtering procedures were consistently applied 
to all datasets, including the healthy control group. However, in 
contrast to the ARDS patient data, all healthy control sequences were 
merged into a single comprehensive dataset to provide a broader 
and more diverse representation of non-disease immune repertoire. 
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This merged dataset was used to train the Word2Vec model, 
ensuring that the resulting embeddings captured generalizable 
patterns across healthy individuals. While the Word2Vec model was 
trained on a pooled dataset of healthy control samples to maximize 
generalizability and capture broad semantic relationships between 
CDR3 motifs, all downstream analyses, including clustering, PCA, 
Levene’s test, and dispersion measurements, were conducted on 
unpooled individual samples. This separation ensures that ARDS, 
non-ARDS were analyzed under equivalent statistical assumptions, 
avoiding confounding effects introduced by sample aggregation. 
Our comparisons are therefore made between like units (individual 
repertoires), preserving the integrity of group-level inferences. 

Word2Vec model training

The Word2Vec model was trained on the merged healthy control 
dataset. During training, CDR3 sequences were converted into high-
dimensional vector representations that captured semantic and 
relational information between sequences. Each CDR3 amino acid 
sequence was first segmented into overlapping 3-mers (trigrams) 
using a sliding window approach. This approach enabled local 
context capture similar to linguistic tokenization techniques in 
NLP. The Word2Vec model was implemented using the Gensim 
library (v4.3) with the following hyperparameters: vector size 
= 100, window size = 5, minimum token count = 1, skip-gram 
architecture (sg = 1), and trained over 10 epochs. These parameters 
were empirically selected to balance embedding granularity 
with interpretability and clustering performance (Wolock and 
Klein, 2022; Chronister et al., 2021).

The final dataset consisted of 254 healthy control sequences, 
139 ARDS sequences, and 115 non-ARDS sequences (total = 508). 
This yielded a Word2Vec vocabulary of 20 unique 3-mers. With 
an average CDR3 length of 15 amino acids, the corpus contained 
over 7,000 total tokens, though redundancy and the restricted 
amino acid alphabet limited the number of distinct trigrams. Using 
a vector size of 100 and accounting for both input and output 
embeddings, the model contained approximately 4,000 trainable 
parameters (calculated as 2 × vector size × vocabulary size). While 
the vocabulary size may appear small compared to typical NLP 
corpora, this is expected for TCR CDR3 sequences due to the finite 
amino acid alphabet and the biologically constrained motif space; 
in this setting, even a limited trigram set can capture meaningful 
immunological patterns. 

Clustering and statistical analysis

Dimensionality reduction was first applied using Principal 
Component Analysis (PCA). The Silhouette Coefficient was utilized 
to determine the optimal number of principal components (L) to 
retain. PCA was then used to reduce the dimensionality of the 
Word2Vec embeddings while preserving the underlying structure of 
the data. A total of 20 principal components were retained based on 
an explained variance threshold of 90%.

To identify the optimal number of clusters (k) for the KMeans 
algorithm, silhouette coefficients were calculated for k values ranging 
from 2 to 15. The ARDS dataset achieved its highest silhouette 

coefficient at k = 9 (∼0.42), and the non-ARDS dataset at k = 2 
(0.60). The healthy control dataset has a maximum of its silhouette 
coefficient at k = 2, but this was considered a trivial partition, so 
we instead used the elbow method to choose k = 5 (which has a 
silhouette coefficient of ∼0.345). These results correspond to the PCA 
cluster visualizations in Figures 2–4 and are further supported by the 
elbow and silhouette plots provided in Supplementary Figures S1–S6. 
The k values for ARDS and non-ARDS were based on the silhouette 
coefficient and that of the healthy control dataset was based on 
the elbow plot (the maximum silhouette coefficient gave a trivial 
result for the latter case, due to the silhouette coefficient favoring 
large clusters). Although the silhouette score for ARDS is lower, 
this is consistent with the diffuse, overlapping clusters observed in 
ARDS repertoires and reflects true biological heterogeneity rather 
than methodological limitations. Together, these findings indicate 
varying levels of repertoire diversity and immune activation across 
clinical groups. Based on these optimal k values, KMeans clustering 
was applied to the vectorized CDR3 sequence embeddings for 
each cohort. To ensure robustness and mitigate overfitting, K-Fold 
Cross-Validation was employed, repeatedly splitting the data into 
training and validation sets. 

Visualization of clustering results

The clustering results from KMeans were visualized to interpret 
the distribution and organization of TCRB sequences among 
ARDS patients and healthy controls. Comparative analyses were 
conducted to examine differences in clustering patterns between 
the two groups. This methodological approach, integrating immune 
sequencing, machine learning, and natural language processing, 
allowed for an in-depth examination of immune repertoire 
variations. The combination of IgBlast-based sequence annotation, 
Word2Vec embeddings, PCA, and KMeans clustering provided a 
robust framework for uncovering immune response patterns, with 
the use of cross-validation and clustering evaluation metrics further 
enhancing the reliability and generalizability of the findings.

Results

The methodological pipeline of this study across both 
conceptual and implementation layers is shown in Figure 1. At 
the functional level, raw immunosequencing data undergoes a 
transformation pipeline beginning with standardization, followed 
by semantic vectorization of CDR3 amino acid sequences 
using natural language processing (NLP) techniques. These 
sequences, originally represented as strings of characters, are 
embedded as numerical vectors to capture underlying relationships 
and biological patterns. These vectors are then subjected to 
dimensionality reduction—an essential step to mitigate the curse 
of dimensionality and facilitate downstream clustering. The final 
step involves unsupervised clustering to identify distinct immune 
subpopulations. The implementation-level diagram concretizes 
this process through specific tools: preprocessing scripts extract 
and clean the CDR3 sequences, Word2Vec is used to generate 
embeddings (Mikolov et al., 2013), principal component analysis 
(PCA) is employed to reduce dimensionality, and KMeans is applied 
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FIGURE 1
Pipeline of the Process. This schematic illustrates the dual-layer structure of the CDR3 sequence clustering pipeline. The Function Level (top) abstracts 
the process conceptually, beginning with raw sequence data that is first standardized, then transformed from amino acid letters into numerical vectors. 
These vectors undergo dimensionality reduction before being grouped into clusters. The Implementation Level (bottom) presents the actual 
computational tools used: raw data is preprocessed and passed through a Word2Vec embedding model, followed by Principal Component Analysis 
(PCA) for dimensionality reduction and KMeans for unsupervised clustering.

FIGURE 2
Healthy (Control) Data clustered visual. Displays tightly packed and vertically aligned clusters, indicating a relatively stable and conserved T-cell 
receptor repertoire. The low dispersion and well-defined clusters reflect immune homeostasis. Optimal clustering for controls was determined as k = 5 
using the elbow method.

for cluster assignment. Together, this dual-layer schematic provides 
both a conceptual abstraction and a transparent, reproducible 
computational workflow.

To statistically compare the spread of clusters between groups, 
we applied Levene’s test for equality of variances on the mean 
Euclidean distances between CDR3 embeddings and their cluster 
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FIGURE 3
ARDS Patient clustering visualization Shows greater cluster spread, higher heterogeneity, and increased number of clusters, reflecting repertoire 
disruption. The diffuse and overlapping clusters suggest heightened T-cell activation and clonal diversification due to systemic inflammation. 
Silhouette analysis identified k = 9 as the optimal cluster number for ARDS samples.

FIGURE 4
Non-ARDS Patient clustering visualization. Illustrates an intermediate profile. Cluster structures are more defined than in the ARDS sample, suggesting 
partial immune activation or chronic inflammation without the full dysregulation seen in ARDS. Silhouette analysis identified k = 2 as optimal for 
non-ARDS samples.
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centroids (Supplementary Figure S7) between groups. The analysis 
revealed that ARDS samples had significantly greater intra-cluster 
dispersion compared to non-ARDS samples (p = 1.66 × 10−6). 
These results quantitatively support the hypothesis that ARDS is 
associated with heightened immune perturbation and repertoire 
fragmentation.

PCA visualization of clustered CDR3 sequence embeddings 
from a representative healthy control sample is shown in Figure 2. 
The dimensionality-reduced embeddings form clearly demarcated 
clusters, with relatively low intra-cluster variance and tight 
spatial grouping along the first two principal components. The 
concentration of points and compactness of clusters suggest 
a stable and relatively conserved T-cell repertoire structure in 
immunologically homeostatic individuals. The presence of fewer, 
well-defined clusters may reflect baseline V-gene usage patterns and 
low antigenic pressure, consistent with findings in non-pathogenic 
states (Glanville et al., 2017; Emerson et al., 2017). Notably, 
the separation between clusters indicates that the embedding 
space, informed by Word2Vec, effectively captures semantically 
meaningful differences among CDR3 sequences even in control 
conditions (Heinzinger et al., 2019; Zhang et al., 2023).

In contrast, Figure 3 displays the PCA projection of CDR3 
sequences derived from a representative ARDS sample. Here, the 
embedding space reveals a pronounced increase in both the number 
of clusters and their spatial dispersion. The clusters are more diffuse 
and demonstrate overlapping boundaries, a hallmark of repertoire 
perturbation under inflammatory stress. This fragmentation and 
diversification of the CDR3 space likely reflects heightened T-
cell activity and clonal expansion in response to the systemic 
inflammation characteristic of acute respiratory distress syndrome 
(Matthay et al., 2019; Fan et al., 2018; Hey et al., 2023). The 
emergence of multiple novel clusters in this sample, which are not 
observed in the healthy control, underscores the potential of this 
approach for identifying ARDS-specific immune signatures. The 
increased heterogeneity may also suggest a breakdown in repertoire 
regularity, pointing to dysregulated T-cell dynamics under critical 
illness (Matthay et al., 2023; Reilly et al., 2018).

Compared to the respective ARDS sample, the CDR3 
embeddings in Figure 4, taken from a representative non-ARDS 
sample, exhibit moderate diversity, with clusters that are more 
defined and spatially constrained, though still more dispersed than 
in the control group. This intermediate pattern likely reflects partial 
immune activation without the full spectrum of systemic immune 
dysregulation observed in ARDS. The presence of a limited number 
of distinct clusters could be indicative of a targeted T-cell response, 
potentially tied to pathogen-specific recognition or chronic 
inflammation, rather than a broad-based, polyclonal expansion 
(Sharma and Toney, 2023; Cave et al., 2024; Wick et al., 2024). This 
sample provides a valuable comparative case, demonstrating that not 
all lung pathologies induce the same degree of immune repertoire 
disruption.

Taken together, our results illustrate the capacity of the 
Word2Vec–PCA–KMeans pipeline to resolve fine-grained 
distinctions in immune repertoire structure across clinical 
phenotypes (Hey et al., 2023; Robins et al., 2009; Park et al., 2023). 
Control datasets yield tightly clustered and uniform embeddings, 
indicative of repertoire homeostasis. ARDS samples from our study 
demonstrated significant repertoire diversification and immune 

disruption, while non-ARDS samples occupied a middle ground 
in both cluster spread and heterogeneity. These findings support 
our hypothesis that unsupervised clustering of CDR3 embeddings 
could reveal disease-specific immunological fingerprints, offering 
potential for non-invasive biomarker development and immune 
monitoring in critical care settings.

Discussion

This study demonstrates that unsupervised machine learning 
can meaningfully cluster CDR3 sequences from T-cell receptors, 
revealing distinct immune repertoire structures in ARDS patients 
compared to healthy individuals. By combining Word2Vec 
embeddings with PCA and KMeans clustering, we observed stark 
differences in repertoire topology. The ARDS group exhibited the 
highest number of clusters (k = 9), suggesting a more fragmented 
or polyclonal response, whereas the non-ARDS group had the 
fewest clusters (k = 2), pointing toward repertoire contraction or 
clonal dominance. Control samples were optimally clustered at 
k = 5 (based on the elbow method), reflecting a balanced and 
conserved immune state consistent with repertoire homeostasis 
(Hey et al., 2023; Glanville et al., 2017).

To reinforce these findings, we incorporated quantitative 
validation via silhouette analysis and the elbow method 
(Supplementary Figures S1–S6), which confirmed optimal clustering 
structures across phenotypes, and further demonstrated increased 
dispersion and fragmentation in ARDS samples. In particular, the 
silhouette coefficients showed maxima at the k values used, with the 
elbow plots included for comparison (showing different optima). The 
silhouette coefficients confirmed the chosen k-values for the ARDS 
and non-ARDS group, with the highest scores for non-ARDS at k 
= 2 (0.60) and ARDS at k = 9 (∼0.42). As the silhouette coefficient 
is a more principled measure for finding the number of clusters, 
we used it in lieu of the elbow plot when the former does not 
give trivial results (as mentioned before). Levene’s test additionally 
revealed significantly greater intra-cluster variance in ARDS compared 
to both control and non-ARDS samples, quantitatively supporting 
our hypothesis of repertoire disorganization in severe disease.This 
difference in optimal clustering granularity highlights the variation in 
immune activation and organization across conditions. Levene’s test 
further supported this interpretation by demonstrating significantly 
greater intra-cluster variance in ARDS samples compared to 
controls, indicative of clonal skewing or repertoire narrowing. It is 
important to note that while control sequences were merged for 
embedding model training, all clustering and statistical comparisons 
in this study were performed using unpooled, individual datasets. 
All clustering and statistical comparisons were performed using 
unpooled datasets to preserve inter-individual variability and group 
comparability (Rosati et al., 2017). 

These results support our hypothesis that ARDS is associated 
with T-cell repertoire diversification and disorganization, aligning 
with prior studies that observed immune dysregulation in ARDS 
and sepsis (Matthay et al., 2019; Fan et al., 2018; Hey et al., 2023). 
Other work also supports the implication of adaptive immune 
responses, particularly T-cell activity, not only in lung injury 
but also in resolution and repair processes in ARDS (Ma et al., 
2025; Matthay et al., 2023; Wick et al., 2024). The structural 
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patterns we observed in CDR3 embeddings extend these findings 
by offering a computationally tractable representation of immune 
variation beyond clonality or V-gene usage (Emerson et al., 
2017; Robins et al., 2009; Shugay et al., 2014). This approach 
provides a powerful alternative to conventional alignment-based 
techniques like MiXCR or sequence similarity metrics that are 
often sensitive to mutation and sampling noise (Bolotin et al., 
2015; Rosati et al., 2017). Word2Vec’s ability to encode contextual 
similarity allows it to capture motifs and structural features within 
immune repertoires that may not be evident through traditional 
metrics (Mikolov et al., 2013; Heinzinger et al., 2019). Our findings 
are in line with recent efforts to apply embedding models to TCRs 
in the context of infectious diseases and cancer, including DeepTCR 
(Sidhom et al., 2021), Immune2vec (Wolock and Klein, 2022), 
and TCRMatch (Chronister et al., 2021).

In addition, this work resonates with observations from recent 
COVID-19 immune profiling studies, which show that disease 
severity can be reflected in changes in repertoire structure and 
clonal expansion (Hou et al., 2021; Laing et al., 2020). We 
are also in the process of employing the techniques described 
here to the examination of other lung pathologies. Similar 
repertoire remodeling in ARDS, especially the increase in cluster 
dispersion, may indicate heightened T-cell activation, clonal 
exhaustion, or bystander activation during systemic inflammation 
(Fan et al., 2018; Wick et al., 2024; Isacchini et al., 2024). 
Our study adds to this narrative by showing that embedding-
based clustering can quantitatively distinguish these states, offering 
potential for non-invasive immune monitoring (Hey et al., 2023; 
Park et al., 2023; Textor et al., 2023).

In addition to this, our study presents opportunities for further 
exploration. First, we relied exclusively on Word2Vec embeddings, 
which capture local amino acid context but may miss long-range 
or structural features critical to TCR function (Heinzinger et al., 
2019; Zhang et al., 2023; Vig et al., 2021). While we used Word2Vec 
for its simplicity and interpretability, we chose it over newer 
transformer-based models such as ProtBERT and ProtT5 for several 
reasons. First, Word2Vec produces embeddings that are intuitive 
and biologically interpretable, allowing us to link local amino acid 
context with immune repertoire structure. This interpretability is 
especially valuable for unsupervised clustering, where black-box 
features from larger models may hinder biological insight.

Second, Word2Vec is computationally efficient and robust on 
smaller datasets, which is crucial for projects like ours where data is 
limited. In contrast, ProtBERT and ProtT5 require large-scale data 
and extensive GPU resources, and may be prone to overfitting when 
applied to niche domains such as lung-specific TCR repertoires.

Third, as demonstrated in prior work (Wolock and Klein, 2022; 
Sidhom et al., 2021; Chronister et al., 2021), Word2Vec embeddings 
have proven effective in capturing immunologically relevant motifs, 
particularly in short, variable sequences like CDR3s. Its trigram 
tokenization mirrors biologically meaningful substructures and has 
been shown to preserve important biochemical relationships, unlike 
transformer models trained primarily on full-length proteins.

In future work, we plan to benchmark against ProtBERT 
and state-of-the-art models like Mamba (2024) to determine 
whether their increased complexity yields measurable benefits 
in downstream performance. For this study, however, Word2Vec 
offered the most pragmatic and transparent solution.

We also plan to integrate clinical metadata—such as ARDS severity 
scores, etiology, treatment outcomes, and cytokine panels—into future 
analyses. This would enable clustering patterns to be correlated with 
patient trajectories and therapeutic responses, potentially enabling 
prognostic modeling (Reilly et al., 2018; ElSayed et al., 2023; Greiff et al., 
2017). Incorporating other omics data, such as transcriptomics or 
cytokine profiles, may also improve repertoire interpretation and 
provide a more holistic view of immune function during critical illness 
(Cave et al., 2024; Emerson et al., 2017). 

Importantly, our findings suggest that immune repertoires 
encode latent, quantifiable structure reflective of disease state. 
That structure, once identified, can be used to guide biomarker 
discovery, therapeutic development, and personalized diagnostics. 
Embedding-based clustering pipelines such as ours are efficient, 
interpretable, and scalable, providing a powerful lens through which 
to understand complex immunological phenomena (Larman et al., 
2011; Alley et al., 2019; Sethna et al., 2020). In conclusion, this 
study presents a compelling use case for NLP-inspired tools in the 
study of immune repertoires in ARDS. By translating amino acid 
sequences into vector space and applying unsupervised clustering, 
we revealed meaningful differences between disease and control 
samples. These findings lay the groundwork for future immune-
monitoring pipelines in critical care settings and offer a blueprint for 
applying machine learning to immunological data across diseases.
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