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This study aims to investigate the modulation effect of baseline intraocular
pressure (IOP) on corneal viscoelastic modulus within physiological ranges.
We collected 48 stromal lenticules from 26 healthy myopic patients
undergoing SMILE surgery. Based on biomechanically corrected IOP (bIOP),
stratifying the samples into a low-pressure group (bIOP <15 mmHg, n = 15)
and a high-pressure group (bIOP ≥15 mmHg, n = 33) according to pre-operative
measurements. Each fresh lenticule underwent strain-controlled torsional
rheometry at 37 °C (shear strain 1%, angular frequency 0.1–100 rad s-1),
recording storage modulus (G′), loss modulus (G″), complex viscosity (η*), and
loss factor (tan δ), with elastic modulus (E) calculated from G′. In parallel, in vivo
corneal deformation and stiffness parameters were obtained using the Corvis ST.
The results showed that viscoelastic parameters increased monotonically with
frequency, demonstrating solid-like behavior; in the frequency range of
100–101.5 rad s-1, G′ and E were significantly higher in the high-pressure group
compared to the low-pressure group (both p < 0.05), while the log-modulus
versus log-frequency slopes showed no significant difference, indicating an
upward “stiffness offset” due to elevated bIOP without altering dispersive
characteristics. Corvis ST also confirmed that the high-pressure group
exhibited smaller deformation amplitudes and higher stiffness parameters.
Overall, even within the normal range, elevated baseline IOP results in an
upward shift in corneal E without affecting its time-dependent properties,
suggesting that corneal stromal rigidity is adaptable to the ocular pressure
environment under physiological conditions.
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1 Introduction

The cornea is the eye’s primary refractive element and a
frontline protective barrier, so its biomechanics are crucial for
maintaining normal vision (Meek et al., 2025). Under
physiological intraocular pressure (IOP), the cornea undergoes
only minute deformations, with strains typically below 1%,
within which it behaves as an essentially linear viscoelastic solid
(Pang, 2021). That response is governed by the architecture of the
collagen fiber network, the composition of the stromal matrix, and
tissue hydration. Even within the physiological pressure range,
individual corneas can respond quite differently (Vinciguerra
et al., 2020; Xu et al., 2021; Liu et al., 2023; Wei et al., 2023).
Quantifying corneal viscoelasticity under physiological IOP is
therefore fundamental to understanding structure–function
coupling and disease mechanisms in disorders such as glaucoma
and keratoconus.

In vivo, the Corvis ST uses a calibrated air puff and ultra-high-
speed Scheimpflug imaging to capture dynamic corneal
deformation. It yields pressure-independent indices such as
biomechanically corrected IOP (bIOP) and device-derived
metrics including stiffness parameter at first applanation (SPA1),
stiffness parameter at highest concavity (SPHC), Ambrósio’s
Relational Thickness in the horizontal direction (ARTh), Corvis
Biomechanical Index (CBI), and the stress–strain index (SSI),
among others (Renato et al., 2013; Roberts, 2014; Vinciguerra
et al., 2016; Roberts et al., 2017; Eliasy et al., 2019; Vinciguerra
et al., 2021; Zhang et al., 2021; Flockerzi et al., 2022; Miao et al.,
2024). In addition, several derived parameters leverage dynamic
corneal response (DCR) metrics to link biomechanics-related ocular
diseases such as glaucoma—for example, the Biomechanical
Glaucoma Factor (BGF) (Pillunat et al., 2019). These parameters
reflect the cornea’s resistance to transient loading, complementing
ex vivomaterial measurements by sampling the tissue’s performance
at the organ scale under physiological conditions. Moreover, small
incision lenticule extraction (SMILE) offers an opportunity to probe
corneal stromal mechanics in humans. In SMILE, a femtosecond
laser creates an intrastromal lenticule that is manually dissected and
extracted through a small incision to correct myopia. The retrieved
stromal lenticule preserves native extracellular matrix and collagen
lamellae at physiologic hydration if handled promptly, enabling
high-fidelity, ex vivo rheological testing under controlled conditions.

Quantifying corneal viscoelasticity has been approached using a
range of complementary methods. Conventional rheological
techniques include stress-controlled and strain-controlled
oscillatory tests and steady-shear measurements. Meanwhile,
strain-controlled frequency sweeps at small strains are
particularly suitable for delicate collagenous tissues because they
minimize structural damage while mapping storage modulus (G′),
loss modulus (G″), complex viscosity (η*), and loss factor (tan δ)
across a physiologically relevant frequency band. By limiting the
applied deformation to the 0.001%–1% range, these sweeps preserve
the collagen framework while probing a wide frequency band
(0.1–100 rad s-1) that covers the characteristic rates of fixational
eye movements and spontaneous retinal venous pulsations (Kim
et al., 2014; Beylergil et al., 2022).

Within this context, we examined how baseline, physiological
bIOP modulates corneal viscoelasticity. We hypothesized that,

within the physiological IOP range, higher baseline pressure
would be accompanied by an upward shift in both G′ and G″, a
trend that should be observable at the macroscopic (whole cornea)
and microscopic (stromal layer) scales alike. We tested this by
performing small-strain, strain-controlled torsional-shear
frequency sweeps on fresh stromal lenticules obtained during
SMILE and, in parallel, by characterizing in vivo corneal
deformation with the Corvis ST. Establishing a quantitative link
between physiological bIOP and viscoelastic modulus may refine
constitutive models and inform personalized risk stratification in
glaucoma, keratoconus, and pressure-related ocular disorders.

2 Methods

This study was approved by the Ethics Committee of the
Zhongshan Ophthalmic Center (2013MEKY036) and was
conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained from all participants
before enrollment, permitting the use of their clinical data
for research.

Before surgery, each subject underwent a comprehensive
ophthalmic evaluation that included slit-lamp biomicroscopy,
non-contact tonometry, and anterior-segment tomography.
Exclusion criteria were: 1) keratoconus or suspected keratoconus;
2) IOP <10, or >21 mmHg, normal-tension glaucoma (NTG) or
suspected NTG; 3) active ocular or systemic disease; 4) prior ocular
trauma or surgery; and 5) any other condition known to influence
corneal biomechanics.

2.1 In vivo data

In vivo corneal biomechanics were assessed with the Corvis ST
(Oculus, Wetzlar, Germany; software version 1.6r2187) pre-
operatively and 1 day post-operatively. Only measurements
labelled “OK” in the quality-specification (QS) window were
included in the analysis.

2.2 Ex vivo data

SMILE was performed by a single experienced surgeon using a
VisuMax femtosecond laser system (Carl Zeiss Meditec AG, Jena,
Germany). After creation and manual dissection, each stromal
lenticule was removed through a small incision and immediately
immersed in sterile BSS Sterile Irrigating Solution (Alcon
Laboratories, Inc., Fort Worth, TX, USA) at 4 °C to maintain
tissue hydration.

Ex vivo rheological properties of the lenticules were measured on
a DHR-2 rheometer (TA Instruments, USA) using a 20 mm parallel-
plate geometry with a 0.9 mm gap. To prevent slippage and ensure
no-slip boundary conditions, 320 grit sandpaper was glued to both
loading platens (Hatami-Marbini, 2014). Prior to testing, specimens
were equilibrated in BSS solution at 37 °C for 30 min. The
submersion chamber of the rheometer was filled with BSS
solution to maintain tissue hydration throughout measurements.
Oscillatory frequency sweeps were performed at 37 °C with 1% strain
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and an angular frequency (ω) of 0.1–100 rad s-1. The G′, G″, η*, and
tan δ were calculated to characterize viscoelastic behavior. All
biomechanical tests were completed within 2 hours of extraction
to minimize tissue degradation. The detailed rheological testing
parameters are summarized in Table 1.

Although the cornea is anisotropic and viscoelastic, it is
commonly approximated as an isotropic, linear-elastic material
under small deformations. Under this assumption the elastic
modulus (E) was derived from the storage modulus using

E � 2G′ 1 + ]( )
with a Poisson’s ratio (ν) of 0.40 (Ford et al., 2011).

2.3 Statistical analysis

All statistical analyses were performed using R (version 4.5.0). A
total of 48 corneal stromal lenticule specimens from 26 healthy young
myopic adults were stratified into two groups based on bIOP: the low-
pressure group (bIOP <15 mmHg) and the high-pressure group
(bIOP ≥15 mmHg). For normally distributed data, intergroup
comparisons were conducted using independent samples t-tests;
otherwise, Mann-Whitney U tests were applied. Categorical variables
were analyzed using Pearson’s Chi-squared tests or Fisher’s exact tests
when appropriate. Statistical significance was defined as p < 0.05.

3 Result

A total of 48 corneal stromal lenticule specimens from 26 young
myopic adults were included in the analysis. Among them,
22 subjects contributed bilateral data and four contributed
unilateral data. The lenticules were stratified into two groups
according to bIOP: bIOP <15 mmHg (N = 15) and
bIOP ≥15 mmHg (N = 33). The primary analysis treated each
lenticule as an independent observation. A sensitivity analysis using
only one randomly selected eye per subject (N = 26) yielded
consistent results, suggesting that inter-eye correlation did not

substantially affect the conclusions. There were no statistically
significant differences in baseline characteristics such as age,
gender distribution, pre-operative central corneal thickness
(CCT), BGF, and parameters related to the cap, stromal lenticule,
and remaining stroma bed thickness from the SMILE procedure
between the two groups (all p > 0.05; Table 2).

The viscoelastic properties of the lenticules were assessed across
a range of oscillatory angular frequencies. The G′, G″, η*, and tan δ

all exhibited frequency-dependent changes in both
groups (Figure 1).

Across the measured frequency range (0.1–100 rad s-1), the
bIOP ≥15 mmHg group consistently showed higher mean values of
G′ than the bIOP <15 mmHg group, indicating increased corneal
stiffness. This trend was also observed for the G″, suggesting enhanced
viscous damping properties in the higher bIOP group. The differences
between groups were statistically significant at ω of 100–101.5 rad s-1 and
above (p < 0.05). Similarly, the η* was elevated in the bIOP ≥15 mmHg
group compared to the lower bIOP group throughout the tested
frequency range. The tan δ values, reflecting the viscoelastic balance
between G′ and G″, displayed no significant intergroup differences
across most ω.

The elastic modulus E was calculated from the storage modulus G′
using E = 2G′(1+]) with Poisson’s ratio ] = 0.4. Across the tested ω,
range (0.1–100 rad s-1, log10 scale), E displayed the expected frequency
dependence, rising steadily toward the high-ω end in both groups
(Figure 2). Eyes with bIOP ≥15 mmHg exhibited significantly higher
mean E values than those with bIOP <15 mmHg throughout the
100–101.5 rad s-1 spectrum (p < 0.05). The between-group separation
became most conspicuous at ≥ 1 rad s-1, indicating that elevated IOP is
accompanied by a stiffer corneal matrix, especially under rapid, small-
amplitude deformation. The curves nearly converged at the lowestω but
diverged markedly above 10 rad s-1. Linear mixed-model analysis
indicated comparable ω-response slopes between groups, implying
similar viscoelastic dispersion but a higher overall stiffness offset in
the high-bIOP eyes.

4 Discussion

This study establishes a clear association between bIOP and corneal
viscoelastic behavior. Using small-strain, strain-controlled torsional
shear rheometry, we quantified the frequency-dependent response of
stromal lenticules harvested during SMILE in a deformation mode that
closely mirrors the subtle rotational micro-strains encountered in vivo.
This bench-scale characterization directly addresses the physiological
regime where the cornea operates under 1% strains as an approximately
linear viscoelastic solid.

Across the examined frequency spectrum,G′,G″, and the derived E
rose toward the high-frequency end, as expected for a viscoelastic solid.
Eyes with higher bIOP exhibited a uniform upward shift in these
moduli at every tested frequency, whereas the rate at which each
modulus changed with frequency remained essentially constant
across pressure groups. In practical terms, elevated bIOP increases
the baseline stiffness of the corneal matrix without measurably altering
the underlying time-dependent relaxation mechanisms that govern
energy storage and dissipation. Clinically, this aligns with reports
that corneas in normal-tension glaucoma are more deformable,
whereas those in high-tension glaucoma and ocular hypertension are

TABLE 1 Rheological testing parameters.

Parameter Specification

Rheometer DHR-2 (TA Instruments, USA)

Geometry 20 mm parallel plate

Gap 0.9 mm

Plate surface 320 grit sandpaper

Temperature 37 °C

Pre-equilibration 30 min in BSS at 37 °C

Test environment BSS submersion chamber

Strain amplitude 1%

Angular frequency 0.1–100 rad s-1

Test mode Oscillatory frequency sweep

Time post-extraction <2 h
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comparatively less deformable (Liu et al., 2023). The present work
provides direct torsional-shear evidence consistent with that trend and
supports the view that healthy corneas are stabilized against large
deformations by stress-stiffening mechanisms (McMonnies and
Boneham, 2007). A plausible structural explanation is a modest
increase in collagen packing density or cross-link density that
stiffens the fibrillar backbone while leaving the molecular relaxation
spectrum largely intact. Whether such material changes are a cause or a

consequence of higher IOP cannot be resolved in a cross-sectional
study; longitudinal designs that integrate in vivo imaging with ex vivo
rheometry are warranted.

These findings also dovetail with organ-scale in vivo metrics
obtained using the Corvis ST. Pressure-independent indices such as
bIOP, together with DCR-derived parameters that link corneal
biomechanics to ocular disease—for example, the BGF (Pillunat
et al., 2019)—reflect resistance to transient loading under

TABLE 2 Demographic and clinical data of the involved eyes (48 eyes from 26 patients).

Characteristic Overall N = 481 bIOP <15 mmHg N = 151 bIOP ≥15 mmHg N = 331 p-value2

Gender 0.7

Female 35 (73%) 12 (80%) 23 (70%)

Male 13 (27%) 3 (20%) 10 (30%)

Age, year 26 (7) 25 (6) 27 (7) 0.5

Eye 0.3

OD 25 (52%) 6 (40%) 19 (58%)

OS 23 (48%) 9 (60%) 14 (42%)

SE, diopter −5.07 (1.33) −5.19 (0.90) −5.02 (1.49) 0.7

CR, mm 43.24 (1.47) 42.70 (1.24) 43.48 (1.51) 0.1

IOP, mmHg 16.59 (2.36) 14.30 (0.84) 17.64 (2.08) <0.001

bIOP, mmHg 15.98 (2.08) 13.76 (0.72) 16.99 (1.66) <0.001

CCT, μm 561 (29) 567 (25) 558 (30) 0.3

ARTh 687 (181) 632 (135) 712 (195) 0.2

SPA1 107 (13) 98 (8) 111 (13) <0.001

CBI 0.017 (0.056) 0.031 (0.087) 0.011 (0.034) 0.3

TBI 0.19 (0.31) 0.31 (0.41) 0.07 (0.13) 0.2

SSI 0.97 (0.13) 0.91 (0.10) 1.00 (0.13) 0.03

BGF 0.14 (0.10) 0.12 (0.11) 0.15 (0.10) 0.4

Cap diameter, mm 7.47 (0.18) 7.49 (0.21) 7.46 (0.16) 0.7

Cap thickness, μm 0.2

120 11 (23%) 2 (13%) 9 (27%)

125 34 (71%) 11 (73%) 23 (70%)

130 3 (6.3%) 2 (13%) 1 (3.0%)

Lenticule diameter, mm 6.59 (0.18) 6.61 (0.22) 6.58 (0.16) 0.6

Lenticule overlap, mm 0.7

0 10 (21%) 4 (27%) 6 (18%)

0.1 38 (79%) 11 (73%) 27 (82%)

Lenticule thickness, μm 108 (24) 108 (18) 108 (26) >0.9

Lenticule basethickness, μm

10 48 (100%) 15 (100%) 33 (100%)

1n (%); Mean (SD).
2Fisher’s exact test; One-way analysis of means; Pearson’s Chi-squared test.

Abbreviation: OD, right eye (Oculus Dexter); OS, left eye (Oculus Sinister); SE, spherical equivalent; IOP, intraocular pressure; bIOP, biomechanically corrected IOP; CCT, central corneal

thickness; ARTh, Ambrósio’s Relational Thickness horizontal direction; SPA1, Stiffness Parameter A1; CBI, corvis biomechanical index; TBI, tomographic and biomechanical index; BGF,

biomechanical glaucoma factor; SSI, Stress-Strain Index; CR, corneal curvature radius.
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physiological conditions. Considered alongside our ex vivomodulus,
the data suggest that within the physiological IOP range, higher
baseline pressure elevates the cornea’s stiffness “offset” while
maintaining the ratio of stored to dissipated energy.

Distinguishing an overall stiffness shift from invariant tan δ may
refine constitutive models and inform early risk stratification in
pressure-related ocular disorders, including glaucoma and
keratoconus.

FIGURE 1
Viscoelastic parameters of corneal stromal lenticules at different oscillatory frequencies.G′,G″, η*, and tan δ are plotted versusω. Data are presented
as mean with 95% confidence intervals for two groups stratified by bIOP: bIOP <15 mmHg (red curves) and bIOP ≥15 mmHg (blue curves). Data are
presented as mean values with 95% confidence intervals. Abbreviation: G′, Storage modulus; G″, loss modulus; η*, complex viscosity; tan δ, loss tangent;
ω, angular frequency; bIOP, biomechanically corrected intraocular pressure.

FIGURE 2
ω-dependent E of corneal stromal lenticules stratified by bIOP. Data are presented as mean with 95% confidence intervals for two groups stratified
by bIOP: bIOP <15mmHg (red curves) and bIOP ≥15mmHg (blue curves). Data are presented asmean values with 95% confidence intervals. Abbreviation:
ω, angular frequency; E, elastic modulus; bIOP, biomechanically corrected intraocular pressure.
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Understanding how IOP, eye rubbing, and stromal mechanics
interact is particularly important for translational relevance (Ben-Eli
et al., 2019). Eye rubbing directly perturbs corneal optics and
transiently elevates IOP; experimental application of “light” and
“firm” digital forces to eyes with a baseline IOP of 15 mmHg can
increase IOP by approximately twofold and fourfold, respectively
(McMonnies and Boneham, 2007; McMonnies, 2008). Repetitive
mechanical stimulation may also promote corneal thinning and
reduce rigidity, potentially increasing the risk of ectasia such as
keratoconus (Balasubramanian et al., 2013; Dou et al., 2022). In eyes
with elevated bIOP, remodeling of the stromal matrix could further
stiffen tissue and enhance resistance to torsional stress (Petroll et al.,
2020). However, the torsional stresses and strains produced by
vigorous eye rubbing may exceed the magnitudes tested here;
future studies should examine whether corneas with different
baseline bIOP exhibit differential resilience to acute IOP spikes
and whether this modulates susceptibility to keratoconus onset or
progression.

The bIOP-stiffness association may inform refractive surgery
planning. Lower baseline bIOP (reduced stiffness) could increase
post-SMILE ectasia risk with aggressive ablation (Sinha Roy and
Shetty, 2017), whereas higher bIOP may expand safety margins for
high-myopia corrections. For lenticule transplantation (Ganesh et al.,
2014), bIOP-matched donor-recipient pairing could optimize
biomechanical integration. Pre-operative bIOP assessment may thus
refine patient selection for precision refractive surgery.

This study has several limitations. Lenticules were sourced from
a narrow age range of myopic SMILE patients, which may not
extrapolate to pediatric or elderly populations with age-related
collagen differences (Elsheikh et al., 2007; Whitford et al., 2015).
Tissue hydration was controlled via BSS immersion at 37 °C, but ex
vivo conditions may differ from in vivo endothelial regulation, and
potential swelling artifacts could slightly overestimate compliance.
The tested strain amplitude (1%) and frequency range
(0.1–100 rad s-1) interrogated the linear viscoelastic regime but
may not capture strain-rate-dependent stiffening or nonlinear
responses under rapid transient deformations (Whitford et al.,
2018). An isotropic material assumption was applied despite
documented stromal anisotropy (Meek and Knupp, 2015).
Additionally, rheometry cannot resolve depth-dependent
heterogeneity across stromal layers. Future work should integrate
Brillouin optical microscopy for depth-resolved stiffness (Scarcelli
et al., 2012), optical coherence elastography for strain visualization
(Wang and Larin, 2015), second-harmonic generation for collagen
architecture, and finite element modeling with patient-specific
geometry and anisotropic constitutive laws to simulate
pathological loading scenarios such as acute IOP spikes or post-
surgical remodeling (Simonini and Pandolfi, 2015). This multiscale
framework would enable translation of bIOP-modulus relationships
into individualized risk prediction tools for keratoconus, glaucoma,
or post-refractive ectasia.

In summary, strain-controlled torsional-shear rheometry
reveals that higher physiological IOP is mirrored by a consistent
upward shift in corneal stiffness, while the viscoelastic loss factor
remains unaltered. This separation of a stiffness offset from
invariant the viscoelastic loss factor offering a path to refine
constitutive models and to develop biomechanical markers for
early risk stratification in pressure-related ocular diseases.
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