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Introduction: Superoxide dismutase (SOD) catalyzes the dismutation of
superoxide radicals to oxygen and hydrogen peroxide, serving as a key
antioxidant enzyme with important therapeutic and industrial applications.
However, the purification of recombinant SOD remains challenging due to
low expression levels and the complexity of traditional purification methods,
which involve time-consuming and multi-step chromatography. Elastin-like
polypeptides (ELPs) offer a promising alternative due to their hydrophobic and
thermoresponsive properties, which can be leveraged for non-chromatographic
purification.
Methods: A fusion protein of human SOD and an ELP tag (hSOD-ELP) was
produced. The purification strategy consisted of two sequential steps. First,
foam separation was employed, exploiting the hydrophobicity of the ELP to
selectively adsorb hSOD-ELP at the gas-liquid interface. Second, inverse
transition cycling (ITC) was used to further purify hSOD-ELP by exploiting
ELP’s thermoresponsiveness.
Results: Under optimized conditions (0.4 mg/mL protein, 30 °C), the initial foam
separation step achieved an enrichment ratio of 1.93, a protein recovery of
85.67%, an enzyme activity enrichment of 2.15, and an activity recovery of
93.32%. The subsequent ITC step yielded a recovery rate of 91.98% and a
purification fold of 17.45. The cumulative two-step process resulted in a total
yield of 85.84% and overall purification fold of 37.52, yielding the purified hSOD-
ELP with a final purity of approximately 85%.
Discussion: These results demonstrate that ELP-mediated purification offers a
scalable and economical alternative to conventional methods. The combination
of foam separation and thermal precipitation minimizes the need for expensive
chromatography, making this strategy particularly promising for industrial-scale
biotechnological applications.
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1 Introduction

Foam separation is an emerging separation technology that
relies on the selective adsorption of substances at the gas-liquid
interface. Its underlying principle is that surface-active materials
have a propensity to accumulate at the interface, enabling the
enrichment and separation of specific components. This
technique has gained substantial attention in various fields,
especially in the separation of proteins (Fang et al., 2023; Wang
et al., 2023). Proteins, being amphiphilic molecules with both
hydrophilic and hydrophobic groups, have a natural tendency to
adsorb at the gas-liquid interface. This characteristic makes them
suitable for separation via foam flotation. The process typically
involves introducing air into a protein solution, forming bubbles
that selectively adsorb proteins. These protein-laden bubbles
subsequently rise to the surface, forming a foam layer that can be
collected and further processed. This method is particularly effective
for the concentration and recovery of proteins from dilute solutions,
offering a low cost, easy operation, no pollution, and high efficiency
alternative to traditional separation techniques.

Xu et al. employed foam fractionation to enhance the silica gel
adsorption (SGA) of urokinase from human urine. They
investigated the impacts of pH, superficial air flow rate, beta-
cyclodextrin concentration, and the amount of silica gel added
on the activity recovery yield and purification fold of urokinase
(Xu et al., 2019). The activity recovery and purification fold of
urokinase reached 89.5% and 56.8, respectively, which were 25.3%
and 79.2% higher than those obtained by SGA alone (Xu et al., 2019).
Tian et al. developedd a method combining foam fractionation with
isoelectric precipitation to effectively recover casein from its highly
diluted solution (Tian et al., 2018). Then, the foamate was treated
with precipitation, and the supernatant could be reused as the feed
solution for the first-stage foam fractionation. As a result, the
enrichment ratio was further increased to 52.6, and the recovery
percentage reached 91.7%. In two-stage continuous foam
fractionation, the enrichment ratio and recovery percentage of
casein were obtained as high as 12.1% and 92.3%, respectively
(Tian et al., 2018). Li et al. utilized Na-citrate to enhance the
self-association of bovine serum albumin (BSA) at the gas–liquid
interface and improve the stability of protein foams (Li et al., 2016).
Under optimal conditions, the enrichment ratio and recovery of
BSA were 14.6% and 57.6%, respectively (Li et al., 2016).

Superoxide dismutase (SOD) is a crucial antioxidant enzyme
that catalyzes the dismutation of superoxide radicals (O2

−) into
oxygen and hydrogen peroxide, thereby protecting cells from
oxidative damage (Saxena et al., 2022). Consequently, SOD has
garnered significant attention due to its potential anti-aging,
antiviral, and anti-inflammatory effects in living organisms
(Chidambaram et al., 2024). SOD from various organisms have
been cloned, heterologously expressed and purified. The purification
of SOD is essential for its applications in pharmaceuticals, cosmetics,
and food industries. Traditional purification methods, such as
affinity chromatography or ion-exchange chromatography, are
among the most versatile and powerful techniques for isolating
specific molecules or groups of molecules from complex mixtures.
However, these methods have several drawbacks. The high cost of
affinity resins, yield losses during purification, and reduced activity
of the target protein due to multiple washing steps are major

challenges. Additionally, in some cases, the presence of a large
quantity of impurities can further complicate the purification
process. Therefore, there is a need to explore more cost-effective
and efficient purification strategies to improve the yield while
minimizing impurities.

In recent years, alternative approaches leveraging the unique
properties of fusion tags have been explored to simplify and enhance
the purification process. Elastin-like polypeptide (ELP) are
synthetic, thermally responsive polypeptides composed of
repeating pentapeptide sequences with the general formula
(VPGXG)n; where X can be any amino acid except proline, and
n represents the number of repeats, typically ranging from 20 to 330
(Han et al., 2022; Meyer and Chilkoti, 2002). ELP exhibits a quick
and thermodynamic reversible phase transition behavior at a specific
temperature referred to as the inverse transition temperature (Tt).
Below their Tt, ELP are structurally disordered and soluble in
aqueous solution. Conversely, when the temperature exceeds Tt,
the ELP becomes insoluble and begins to aggregate, which can then
be easily separated by centrifugation (Addai et al., 2025; Sugawara-
Narutaki, 2025). When ELPs are genetically fused to a target protein,
the resulting ELP-fusion protein retains the characteristic inverse
transition behavior (Chen et al., 2023). This behavior allows for a
simple method to isolate a recombinant ELP fusion protein from cell
contaminants by taking the solution through the soluble and
insoluble phase of the ELP fusion protein, a technique designated
as the inverse transition cycling (ITC) (Sugawara-Narutaki, 2025).
This property enables a straightforward and efficient purification
strategy, facilitating the isolation of recombinant ELP-fusion
proteins from cell contaminants (Shin and Chae, 2024). Several
studies have demonstrated the successful purification of
recombinant enzymes using ELP fusion tags. We previously
reported the purification of β-galactosidase e using ELP fusion,
achieving a purification fold of 13.04 and a recovery rate of 95.66%
(Peprah Addai et al., 2020). Similarly, Wang et al. utilized ELP fusion
to purify endoglucanase, resulting in a purification fold of 11.8 and a
recovery rate of 78.1%. Furhermore, The ELP fusion endoglucanase
had a better thermostability, higher optimal temperature, and longer
half-life than those of free endoglucanase (Wang et al., 2020b). These
studies highlight the efficiency and simplicity of the ELP-based
purification approach.

In our previous study, ELP was fused to human superoxide
dismutase 1 (hSOD) modified with His tag to produce recombinant
hSOD-Linker-ELP-His (hSODLEH) which was expressed in
Escherichia coli and purified via ITC and Ni-NTA resin. The
results showed that the purification by ITC was superior to Ni-
NTA resin due to its convenient purification process, improved
recovery rate and purification fold (Wang et al., 2024). In this study,
we presents a two-step purification strategy for recombinant
hSODLEH. The first step involves foam separation, leveraging
the hydrophobicity of the ELP tag to selectively adsorb
hSODLEH at the gas-liquid interface. The second step utilizes
ITC to further purify hSODLEH. The total yield and purification
fold was 85.84% and 37.52 after the two-step purification, yielding
the purified hSODLEH with a final purity of approximately 85%.

Our study integrates foam separation with the thermoresponsive
and hydrophobic properties of ELP, offering a more efficient and
cost-effective purification process compared to traditional methods.
Additionally, we provide insights into the aggregation behavior and
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surface hydrophobicity of hSODLEH, which contribute to its
enhanced adsorption and separation efficiency. These findings
not only demonstrate the potential of ELP-mediated strategies for
protein purification but also highlight the versatility of combining
different physical properties for improved biotechnological
applications.

2 Materials and methods

2.1 Materials

The expression vector pET-28a (+) and E. coli strains DH5a and
BL21 (DE3) were stored in our lab. Kanamycin, protease inhibitors
phenylmethanesulfonyl fluoride (PMSF), isopropyl β-D-1-
thiogalactopyranoside (IPTG), Glycine, Tris, SDS, Bromophenol
blue and Coomassie brilliant blue R 250 were purchased from
Sangon Biotech (Shanghai, China). Thermo Scientific Pierce BCA
Protein Assay Kit was purchased from Thermo Fisher Scientific
(MA, United States). CuZn-SOD activity assay kit (WST-8 method)
was purchased from Beyotime (Shanghai, China). Isopropanol,
absolute ethanol, β-mercaptoethanol, ammonium persulfate, 1-
ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDC), N-hydroxysuccinimide (NHS) and glacial acetic acid were
obtained from Sinopharm Chemical Reagent (Shanghai, China).
Ammonium 8-phenylamino-1-naphthalene sulfonate (ANS) was
purchased from Merrier Laboratory Equipment Co., Ltd.
(Shanghai, China). Fluorescein isothiocyanate (FITC) was
purchased from Maclin Biochemical Technology Co., Ltd.
(Shanghai, China). Ni-NTA Resin was purchased from GenScript
(Nanjing, China). All chemical reagents were of analytical grade and
were used without further treatment.

2.2 Construction of recombinant
expression plasmids

The amino acid coding sequence for hSOD were obtained from
GenBank (accession number: CR541742.1). The hSOD gene was
fused with a 50-repeating pentapeptide ELP sequence ((VPGVG)50)
via a flexible linker (GGGGS)3. The resulting nucleotide sequence
was synthesized by Synbio Tech (Jiangsu, China) and subcloned into
the pET28a (+) vector to generate the recombinant expression
plasmid pET28a (+)-hSODLEH (hSOD-Linker-ELP-6xHis,
hSODLEH). Additionally, a recombinant plasmid pET28a
(+)-hSOD containing the hSOD gene and a 6xHis-tag was
constructed.

The pasmids (pET28a (+)-hSODLEH, pET28a (+)-hSOD, or
empty vector) are transformed into E. coli BL21 (DE3) for protein
production. Briefly, a single colony was incubated overnight in LB
medium with kanamycin (50 μg/mL) with shaking at 37 °C. The
overnight culture was then diluted 1:100 into 1 L of fresh LBmedium
(containing kanamycin) and grown at 37 °C with shaking. When
OD600 reached 0.4–0.6, IPTG was added to a final concentration of
0.2 mM to induce protein expression at 25 °C with shaking at
200 rpm. After shaking about 6 h, the cells were harvested by
centrifugation at 4,500 g, and the cell pellets were resuspended in
Tris-HCl buffer (50 mM, pH8.0). After adding PMSF, the cells was

lysed by sonication (ultrasonic disruption) for 30 min, with
alternately sonication 10 s and intermittent periods of cooling
10 s. The lysate was centrifuged at 12,000 × g, 4 °C, 20 min twice
to separate soluble (supernatant) and insoluble (pellet) fractions. For
detailed procedures regarding the construction and expression,
please refer to our previous studies (Lin et al., 2018; Wang
et al., 2024).

2.3 Foam separation

The foam separation equipment was designed by our lab (Fang
et al., 2023; Xue et al., 2024). The process of foam separation and
purification of hSODLEH is shown in Figure 1. The cell lysis
solution of hSODLEH or hSOD, with different concentrations
(0.2–1.0 mg/mL) was added to the separation column. The
temperature was controlled using a circulating water bath device,
maintained at 25, 30, 35, 40, and 45 °C. Nitrogen was passed into the
separation column at a gas flow rate of 300 mL/min and a gas flow
time of 22 s. Foam was collected until it no longer flowed out of the
tower mouth. Mechanical agitation was employed to defoam the
collected foam, yielding the final defoamed solution.

The foam separation efficiency of recombinant enzyme was
evaluated by the enrichment ratio of the protein (Ep) (Equation
1), the protein recovery percentage (Rp) (Equation 2), the
enrichment ratio of enzyme activity (Ee) (Equation 3), and the
enzyme activity recovery percentage (Re) (Equation 4).

Ep � Cb

Ci
(1)

Rp � Cb × Vb

Ci × Vi
× 100% (2)

Ee � Ub

Ui
(3)

Re � Cb × Vb × Ub

Ci × Vi × Ui
× 100% (4)

Where Cb indicates the protein concentration of defoaming
solution (mg/mL). Ci is the initial protein concentration (mg/
mL). Vb represents defoaming liquid volume (mL). Vp is the
liquid intake volume (mL). Ub indicates specific enzyme activity
of defoaming solution (U/mg). Ui represents the initial specific
enzyme activity (U/mg).

2.4 ITC purification

hSODLEHwas further purified using ITC, according to previous
experiments in our lab (Addai et al., 2025; Peprah Addai et al., 2020).
Initially, to determine the optimal salt for purification, different
salts, namely, 1 M NaH2PO4, 1 M (NH4)2SO4, 1 M Na2SO4, and
2.5 M NaCl, were employed to purify hSODLEH. Following
SDS–PAGE analysis, (NH4)2SO4 was identified as the most
suitable purification salt. Subsequently, a certain amount of
(NH4)2SO4 was added into the cell lysis solution of hSODLEH.
The mixed solution was incubated at 25 °C for 20 min and then
centrifuged at 25 °C, 12,000 rpm for 10 min. The supernatant was
discarded and the pellet resuspended in cold Tris-HCl buffer
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(50 mM, pH 8.0). The samples were incubated in an ice water for 1 h,
and then centrifuged at 12,000 rpm, 4 °C for 20 min. The
supernatant was the purified hSODLEH.

2.5 Enzyme activity assay

The catalyzing activity of the recombinant hSODLEH or hSOD
was measured by Cu/Zn-SOD assay kit. Following the
manufacturer’s instructions, a preliminary experiment was
performed to determine the optimal amount of hSODLEH or
hSOD required to achieve an inhibition rate between 30% and
70%. The enzyme working solution (160 μL), certain amount of
hSODLEH or hSOD (20 μL) and reaction starting solution (20 μL)
were incubated for 30 min at 37 °C in a thermostatic water bath
(Honghua, Jiangsu, China) under static conditions. The absorbance
was then measured at 450 nm using Synergy H4 hybrid multi-mode
microplate reader (BioTek, United States). The activity of the
enzyme was calculated in accordance with the instructions
provided by the manufacturer.

2.6 Dynamic light scattering (DLS)

The particle size distribution in hSODLEH or hSOD solutions was
analyzed using a laser particle size analyzer (Litesizer ™ 500, Anton
Paar, Austria). One mL of hSODLEH or hSOD (1 mg/mL) was
transferred to a 1.5 mL Eppendorf tube. (NH4)2SO4 was added to
achieve a final concentration of 200 mM, and the mixture was vortexed
thoroughly. The mixture was loaded into a quartz cuvette, and DLS
measurements were carried out at 4 °C (<Tt) or 55 °C (>Tt), with an
equilibration time of 5 min. The spectrogram data were collected.

2.7 Fluorescence labeling

Ten mL (1 mg/mL) of either the hSODLEH or hSOD solution
was reconstituted in sodium acetate buffer (50 Mm, pH 5.5). Then,
5 mg of EDC and 2.5 mg of NHS were added to the enzyme solution
and stirred at 4 °C for 60 min. A total of 63 μg of FITC was added to
the enzyme-buffer mixture. The resulting solution was then stirred
gently in darkness at 4 °C for 2 h. The fluorescence-labeled enzyme

FIGURE 1
Schematic diagram of foam separation and further ITC purification of hSODLEH.
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were dialyzed at 4 °C for 24 h in darkness to remove residual FITC,
EDC and NHS. After the dialysis, a final concentration of 200 mM
(NH4)2SO4 was added to the enzyme solution. The mixture was
incubated for 30 min at either 4 °C (<Tt) or 55 °C (>Tt).
Fluorescence was measured at 519 nm after excitation at 488 nm
using confocal laser microscopy (Leica TCS SP5, Leica instrument).

2.8 Determination of surface hydrophobicity

The surface hydrophobicity of hSODLEH and hSOD was
determined using the fluorescent probe ANS. The 1 mg/mL
hSODLEH or hSOD was stepwise diluted with Tris-HCl (50 mM,
pH8.0) to concentrations of 0.1, 0.3, and 0.5 mg/mL. The mixtures
were homogenized and incubated at 4 or 55 °C for 30 min. The ANS
solution (8.0 mM) was added to the solutions to achieve a final
concentration of 400 µM. After full mixing, the solutions were
equilibrated at room temperature for 1 h. 300 μL was transferred
to a quartz sample cell. The fluorescence intensity was measured,
starting from the lowest to the highest concentration, using a
spectrofluorometer (Agilent Technologies, Australia), with
excitation and emission slits set at 5 nm, excitation wavelength of
380 nm and emission wavelength in the range of 420–580 nm at a
rate of 800 nm/min. Each concentration was repeated three times.
The relative fluorescence intensity of protein dilution blanks (no
ANS) and a buffer blank (buffer + ANS) were also measured. The
relative fluorescence intensity of each protein dilution blank was
subtracted from that of the corresponding protein dilution with
ANS to provide net relative fluorescence intensity. Standardization
of net relative fluorescence intensity values was based on measuring
the relative fluorescence intensity for ANS (10 µL) in methanol
(10 mL) and normalizing to a standard value of 70 (Glibowski et al.,
2006; Paraman et al., 2007). Surface hydrophobicity (S0) was
expressed as the initial slope of the plot of standardized net
relative fluorescence intensity values vs. % protein concentration.

3 Results

3.1 Construction, expression of ELP-tagged
recombinant protein (hSODLEH)

We previously successfully constructed the plasmids for hSOD
and hSODLEH, with the nucleotide fragment lengths being 462 bp
for hSOD and 1,293 bp for hSODLEH. These recombinant plasmids
were successfully expressed in E. coli BL21 (DE3) cells, and the
expressed proteins were predominantly in a soluble form (Wang
et al., 2024). The apparent molecular weights of the expressed
proteins were approximately 20 kDa for hSOD and 40 kDa for
hSODLEH (Wang et al., 2024).

3.2 Size distribution and aggregation
of hSODLEH

The Tt of the hSODLEH was determined in our previous study.
Results showed that when the protein concentration was 0.5 mg/mL,
and 0, 100, 200, 300, 400 and 500 mM of (NH4)2SO4 was added, the

Tt was >80, 77.3, 60.0, 31.3, 27.0 and <22 °C, respectively. When the
concentration of hSODLEH increased to 1 mg/mL, the Tt of
hSODLEH were observed to be >80, 56.0, 43.7,
28.7, <22 and <22 °C (Wang et al., 2024). To investigate the
aggregation behavior characteristics, DLS and confocal
fluorescence microscopy imaging were used to characterize at
1.0 mg/mL hSOD and hSODLEH in the presence of 200 mM
(NH4)2SO4 at below the Tt (4 °C) or above the Tt (55 °C).

The hydrodynamic radius (Rh) of hSOD and hSODLEH at 4 °C
were 229 and 300 nm, respectively (Figures 2A,C). This indicated
that both hSOD and hSODLEH primarily existed as monomers
dispersed uniformly in the solution, with relatively even distribution
among particles. When the temperature was increased to 55 °C, the
average Rh values for the hSODLEH increased significantly to
1,380 nm (Figure 2D). However, the average Rh value for hSOD
did not increase significantly and remained at 207 nm (Figure 2B).
This suggested that hSODLEH self-assembled into larger aggregates
at 55 °C, while hSOD did not exhibit significant aggregation under
the same conditions.

Fluorescence confocal microscopy analysis was performed to
further characterize aggregate behavior at 4 or 55 °C. The
microscopy images revealed that at 4 °C, both hSOD and
hSODLEH were uniformly dispersed (Figures 2E,G). However, at
55 °C, hSODLEH underwent self-aggregation, forming large protein
aggregates (Figure 2H). This demonstrated that hSODLEH could
form larger protein aggregates through self-aggregation in the
aqueous phase with the temperature increase, and the particle
size also increased significantly.

3.3 Surface hydrophobicity of the hSOD
and hSODLEH

To further investigate the temperature dependent aggregation
mechanism of hSODLEH, we used the ProtScale online software
(https://web.expasy.org/protscale) to predict the hydrophobicity of
the protein. The larger the positive value stands for the more
hydrophobic, and the larger the negative value means the more
hydrophilic (Han et al., 2019; Zhang et al., 2021). The grand average
of hydropathicity (GRAVY) (GRAVY) of hSOD and hSODLEH
were −0.344 and 0.565, respectively, indicating that hSODLEH
exhibits significantly higher hydrophobicity than hSOD (Figures 3A,B).

Addationally, the hydrophobic fluorescent probe ANS was
utilized to explore the influence of external temperature on the
surface hydrophobicity of hSOD and hSODLEH. ANS exhibits
fluorescence in aqueous solution, however, its fluorescence
intensity significantly increases upon binding to proteins, making
it widely used for determining protein surface hydrophobicity.
When the excitation wavelength was 380 nm, ANS had a
maximum emission wavelength of around 520 nm when it
existed alone, with a very low fluorescence intensity value of 5.03.

Upon the addition of hSOD and hSODLEH, the maximum
emission wavelengths of ANS underwent a blue-shift to around
480 nm (Figures 3C–F). The surface hydrophobicity index S0 of
hSOD and hSODLEH was illustrated in Supplementary Figure S1,
and the value of S0 was shown in Table 1. At 4 °C, the S0 value of
hSODLEH/ANS (1,054.60) was slightly higher than that of hSOD/ANS
(935.90), indicating a moderate increase in hydrophobic exposure.
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FIGURE 2
DLS curves (A–D) and fluorescent fields (E–H) of the hSOD and hSODLEH at different temperatures (4 or 55 °C).

FIGURE 3
Hydrophobicity analysis of hSOD and hSODLEH (A,B). Fluorescence intensity of hSOD and hSODLEH at 4 and 55 °C (C–F).

TABLE 1 Surface hydrophobicity indices (S0) of hSOD and hSODLEH at different temperatures.

Protein Temperature (°C) Surface hydrophobicity index (S0) R2

hSOD 4 935.90 ± 21.3 0.9987

hSOD 55 1,384.80 ± 32.5 0.9989

hSODLEH 4 1,054.60 ± 18.7 0.9997

hSODLEH 55 1,763.54 ± 25.1 0.9999
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When the temperature increased to 55 °C, the S0 value of hSODLEH/
ANS rose significantly 1763.54, while hSOD/ANS showed a smaller
increase to 1,384.80. This indicated that hSODLEH exposes more
hydrophobic regions at elevated temperatures, consistent with its
thermoresponsive aggregation behavior.

3.4 Effect of protein concentration on the
foams separation of hSOD and hSODLEH

The influence of initial protein concentration of hSOD and
hSODLEH cell lysis solution on foam separation was investigated,
and the results are presented in Figures 4A,B. As the initial protein
concentration increased, the recovery rates of both hSOD and
hSODLEH increased, while the enrichment ratios decreased.
Considering Ep, Rp, Ee, Re as evaluation criteria, initial protein
concentrations of 0.4 mg/mL were selected as the appropriate
conditions for subsequent experiments with both proteins.

The effect of temperature on the enrichment ratio and recovery
percentage is shown in Figures 4C,D. As temperature increased from
25 °C to 45 °C, the enrichment ratio increased, while the recovery
percentage decreased with increasing temperature. Balancing
recovery percentage and enrichment ratio, 30 °C was chosen as
the optimal temperature for performing foam separation.

In summary, the optimized foam separation conditions for
hSOD and hSODLEH from cell lysis solution were determined as

follows: the initial protein concentration of 0.4 mg/mL and the
temperature of 30 °C.

3.5 Foam separation of hSOD and hSODLEH

Under the optimal conditions, the purification efficiency of foam
separation of hSOD and hSODLEH were presented in Table 2. For
hSODLEH, the values for Ep, Ee, Rp and Re were 1.93, 2.15, 86.57%,
and 100%, respectively. For hSOD, the corresponding values of Ep,
Ee, Rp and Re were 1.27, 1.36, 64.76%, and 65.49%, respectively.
Notably, SOD activity was barely detectable in the residual liquid of
the hSODLEH crude lysate after foam separation. In contrast,
34.50% of enzyme activity remained in residual liquid of hSOD
after foam separation. These results indicated that ELP tag facilitates
the specific adsorption of the recombinant enzyme onto the bubble
surface, enabling the preferential separation and enrichment of the
recombinant enzyme under these conditions.

3.6 Further purification of hSODLEH by the
thermally responsive property of ELP

The hSODLEH was further purified using the thermally
responsive property of ELP, with the defoaming solution
fromfoam separation as the raw material. First, different types of

FIGURE 4
Effects of initial protein concentration (A,B) and temperature (C,D) of foam separation on hSOD and hSODLEH.
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salts on the purification efficiency of HSODLEH by ITC was
investigated. Figure 5A showed that (NH4)2SO4 was the optimal
salt. Secondly, various concentrations of (NH4)2SO4 on the
purification efficiency of hSODLEH was test. Figure 5B showed
that a clear band at around 40 kDa appeared, indicating that

0.4–1.8 M (NH4)2SO4 could be used to purify hSODLEH by ITC.
However, as the concentration of (NH4)2SO4 increased from 1.0 to
1.8 M, more and more impurities appeared in the bands. According
to Figure 5C, the purification fold of hSODLEH reached a maximum
of 17.45, and the recovery rate was 91.98% at an (NH4)2SO4

TABLE 2 Effect of purification of hSOD and hSODLEH by Foam separation method under optimal conditions.

Enzyme Fraction Total protein (mg) Total activity (U) Ep Rp (%) Ee Re (%)

hSOD Foamate 42.13 ± 0.48 171.05 ± 0.81 1.27 ± 0.042 64.76 ± 0.97 1.36 ± 0.041 65.49 ± 0.51

Residue 22.93 ± 0.24 90.11 ± 0.52 0.67 ± 0.027 35.24 ± 0.63 0.51 ± 0.025 34.50 ± 0.22

hSODLEH Foamate 58.79 ± 0.36 340.39 ± 1.13 1.93 ± 0.034 86.57 ± 1.04 2.15 ± 0.087 93.32 ± 0.78

Residue 9.12 ± 0.21 0 0.29 ± 0.009 11.77 ± 0.32 0 0

FIGURE 5
Optimization conditions for purification of hSODLEH by ITC. (A) SDS-PAGE analysis of hSODLEH purified by different salt ions (1 M NaH2PO4, 1 M
Na2SO4, 1 M (NH4)2SO4, and 1 and 2.5 M NaCl). (B) SDS–PAGE of hSODLEH purified by ITC using 0.4–1.8 M (NH4)2SO4. (C) Recovery rate and purification
fold of hSODLEH at different concentrations of (NH4)2SO4. Lane M–protein marker, Lane Ctrl, E. coli transformedwith empty plasmid, Lanes Lys, Sup and
Pel refers to whole cell lysate, supernatant and pellet of E. coli transformed with plasmid containing the expressing hSODLEH.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Wang et al. 10.3389/fbioe.2025.1695586

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1695586


concentration of 1.2 M. Nevertheless, considering various factors,
1.2 M (NH4)2SO4 was ultimately selected as the optimal purification
salt for hSODLEH. hSOD without the ELP tag exhibited negligible
aggregation and purification under identical conditions (data not
shown), confirming that the thermoresponsive property of the ELP
tag is essential for efficient ITC purification of hSODLEH. Overall,
the total yield and purification fold after two-step purification was
85.84% (93.32% foam separation × 91.98% ITC) and 37.52
(2.15 foam separation × 17.45 ITC), respectively. Following the
two-step purification process, the final purity of hSODLEH was
approximately 85%, as determined by SDS-PAGE densitometric
analysis (Figure 5B), with an absolute yield of approximately 8 mg
per liter of E. coli culture.

4 Discussion

In the field of protein purification, it is crucial to develop efficient
and cost - effective separation techniques for various biotechnological
and pharmaceutical applications (Zhang et al., 2022). This study
aimed to the effective separation and purification of hSODLEH
from a cell lysis solution. The approach combines foam separation
with an ELP fusion tag, leveraging their unique properties for
enhanced purification efficiency.

ELP has emerged as a powerful tool for protein engineering and
purification due to their unique thermal responsiveness and
biocompatibility (Zhou et al., 2019). First, ELP exhibits a
thermodynamic reversible phase transition behavior at Tt, enabling
selective precipitation of the fusion protein from solution upon
temperature change. This property simplifies the purification
process, as the ELP-tagged protein can be easily separated from cell
lysates and other contaminants by adjusting the temperature. Second,
ELP are composed of repeating pentapeptide sequences that are
biologically inert and do not significantly interfere with the structure
or function of the target protein (Chilkoti et al., 2006). We have
previously constructed several ELP-fusion proteins. Results
demonstrated that the purification by ITC was superior to the
traditional Ni-NTA resin. Moreover, the ELP did not affect the
enzyme activity, kinetic parameters and secondary structure of ELP-
fusion protein. More importantly, ELP improved the stability in harsh
conditions of ELP-fusion protein such as heating and exposure to
denaturant (Peprah Addai et al., 2020; Wang et al., 2024; Zhou et al.,
2019). Finally, ELP is biocompatible, non-immunogenic, and can
enhance the stability of fused proteins (Shi et al., 2022).

The surface hydrophobicity of ELP-tagged proteins is inherently
associated with their phase transition behavior (Fang et al., 2023). In
this study, hSODLEH had a positive GRAVY score (0.565),
contrasting with hSOD’s negative score (−0.344), thereby
validating the role of the ELP tag in enhancing hydrophobicity.
This finding was consistent with the S0. The hydrophobic fluorescent
probe ANS was employed to effectively visualize these changes.
Below Tt (4 °C), the fluorescence enhancement of hSODLEH/ANS
was slightly higher than that of hSOD/ANS. Above Tt (55 °C),
However, hSODLEH/ANS exhibited significantly greater
fluorescence enhancement, indicating that hSODLEH exposes
more hydrophobic regions at elevated temperatures.

The increase in surface hydrophobicity is primarily attributed to
the conformational change of the ELP tag. As the temperature

exceeds Tt, ELP transform from a random, disordered structure
to an ordered β-turn conformation, exposing more internal
hydrophobic regions of the recombinant proteins, enhancing
hydrophobic interactions, and increasing S0 (Alizadeh-Pasdar and
Li-Chan, 2000). The rise in surface hydrophobicity stems from the
conformational change of the ELP tag, which promotes hydrophobic
interactions between protein molecules. This behavior directly
correlates with elevated hydrophobicity, as hydrophobic regions
tend to aggregate to minimize their contact with water
(Chandler, 2005).

Protein flotation is a separation technique that exploits the
differences in protein surface properties to achieve the separation
and enrichment of proteins using foam (Han et al., 2020). Foam
separation experiments demonstrated that hSODLEH achieved
higher Ep, Rp, Ee, Re than hSOD. This confirms that the
hydrophobic ELP-fusion protein can be more effectively
separated and enriched through foam flotation. Several factors
influence protein flotation efficiency, including pH, ionic
strength, bubble size, gas flow rate, temperature, protein
hydrophobicity (Bergfreund et al., 2021; Chen et al., 2025; Li
et al., 2023; Pan et al., 2022; Schwenzfeier et al., 2013; Zhao
et al., 2024b). Among those, protein hydrophobicity plays a
pivotal role. Hydrophobic proteins have a higher affinity for air-
water interfaces as they reduce interfacial energy by displacing water
molecules (Damodaran, 2005).

The increased surface hydrophobicity of hSODLEH not only
promotes its adsorption at the gas-liquid interface but also
strengthens the hydrophobic interactions within the foam matrix
(Bergfreund et al., 2021). When adsorbed onto the bubble surface,
hSODLEH’s hydrophobic amino acid residues interact with the
bubble surface, preventing bubbles from easily rupturing and
coalescing. This stability allows the foam to more effectively carry
hSODLEH to the solution surface, enhancing the flotation efficiency
and enrichment. Hu et al. developed a two-stage foam separation to
efficiently recover protein from Perilla seed meal (PSM) using
glycine betaine as an enhancer, achieving a total recovery rate of
94.5% and an enrichment factor of 7.1. They demonstrated that
glycine betain engaged in cation-π interactions with aromatic
residues of PSM protein, which made the protein structure
unfold and enabled its hydrophobic groups of PSMP to be more
exposed. These factors, plus protein aggregation, were responsible
for the enhanced interfacial adsorption of PSMP (Hu et al., 2021).

The increase in surface hydrophobicity caused by the
conformational change of the ELP tag also leads to the
aggregation of hSODLEH (Wierenga and Gruppen, 2010).
Münch et al. demonstrated that diverse ALS-causing mutations
provoke SOD1 aggregation by increasing their propensity to
expose hydrophobic surfaces. They found that exposure of
hydrophobic surfaces precedes aggregation. This shows that
aggregation of diverse pathogenic SOD1 mutants is driven by
intermolecular hydrophobic interactions either between
constitutively hydrophobic mutants or aggregation intermediates
exposing hydrophobic surfaces (Münch and Bertolotti, 2010). As
quantitatively demonstrated in Table 1, the surface hydrophobicity
of hSODLEH increased at elevated temperatures. The enhanced
hydrophobicity promotes intermolecular interactions that drive the
protein aggregation, as directly evidenced by the increase in
hydrodynamic radius (Figures 2C,D) and the formation of large
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TABLE 3 Comparison of purification efficiency of SOD by different methods.

Source Protein Method Recovery
rate (%)

Purificati-on
(fold)

Refs

Homo sapiens Cu/
ZnSOD

Foam separation 93.32 2.15 This work

Homo sapiens Cu/
ZnSOD

ITC 91.98 17.45 This work

Homo sapiens Cu/
ZnSOD

Foam separation + ITC 85.84 37.52 This work

Homo sapiens Cu/
ZnSOD

One round ITC 79.69 24.27 Wang et al. (2024)

Homo sapiens Cu/
ZnSOD

Two round ITC 73.93 26.59 Wang et al. (2024)

Homo sapiens Cu/
ZnSOD

Three round ITC 62.33 26.81 Wang et al. (2024)

Homo sapiens Cu/
ZnSOD

Ni-NTA 81.4 10.9 Lin et al. (2018)

Halomonas sp. ANT108 Cu/
ZnSOD

Ni-NTA 43.67 3.61 Wang et al. (2020a)

Pseudoalteromonas
sp. ANT506

PsSOD Ni-NTA 22.9 12.6 Wang et al. (2016)

Cohnella sp. A01 CaSOD Ni-NTA 79 2.0 Shahi et al. (2021)

Homo sapiens Cu/
ZnSOD

Purified by resilin-like polypeptide-tag — 24.03 Zhao et al. (2024a)

Exiguobacterium sp.
OS-77

MnSOD Superdex 200 41 50 Nonaka et al. (2014)

Marinomonas sp. NJ522 MnSOD Sephadex G-75 (2nd) 9 38 Zheng et al. (2006)

Allium sativum L CuZnSOD Sephacryl S200-HR gel filtration, DEAE Sepharose ion
exchange chromatography, chromatofocusing

— 82 Hadji et al. (2007)

B. licheniformis SPB-13 Fe/
MnSOD

Ammonium sulphate 32.26 1.81 Thakur et al. (2018)

DEAE-Sepharose 25.16 16.17 Thakur et al. (2018)

Geobacillus sp. EPT3 MnSOD DEAE-Sepharose 14.9 8.0 Zhu et al. (2014)

Phenyl-Sepharose 11.1 13.4 Zhu et al. (2014)

L. lactis M4 MnSOD Immobilised metalaffinity chromatograph 44.19 1.75 Tan et al. (2014)

Gel filtration 22.35 3.64 Tan et al. (2014)

A. gonensis KA 55 MTCC SOD Ammonium sulphate 31.7 2.14 Bhatia et al. (2018)

DEAE Sephadex A-50 column 12.89 33.11 Bhatia et al. (2018)

Zizyphus mauritiana
Lamk

SOD DEAE-fraction 14.8 4.5 Kumar and
Malhotra, (2008)

Sephadex G100 fraction 12.6 12.2 Kumar and
Malhotra, (2008)

Macrobrachium
nipponense

CuZnSOD DEAE-32 — 12.44 Yao et al. (2007)

CM-cellulose — 17.87 Yao et al. (2007)

Thermothrix sp MnSOD Sephadex G 75 24 4.5 Seatovic et al. (2004)

Sephadex G 75 + QAE Sephadex 15 105.4 Seatovic et al. (2004)

Human Erythrocytes CuZnSOD DEAE-cellulose chromatography + copper chelate affinity
chromatography

33.8 196.3 Karadag and Bilgin,
(2010)

(Continued on following page)
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aggregates (Figures 2G,H). These aggregates are more easily
captured and carried by foam, further enhancing the separation
efficiency of hSODLEH in foam flotation.

ELP is a class of synthetic peptides derived from elastin,
composed of the Val-Pro-Gly-Xaa-Gly (VPGXG)n repeat unit,
where the guest residue Xaa represents any amino acid except
Pro. In this study, valine was selected as the guest residue (Xaa),
and repeat number (n) to was set to 50 to enhance the
hydrophobicity of the ELP. The decision to use 50 repeats of the
VPGVG sequence was based on the fact that the hydrophobicity and
thermal responsiveness of ELP are positively correlated with the
number of repeats (n). A length of 50 repeats falls within the
commonly reported range for ELPs (20–330) and represents a
well-characterized and moderate choice that provides a clear
thermal transition and sufficient hydrophobicity. Our findings
provide a foundation for systematically exploring how key
structural parameters of ELP-specifically the repeat number (n)
and the identity of the guest residue (Xaa)-affect foam separation
performance. Future work could investigate ELP variants with
systematically varied repeat lengths (n) and guest residue (Xaa)
hydrophobicities to establish a quantitative correlation between ELP
architecture and key separation metrics, including enrichment ratio
and recovery yield. This approach is anticipated to generate valuable
insights that will facilitate the optimization of ELP-based flotation
system designs. Additionally, it holds the potential to reveal the
fundamental molecular mechanisms governing protein-bubble
interactions. Such discoveries could open new and promising
directions for developing more efficient, customized ELP-based
flotation agents tailored to specific flotation applications.

Protein purification remains a critical challenge for large-scale
bioproduction. In this study, the performance of our two-step
purification strategy (foam separation + ITC, FM-ITC) was evaluated
and comparedwith other conventionalmethods for SODpurification, as
summarized in Table 3. Previous studies have reported SODpurification
using Ni-NTA affinity chromatography from various sources Cohnella
sp. A01, Pseudoalteromonas sp. ANT506, Halomonas sp. ANT108,

Homo sapiens. Additionally, methods such as size exclusion
chromatography (e.g., Superdex, Sephadex G-100, Superdex 200,
Sephadex G-75) and ion exchange chromatography (e.g., DEAE-
Sepharose, DEAE-32, CM-cellulose, Q-Sepharose) have been widely
applied across species (Table 3). Our integrated FM-ITC approach
achieved a purification fold of 37.52 and a recovery rate of 85.84%,
which compares favorably with many multi-step chromatographic
methods in terms of both efficiency and overall yield. This strategy
also reduces the need for expensive chromatography resins and
equipment, simplifies the purification process into two non-
chromatographic steps, and presents a scalable alternative suitable for
industrial applications. This enhancement arises from the synergistic
integration of ELP’s hydrophobicity and thermoresponsiveness: foam
separation leverages ELP-mediated hydrophobic adsorption at the gas-
liquid interface for initial enrichment, while ITC utilizes temperature-
induced phase transitions to further purify the protein.

In this study, the purification process was conducted using a
sequential approach initiating with foam separation followed by
ITC (FM-ITC). The reverse order (ITC followed by foam
separation, ITC-FM) were not experimentally evaluated. The
FM-ITC order was selected based on the following
considerations. First, initiating purification with foam
separation allows for efficient capture and concentration of
soluble hSODLEH directly from the crude lysate, effectively
reducing sample volume and removing significant hydrophilic
contaminants. This step provides a pre-enriched feedstock that
enhances the subsequent efficiency of ITC. Second, the reverse
order (ITC-FM) require resolubilization of the thermally
aggregated product prior to foam separation could be applied,
introducing additional handling and potential losses.
Furthermore, the aggregated form of the protein might exhibit
lower adsorption efficiency at the air–water interface, which
could adversely affectfoam separation performance. While the
FM-ITC sequence demonstrates encouraging efficiency and
practical advantages, a systematic comparison of different
purification order or single-step represents a valuable

TABLE 3 (Continued) Comparison of purification efficiency of SOD by different methods.

Source Protein Method Recovery
rate (%)

Purificati-on
(fold)

Refs

Enteromorpha linza FeSOD Q-sepharose FF 28.3 35.6 Lü et al. (2013)

Q-sepharose FF + Superdex 200 19.1 103.6 Lü et al. (2013)

Aspergillus glaucus 363 CuZnSOD Superdex 35 11.8 Abrashev et al.
(2016)

Superdex + Phenyl-Sepharose 8.1 28.8 Abrashev et al.
(2016)

Aspergillus niger CuZnSOD Anion exchange chromatography 75 — Hatzinikolaou et al.
(1998)

Curcuma aeruginosa
Roxb

SOD 80% (NH4)2SO4 cut 24.78 0.30 Moon-ai et al. (2012)

DEAE-cellulose 3.56 1.74 Moon-ai et al. (2012)

DEAE-cellulose + Sephadex-75 2.51 4.36 Moon-ai et al. (2012)

Tomato fruit SOD Ammonium sulphate precipitation + Sephadex G-100 +
DEAE-cellulose column chromatographies

44 22 Kumar et al. (2004)
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direction for future research. Such comparative studies would
provide further insight into process optimization and scalability
assessment.

It should be pointed out tha the purity of hSODLEH after two-
step purification was ~85%, as assessed by SDS-PAGE (Figure 5B).
While this level of purity, achieved in the absence of conventional
chromatography, is competitive for many industrial applications
such as cosmetics and nutraceuticals, pharma-grade SOD typically
requires a higher purity standard (≥95–98%). For applications
demanding ultra-high purity, the present method can serve as an
efficient initial capture and intermediate purification
step. Subsequent polishing steps, such as ion-exchange or size-
exclusion chromatography, may be incorporated to further
enhance purity to meet pharmaceutical requirements.
Additionally, this study was conducted at a laboratory scale (mL
to L). Although the results demonstrate a promising purification
strategy, further validation through scale-up experiments and
process stability studies will be essential to assess its industrial
applicability. Notwithstanding these considerations, the method
presents several potential practical advantages. By replacing
expensive affinity chromatography resins with low-cost
consumables such as ammonium sulfate and minimizing the
need for complex instrumentation, the process operates on a
simpler and potentially more economical basis.

5 Conclusion

In this study, a two-step purification strategy integrated foam
separation (leveraging ELP’s hydrophobic properties) with ITC
(utilizing ELP’s thermoresponsive behavior) to isolate and purify
hSODLEH from cell lysate. During the foam separation, the
hydrophobic ELP tag promoted selective adsorption of hSODLEH
to the gas-liquid interface, enabling efficient concentration and
enrichment. Under optimized conditions (protein concentration:
0.4 mg/mL, temperature: 30 °C), the method achieved an Ep of
1.93, Rp of 86.57%, Ee of 2.15, and Re of 93.32%. Subsequently,
ITC purification achieved 91.98% recovery rate and 17.45-fold
purification fold. Overall the two-step process resulted in 85.84%
total recovery rate and 37.52-fold overall purification fold, with a
purity of approximately 85%. These results highlight that the dual
functionality of ELP-hydrophobicity for interfacial targeting and
thermoresponsiveness for phase separation-offer a novel strategy
for efficient protein separation and purification. The method not
only simplifies the purification workflow and reduces dependence on
chromatography, but also offers economic and scalability benefits.
Future studies should focus on enhancing protein purity through
further process optimization and implementing the strategy on a
larger scale to evaluate its feasibility for industrial production. The
combination of thermoresponsive and hydrophobic properties of
ELPs offers a promising platform for developing sustainable and
high-throughput protein purification technologies.
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