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Integrative machine learning and
bioinformatics analysis to identify
cellular senescence-related
genes and potential therapeutic
targets in ulcerative colitis and
colorectal cancer
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Zhixiang Zhou1,2 and Qiyang Chen1,2

1Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow,
United Kingdom, 2China Pharmaceutical University, Nanjing, China

Background: Ulcerative colitis (UC) is a chronic inflammatory condition that
predisposes patients to colorectal cancer (CRC) through mechanisms that
remain largely undefined. Given the pivotal role of cellular senescence in
both chronic inflammation and tumorigenesis, we integrated machine learning
and bioinformatics approaches to identify senescence‐related biomarkers and
potential therapeutic targets involved in the progression from UC to CRC.

Methods: Gene expression profiles from six GEO datasets were analyzed to
identify differentially expressed genes (DEGs) using the limma package in
R. Weighted gene co-expression network analysis (WGCNA) was employed
to delineate modules significantly associated with UC and CRC, and the
intersection of DEGs, key module genes, and senescence‐related genes from
the CellAge database yielded 112 candidate genes. An integrated machine
learning (IML) model—utilizing 12 algorithms with 10-fold cross-validation—was
constructed to pinpoint key diagnostic biomarkers. The diagnostic performance
of the candidate genes was evaluated using receiver operating characteristic
(ROC) analyses in both training and validation cohorts. In addition, immune
cell infiltration, protein–protein interaction (PPI) networks, and drug enrichment
analyses—including molecular docking—were performed to further elucidate
the biological functions and therapeutic potentials of the identified genes.

Results: Our analysis revealed significant transcriptomic alterations in UC
and CRC tissues, with the turquoise module demonstrating the strongest
association with disease traits. The IML approach identified five pivotal genes
(ABCB1, CXCL1, TACC3, TGFβI, and VDR) that individually exhibited AUC
values > 0.7, while their combined diagnostic model achieved an AUC
of 0.989. Immune infiltration analyses uncovered distinct immune profiles
correlating with these biomarkers, and the PPI network confirmed robust
interactions among them. Furthermore, drug enrichment and molecular
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docking studies identified several promising therapeutic candidates targeting
these senescence‐related genes.

Conclusion: This study provides novel insights into the molecular interplay
between cellular senescence and the UC-to-CRC transition. The identified
biomarkers not only offer strong diagnostic potential but also represent
promising targets for therapeutic intervention, paving the way for improved
clinical management of UC-associated CRC.

KEYWORDS

cellular senescence, ulcerative colitis, colorectal cancer, integrative machine learning,
immune infiltration, therapeutic targets

1 Introduction

Colorectal cancer (CRC) stands as one of the foremost causes
of cancer-related morbidity and mortality globally, posing a
significant challenge to public health (Arnold et al., 2017; GBD,
2019 Colorectal Cancer Collaborators et al., 2022; Musa and Ali,
2020). Ulcerative colitis (UC), a chronic inflammatory bowel
disease, not only drastically impairs patients’ quality of life but
also escalates the risk of developing CRC over time (Shah and
Itzkowitz, 2022; Yashiro, 2014). Studies have shown that prolonged
duration of UC increases the likelihood of CRC occurrence
(Dan et al., 2023), with cell senescence playing a pivotal role in the
carcinogenic process (Risques et al., 2011). However, at the level of
cellular senescence, current research on the key genes of colorectal
cancer and ulcerative colitis is not clear, and there is currently no
study analyzing the relationship between the two diseases and cell
senescence from a genomic perspective. Therefore, the research on
related genes and the development of drugs are crucial.

Cell Senescence (CS) is a complex biological process in
which the gradual decline in physiological functions increases
susceptibility to diseases such as cancer (Kirkland and Tchkonia,
2017; López-Otín et al., 2023). Genes that induce cellular aging
often become overexpressed in human tissues with age, and
are significantly overexpressed in anti longevity and tumor
suppressor genes, while genes that inhibit cellular aging overlap with
longevity promoting genes and oncogenes (Aramillo Irizar et al.,
2018; Schmitt et al., 2022). Aging cells release pro-inflammatory
cytokines and other factors known as senescence associated
secretory phenotype (SASP), which lead to chronic inflammation,
impaired tissue regeneration, aging, and age-related diseases,
like cancer (Ou et al., 2021). Understanding the determinants of
cellular aging and its correlation with aging is crucial for dissecting
the potential mechanisms of aging and age-related diseases, as well
as exploring potential therapeutic pathways.

CellAge is a manually curated database that contains 1279
human genes that drive cellular aging (Avelar et al., 2020).
It was compiled after conducting scientific literature searches
on gene manipulation experiments in primary, immortalized,
or cancer human cell lines that induce or inhibit CS in cells
(Chatsirisupac et al., 2019). CellAge aging inducers and inhibitors
overlap with oncogenes in the tumor suppressor gene (TSG)
database (TSGene 2.0) and ONGene database, and can therefore
be used to study cancer-related genes (Zhao et al., 2016; Liu et al.,
2017). By excavating deeply into the databases related to cellular

senescence, we can gain a more profound understanding of the
relevant processes involved in aging and their roles in diseases.

Machine learning (ML) helps humans learn patterns from
complex data to predict future behavioral outcomes and trends
(Haug and Drazen, 2023). ML is widely used for variable filtering
and variable selection (Cascianelli et al., 2023). Previously, research
commonly used a single ML algorithm or two integrated ML
algorithms (such as artificial neural networks (Eetemadi and
Tagkopoulos, 2019), support vector machines (Huang et al., 2018)
and gradient boosting machines (Du et al., 2022)) to optimize
variables. However, a single or only two integrated ML algorithms
may miss important potential genes, while integrated ML (IML)
methods have more advantages in variable screening and model
construction (Zhang L. et al., 2023). In this study, we focus on
studying UC and CRC, using bioinformatics methods combined
with IML to investigate in detail the related genes of UC and CRC at
the cellular aging level, explore the genetic and transcription factors
of UC and CRC, and predict potential therapeutic drugs.

2 Methods

2.1 Selection of datasets

Datasets were downloaded from the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) using the
keywords “Colorectal Cancer” or “Ulcerative Colitis.” Our data
analysis process is demonstrated in Figure 1. Detailed information
for each dataset, including microarray platform, sample groups,
accession numbers, and sample sizes—was recorded. Only datasets
containing colon tissue samples from patients with colorectal cancer
and ulcerative colitis were included. A total of 6 datasets, namely,
GSE52060 (Medico et al., 2013), GSE87211 (Hu et al., 2018),
GSE90627 (Guo et al., 2017), GSE36807 (Montero-Meléndez et al.,
2013), GSE53306 (Zhao et al., 2015), and GSE13367 (Bjerrum et al.,
2010), were integrated for this study. The training set were selected
as GSE52060, GSE87211, GSE36807, and GSE53306. The testing set
were selected asGSE90627 andGSE13367.Thedetails for all datasets
are presented in Supplementary Table S1. To correct for batch effects
from different studies, we used the “ComBat” function in the “sva”
package (version 3.5.0) (Johnson et al., 2007; Leek et al., 2012).
The effectiveness of batch correction was evaluated by comparing
data quality before and after adjustment using principal component
analysis (PCA) (Jolliffe and Cadima, 2016).
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FIGURE 1
Comprehensive Analysis Workflow for the Study of Colitis-Associated Colorectal Cancer (CRC) Transformation. The workflow includes the analysis of
CRC and UC cohorts, identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), integration
through Venn diagrams, and functional enrichment analysis via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The
study further incorporates machine learning for dataset validation, gene validation using GeneMANIA network analysis, immune cell infiltration
assessment through CIBERSORT, and visualization with correlation heatmaps (CorHeatmap). Gene-immune cell interaction is examined using
ImmuneCor, followed by drug enrichment analysis and molecular docking to explore therapeutic potentials.
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2.2 Identification of differentially expressed
genes (DEGs) in UC and CRC

To identify key genetic alterations associated with UC and CRC,
we performed differential gene expression analysis between case and
control groups using the LinearModels forMicroarrayData (limma)
package in R. Limma is a widely used statistical tool that applies
linear models to gene expression data while leveraging empirical
Bayesmethods tomoderate the standard errors of estimated log-fold
changes.This approach enhances the stability of statistical inference,
particularly in studies with small sample sizes (Ritchie et al., 2015).
To determine significantly differentially expressed genes (DEGs), we
utilized the eBayes function, which computes moderated t-statistics,
F-statistics, and log-odds of differential expression for each gene.
Genes were considered significantly differentially expressed if they
met the threshold of a false discovery rate (FDR) < 0.05 (adjusted p-
value <0.05) and demonstrated an absolute fold change (FC) greater
than 0.585 (|log2FC| > 0.5). These stringent criteria helped ensure
the robustness and reliability of our findings, highlighting geneswith
substantial expression changes that may play critical roles in UC and
CRC pathogenesis.

2.3 Construction of gene Co-expression
networks using weighted gene
Co-expression network analysis (WGCNA)

To explore functional gene relationships and identify disease-
associated modules, we performed Weighted Gene Co-expression
Network Analysis (WGCNA). This method constructs gene co-
expression networks and detects modules of highly correlated genes,
often linked to specific biological traits (Langfelder and Horvath,
2008). As a crucial preprocessing step to ensure a scale-free network
topology, we determined the optimal soft-thresholding power (β),
selecting a β value where the scale-free topology fit index (R2)
exceeded 0.8. Aminimummodule size of 60 genes was set to identify
meaningful gene clusters.

Next, the adjacency matrix was transformed into a Topological
Overlap Matrix (TOM), which enhances network robustness by
reducing the effects of noise and spurious correlations. To identify
gene clusters, we calculated the TOM-based dissimilarity measure
(1 - TOM) and applied hierarchical clustering to group genes
with similar expression patterns into modules. To refine module
detection, dynamic tree cutting was implemented to segment the
clustering dendrogram. To assess biological relevance, we correlated
module eigengenes (principal components of modules) with clinical
traits of UC and CRC. Modules with the strongest correlations and
lowest p-values were selected for further analysis, helping identify
key gene clusters involved in disease mechanisms and potential
therapeutic targets.

2.4 Acquisition of senescence related
genes in UC and CRC

Acomprehensive list of cellular senescence-associated geneswas
obtained from the CellAge database. By intersecting the gene sets
fromWGCNAmodules,DEGs, and theCellAge dataset via “ggvenn”

package (v 0.1.9) (Gao et al., 2024), we extracted a subset of genes
that are not only involved in cellular senescence but also exhibit
differential expression and co-expression patterns in UC and CRC.
These intersecting genes were considered as potential senescence-
related biomarkers and therapeutic targets for further analysis.

2.5 Gene set enrichment analysis on
functions and pathways

Gene Ontology (GO) provides a structured, dynamically
updated vocabulary encompassing gene product attributes across
all species, in which GO enrichment contained 3 parts: biological
processes (BPs), cellular components (CCs) andmolecular functions
(MFs) (Zhao et al., 2022). Kyoto Encyclopedia of Genes and
Genomes (KEGG) integrates genomic, chemical, and systemic
functional information, offering insights into the network of
molecular interactions in the cells. For the purpose of understanding
candidate genes’ function as well as participating pathways,
“clusterProfiler” package (v 4.7.13) was employed for GO and
KEGG analysis (Wu et al., 2021). Utilizing GO and KEGG
pathway analyses, we systematically explore the functional and
interactive networks that characterize the senescence landscape in
UC transitioning into CRC.

2.6 Construction and validation of the
integrated machine learning (IML) model

We developed the final predictive model with optimal
performance by applying 10-fold cross-validation on the training
set, evaluating 113 model combinations derived from 12 machine
learning algorithms. These algorithms included Lasso, Ridge,
Stepwise GLM (Stepglm), Random Forest (RF), XGBoost, Elastic
Net (Enet), Linear Discriminant Analysis (LDA), Partial Least
Squares Regression for Generalized Linear Models (plsRglm),
Generalized Boosted Regression Models (GBM), Naive Bayes,
GLMBoost, and Support Vector Machine (SVM). The 113 models
consisted of 22 individual algorithms and 91 combined algorithms,
as detailed in Supplementary Table S2. To determine the best-
performing model, we calculated the concordance index (C-index)
for each model and selected the one with the highest C-index as the
optimal model. The genes identified by this model were considered
candidate disease-related genes, potentially serving as biomarkers
for UC and CRC.

After constructing the integrated machine learning (IML)
model, we assessed its classification performance using confusion
matrices for the training set and two independent validation
datasets, GSE13367 and GSE90627. To further validate the
model’s predictive capability, we generated Receiver Operating
Characteristic (ROC) curves for both the training and validation
sets and computed the Area Under the Curve (AUC) with 95%
Confidence Intervals (CI). A model was deemed statistically
rational only if the ROC AUC exceeded 0.7 for both the training
and validation sets (Qin et al., 2023; Chen B. et al., 2024). This
approach ensured the robustness and generalizability of our model
in distinguishing disease-associated genes and validating their
diagnostic potential.
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2.7 Differential gene expression analysis
and ROC curve construction

Differential gene expression analysis was performed using
experimental data from the GEO datasets. To compare the
expression levels of disease-related genes between the UC and CRC
validation cohorts, we conducted Student’s t-test. Genes exhibiting
statistically significant differential expression (p < 0.05) were
identified as cellular senescence-related genes in UC or CRC. To
evaluate their diagnostic potential, we generated Receiver Operating
Characteristic (ROC) curves for each gene and calculated the Area
Under the Curve (AUC) with 95% Confidence Intervals (CI). Genes
with an AUC greater than 0.7 in both UC and CRC patients were
considered to have significant diagnostic value (Liu et al., 2024).
Furthermore, the significantly differentially expressed genes were
integrated into a combined diagnostic model, and its ROC curve
was constructed. If the combined model exhibited an AUC higher
than that of any individual gene, it was considered a more effective
diagnostic tool. The volcano plot was redrawn to visualize the
upregulation or downregulation of genes with significant expression
differences between UC and CRC.

2.8 Construction of the protein-protein
interaction (PPI) network

A protein-protein interaction (PPI) network was constructed
to explore the functional relationships and interaction dynamics
among the genes with significant expression differences identified
in IML. GeneMANIA (http://genemania.org/) incorporates
data from multiple interaction types, including co-expression,
physical interactions, genetic interactions, co-localization, pathway
participation, and shared protein domains, providing a holistic
view of the gene interactions. The genes with significant
expression differences were input into GeneMANIA to generate
a comprehensive PPI network.

2.9 Analysis for immune cell infiltration

To investigate disparities in immune infiltration between the
two risk groups, the infiltration abundance of 22 distinct immune
cell types (Chen et al., 2019) was first quantified using the
CIBERSORT algorithm as implemented in the IOBR package
(v 0.99.9) (Zhang et al., 2024). A Wilcoxon test was then
applied to identify immune cell populations displaying significant
differences (p < 0.05) between the risk groups. Subsequently,
Spearman correlation analyses were performed with the psych
package (v 2.4.3), using thresholds of |cor| > 0.3 and p < 0.05,
to elucidate the correlation network among these differentially
abundant immune cells. In addition, correlations between these
immune cells and prognostic genes were evaluated under the same
thresholds to further characterize the interplay between immune
infiltration and gene expression profiles.

2.10 Analysis of gene expression and
microsatellite instability across tumor
stages in COAD

We conducted a comprehensive analysis of the expression
patterns of five candidate genes (ABCB1, CXCL1, TACC3, TGFBI,
and VDR) in colorectal adenocarcinoma (COAD) using publicly
available RNA sequencing data from The Cancer Genome Atlas
(TCGA) database. Microsatellite instability (MSI), a marker
indicative of genomic instability and immunogenicity in colorectal
cancer, was evaluated by computing Pearson correlation coefficients
between gene expression and MSI scores. These correlations,
along with significance levels (p-values), were visualized using
radar charts, providing intuitive insights into the association
between gene expression and MSI status (Lin et al., 2020). To
examine potential differences in gene expression across tumor
stages (Stages I, II, III, and IV), expression levels were visualized
through boxplots, with statistical significance between stage
groups determined via Wilcoxon rank-sum tests, a non-parametric
method suitable for small or unevenly distributed clinical cohorts
(Liu et al., 2023).

2.11 Identification of novel drug targets

To explore potential therapeutic agents targeting cellular
senescence-related genes in UC and CRC, we conducted
a comprehensive drug enrichment analysis using Enrichr
(https://maayanlab.cloud/Enrichr/). Initially, significant candidate
compounds were screened with strict criteria, specifically applying
thresholds of p-value <0.05 to ensure statistical robustness.
Subsequently, we performed molecular docking analysis to validate
and refine the candidate selection using the CB-Dock2 platform, an
advanced version of the CB-Dock server optimized for protein-
ligand blind docking. CB-Dock2 integrates cavity detection,
molecular docking, and homologous template fitting to provide
precise predictions of binding sites and affinities between proteins
and ligands (https://cadd.labshare.cn/cb-dock2/index.php).

The selection of final candidate drugs followed a clearly
defined, stepwise filtering process. Initial drug enrichment analysis
identified compounds significantly interacting with the target genes.
Candidate drugs passing enrichment thresholds with the lowest p-
value underwent molecular docking analyses. Docking scores (Vina
scores) obtained from CB-Dock2 were employed, with lower scores
indicating stronger binding affinity and better potential therapeutic
efficacy. Compounds with the lowest Vina scores were prioritized
as potential therapeutic candidates based on their binding strength
and interaction specificity, then we used CB-Dock to visualize the
docking result.

Through this combined approach of enrichment
analysis and molecular docking, we systematically and
rigorously identified promising candidate drugs, thereby
enhancing the potential for targeted therapeutic strategies
in UC and CRC.
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3 Results

3.1 Acquisition of senescence related
genes in UC and CRC

All diseased samples from the training set (GSE52060,
GSE87211, GSE36807, and GSE53306) were merged into “Treat”,
and all healthy control samples were merged into “Control”.
In the heatmap, the validation group and experimental group
are divided into different modules, and the samples in each
dataset are segmented into different squares (Figure 2A). The
colors of the squares represent the changes in gene expression,
with red representing upregulation and blue representing
downregulation. A total of 3,446 DEGs were identified by
comparing the BD and control groups. Among all DEGs,
1716 genes displayed upregulation, whereas 1730 genes were
downregulated (Figure 2B).

Next, WGCNA was used to identify the significant module
genes associated with UC and CRC. We selected the optimal
soft-thresholding power (β) to establish a scale-free topology
network, ensuring that the scale-free topology fit index (R2)
exceeded 0.8 (Figure 2C). The chosen β value was set to maintain
the network’s scale-free characteristics. The grey module and
brown module did not successfully cluster the genes commonly
considered irrelevant or uninformative (i.e., the “junk module”).
The turquiose (r = 0.5, p = 8 × 10−30) module displayed
the highest correlation with UC and CRC (Figure 2D). The
relationship between module membership and gene significance
in the turquiose module is calculated (Cor = 0.93, p < 10–200)
and plotted (Figure 2E). Consequently, 3,571 significant module
genes were identified.

Through a comprehensive analysis integrating data from
the CellAge database, weighted gene co-expression network
analysis (WGCNA) modules, and differentially expressed genes
(DEGs), we identified a refined subset of 112 shared genes
implicated in cellular senescence and their association with
UC and CRC. The Venn diagram (Figure 2F) summarizes the
intersection results, illustrating the overlap between the gene
sets and emphasizing the genes that could serve as pivotal
links between cellular senescence and disease progression in
UC and CRC.

3.2 Functional annotation and pathway
enrichment analysis

The differentially expressed genes identified using the
limma R package were analyzed through Gene Ontology (GO)
enrichment analysis (Figures 3A,B). The results were ranked
in ascending order based on adjusted p-values (p.adjust) and
GeneRatio. In the Biological Processes (BP) category, the top
three pathways with the lowest p.adjust values and the highest
number of enriched genes were morphogenesis of a branching
structure, morphogenesis of a branching epithelium, and gland
development. In the cellular components (CC) category, the top 3
terms were cytoplasmic vesicle lumen, secretory granule lumen,
and collagen−containing extracellular matrix. In the molecular
functions (MF) category, the top 3 terms were DNA−binding

transcription factor binding, DNA−binding transcription activator
activity, DNA−binding transcription activator activity, RNA
polymerase II−specific. The KEGG pathway analysis revealed
key pathways that were significantly enriched among the
genes identified in our study (Figures 3C,D). These pathways
included the PI3K-Akt signaling pathway, p53 signaling pathway,
and the cell cycle, which are known to play pivotal roles in
regulating cellular senescence, survival, proliferation, and apoptosis.
The involvement of these pathways underscores the potential
mechanisms through which cellular senescence could influence
the transition from UC to CRC.

3.3 Identification of intersection genes
with diagnostic value and developing a
diagnostic model for UC-related CRC via
machine learning

A comprehensive machine learning approach involving 12
algorithms was implemented with a 10-fold cross-validation process
to identify the most robust diagnostic model based on 112 shared
genes (Figure 4A). The analysis was conducted using the training
dataset and validated across two external datasets (GSE90672
and GSE13367). The final model, which demonstrated the best
performance, was constructed by integrating Stepglm [both] and
Enet [α = 0.6]. Specifically, the Stepglm [both] algorithm identified
10 pivotal genes, including ABCB1, AGR2, BCL2L1, CXCL1,
FOXO1, SOX4, TACC3, TGFβI, VDR, and VEGFA, while the Enet
[α = 0.6] algorithm optimized the model’s reliability. The validation
datasets remained completely independent and were not involved
at any stage of feature selection, model training, parameter tuning,
or optimization, thereby preventing any potential data leakage
or information contamination. Furthermore, all cross-validation
procedures, feature selection steps, and modeling approaches were
performed exclusively within the training set. The calibration
curves, illustrated in Figures 6D,E, show high AUC values for the
training set (Figure 4B, AUC = 0.991), as well as the testing set
GSE90627 (Figure 4C, AUC = 1.000) and GSE13367 (Figure 4D,
AUC = 0.993), indicating a strong agreement between the
predicted probabilities and observed clinical outcomes.These results
highlight the robust calibration and diagnostic performance of the
proposed model.

3.4 Diagnosis value of pivotal genes

Ten pivotal genes were included in the following ROC analysis.
All 10 pivotal genes showed high significance (p < 0.001) in
CRC and its control group (Figure 5A), while ABCB1, CXCL1,
TACC3, TGFβI, VDR displayed high significance (p < 0.001) in
UC and its control group (Figure 5B). Based on the significant
differences in gene expression, ABCB1, CXCL1, TACC3, TGFβI,
and VDR were integrated into a combined model. All the 5 genes
were included in ROC analysis. We calculated the AUC values
for each gene and the combined model separately (Figure 5C).
The results showed that the AUC values of all genes were not
less than 0.7, and the AUC value of the combined model (AUC
= 0.989) was higher than that of any individual gene. Therefore,
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FIGURE 2
Identification of DEGs in UC/CRC patients and identification of key genes by WGCNA analysis in UC/CRC patients (A) Heatmap showing upregulated or
downregulated DEGs in UC/CRC samples compared to normal samples (bule: downregulated; red: upregulated) (B) Volcano plot of DEGs between
UC/CRC and controls. (C) Analysis of network topology for various soft thresholds (β) (D)Module-trait relationships. (E) Associations between turquoise
module membership and gene importance is depicted in a scatter plot. (F) The overlapping regions from key module genes, DEGs, and cellular
senescence related genes.
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FIGURE 3
GO and KEGG analysis of the overlapping genes (A,B) GO analysis of these overlapping genes in UC/CRC patients. (C,D) KEGG analysis of these
overlapping genes in UC/CRC patients.

the combined model has greater diagnostic value compared to any
individual gene.

3.5 Protein-protein interaction (PPI)
network construction

The PPI network for genes which were included in
combined model genes (ABCB1, CXCL1, TACC3, TGFβI, and
VDR) were created via the GeneMANIA database (https://
genemania.org/). In the GeneMANIA map, a total of 20
genes (CXCL5, CXCL6, POSTN,SLC22A3, SLC22A1, CCL11,
TACC2, TACC1, CKAP5, APCS, ACKR1, ACBC4, RXRB,
MEDI, CYP3A4, SLC22A2, NDEL1, CSCR2, BAG1, and CLIP4)
were found to have gene interactions with five combined
model genes (Figure 6). In the GeneMANIA network, physical
interactions between pivotal genes and other genes account for
77.64%, while co-expression accounts for 8.01%, demonstrating

the strong protein-protein interactions within the GeneMANIA
network topology.

3.6 Analysis of immuno-infiltration and
correlation analysis

Immune correlation analysis was performed with all samples
in training set (Figure 7A). The infiltration landscape showed that
22 kinds of immune cell distributions in the control and treat
groups. Fourteen types of immune cells (neutrophils, mast cells
activated, mast cells resting, macrophages M2, macrophages M0,
monocytes, NK cells activated, T cells follicular helper, T cells CD4
memory activated, T cells CD4 memory resting, T cells CD4 naive,
T cells CD8, and B cells memory) infiltrated significantly (p <
0.001) between the control and treat groups (Figure 7B). Correlation
analysis between immune cells indicates that Macrophage M2
exhibited significantly negative correlation with activated T cells

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1599098
https://genemania.org/
https://genemania.org/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Xue et al. 10.3389/fbinf.2025.1599098

FIGURE 4
Construction and validation of diagnostic signatures by integrative machine learning (A) The 113 combinations of prediction models using 10-fold
cross-validation with ranked AUC index. (B–D) ROC plots for datasets in internal training set and external validation sets (GSE90672 and GSE13367),
correspondingly.
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FIGURE 5
Validation of diagnostic value of pivotal genes (A) Pivotal genes expression in colorectal cancer training sets with significance (∗∗∗p < 0.001) (B) Pivotal
genes expression in ulcerative colitis training sets with significance (∗∗∗p < 0.001). (C) ROC plots for each diagnostic gene and the combined model in
internal training cohorts.

CD4 naive (r = −0.63, p < 0.05), T cells CD8 had positive correlation
with macrophages M2 (r = 0.31, p < 0.05) (Figure 7C).

The correlation between genes and 22 immune cell types,
as well as the interrelationships among immune cells, has been
systematically analyzed and visualized (Figure 7D). Among the
findings, ABCB1 exhibits the strongest positive correlation with
T cells CD4 memory resting, while demonstrating the most
pronounced negative correlation with Monocytes (Figure 7E).
Similarly, CXCL1 is most positively correlated with Neutrophils
and Macrophages M0, whereas its most significant negative
associations are observed with NK cells activated and Macrophages
M2 (Figure 7F). In the case of TACC3, its highest positive
correlation is identified with Neutrophils, whereas its strongest
negative correlations are noted with B cells memory and Plasma
cells (Figure 7G). Notably, TGFβI shows the most significant
positive correlation with Mast cells activated, while displaying a

marked negative correlation with Plasma cells, T cells CD8, T
cells gamma delta, and Macrophages M2 (Figure 7H). The gene
VDR did not exhibit strong correlations with immune cells in
the analysis (Figure 7I).

3.7 Stage-dependent expression and MSI
correlation of ABCB1, CXCL1, TACC3,
TGFBI, and VDR in COAD

ABCB1 expression significantly decreased with advancing
tumor stage, with higher median expression observed in early-
stage (Stage I/II) compared to late-stage tumors (Stage III/IV),
consistent with earlier reports of its downregulation in colorectal
carcinogenesis (Figure 8A). Conversely, CXCL1 and TACC3
were progressively upregulated in advanced stages. CXCL1
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FIGURE 6
Protein-Protein Interaction (PPI) network for five combined model genes and their related biological functions.

showed significantly elevated expression in Stage III–IV tumors
compared to Stage I–II, indicative of enhanced inflammation
(Figure 8B). Similarly, TACC3 levels significantly increased in late-
stage disease, aligning with its previously reported association
with tumor progression and poor prognosis in colorectal
cancer (Figure 8C). TGFBI and VDR exhibited no clear stage-
dependent expression patterns. TGFBI expression fluctuated
without significant differences, while VDR levels remained relatively
stable across stages, aligning with previous studies reporting limited
stage-dependent variation (Figures 8D,E). MSI analysis revealed
significant positive correlations for TACC3 and CXCL1 (p < 0.05),
suggesting their potential roles in MSI-high tumor biology, whereas

ABCB1, TGFBI, and VDR lacked significant associations with
MSI status (Figure 8F).

3.8 Potential drug discovery and
gene-drug interaction

Enrichr database was utilized to screen therapeutic agents
targeting the five combined model genes. The analysis highlighted
several compounds potentially effective in targeting genes associated
with UC and CRC, and the compounds (p < 0.05) are listed in
Supplementary Table S2. Protein sequences were obtained from
Uniprot (https://www.uniprot.org/), and compound structures were
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FIGURE 7
Immune infiltration landscape in colorectal cancer and ulcerative colitis (A) Proportional graph of 22 kinds immune cells in all training sets. (B)
Distribution of different types of immune cells in control group and CRC/UC group (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001) (C) Correlation of 22 immune
cells by compositions. Both horizontal and vertical axes demonstrate immune cells subtypes. (D) Correlation analysis of the level of infiltration of five
pivotal genes and each type of immune cells. (E–I) The association between ABCB1, CXCL1, TACC3, TGFβI and VDR expression with different immune
cell infiltration in the treat group, correspondingly.
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FIGURE 8
Correlation of gene expression with clinical stage and microsatellite instability (MSI) status in colon adenocarcinoma (COAD) (A–E) Expression profiles
of ABCB1, CXCL1, TACC3, TGFBI, and VDR across COAD stages I to IV. Significant differences in expression were observed across stages. (F) Radar chart
illustrating Spearman correlation coefficients between expression levels of the five genes and MSI status in COAD. Positive correlations suggest higher
gene expression is associated with increased MSI, whereas negative correlations indicate an inverse relationship.
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FIGURE 9
Drug enrichment and molecular docking for five combined model genes (A,B) Exploration potential drug from Enrichr to five pivotal genes. (C)
Visualization of chemical compound data illustrating the distribution and categorization of various pharmaceutical agents (D) Visualization of
molecular docking for 5-Aminosalicylic acid to its target CXCL1. (E) Visualization of molecular docking for cefaclor to its target TACC3 (F) Visualization
of molecular docking for iodoquinol to its target TACC3. (G) Visualization of molecular docking for pyrithione to its target TACC3 (H) Visualization of
molecular docking for 5-Aminosalicylic acid to its target VDR. (I) Visualization of molecular docking for cefaclor to its target VDR (J) Visualization of
molecular docking for iodoquinol to its target VDR. (K) Visualization of molecular docking for pyrithione to its target VDR.

retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/).
The identified therapeutic agents included iodoquinol, cefaclor,
pyrithione, 5-Aminosalicylic acid, 2-Mercaptobenzothiazole,
1,10-Phenanthroline, eugenol, Bisulfite, Alitretinoin, and
gossypol (Figures 9A,B).

Genes CXCL1 (Uniprot ID: P09341), TACC3 (Uniprot ID:
Q9Y6A5), and VDR (Uniprot ID: P11473) were selected as target
proteins, and their interactions with candidate drugs were visualized

through interconnected curves, enabling clearer exploration of
drug-target relationships (Figure 9C). The four most significant
drugs, iodoquinol (CID: 3,728), cefaclor (CID: 51,039), pyrithione
(CID: 1570), and 5-Aminosalicylic acid (CID: 4075), were chosen
based on the lowest enrichment p-values for further validation
using molecular docking. Docking results, represented by Vina
scores, are summarized in Table 1. Lower Vina scores indicate
stronger binding affinities, justifying the prioritization of these
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TABLE 1 Binding affinities (Best Vina Scores) of candidate drugs with
target proteins.

Protein-drug pair Best vina score

CXCL1-5-Aminosalicylic acid −4.7

TACC3-cefaclor −6.4

TACC3-iodoquinol −4.9

TACC3-pyrithione −3.9

VDR-5-Aminosalicylic acid −6.0

VDR-cefaclor −9.7

VDR-iodoquinol −5.6

VDR-pyrithione −4.7

compounds as therapeutic candidates. Visualization of docking
interactions was performed using PyMOL software (Figures 9D–K).
Importantly, 5-Aminosalicylic acid is already clinically established
for UC treatment, providing additional validation and supporting
the overall reliability and validity of our model.

4 Discussion

Sustained ulcerative colitis of the colorectal leads to tissue
damage and repair, which is associated with an increased
incidence of colitis-associated colorectal cancer. Meanwhile, cellular
senescence may be a trigger for colorectal cancer or an emerging
therapeutic target (Wu et al., 2022). To our knowledge, our work is
the first to filter senescence-related genes and potential therapeutic
drugs in UC and CRC based on the overall normalized weights of
IML. Four training sets, two testing set, a total of 621 samples in
GEO database were included, and clinical studies were promoted by
using datasets to validate the results. Five genes in combined model,
ABCB1, CXCL1, TACC3, TGFβI, andVDR, all showed anAUC>0.7
in gene ROC plot, and their combination diagnostic model showed
higher AUC value than any other individual genes, indicating a
potential diagnostic value of the five combined model genes. We
further investigated the immune correlations of the five genes in
the combined model and expanded their potential diagnostic value.
These genes highlight the intricate relationship between cellular
senescence, immune response, and tumor progression in CRC.
Moreover, the development of novel anti-cancer, anti-inflammatory,
and anti-aging drugs is often costly and time-consuming. By
leveraging bioinformatics to identify medications targeting these
key genes, our approach has the potential to enhance efficiency and
significantly reduce the costs associated with drug discovery.

ABCB1, also known as P-glycoprotein (P-gp) or MDR1, is a
type of ATP-binding cassette (ABC) transporter. The gene encodes
a membrane-bound protein that belongs to the ATP-binding
cassette (ABC) transporter superfamily. This protein functions
as an ATP-driven drug efflux pump, capable of exporting a
wide range of xenobiotic compounds due to its broad substrate
specificity. ABCB1 helps protect cells from toxic compounds but

also contributes to multidrug resistance (MDR) in colorectal cancer
cells by reducing the intracellular concentration of anticancer
drugs, including doxorubicin, paclitaxel, and vincristine, making
them less effective (Tan et al., 2022; Lei et al., 2024). In UC, the
dysfunction or low activity of ABCB1 leads to the accumulation of
harmful bacterial products within the gut epithelium, contributing
to chronic inflammation and mucosal damage. This impaired
function disrupts the balance of the gut microbiome, exacerbating
the inflammatory response and promoting the development of UC
symptoms (Stoeltje et al., 2024). Furthermore, ABCB1 has been
identified as a cell senescence related gene, the expression of ABCB1
may increase during aging to enhance the resistance of cells to
external toxic substances (Wu et al., 2023). ABCB1 can also alter how
cells respond to stress or therapy by shifting cell fate from apoptosis
toward survival outcomes like senescence. For example, cancer cells
overexpressing P-gp are less prone to undergo apoptosis after DNA
damage (e.g., radiation) and instead exhibit higher incidences of
senescence and mitotic catastrophe (Tainton et al., 2004).

CXCL1 is a potent neutrophil chemoattractant that plays a
significant role in the immune response. CXCL1’s function in
UC is to facilitate the migration and activation of immune cells,
thereby exacerbating the inflammatory response in the colon,
which is positively correlated with UC severity (Huo and Wang,
2023). CXCL1 plays a significant role in CRC by promoting tumor
progression through several mechanisms. It is overexpressed in
colorectal cancer tissues and contributes to cancer cell proliferation,
migration, and invasion. CXCL1 activates theNF-κBpathway,which
is crucial for cancer cell survival and inflammation (Zhuo et al.,
2022). Additionally, CXCL1 recruits myeloid-derived suppressor
cells (MDSCs) via the CXCL1-CXCR2 axis, which helps the tumor
evade the immune system. CXCL1 is part of the senescence-
associated secretory phenotype (SASP), involves its role in the
tumor microenvironment, and helps wake up dormant cancer
cells, making them more aggressive and prone to recurrence
(Korbecki et al., 2022). Thus, CXCL1 is a significant SASP
component mechanistically linked to senescence: it reinforces
senescence via autocrine signaling, and its presence in the secretome
can modulate immune surveillance and tissue outcomes in age-
related pathologies (Chambers et al., 2021).

TACC3, amember of the transforming acidic colied-coil protein
family, is found to be overexpressed in colorectal cancer tissues,
contributing to increased cell proliferation and cellular senescence.
TACC3 regulates various processes during mitosis and interphase.
During mitosis, it interacts with proteins like KIFC1 to cluster extra
centrosomes, preventingmultipolar spindle formation and ensuring
proper cell division (Saatci et al., 2023). In interphase, TACC3
interacts with the NuRD complex to suppress tumor suppressor
genes, promoting cell cycle progression and survival (Saatci et al.,
2023). Transcriptomic analyses of colonic tissues identified TACC3
as significantly upregulated in UC patients, ranking it among a
handful of pivotal genes distinguishing UC from healthy tissue.
Elevated TACC3 expression in the inflamed colonic mucosa may
reflect increased epithelial cell proliferation and altered regenerative
responses during chronic inflammation (Zeng et al., 2018).
Targeting TACC3 with inhibitors can induce mitotic catastrophe
and G1 phase arrest, leading to cancer cell death, making it a
promising therapeutic target for aggressive cancers. Additionally,
high TACC3 expression is linked to an immunosuppressive tumor
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microenvironment and higher tumormutational burden, suggesting
its involvement in tumor progression and immune evasion.
Knockdown of TACC3 reduces cell proliferation and senescence,
indicating its potential as a therapeutic target (Du et al., 2016).

TGFβI, or Trnsforming Growth Factor Beta-Induced protein, is
a RGD-containing protein that binds to type I, II and IV collagens,
playing a significant role in cancer, particularly in colorectal cancer
(CRC) (Chiavarina et al., 2021). It is involved in promoting
angiogenesis, which is the formation of new blood vessels,
thereby supporting tumor growth and metastasis. TGFβI’s presence
pushed cells into cellular senescence (with even telomerase activity
paradoxically rising as often seen in stress-induced senescence),
and conversely, loss of TGFBI was one factor allowing those
cancer cells to escape senescence and continue dividing (Li et al.,
2012). In UC, TGFBI expression is elevated in the inflamed colon,
indicating activation of wound-healing and fibrotic pathways in the
mucosa (Haberman et al., 2020). TGFβI expression is regulated
by TGFβ signaling pathways, and its presence is associated with
increased metastatic potential in CRC cells. TGFβI’s interactions
with extracellularmatrix proteins and integrins are crucial for its role
in cancer, influencing cell adhesion, migration, and chemotherapy
resistance (Corona and Blobe, 2021). TGFβI downstream gene TGF-
β1 is a key cytokine involved in the development of kidney diseases
and can induce the expression of p21, a protein that can regulate cell
cycle arrest and senescence (Ueda et al., 2021).

VDR is a nuclear hormone receptor for 1,25-dihydroxyvitamin
D3 that plays a multifaceted role in cellular senescence and aging. In
general, active vitaminD/VDR signaling has anti-senescent andpro-
homeostatic effects in cells. Vitamin D can attenuate oxidative stress
and delay the onset of senescence largely by inducing antioxidant
and longevity genes–for example, VDR activation elevates Nrf2
(a master regulator of antioxidant response) and Klotho (an anti-
aging protein), which improves mitochondrial function and reduces
reactive oxygen species (Chen J. et al., 2024). VDR plays a crucial
role in both colorectal cancer (CRC) and ulcerative colitis (UC). In
CRC, VDR helps regulate the immune response and inflammation,
which are key factors in cancer progression. VDR deficiency is
linked to more severe colitis and an increased risk of developing
colorectal cancer. It modulates macrophage polarization, promoting
an anti-tumor M1 phenotype over the pro-tumor M2 phenotype
(Hu et al., 2020). This regulation helps prevent the transition from
chronic colitis to colorectal cancer. In UC, VDR’s role is similar,
as it helps control inflammation and maintain intestinal barrier
integrity, reducing the risk of cancer development (Shi et al., 2020).
M1macrophages have anti-tumor functions, which help in reducing
inflammation and preventing the progression of colitis-associated
colorectal cancer. The absence of VDR accelerates the progression
from chronic colitis to colorectal cancer, highlighting its protective
role in this transition. VDR plays a crucial role in regulating DNA
repair during oncogene-induced senescence (OIS) (Graziano et al.,
2016). When VDR levels are reduced, as seen in cells expressing
oncogenic Ras, it leads to a decrease in the DNA repair factors
BRCA1 and 53BP1. This reduction impairs the cell’s ability to
repair DNA damage, contributing to genomic instability. VDR helps
maintain the balance of these repair factors, and its downregulation
can exacerbate DNA repair deficiencies, promoting senescence and
potentially leading to tumorigenesis (Graziano et al., 2016).

Our Immuno-infiltration revealed that chronic inflammation
in UC creates a pro-tumorigenic microenvironment that drives
the inflammation-dysplasia-carcinoma sequence. UC-affected
colonic tissue is heavily infiltrated by neutrophils, monocytes/M0
macrophages, and activated T cells, which sustain mucosal injury
and promote regenerative proliferation (Penrose et al., 2021).
These cells release inflammatory cytokines, chemokines, and
reactive oxygen species that induce epithelial DNA damage
and activate tumorigenic pathways. Neutrophils, for example,
release myeloperoxidase and other mediators that exacerbate
tissue damage and genomic instability, and their accumulation
correlates with increased cancer risk (Zhang C. et al., 2023). M1-
polarized macrophages in UC produce TNF-α, IL-1β, and IL-6,
activating NF-κB and STAT3 pathways that support epithelial
hyperplasia and survival. As malignancy develops, the immune
infiltrate shifts: macrophages adopt an M2 phenotype, secreting
immunosuppressive (IL-10, TGF-β) and pro-angiogenic factors,
while CD4+T cells transition from a Th1/Th17 to a Th2-dominant
profile. Th2 cytokines (e.g., IL-4, IL-13) can directly promote
DNA damage and mutation in epithelial cells (Wang et al., 2015).
Meanwhile, regulatory T cells expand inCRC and suppress cytotoxic
responses via IL-10 and TGF-β, creating an immune-tolerant
environment. Additional contributors include mast cells, which
release mediators that disrupt the extracellular matrix and promote
vascular remodeling, and monocytes, which differentiate into
immunosuppressive tumor-associated macrophages and MDSCs.
NK cell activity may also be impaired in chronic inflammation,
reducing their tumor surveillance capability. Together, these
changes illustrate how persistent immune dysregulation in UC
not only sustains inflammation but also drives the molecular and
cellular events underlying malignant transformation and immune
escape in CRC (Li et al., 2023). In summary, the altered immune cell
landscape inUCnot only perpetuates inflammation but also initiates
oncogenic changes, and as UC progresses to CRC, the immune
contexture increasingly favors tumor progression (via growth and
angiogenesis signals) and immune escape, mechanistically linking
chronic colitis to colorectal carcinogenesis.

In comparison to previous UC and CRC gene signature
studies (Chen et al., 2021; Shi et al., 2024; Huang et al., 2022;
Horaira et al., 2023; Chadha, 2025), which predominantly uncovered
overlapping inflammation- and immune-related biomarkers (e.g.,
IL1B, CXCL10) through standard differential expression or network
analyses, our study takes a fundamentally different approach. We
employed a senescence-based gene selection strategy, focusing on
genes linked to cellular aging processes in the colitic mucosa,
an aspect largely overlooked in earlier work. This novel focus
yielded a distinct panel of senescence-associated genes (including
ABCB1, CXCL1, TACC3, TGFBI, and VDR) that demonstrated
superior diagnostic performance. In fact, our gene set achieved
markedly higher accuracy in distinguishing disease states on
independent validation cohorts (GSE13367 and GSE90627) than
the signatures reported in prior studies. Mechanistically, our
findings highlight cellular senescence as a key link between
chronic inflammation and neoplastic transformation in ulcerative
colitis, providing insights that earlier immune-centric signatures
did not. Although CXCL1 has been reported, our research has
important therapeutic implications: by pinpointing senescence
drivers of colitis-associated carcinogenesis, and our study opens
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up new avenues for intervention (for example, targeting senescent
cells or their secretory factors) to potentially prevent or delay UC
progression to CRC, a clear advantage over previous gene sets
that mostly served as diagnostic markers and revealing actionable
pathogenic processes.

5 Conclusion

In this work, we have effectively applied integrative machine
learning and bioinformatics approaches to identify key cellular
senescence-related genes, namely, ABCB1, CXCL1, TACC3, TGFβI,
and VDR, that show promising potential as diagnostic biomarkers
and therapeutic targets in the progression from ulcerative colitis
to colorectal cancer. Our combined diagnostic model, which
outperformed individual gene markers, underscores the significant
diagnostic value of these candidates, while our immune infiltration
analyses further suggest that immunological dysregulationmay play
a crucial role in disease evolution. However, the current findings
are primarily based on retrospective dataset analyses and predictive
modeling, and thus additional experimental and clinical validations
are required to fully ascertain the clinical applicability of these genes.
In the future, we plan to expand our studywith larger, diverse clinical
cohorts and mechanistic investigations to further elucidate the roles
of these senescence-related genes in UC and CRC, ultimately paving
the way for more targeted and effective therapeutic strategies.
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