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Introduction

The field of tendon repair and engineering stands at a pivotal crossroads. Decades of
descriptive biology and biomechanics have demonstrated that tendon cells and matrix are
exquisitely load-sensitive (Wang, 2006). However, the translation of this knowledge into
clinically robust, load-competent grafts remains limited (Szczesny and Corr, 2023; Wang
et al., 2025). This translational gap reflects more than just technological inertia—it arises
from the inherent complexity of replicating the dynamic mechanical environment that
tendons experience in vivo (Freedman et al., 2018). Most current biofabrication systems still
rely on static culture conditions, lacking the dynamic, cyclic and multidirectional forces that
characterize the native tendon environment (Mirsky et al., 2024; Sander et al., 2022).
Consequently, even sophisticated constructs often fail to acquire the hierarchical alignment
and resilience required for physiological function (Chen et al., 2025; Li et al., 2023). Given
the impact of magnitude, frequency, direction, and duration of loading on cell fate and
matrix organization, defining and reproducing these mechanical parameters is essential for
guiding tenocyte behavior and tenogenic matrix assembly (Benage et al., 2022; Wang et al.,
2012). These mechanical variables act through defined mechanotransduction pathways,
which in turn regulate inflammation, differentiation, and remodeling—making them
actionable targets for therapeutic and bioengineering strategies (Lavagnino et al., 2015;
Wang et al., 2018).

The papers included in the Frontiers Research topic “Effect of mechanical loading on the
tendon for tissue engineering,” collectively update and refine the agenda in four ways: (1)
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mechanobiological principles should be mapped to biofabrication
workflows; (2) there is a need for smarter in vivo models and
integration of AI and 3D-bioprinting; (3), strain-dependent
inflammatory and fibrotic signaling must be elucidated in human
tendon and ligament cells; and (4), tissue engineering benchmarks
must be grounded in in vivo loading metrics should be proposed.
Together, these studies argue for an integrated translational pipeline
that couples physiology-inspired loading, immune-aware
constructs, and rigorous functionally-relevant preclinical metrics.

A short synopsis of each article published in this Research Topic
is given bellow:

Gögele et al. propose the central hypothesis that
mechanostimulation-guided biofabrication can yield structurally
and functionally superior tendon constructs. The authors
concluded that successful translation of tendon mechanobiology
into biofabrication requires scaffolds and bioreactors that mimic
physiological cyclic stretch, frequency, and anisotropic cues that
drive tenogenic differentiation and hierarchical matrix assembly.
Their review synthesizes mechanosensitive pathways, cell–matrix
feedback loops, and examples of cyclic-stretch regimens, arguing
that precise, tunable mechanostimulation should be a
core design parameter of any tendon biofabrication platform.
Without incorporating dynamic mechanical loading (not
solely biochemical cues), engineered tendons will inevitably
fail to recapitulate the mechanics and function of native tissue
(Gögele et al.).

Aykora et al. propose the systems-level integration of
harmonized in vivo models coupled with artificial intelligence
(AI) and three-dimensional bioprinting to reduce the current
gap between research and translation and expedite clinically
significant tendon regeneration. They contend that current
preclinical paradigms are fragmentated, and often limited by
inconsistent loading conditions and poorly standardized
endpoints. By contrast, AI-assisted analytics applied to
standardized models can extract mechanophenotypes from
multimodal datasets, while 3D bioprinting will provide
sophisticated control over spatial cell–matrix architecture,
including tendon/ligament-like tissues. The integration of
modeling, computation and fabrication offers a path beyond
incremental, device-centric development toward adaptive data-
driven tissue engineering (Aykora et al.).

Heidenberger et al. demonstrate that ligamentocytes’ response
to mechanical strain is context-dependent, shaped by both the
magnitude of loading and the surrounding biochemical
environment. Physiologic dynamic strain can attenuate pro-
inflammatory and profibrotic signaling, whereas excessive strain
promotes inflammation andmaladaptive remodeling. Moreover, the
transcriptional and matrix responses to strain are modulated by
cytokine context, underscoring that mechanical and biochemical
cues interact rather than act in isolation. Together, these findings
establish that mechanotransduction is not a passive background
process but an active determinant of ligamentocyte fate.
Consequently, anti-inflammatory or anti-fibrotic strategies that
disregard the mechanical context may prove ineffective or even
counterproductive (Heidenberger et al.).

Muscat and Nichols argue that in vivo tendon loading metrics
should define success criteria for engineered constructs. Their review

describes animal models of tendon loading and compiles
reproducible mechanical and structural readouts, including strain
magnitudes, loading regimens, and extracellular matrix
organisation, that correlate with functional recovery in animal
models. The authors emphasize that isolated molecular markers
or single tensile tests are insufficient; engineered constructs must be
assessed against the same loading performance and criteria for
matrix alignment, stiffness, fatigue resistance and biologic
integration expected of native tendons. The calls for physiologic
benchmarking and preclinical pipelines that test engineered tissues
under loading regimes that mirror the target biology, sets a new
translational standard for tendon tissue-engineering (Muscat
and Nichols).

Concluding perspective — toward a
mechanobiology-based
translational pipeline

Taken together, the papers in this Research Topic map a rational
research roadmap for the next phase of tendon research and
engineering: i: embed physiologic mechanostimulation into
biofabrication approaches, ii: integrate AI and advanced printing
to produce engineered, multiscale constructs, iii: account for
immuno-mechanical crosstalk and strain-dependent cytokine
responses in therapeutic development, and iv: benchmark
engineered tissues against in vivo-derived mechanical and
structural metrics.

The next frontier is not conceptual but operational: To ensure
that engineered tendons can meet the demands exerted upon native
tissues, the field must standardize loading protocols, share open
datasets, and couple mechanobiology with immune modulation and
high-fidelity preclinical testing. Only through such integration can
we ensure that engineered tendons are not merely biological
imitations but functional, mechanocompetent tissues capable of
enduring the demands of life.
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