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Background: Paprosky 3B acetabular defects challenge revision total hip
arthroplasty (THA) due to conventional techniques’ high failure rates. This
study evaluates midterm outcomes and biomechanical performance of 3D-
printed split-type triflange acetabular cups for Paprosky 3B defects.

Materials and methods: From 02/01/2017 to 10/30/2021, we retrospectively
assessed 14 patients with Paprosky 3B defects using 3D-printed split-type
triflange cups. Preoperative CT-based 3D models guided implant design with
porous surfaces and optimized screw fixation. Clinical outcomes were assessed
via Harris Hip Score (HHS) and Oxford Hip Score (OHS). Radiographic parameters
and implant stability were analyzed. Biomechanical characteristics were
evaluated through finite element analysis (FEA) under physiological loads
representing single-leg stance, walking, and jogging (700N, 2800N, and 4200N).
Results: At mean 74.2-month follow-up, HHS improved from 31.9 + 8.5t0 82.9 +
5.9 (p < 0.05) and OHS from 7.6 + 2.3 to 354 + 3.1 (p < 0.05). Anatomical hip
center restoration was achieved with comparable postoperative and contralateral
rotation center measurements. Radiographic analysis confirmed stable fixation in
all cases without loosening. FEA revealed distinct biomechanical behavior
between bone models. In both normal and osteoporotic models, stress
concentrated at the superior flange screw fixation site and the superior
acetabular rim. Under 700N loading, interfacial micromotion at all
measurement points (P1-P3) remained below the 40 pm threshold for
osseointegration. However, at higher loads (2800N and 4200N),
P1 micromotion significantly exceeded this critical threshold in both models,
reaching 122.861 pm and 131.244 um respectively at maximum loading, while
P2 and P3 maintained acceptable levels.

Conclusion: Custom 3D-printed split-type triflange prostheses achieve excellent
midterm functional restoration and biomechanical stability in Paprosky 3B
defects. Key advantages include precise hip rotation center reconstruction,
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favorable stress distribution, and reduced intraoperative morbidity. Early partial
weight-bearing is safe, though high-impact activities should await radiographic
confirmation of osseointegration. Long-term validation of durability is warranted.

3D-printed, triflange cup, split-type, revision, acetabular defect, finite element analysis

1 Introduction

Total hip arthroplasty (THA) remains the gold standard for end-
stage hip diseases, significantly improving functional outcomes and
quality of life. With the aging population and expanded indications
in younger patients, global THA utilization continues to rise,
exceeding 600,000 procedures annually in Europe, and is
projected to surpass 1.4 million worldwide by 2030 (Manson and
Schmidt, 2016; Ceddia et al., 2025). While modern implants
demonstrate 10-year survival rates of 96% (Hunt et al, 2018),
long-term revision rates escalate to 42% postoperatively at
25 years (Evans et al, 2019), primarily driven by aseptic
loosening and periprosthetic joint infection (Kenney et al., 2019).
These complications frequently culminate in progressive bone loss,
posing formidable challenges for acetabular reconstruction.

The Paprosky classification system is widely used for
categorizing acetabular defects, with type 3B (characterized
by >60% bone loss, superior-medial hip center migration >3 cm,
and frequent pelvic discontinuity) representing the most complex
reconstruction scenario (Paprosky et al., 1994). Extensive bone loss
may lead to pelvic discontinuity, complicating anatomical
restoration and impeding stable implant fixation. To address this
challenge, various revision techniques have been proposed,
including oblong cups, jumbo hemispherical cups, bulk structural
allografts, reinforcement rings/cages, trabecular metal augments,
and cup-cage constructs (Di Laura et al, 2023; Sanghavi et al,
2024; Goriainov et al., 2021). However, comparative analyses of
these techniques remain challenging due to inconsistent outcomes
and notable complication rates, such as inadequate osseointegration,
implant instability, mechanical failure, and gait abnormalities
(Meding and Meding, 2023). Studies indicate that the 10-year re-
revision rate following initial acetabular revision remains as high as
20%-36% (Deere et al., 2022; Abrahams et al., 2020), underscoring
the limitations of current strategies in ensuring long-term stability
for complex defects.

The advent of three-dimensional (3D) printing technology has
ushered in a new era for managing complex acetabular defects. This
technology enables the fabrication of patient-specific implants with
controlled porous structures that mimic the elastic modulus of
native bone, thereby mitigating the stress-shielding effect and
promoting osseointegration. Emerging studies have demonstrated
promising outcomes for 3D-printed acetabular components
(Goodman and Engh, 2016). Our preliminary study (Ding et al.,
2023) validated the clinical efficacy of 3D-printed integrated and
split-type triflange acetabular cups for Paprosky III defects.
Postoperative Harris Hip Score (HHS) improved from 28.6 to
83.8, with no mechanical failures observed over a 40.8-month
follow-up period.

However, a critical concern with multi-component modular
acetabular prosthetics is the risk of mechanical failure at the
interfaces between parts (Strahl et al, 2023). Finite element
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(FEA), a mature

engineering, enables quantitative simulation of stress responses

analysis technology in computer-aided
under physiological loads by constructing high-precision digital
models, thereby providing theoretical foundations for optimizing
prosthesis design. Recent biomechanical studies employing FEA
have confirmed that patient-specific 3D-printed porous titanium
augments for Paprosky type III defects yield superior stress
distribution across the implant-bone construct compared to off-
the-shelf augments, with significantly lower peak stresses in the
augment, fixation screws, and surrounding bone under simulated
gait and jogging loads (Ceddia et al., 2025). Nevertheless, the
biomechanical behavior and underlying mechanisms of 3D-
printed split-type triflange implants, particularly regarding stress
concentration at the component interfaces and the risk of
micromotion, remain unexplored.

In the present study, we retrospectively analyzed the early
clinical outcomes of 14 patients with type 3B acetabular defects
who underwent reconstruction using custom 3D-printed split-type
triflange acetabular cups at our institution. Multi-load FEA was
further performed on a representative case to biomechanically
validate the performance of this novel implant design. To our
knowledge, this is the first report to systematically combine
with
investigating the efficacy of 3D-printed split-type triflange

clinical ~ outcomes computational  biomechanics in
implants for acetabular reconstruction, specifically aiming to
elucidate the mechanical factors and failure mechanisms at the

implant interfaces.

2 Materials and methods
2.1 Patients selection

We retrospectively reviewed our institutional database to
identify all consecutive patients who underwent acetabular
reconstruction using 3D-printed split-type triflange implants for
Paprosky type 3B defects (with or without pelvic discontinuity)
between 02/01/2017 and 10/30/2021. The inclusion criteria were as
follows: (1) failure of primary or revised THA; (2) acetabular bone
loss classified as Paprosky type 3B. The exclusion criteria were: (i)
active periprosthetic infection; (ii) tumor-related bone defects; (iii)
follow-up duration less than 12 months. All study procedures
adhered to the ethical principles of the Declaration of Helsinki
and were approved by our hospital’s ethics committee.

2.2 Preoperative planning and
prosthesis design
Pelvic CT scans (0.625 mm thickness) were saved in DICOM

format and imported into Mimics software (Materialise, Belgium)
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FIGURE 1

Preoperative planning for a 73-year-old female with Paprosky type 3B acetabular bone defect. (A) Preoperative radiograph demonstrating Paprosky

type 3B acetabular bone defect with cement spacer in situ. (B) Three-dimensional reconstruction model of the acetabulum. (C) Computer simulation of
prosthesis design. (D) Design of screw holes and screw trajectory. Screw hole configuration and trajectory planning. (E) 3D-Printed 1:1 scale resin model
of the acetabular sefect and prosthesis prototype. (F) Preoperative simulation of prosthesis implantation using the resin model. (G) 3D-printed split-

type triflange acetabular component with porous coating surface. (H) Assembled view of the acetabular cup component. (I) Final verification of

prosthesis-acetabulum compatibility.

for segmentation to generate a virtual 3D pelvic model. Based on this
model, a digital implant design was created using computer-aided
design (CAD) software (Magics, Materialise, Belgium) to match the
patient-specific acetabular anatomy (Figures 1A-D). The prosthesis
design principles included: (1) maximizing cup contact with residual
anterior/posterior column bone, ensuring >60% porous surface
contact between the cup-flange complex and host bone; (2)
utilizing integrated metal augments to compensate for large
central defects and expand bone-implant contact; (3) using the
contralateral hip rotation center as the reconstruction reference;
(4) optimizing screw configuration (number, position, length, and
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trajectory) to ensure stable implant fixation while mitigating the risk
of neurovascular injury.

2.3 Preoperative validation with 3D-
printed models

Following successful virtual surgical planning, physical
validation was performed using life-size models fabricated from
medical-grade polylactic acid with a Lite 450 HD printer (United 3D
Tech, China). Models of the patient’s acetabulum and the split-type
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FIGURE 2

Surgical Procedure and Radiographic Follow-up. (A) Removal of cement spacer and exposure of acetabular bone defect morphology. (B) Extracted
cement spacer. (C) Implantation of the 3D-printed triflange acetabular component. (D) Intraoperative fluoroscopy confirming optimal prosthesis
positioning. (E) Postoperative day 3 anteroposterior radiograph. (F) 4-year postoperative anteroposterior radiograph. (G—1) Computed tomography (CT)
scans at 4-year follow-up demonstrating osseointegration of the acetabular cup and flanges.

triflange prosthesis were accurately printed and assembled for
preoperative simulation (Figures 1EJF). This process verified
component alignment and implant seating while ensuring
avoidance of neurovascular structures. When initial validation
failed to meet established criteria, an iterative adjustment and re-
simulation protocol was implemented until optimal fit was achieved.

2.4 Implant fabrication and post-processing

Upon confirmation of surgical feasibility, the final design was
submitted to the manufacturer (Chunli Co., China) for implant
fabrication using an Electron Beam Melting (EBM) system (Arcam
Q10, Arcam AB, Sweden) (Figures 1G-I). The prosthesis was
manufactured using Ti-6Al-4V powder with a particle size of
20-53 pm and a layer thickness of 50 um, with the EBM process
conducted at a scan speed of 1,300 mm/s. Post-processing included
removal of excess powder particles using compressed air and
ultrasonic cleaning, followed by stress-relief annealing at 800 °C
for 2 h under an argon atmosphere with subsequent natural cooling.

Frontiers in Bioengineering and Biotechnology

The final implant featured a 1.8 mm-thick porous surface with
structural parameters of 600-650 um pore size, 500-600 um strut
diameter, and 65%-70% porosity. The entire process required 2 days
for design and 7 days for manufacturing, post-processing,
and delivery.

2.5 Surgical procedure and
postoperative recovery

All procedures were performed by a senior orthopedic surgeon
(D. F.) via a posterolateral approach under general anesthesia. After
removal of the acetabular component, the bony acetabulum was
exposed, and necrotic bone tissue was thoroughly debrided. Pulsed
lavage (gentamicin 160,000 IU/500 mL saline) was applied, followed
by impaction bone grafting with allogeneic bone granules in the
defect area. The split-type triflange acetabular cup was implanted
according to the preoperative plan, secured with locking screws
through predefined trajectories, and the acetabular liner was fixed
using a snap-fit mechanism (Figures 2A-D). Cementless or
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FIGURE 3

Radiographic Measurement of Hip Center of Rotation (COR).
V-COR: Vertical distance between the femoral head center and the
radiographic teardrop line (Line a). H-COR: Horizontal distance
between the femoral head center and the vertical line through

the inferior point of the teardrop (Line b).

cemented femoral stems were selected based on femoral bone loss
severity. Postoperative anticoagulation and antibiotic prophylaxis
were administered routinely.

Physical therapy, including ankle pump exercises and lower limb
isometric contractions, was initiated on postoperative day 1 to
prevent  venous  thromboembolism. From 1  month
postoperatively, patients began partial weight-bearing with a
walker and progressed to hip stability and proprioception

training. Full weight-bearing was permitted at 2 months.

2.6 Clinical and radiological evaluations

Follow-up evaluations were conducted at 1, 3, 6, and 12 months
postoperatively, then annually. At these visits, clinical outcomes
were assessed using the HHS and OHS. All functional outcome
assessments were performed by an independent research
coordinator (J.Q.), who was not involved in the surgical
procedures and was operationally independent of the surgical
team. Radiographic assessments included anteroposterior pelvic
radiographs or CT scans at each visit (Figures 2E-I). The hip
center of rotation (COR) was evaluated preoperatively and
postoperatively using the modified Ranawat method (Ranawat
et al,, 1980) on anteroposterior radiographs, measuring both the
vertical (VCOR) and horizontal (HCOR) components (Figure 3).
VCOR was defined as the vertical distance from the center of the
femoral head to the inter-teardrop line, while HCOR represented the
horizontal distance from the femoral head center to a vertical
reference line passing through the inferior aspect of the
teardrop. Osseointegration of acetabular components was

evaluated using Moore’s criteria (Moore et al., 2006). Radiologic
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failure was defined by > 3 mm component migration, >5° inclination
change, progressive radiolucent lines, or hardware fracture.

2.7 Acetabular cup position evaluation

Acetabular cup positioning was evaluated by blinded, non-
surgical expert reviewers at our center. All patients received
postoperative pelvic CT scans. The preoperative surgical plan
model was registered and fused with the postoperative CT
dataset using Geomagic software (Figure 4). This registration
process was based on anatomical landmarks of the anterior pelvic
plane (defined by the bilateral anterior superior iliac spines and the
pubic tubercle) and the bilateral posterior superior iliac spines. The
ischial spines served as auxiliary registration points when not
obscured by metal artifact. A standardized anterior pelvic plane
coordinate system was established within MIMICS software using
the bilateral anterior superior iliac spines and the pubic tubercle.
Specifically, the anterior pelvic plane was defined by the two anterior
superior iliac spines and the midpoint of the pubic tubercles. The
plane perpendicular to this was defined as the sagittal plane, and the
longitudinal axis was defined by the line connecting the midpoint of
the anterior superior iliac spines and the midpoint of the pubic
tubercles. The COR was analyzed by decomposing its position into
three orthogonal components: anteroposterior (AP), mediolateral
(ML), and superoinferior (SI). Implant displacement was quantified
by comparing the preoperative planned COR to the postoperative
achieved COR, with a tolerance limit of 10 mm defined for clinically
significant displacement. Furthermore, the cup inclination (INC)
angle (defined as the angle between the acetabular axis and the
sagittal plane) and anteversion (AV) angle (defined as the angle
between the projection of the acetabular axis onto the sagittal plane
and the longitudinal axis) were calculated according to the
radiological definitions proposed by Murray (Murray, 1993). A
tolerance limit of 5 was set for deviation in these cup
orientation angles.

2.8 Finite element analysis

A FEA was performed based on the anatomical geometry of a
54-year-old male patient (70 kg, 171 c¢cm) who provided informed
consent. A high-resolution CT dataset (slice thickness: 0.625 mm)
was used to reconstruct a native pelvic 3D model. Surface
optimization, including defect repair, smoothing, and precise
surface fitting, was conducted using Geomagic Studio 2019
(Geomagic, Morrisville, NC, United States) while preserving the
overall geometric fidelity. Then, the pelvic and implant models were
then imported into SolidWorks 2024 (Dassault Systémes, France),
where Boolean operations were used to create a unified pelvic-
implant assembly. The assembly was meshed in 3-matic 11.0
(Materialise, Leuven, Belgium)with a global element size of
1 mm. The quality of most surface elements, evaluated by the
Height/Base ratio, satisfied the criterion of being greater than 0.3.
A mesh sensitivity analysis demonstrated that reducing the element
size below 1 mm resulted in variations of less than 5% in the FEA
results (Zhu et al., 2025). Therefore, a uniform element size of 1 mm
was adopted for the pelvic prosthesis model, generating a mesh
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FIGURE 4

Acetabular Cup Position Evaluation. (A) Anteroposterior and (B) lateral views showing the preoperative planned (green) and postoperatively achieved

(blue) implant positions.

FIGURE 5

Finite Element Modeling and Material Property Assignment. (A) Finite element model of the acetabulum and implant. (B) Finite element mesh
discretization of the acetabulum and implant. (C) Non-homogeneous, grayscale-dependent material properties assigned to bone.

comprising 658,460 elements and 373,711 nodes (Figures 5A,B).
Material properties were then assigned to the pelvic bone. Non-
homogeneous, grayscale-dependent material properties were
assigned using Formulas 1, 2 within Mimics software (Figure 5C)
(Igbal et al., 2019; Moussa et al., 2020). The osteoporotic hip bone
FEA was created by applying a 50% reduction to the elastic modulus

of the normal bone.

Frontiers in Bioengineering and Biotechnology

p=6.914le™ x HU + 1.026716 1)
E =2017.3 x p** )

The final model was imported into ANSYS (Canonsburg,
Pennsylvania, United States) for analysis, where the remaining
material properties, as detailed in Table 1 (Liu et al., 2023; Li
et al,, 2022), were defined. The coefficient of friction was set to
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TABLE 1 Mechanical properties of the materials used in the finite element models.

Components Materials Young's modulus (MPa) Poisson ratio
Pelvis Inhomogeneous - 0.300
3D printed flange Titanium alloy 110,600 0.326
3D printed acetabular cup Titanium alloy 110,600 0.326
Screws Titanium alloy 110,600 0.326
Ceramic femoral head Ceramics 350,000 0.220
Liner Polyethylene 800 0.450

0.5 for the bone-implant interface and 0.06 for the cup-femoral head
interface. Bonded contact conditions were applied between all other
components (Wang et al., 2022; Liu et al., 2023). To eliminate rigid
body motion, fixed constraints were applied to the pubis and the
superior ilium (Akrami et al., 2018).

A vertical load was applied to the rotational center of the
femoral head via a rigid plane, simulating the distal femur.
Three loading conditions were modeled: 700 N (simulating
single-leg stance), 2800 N (walking), and 4200 N (jogging),
based on values from (Soloviev et al., 2023; Fu et al., 2018).
Under these conditions, the stress distribution within the bone-
implant system and the micromotion at the interfaces
were analyzed.

2.9 Statistical analysis

Continuous data are primarily presented as mean + standard
deviation (Mean * SD). To ensure a robust and complete descriptive
account, the median and interquartile range (IQR) are also reported
for critical outcome variables, offering complementary insights into
the data distribution. Statistical analyses were performed using SPSS
Statistics (Version 22.0). The normality of data distribution for all
paired variables was assessed using both the Shapiro-Wilk test and
visual inspection of Q-Q plots. Based on this assessment, paired
comparisons were conducted using the paired t-test for normally
distributed data or the Wilcoxon signed-rank test for non-normally
distributed data. Statistical significance was defined as a two-
sided p-value <0.05.

3 Results
3.1 Patient characteristics

A total of 14 patients (6 males, 8 females) met the inclusion
criteria (Table 2). The mean follow-up duration was 74.2 months
(range, 43-99 months). The mean age for revision surgery was
74.1 years (range, 61-87 years). Reasons for revision included
aseptic loosening in 10 hips, metallosis-associated osteolysis in
2 hips, and two-stage reimplantation for periprosthetic infection
in 2 hips. In this series, 12 out of 14 patients underwent first-time
revision surgery, except for 2 patients who received a two-stage
procedure due to periprosthetic infection. None of the patients died
or was lost during follow-up.
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TABLE 2 Demographics and outcomes of enrolled patients.

Variables Value
Numbers of patients (hips) 14 (14)
Age (yr) 74.1 + 8.1
Gender (male/female) 6/8
Side (right/left) 717
Body mass index (kg/m2) 231 + 2.8
Diabetes (Yes/no) 5/9
Hypertension (Yes/no) 8/6
Osteoporosis (Yes/no) 6/8
Pelvic discontinuity (no. Of patients) 3
Clinical follow-up (mo) 742 £ 183
Reason for revision, n
Aseptic loosening 10
Metallosis-associated osteolysis 2
Periprosthetic infection 2
HHS
Preoperative 319 £ 85
Last follow-up 82.9 +5.9
p-value <0.05
OHS
Preoperative 7.6 +23
Last follow-up 354 + 3.1
p-value <0.05

HHS, Harris Hip Score; OHS, oxford hip score.

3.2 Clinical and radiographic outcomes

The HHS significantly improved from 319 =+
8.5 preoperatively to 82.9 + 5.9 at final follow-up. The OHS
also demonstrated marked improvement, increasing from 7.6 +
2.3 t0 35.4 £ 3.1 at the last follow-up. The VCOR of the operated
side significantly improved from 50.1 + 4.7 mm preoperatively to
17.5 + 5.8 mm at the final follow-up. For the HCOR, the mean
value on the operated side changed from 24.4 + 6.7 mm
preoperatively to 329 + 4.6 mm at the final follow-up.
Final follow-up measurements on the contralateral side were
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TABLE 3 Radiographic outcomes of the hip COR.

10.3389/fbioe.2025.1702276

Variables Preoperative (mean + SD/Median (IQR)) Postoperative (mean + SD/Median (IQR)) p-value
VCOR (0S), mm 50.1 + 4.7/49.7 (47.1-54.0) 17.5 + 5.8/17.5 (14.4-19.7) 0.001
VCOR (CS), mm 16.8 + 6.3/163 (11.7-20.1) 16.8 + 6.4/16.4 (11.5-20.1) 0.664
p-value 0.001 0.146

HCOR (OS), mm 24.4 + 6.7/27.0 (20.0-28.5) 32.9 + 4.6/31.2 (29.8-36.7) 0.001
HCOR (CS), mm 33.8 + 5.2/32.1 (29.6-39.2) 33.6 + 4.9/32.9 (29.7-37.1) 0.491
p-value 0.001 0.276

OS, operated side; CS, contralateral side; COR, center of rotation; VCOR, the vertical distance between the COR, and the inter-teardrop line; HCOR, the horizontal distance between the COR,
and the perpendicular line through the inferior point of the teardrop.

TABLE 4 Accuracy of acetabular cup positioning.

Case number COR (AP shift) COR (ML shift) COR (SI shift) AINC (%) AAV (%)
(mm) (mm) (mm)

Case 1 2.1 0 26 2.1 3.6
Case 2 22 53 0.7 3.6 -11
Case 3 0 2.2 -15 -15 48
Case 4 -3.1 -25 24 39 4

Case 5 8.2 -4.3 -2.1 9 -8.1
Case 6 2.5 2.8 -35 -0.7 -16
Case 7 2.1 1.3 0 -7 6

Case 8 0 0 22 02 0.9
Case 9 -29 1.7 6.1 42 48
Case 10 1.5 -39 0.5 -0.7 2.7
Case 11 1.9 1.6 -3.2 35 3

Case 12 6.6 -2.1 -19 35 5.5
Case 13 -5.1 0 0.7 -3.3 5.8
Case 14 48 -0.7 56 -3 3.4

Discrepancies of more than 5° for cup angles between planned and postoperative positions are marked in bold. AP, anteroposterior; ML, mediolateral; SI, superoinferior; INC, inclination; AV,

anteversion.

16.8 + 6.4 mm for V-COR and 33.6 + 4.9 mm for HCOR, with no
significant differences observed between the operated and
contralateral sides for either parameter (Table 3).

At the latest follow-up, anteroposterior pelvic radiographs
demonstrated stable fixation without radiolucent lines around
any of the 14 implants. The earliest evidence of bone ingrowth
was observed on CT scans at the 12-month postoperative
assessment. New bone formation was predominantly identified in
stress-bearing regions, particularly the acetabular roof and areas
adjacent to the superior flange and fixation screws. Notably, two
cases exhibited osteolytic changes at the ischial and pubic flanges on
CT imaging (Figure 2I), though follow-up examinations confirmed
these lesions showed no signs of progression. No radiographic
evidence of implant loosening, fracture, or migration was
detected in any patient at final follow-up.

Frontiers in Bioengineering and Biotechnology

3.3 Complications

Two postoperative complications were documented during the
study period. One patient developed persistent wound drainage,
which resolved completely after surgical debridement. Another
patient experienced dislocation 1 week postoperatively and was
treated with closed reduction, followed by 4 weeks of
percutaneous traction, with no recurrence. No cases of deep
infection, thromboembolism, or implant failure were observed.

3.4 Accuracy of acetabular cup positioning

All implanted prosthetic components (100%) were positioned
with a deviation of the COR within 10 mm from the planned
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position in all three anatomical planes (Table 4). The mean
differences between the planned and achieved COR were 1.4 mm
(95% CI: —0.6-3.6) in the AP plane, 0.1 mm (95% CI: —1.4-1.6) in
the ML plane, and 0.3 mm (95% CI: —1.5-2.0) in the SI plane. For
acetabular cup orientation, 9 out of 14 components (64.3%) had
both INC and AV within 5° of the planned values. The mean
planned INC was 40.1° (95% CI: 36.9-43.4), compared to an
achieved mean of 41.1° (95% CI: 38.1-44.0), resulting in a mean
difference of 1.0° (95% CI: —1.4-3.3). For anteversion, the mean
planned angle was 14.9° (95% CI: 11.4-18.3), and the mean achieved
angle was 16.4° (95% CI: 13.3-19.5), with a mean difference of 1.6
(95% CIL: —1.5-4.6).

3.5 Finite element analysis results

This study evaluated the biomechanical performance of a
custom acetabular implant in both normal and osteoporotic bone
pelvises under varying load conditions (700N, 2800N, and 4200N)
using finite element analysis. For both models, the maximum von
Mises stress in all prosthetic components and the acetabular bone
exhibited a linear positive correlation with the increasing load
magnitude (Figure 6).

In the normal bone model (Figure 7), stress analysis revealed
that the acetabular cup sustained peak stress at its superior region,
rising from 11.957 MPa at 700N to 15.632 MPa at 4200N. The
implant flange carried a higher load, with stress concentrating at the
superior screw fixation site and varying from 60.356 MPa to
70.744 MPa. The fixation screws experienced maximum stress at
the screw-flange interface, increasing from 5.980 MPa to
12.704 MPa. Crucially, the native pelvic bone exhibited the
highest stress in the construct at the superior screw site,
escalating from 50.946 MPa to 76.664 MPa. All recorded stress
values remained safely below the yield strength of the titanium alloy,
confirming a sufficient margin of safety under static loading
conditions. Analysis of interface micromotion in the normal
bone model revealed a load-dependent and location-specific
response. Micromotion was most pronounced at location P1,
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increasing markedly from 22.985 pum at 700N to 122.861 pm at
4200N. In contrast, adjacent sites P2 and P3 exhibited significantly
lower displacement, reaching only 6.194 pm and 16.587 pm,
respectively, at 4200N. This resulted in P1 micromotion being
19.8 and 7.4 times greater than at P2 and P3 under the
maximum load, indicating primary instability at the superior
cup-bone interface (Table 5).

In the osteoporotic bone model (Figure 8), the overall stress
pattern was similar, but the magnitudes were consistently higher.
The acetabular cup sustained greater stress, peaking at 25.931 MPa.
The flange and screw stresses were also elevated, with the flange
reaching 80.366 MPa and the screws 12.246 MPa at 4200N. A critical
finding was the significantly increased peak stress in the osteoporotic
bone itself, which reached 93.413 MPa at 4200N compared to
76.664 MPa in the normal bone model (Table 6). Interface
micromotion in this model demonstrated a similar load-
dependent trend, with P1 reaching 131.244 pym at maximum
loading. Notably, the micromotion at P3 (23.768 upm) was
approximately 43% higher than in the normal bone model
(16.587 pm), suggesting compromised interfacial stability in

osteoporotic bone (Figure 9).

4 Discussion

Revision arthroplasty for Paprosky type 3B acetabular defects
remains highly challenging, particularly in cases with major
segmental bone loss or pelvic discontinuity, where residual host
bone fails to provide adequate support for conventional
hemispherical cups (Di Laura et al, 2023). The integration of
computer-assisted design and 3D-printed customized implants
has emerged as a promising solution. Li et al. (2016) reported
outcomes of 26 Paprosky 3B cases treated with 3D-printed
custom cages, achieving a mean HHS of 82 at 67-month follow-
up, though complications included 1 aseptic loosening, 2 infections,
1 dislocation, and 1 neurological injury. Goriainov et al. (2021)
reported a 100% implant survival rate in 19 Paprosky 3B cases using

3D-printed triflange cups, with OHS improving from 8.6 to 35. Di
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Laura et al. (2023) documented a 5-year follow-up of 26 Paprosky 3B
cases using 3D-printed triflange implants, showing a mean OHS
increase from 8% to 32% and 92% osseointegration rates without
loosening. In the present study, we reviewed the clinical outcomes of
utilizing custom 3D-printed split-type triflange implants for
reconstructing Paprosky 3B acetabular defects with a mean
follow-up of 74.2 months. Our findings demonstrate that these
implants offer a viable solution for severe acetabular bone loss,
evidenced by a 100% survival rate, a statistically significant
in  functional and  robust

improvement outcomes,
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osseointegration without implant failure. Our intermediate-term
results are encouraging and provide a rationale for the use of
these implants.

Anatomic restoration of the hip COR is critical for
biomechanical reconstruction. Medial or superior displacement of
the COR compromises the mechanical efficiency of the gluteus
medius, impairing abductor function (Fukushi et al, 2018).
Superior displacement greater than 10 mm is specifically
associated with elevated revision rates (Hendricks and Harris,
2006). Conversely, excessive lateral or inferior COR displacement
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TABLE 5 Stress results and interface micromotion in a normal bone model
under different loads.

Parameters 700N 2800N 4200N
Von mises stress (Mpa)
Acetabular cup 11.957 14.090 15.632
Flange 60.356 65.852 70.744
Screws 5.980 8.889 12.704
Bone 50.946 64.298 76.664
Interface micromotion (um)
P1 22.985 82.866 122.861
P2 1.342 2.563 6.194
P3 4.897 10.560 16.587

increases gluteus medius tension, potentially leading to periarticular
pain or neuropathic symptoms due to sciatic nerve traction. These
risks underscore the importance of precise COR reconstruction.
Traditional implants for Paprosky type 3B defects often result in
COR mispositioning (Chang et al, 2021), whereas 3D-printed
custom acetabular components demonstrate superior accuracy in
restoring physiologic COR. Goriainov et al. (2021) reported mean
horizontal and vertical COR deviations of 2 mm (range: 1-4 mm)
and 2 mm (range: 0-3 mm), respectively, using 3D-printed
monolithic triflange cups, compared to the contralateral
hip. Fang et al. (2022) achieved postoperative VCOR and HCOR
values of 20.8 + 2.0 mm and 30.2 + 1.6 mm, with <2 mm deviation
from preoperative baselines. In this study, the COR was restored to
within normal limits in all patients following revision arthroplasty.
Postoperative VCOR and HCOR measurements demonstrated no
the
(discrepancies <1 mm). These outcomes confirm the technique’s

significant  differences  from contralateral  side
efficacy in intraoperative reconstruction of the hip rotation center.

Existing literature on the positioning accuracy of custom
implants is limited, often defining implant misalignment as a
deviation of inclination/anteversion exceeding 10° or a COR
deviation exceeding 5 mm (Baauw et al, 2015). This study
systematically evaluated the positioning accuracy of custom
with
postoperative CT scans. The results demonstrated encouraging

acetabular implants by matching preoperative plans
outcomes in this case series: all prosthetic components (100%)
were positioned within 10 mm of the planned COR across all
three planes; and 64.2% of the components had both the cup
INC and AV angles controlled within a 5° deviation from the
planned values. Baauw et al. (2015) reported that among
16 revision total hip arthroplasties for Paprosky type 3 defects,
7 cases were malpositioned in one or more parameters: one in INC,
three in AV, four in rotation, and five in COR. Durand-Hill et al.
(2020) observed that 18 of 20 components (95%) had rotational
deviations within 10°, and 11 components (58%) were positioned
within 5° of the planned acetabular cup angles. Our results are
comparable to these previous findings. Precise prosthetic
positioning not only ensures anatomical reconstruction of the

center of rotation and optimizes joint biomechanics but also

creates favorable conditions for bone ingrowth, thereby
establishing a solid foundation for achieving long-term
clinical stability.
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Paprosky type 3B defects are characterized by severe bone
loss involving the acetabular dome and anterior/posterior
columns, often accompanied by pelvic discontinuity, with
residual host bone contact area typically <50% (often <30%)
(Telleria and Gee, 2013). Surgical reconstruction of such defects
should not only match physiological stress and transfer
mechanical load but also restore the hip rotation center and
hip joint function (Sanghavi et al., 2024). Traditional integrated
multi-flanged cups represent a viable option, providing favorable
initial biomechanical stability (Sershon et al., 2021). However,
their intraoperative implantation often requires an extended
incision and extensive soft tissue dissection, increasing risks of
iatrogenic soft tissue injury or additional bone resection for
proper seating. To address this limitation, (Roessler et al,
2019) developed a “modular augment-and-cage
incorporating iliac/ischial flanges, obturator hooks, and bone

system”

defect augments to enhance intraoperative flexibility. This
study proposes an optimized split-wing anatomically adapted
cup design as a further development of this concept: the iliac,
ischial, a nd pubic wings are individually fabricated based on
patient-specific  acetabular morphology and assembled
intraoperatively with the acetabular cup. Pre-engineered screw
trajectories accommodate anatomical variability, while avoiding
neuro and vascular structures. This implant can be regarded as a
customized “modular augment-and-cage system,” achieving
minimized soft tissue disruption and bone resection without
affecting the overall structural strength. However, Strahl et al.
highlighted inter-component failure risks inherent to modular
acetabular prostheses (Strahl et al., 2023). Consequently, we
conducted finite element analysis to assess the biomechanical
properties of the 3D-printed split-type triflange implants.

To our knowledge, this is the first such investigation of a 3D-
printed split-type triflange acetabular prosthesis. The stress
distribution pattern of the prosthesis in both normal and
osteoporotic bone models corresponded with the directional
vectors of hip joint forces, demonstrating progressive
increases in von Mises stresses under escalating loads. In both
models, stress concentrations localized at screw fixation points
of the superior flange within the flange components. Elevated
stresses emerged at the superior rim region of the acetabular cup,
while maximum screw stresses occurred at the screw-flange
interfaces. Under the maximum load (4200 N), the peak von
Mises stress in the normal bone model measured 70.744 MPa in
the flange, 15.632 MPa in the acetabular cup, and 12.704 MPa in
the fixation screws. In contrast, the osteoporotic bone model
exhibited a peak von Mises stress of 80.366 MPa in the flange,
25.931 MPa in the acetabular cup, and 12.246 MPa in the screws.
The reported yield strength is 889-921 MPa for solid titanium
alloy (Ti6Al4V) (Yang and Liu, 2016) and 263 MPa for porous
titanium alloy (Noronha et al., 2024). Our data demonstrate that
the peak von Mises stresses across all components in both
models remained substantially below the yield strength
threshold of porous titanium alloy. Our results confirm
adequate structural safety margins under static loading
conditions.

Stresses generated at the implant-bone interface and within their
may the

performance of the implant/bone system or potentially lead to

structural  components influence biomechanical
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failure during postoperative phases (Ma et al., 2013). The average
yield strength of cortical bone near the acetabulum is 93.4 MPa
(Fu et al., 2018). Our findings revealed that maximum bone stress
occurred at the screw locations superior to the acetabular dome.
Under simulated loading conditions of 700N, 2800N, and 4200N,
the peak acetabular bone stress in the normal bone model remained
well below the yield threshold of cortical bone. Notably, in the
osteoporotic bone model, the corresponding peak bone stresses were
substantially higher, reaching 74.167 MPa, 87.424 MPa, and
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93.413 MPa, respectively. The peak stress recorded in the
osteoporotic model under the maximum 4200 N load reached
this critical yield threshold. These results suggest that normal
periacetabular bone retains sufficient mechanical integrity to
withstand early postoperative weight-bearing activities, including
standing, walking, and jogging. However, in severely osteoporotic
bone, the construct may transfer higher stresses to the periacetabular
region, and postoperative weight-bearing should be postponed to
prevent potential stress-induced fracture complications.
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TABLE 6 Stress results and interface micromotion in an osteoporotic bone
model under different loads.

Parameters 700N 2800N 4200N
Von mises stress (Mpa)
Acetabular cup 22.784 24.651 25.931
Flange 60.612 78.735 80.366
Screws 9.635 11.182 12.246
Bone 74.167 87.424 93.413
Interface micromotion (um)
P1 26.346 87.470 131.244
P2 2.081 3.104 5.173
P3 4.875 14.033 23.768

Previous studies have established a micromotion threshold of
40 pm for successful bone ingrowth in THA (Kaku et al., 2015). Our
results demonstrated that under 700N loading, micromotion values
at measurement points P1-P3 remained below this critical threshold
in both bone models, confirming adequate interfacial stability
during static weight-bearing. However, under walking and
jogging (2800N and 4200N), P2
P3 maintained subthreshold micromotion, point P1 in both

conditions while and
models significantly exceeded the critical threshold, indicating
potential instability at the superior fixation site. Numerical results
indicated that intraoperative attention to superior dome fixation is
particularly crucial for achieving initial stability, consistent with
previous studies (Ghanem et al., 2020; Von Hertzberg-Boelch et al.,
2021). Based on these findings, we recommend early partial weight-
bearing rehabilitation for 3D-printed split-type triflange prostheses,
while deferring high-impact activities such as jogging until
radiographic confirmation of osseointegration, especially in
patients with compromised bone quality. Our clinical outcomes
validate this approach. All 14 patients achieved full weight-bearing
by 2 months postoperatively, with no cases of implant loosening,
migration, or fracture at final follow-up. Although computed
tomography revealed limited osteolytic changes in two cases,
these remained non-progressive and did not affect overall
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FIGURE 9
Acetabular cup interfacial micromotion under physiological loading. (A) Definition of the three measurement locations (P1, P2, P3) for micromotion

quantification. Comparison of micromotion magnitudes at these locations under different loads for the (B) normal bone model and (C) osteoporotic
bone model.
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implant stability. The favorable clinical results may be attributed
to several implant design features. The 65%-70% porosity three-
dimensional trabecular structure provides an optimal environment
for bone ingrowth (Migaud et al, 2019), while the one-piece
molding process eliminates risks of coating delamination
observed in traditional cementless implants. However, the specific
performance of this porous structure in elderly patients with
potentially diminished bone healing capacity requires further
investigation through larger, long-term studies.

This study has several limitations that must be acknowledged.
The retrospective design and small sample size limit the

generalizability of the findings. Furthermore, the absence of

direct comparisons with conventional monolithic triflange
prostheses prevents a comprehensive assessment of this
innovative implant’s relative performance. Although finite

element analysis provides valuable biomechanical insights, the
lack of laboratory mechanical testing and cadaveric validation
may affect the translational accuracy of the computational results
when compared to direct experimental evidence. Ultimately, the
stress concentration at modular junctions requires longer-term data
to validate its durability under real-world repetitive loading,
despite the safety margin indicated by our mid-term and
idealized analyses.

5 Conclusion

This study evaluated clinical and radiographic outcomes
following reconstruction of Paprosky type 3B acetabular defects
using customized 3D-printed split-type triflange acetabular
implants in a patient population with a mean BMI within
normal range. After 3-8 years of follow-up, favorable midterm
high
improvement,

outcomes were demonstrated including implant

survivorship, significant  clinical and low

complication rates, with biomechanical safety further validated by
FEA. We recommend initiating early partial weight-bearing
rehabilitation while deferring high-impact activities until
radiographic confirmation of osseointegration. Based on these

Osteoporotic bone model
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findings, we believe that this implant is a reliable and effective
solution for severe acetabular defects.
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