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Introduction: Femoral loading leading to a fracture is known to vary with
anthropometry, and patient-specific finite element models have provided
important insights into fracture prediction but are often very time consuming
to generate. Additionally, existing parametric models do not simultaneously
account for variations in both femur geometry and bone density distribution
and remain limited to either the femoral shaft or the proximal femur. This inhibits
their ability to predict fractures involving both the shaft and proximal regions.
Methods: In the present study, a novel parametric femur modeling strategy was
developed to create whole femur models based on stature, BMI, and age input,
including density distribution and geometrical variations, for fracture loading
predictions. A statistical shape and appearance femur model was developed
based on an input set of CT scans of healthy female femurs (N = 18) between the
ages of 50 and 70. Thereafter, multilinear regressionswere used to relate principal
components to the subject anthropometric characteristics and develop
parametric models. The developed parametric models were evaluated using
traditional patient-specific models for their potential to represent the
influence of changing patient stature, BMI, and age on femoral fractures.
Femoral fracture load in three-point bending, axial torsion, and lateral fall
cases was predicted using the parametric as well as subject-specific
femur models.
Results: The developed parametric model was able to predict femoral fracture
load variations due to changing anthropometry and age with an average
difference of 4.85% compared with predictions using subject-specific models.
Discussion: Therefore, this novel parametric femur model can predict fracture
loading while directly incorporating the influence of changing patient
anthropometry. In the future, the model could support the development of
orthopedic devices tailored to specific patient anthropometries to help
mitigate femoral fractures.
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1 Introduction

Proximal femur and femur shaft fractures pose a growing
problem due to the increasing life expectancy and the reduced
bone quality in the elderly (Veronese and Maggi, 2018). These
fractures are related to excessive femur neck bending and bending or
torsional loading of the femur shaft (DeGoede et al., 2003; Gitajn
and Rodriguez, 2011), often due to falling or stumbling. The
mortality rate for the elderly in the first year after a femoral
fracture have been reported to be higher than 20% (Lundin
et al., 2021).

In order to mitigate femoral fractures, femoral fracture load
estimations play a crucial role in identifying fracture risk
(Karlamangla et al., 2004). Epidemiological studies have shown
that females above the age of 50 have an increased femoral
fracture risk (Bergh et al., 2020; Kanis et al., 2013). However,
identifying patient groups at higher risk of a femoral fracture and
developing customized solutions to avoid fractures remains
challenging. Currently, clinical evaluation of the fracture risk
relies on dual-energy x-ray absorptiometry (DXA) measurements
(IAEA, 2010), which can detect patients with reduced bone quality
based on the areal bone mineral density (aBMD) values.
Nevertheless, the femur geometry and the three-dimensional
bone density distribution are not represented in DXA
measurements, which poses a substantial limitation in femoral
fracture load predictions (Beck, 2007).

Subject-specific finite element (FE) models, generated based on
quantitative computer tomography (QCT) measurements, have
been shown to predict subject-specific femoral fracture load with
better accuracy (Keaveny et al., 2020; Falcinelli and Whyne, 2020)
than clinical aBMD measurements (Blake and Fogelman, 2007). In
the last decade using FE analysis, studies also reported accurate
prediction of femoral fracture loading and patterns for femoral shaft
(Khor et al., 2018) or proximal femur (Enns-Bray et al., 2018)
separately. However, subject-specific FE models have the drawbacks
of substantial model preparation cost, required QCTmeasurements,
and corresponding radiation exposure (Viceconti et al., 2018).

Accordingly, statistical modeling techniques have recently
gained popularity since they provide possibilities to generate
personalized femur models with reduced cost and radiation
exposure (Sarkalkan et al., 2014; Nolte and Bull, 2019; Grassi
et al., 2021). The core of statistical femur modeling is principal
component analysis, in which the normalized data set is
decomposed to its orthogonal (principal) components, where
each component represents a distinct variation in bone shape or
density distribution. As a result of the principal component analysis,
a subject-specific femur can be represented and reconstructed
realistically in terms of the principal values (Grassi et al., 2014).
Statistical femur models also enable the generation of parametric
femurs, which represent the shape and density variability of a
reference set (Bonaretti et al., 2014). These models can be
adjusted using a set of parameters, allowing for the generation of
realistic femurs based on specific characteristics.

Patient anthropometry influences the loading conditions, which
might lead to a femoral fracture (Majumder et al., 2013). Therefore,
it has been suggested that alongside age, anthropometry also plays a
key role in femoral fracture risk (Palanca et al., 2021; Luo, 2021).
Regarding the influence of changing patient anthropometry on bone

morphology, previous studies have shown correlations between
bone size and stature (Menéndez Garmendia et al., 2018),
femoral neck-shaft angle (Fischer et al., 2020) or cortical bone
thickness (Thompson, 1980) and age. Accordingly, studies have
also shown femoral fracture load variations due to changing age and
anthropometry (Shen et al., 2015; Keaveny et al., 2009; Mather, 1968;
Funk et al., 2004).

In order to investigate the influence of the changing
anthropometry in femoral fractures, based on the required level
of significance (Hulley et al., 2013), a large number of patient-
specific FE models need to be included to provide statistically
meaningful outcomes (Yang et al., 2014; Kopperdahl et al., 2014).
Alternatively, a femur model parametrized based on input values
like stature, BMI, and age can predict the effect of anthropometric
variations on density distribution and femur geometry. Such a
model would enable testing fracture mitigation strategies
deterministically incorporating the influence of changing
anthropometry with a reduced number of simulations.

Klein et al. (2015) using linear regressions developed a parametric
shape model that predicted the femur shape as a function of age,
stature, and BMI. Although the model was able to predict force
displacement behavior under combined compression and bending
loading, the models presented several limitations. Among them,
homogeneous femur material properties were calibrated to match
the average response of the reference experiments (Ivarsson et al.,
2009), thereby limiting the potential for future clinical applications.

In order to increase the applicability as a research and design
tool, a comprehensive parametric femur model should be able to
predict femoral fracture load in fall-induced loading conditions, as
well as under femur shaft bending and torsion, since these are
common femoral fractures among the elderly (Salminen et al., 2000;
DeGoede et al., 2003; Gitajn and Rodriguez, 2011). None of the
previous studies so far has attempted to develop a parametric femur
model of the whole femur that simultaneously incorporates stature,
BMI, and age to predict fracture loading across all these load cases,
while accounting for both shape and density distribution variations.
Such a holistic model can inform the investigation of fracture risk
due to anthropometric variation in complex load cases, such as road
accidents or periprosthetic fractures, where the femoral loading
cannot be confined to the proximal or shaft region, or simplified
to a single loading mode such as bending or torsion.

The aim of this study was to develop and evaluate a novel
parametric femur model that integrates stature, BMI, and age as
input variables, while simultaneously accounting for both the
geometry and density distribution of the whole femur, to predict
fracture loading under lateral fall, axial torsion, and shaft bending
conditions. The developed parametric model was evaluated in terms
of the effect of anthropometric variation on fracture load predictions.
The results showed that the developed parametric model can capture
the influence of anthropometric variation on femoral fracture loading
with good agreement to subject-specific models.

2 Methods

A parametric femur model was constructed based on a dataset of
18 femurs. An overview of the workflow (Figure 1), explained in
detail below, is as follows:
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Step 1. Create subject-specific femur models from individual
computer tomography (CT) scan data.
Step 2. Conduct a principal component analysis using the input
femur models to identify principal values and components for
geometry and the bone density distribution.
Step 3. Perform regression analysis for stature, BMI, age and the
principal values associated with the density distribution
and geometry.
Step 4. Assessment of the parametric femurs against subject-
specific models in terms of the femoral geometry and density
distribution alongside the changes in femoral fracture load
associated with stature, BMI, and age.

In this study, femoral fracture load was determined using
explicit FE models. All simulations were carried out in double
precision using a commercial FE code (LS-DYNA,
2016) (version 9.3).

2.1 Subject-specific femur models

Since females after the age of 50 are more prone to femur
fractures (Singer et al., 1998; Bergh et al., 2020; Kanis et al., 2005), in
this study, female femurs with donor ages between 50 and 70 were
used. The upper age boundary (70) was chosen to avoid femurs with
reduced bone quality since previous studies revealed 2.7 times higher

osteoporosis rate in patients above 70 compared to the age range of
50–70 (Kanis et al., 2013).

Subject-specific femur finite element models with heterogeneous
material properties were generated using input CT scans. To achieve
a comparable mesh in all femur models, a reference mesh was
morphed into each of the femur geometries without adversely
changing the mesh quality. Thereafter, local material properties
were mapped based on CT greyscale values.

The full body female CT scans were accessed from the New
Mexico Decedent Image Database (Edgar et al., 2020) along with
the corresponding metadata summarizing the cadaveric
anthropometry. The CT scan resolution was 1 mm ×
1.025 mm with a slice thickness of 0.5 mm. The femur CT
scans were selected excluding the decedents with a known
history of muscular-skeletal diseases, diabetes, autoimmune
diseases, long-term substance use, skeletal trauma, cadaveric
decomposition, and presence of metal artifacts (LeBoff et al.,
2022). Age, BMI, and stature statistics of the femurs (N:18),
which met the selection criteria, were also analyzed to ensure that
no outliers were included (Table 1).

The input femur set was also initially analyzed in terms of the
correlations between the femur morphology and subject
anthropometry. Results were compared with the literature to
ensure that the selected femurs reflect the population-relevant
morphological variations due to the changing anthropometry
expected when using a large cohort (Table 2).

FIGURE 1
Study overview: Subject-specific models were generated based on the CT scans (Step 1). Principal component analysis was conducted using the
subject-specific femurs (Step 2). Multilinear regressions were developed for model parametrization based on the principal component analysis results
and the patient anthropometry (Step 3). Finally, subject-specific and parametric femur models were compared under various fracture loading scenarios
for model assessment (Step 4). Blue and green arrows represent processes related to subject-specific and parametric femur models, respectively.
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The CT scans were retrieved as a collection of sub-scans of the
different regions of the body in which the femurs were usually split
between lower limb and torso scans. Therefore, sub-scans were
merged and cropped to provide a single CT scan comprising the left
femur. The merged scans were evaluated at the stitching plane by
comparing the averaged Hounsfield unit (HU) values to ensure
continuity across neighboring regions. In all merged CT scans, the
maximum deviation between adjacent regions did not exceed
29.4 HU. This deviation was considered small (approximately 2%
of the HU range observed in femurs) for the overall mechanical
behavior. In addition, the fracture results of each individual femur
were subsequently examined to confirm that no fracture initiated at
the stitching plane.

Femurs were initially segmented automatically within a threshold
range of 250–2060 HU. The resulting segments were then manually
refined by isolating the largest island, closing gaps, and trimming
irrelevant extensions. Inner cavities were removed using Boolean and
island removal operations. Finally, 1- and 2-mm smoothing filters
were applied, and the segments were compared with the scans to
ensure consistency. The final femur segments, representing the femur
surface, were later used as the reference surface for subject-specific
femur models. All CT scans were processed using 3D-Slicer software
(version 4.8.1) (Fedorov et al., 2012).

A reference FE mesh was developed, starting from the femur
model provided in the Open Viva Human Body Model (Östh et al.,
2017), using linear, selectively reduced fully integrated hexahedral
elements (LS-DYNA Manual, 2023) with an average edge length of
1.25 mm. A mesh sensitivity study was carried out to identify the
optimal element size (Supplementary Material S1).

The reference mesh was morphed into the reference femur
surfaces (i.e., femur segments), from the segmented CT scans, in
two steps. First, the reference mesh was morphed using Kriging
interpolations in the PIPER software (Beillas et al., 2016), which
ensured global geometrical fitting such as the femur size, femur
neck angle, femur head size, and position. In the kriging
interpolation, a total of 110 interpolation points were defined
across the femur surface. These points were placed consistently

across all femurs to capture key anatomical features and to ensure
correspondence between specimens. Specifically, interpolation
points were distributed around the circumference of
13 anatomical regions, for example, the femoral head and neck,
greater and lesser trochanters, femoral shaft, and distal condyles.
The list and the description of the reference interpolation points
used in Kriging interpolations are provided in the Supplementary
Material S2. Next, the “reference to target” morphing function in
ANSA software (version 19.1.1) (ANSA, 2018) was used to
improve geometrical matching, namely, the normal distance
between the surface nodes of femur mesh and the femur
segments. Later, the final mesh quality was improved by
applying smoothing functionality in ANSA.

In order to increase the resolution of the material property
distribution and local bending in the thin cortical regions on the
femoral surface surrounding trabecular bone, two solid elements
with a constant 0.5 mm thickness (1 mm in sum) were used. After
offsetting the femur mesh by 1 mm in the negative direction along
the surface normal, the solid elements were extruded in the positive
direction using the surface elements which ensured constant
element thickness in whole femoral surface. An efficient
enhanced strain formulation (LS-DYNA Manual, 2023) was
applied on the thin surface elements to avoid over stiff behavior
due to the low thickness of the elements. The enhanced strain
formulation was developed by Borrvall (2009) to reduce transverse
shear locking in fully integrated solid elements with poor
aspect ratio.

Morphed femurs were compared with segment geometry
according to the maximum normal surface distance. Changes in
element quality due to morphing were assessed based on the average
element size and the aspect-ratios.

Bone density of each specimen were mapped on the morphed
mesh with the BONEMAT (version 3.2) software (Taddei et al.,
2007) using the femur-specific CT scans. Merged and cropped CT
scans were calibrated to hydroxyapatite densities (mgHA) based on
the muscle-adipose-air calibration strategy proposed by Eggermont
et al. (2019). In detail, the HU-mgHa calibration of the subject-
specific CT scans was achieved correlating (using linear functions)
the median HU values of the corresponding areas with the reference
mgHA values of −840, −80, and 30 (mg /cm3) given for air, adipose,
and muscle sections (Eggermont et al., 2019). The air, adipose, and
muscle sections for calibration were generated covering 2 cm2 areas
in 3 neighboring slices. Later, the ash density (ρash), the apparent
density (ρapp) and the elastic modulus were calculated according to
the equations provided by Enns-Bray et al. (2018) based on Morgan,
Bayraktar, and Keaveny (2003) and Schileo et al. (2008). The

TABLE 1 Femur data set characteristics.

Min Max Mean SD

Age 50 70 57.72 5.61

BMI 18.59 36.11 27.18 6.09

Stature 151.16 176.00 161.68 6.99

TABLE 2 Morphological changes observed in femur data set due to the changing anthropometry compared to literature. Similar tendencies were observed
in all cases.

Pair Literature Femur data set (N:18)

Femur Length (mm)/Stature (m)
Menéndez Garmendia et al. (2018)

317.0
(N: 30) (p < 0.0001)

246.0
(p: 0.00017)

Caput-Collum-Diaphyseal (CCD) Angle (°)/Age (years)
Fischer et al. (2020)

−0.158
(N:1,639) (p < 0.001)

−0.581
(p: 0.093)

Cortical Thickness (mm)/Age (years)
Thompson (1980)

−0.05
(N:36) (p < 0.001)

−0.073
(p: 0.04)
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calculated elastic modulus values were used for both trabecular and
cortical bone materials.

A density threshold of 1.4 (gr /cm3) (Enns-Bray et al., 2018) was
applied to separate cortical and trabecular bone regions. Additionally,
thin solid elements on the outer surface of the femur were modeled
using cortical bone material, regardless of their densities. Considering
the differences in constitutive material behavior, in this study,
trabecular and cortical bone were modeled separately to ensure
realistic model behavior of the whole femur in all tested load
cases. Cortical bone was modeled using a metal plasticity model
(Mat_124) (Khor et al., 2018). Trabecular bone was represented using
a crushable foammodel (Mat_83) (Enns-Bray et al., 2018), which was
particularly important to reflect large compressive deformations
common under fall-induced proximal femur fractures.

In both bone materials, tension-compression asymmetry was
applied using the nonlinear material curves presented by Enns-Bray
et al. (2018) material (Sup. 3). For trabecular and cortical bone, the
yield and ultimate stress values were defined separately based on
BMD values as described by Enns-Bray et al. (2018). Additionally,
the rate dependency proposed by Enns-Bray et al. (2018) was
applied to the trabecular bone. For cortical bone, rate effects
were neglected since, in the literature, there is no clear consensus
regarding the rate dependent tensile properties of cortical bone
(Hansen et al., 2008; McElhaney, 1966; Cronin et al., 2022). The used
material curves are presented in the Supplementary Material S3
based on the parameters defined by Enns-Bray et al. (2018). Apart
from the material curves, an element erosion criterion was defined
such that the elements subjected to a first principal strain greater
than 0.2 (Fleps et al., 2018) were deleted from the simulation.

The resulting subject-specific femur modelling strategy were
verified in three-point bending, axial torsion, and lateral fall load
cases (as described in Section 2.4 in greater detail) in terms of their
ability to predict previously reported femoral fracture load
variability due to the changing anthropometry, age, and areal
bone density. For this purpose, model performance was evaluated
qualitatively based on three femur models (Table 3). The selection of
individual femurs aimed to cover a wide range in age and height,
thereby providing a cohort comparable to the experiments as
presented in Table 3. (Funk et al., 2004; Martens et al., 1980;
Courtney et al., 1994). Subject-specific femur verification is
discussed in detail in Supplementary Material S4.

2.2 Principal component analysis for the
density distribution and geometry

All femur models had an identical mesh regarding the node
and element numbering and relative position of the nodes in terms
of the anatomical attributes. However, due to the distinct position
of each femur in space, models needed to be aligned with rigid
body transformations based on the reference femur. This
alignment enabled the analysis of the relative shape variations
between the individual femur models. Alignments were carried out
using a Python script which conducted a Procrustes
Transformation (PT) (Langron and Collins, 1985). PT defines
the rigid body transformation between the geometries with
shape deviations such that the minimum average distance
between the nodal coordinates is achieved. In the case of the
femur models, the average distance was calculated between the
surface nodes.

Next, geometries and material properties of the heterogeneous
femur models were separately analyzed with principal component
analysis (PCA) (Géron, 2019). Concerning the geometries, the PCA
was conducted based on the nodal coordinates. In the case of the
heterogeneous material properties, the element densities, which are
the primary determinant of elastic modulus, yield-, and ultimate-
stress values (Supplementary Material S3), were used to
construct the PCA.

Accordingly, the PCA enables the representation of the
geometry and density distribution of each femur based on
principal component (PC) vectors and the corresponding
principal values (PV). The following mathematical operations
were applied within the PCA (Equation 1):

si � x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn[ ]t, or si � d1, d2, . . . , dn[ ]t
(1)

where si are the element densities or the vectorized nodal
coordinates of a femur (called by the subscript i) representing
the density distribution (statistical appearance model) or
geometry (statistical shape model) respectively (n stands for the
number of nodes or elements).

The covariance matrix D was defined following a mean
normalization (dsi), where N stands for the number of femurs
(Equation 2):

TABLE 3 Anthropometric information of the verificationmodels alongwith the reference experimental studies (3p: Three-Point, FN aBMD: Femur neck areal
bone mineral density, sd: Standard Deviation).

Age Sex Stature (cm) BMI FN aBMD (g/cm2) Ref

Femur 1 45 F 174 19.6 0.84 -

Femur 2 37 M 179 25.4 0.86 -

Femur 3 77 F 156 17.5 0.53 -

Averages 53 - 169 20.8 0.74 -

3p Bending 59 (sd:10) 8M 177 (sd:10) 27 (sd:6.5) - Funk et al. (2004)

Axial Torsion 56 (sd:13.2) 33M/14F - - - Martens et al. (1980)

Lateral fall 52 (sd:10.1) 18 (M-F) - - 0.78 (sd: 0.25) Courtney et al. (1994)
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D � 1
N

∑N
i�1

dsi( ) dsi( )t: dsi � si − smean & smean � 1
N
∑N
i�1
si (2)

Singular value decomposition was applied on the covariance
matrix where the columns of the left singular vector U represented
the PCs (Equation 3):

D � UWUt �
..
. ..

. ..
.

pc1 . . . pcj . . . pcN

..

. ..
. ..

.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦WUt: pcj

∣∣∣∣ ∣∣∣∣ � 3n
∣∣∣∣ n

(3)
The PVs of the subject-specific femurs were determined as

follows (Equation 4):

pvi � Utdsi (4)

In order to quantify the contribution of each PC in the
representation of the reference femur set, a compactness test was
conducted (Bonaretti et al., 2014), where each reference femur was
reconstructed using an increasing number of PCs. Results of the
compactness tests were evaluated separately for geometry and
density distribution in terms of the absolute mean errors. To
achieve this, nodal coordinates and the element density values of
the reconstructed femurs were compared with the reference femurs.

The relationships between the subject-specific PVs and the
anthropometric variables, namely, the BMI, stature, and age were
analyzed using linear regressions, where results are presented as a
correlation matrix. In order to demonstrate the particular variations
represented by individual PCs new femur models were generated
using ±SD PV of the corresponding PC. Concerning the density
distribution, the influence of the PCs was demonstrated without
including the average, which reflected the change over the average
density distribution due to the given PC (Equation 5). In terms of the
geometry, PCs were included in the average shape such that a
manipulated average femur shape was created (Equation 6).

sdensity variation � +SDj pcj (5)
sgeometry variation � smean ± SDj pcj (6)

2.3 Development of the parametric femur
models using multilinear regressions

New femur instances for parametric models were generated
using the PCs and corresponding contribution factors bj (Equation
7). The contribution factors (bj) were estimated using multilinear
regressions, to capture the interdependencies where each input
parameter influences all contribution factors. The multilinear
regression models were developed using the principal values
and the anthropometric parameters (BMI, Stature, Age) of the
individual femurs to predict corresponding contribution factors
for a given stature, BMI and age values. The multilinear regression
models were trained in Python and in order to ensure that the
parameter initiations did not influence the results, the regression
models were trained multiple times using different libraries
(Pedregosa et al., 2011). All training variations resulted in
identical outcomes.

snew � smean +∑N
j�1
bj pcj: b � Fregression Stature, BMI, Age( ) (7)

The predicted contribution factors were used to generate
parametric femur models (Equation 7), which capture the stature-,
BMI-, and age-related variations in geometry and BMD distributions.
Through the multilinear regressions, 13 femurmodels were generated
varying one parameter at the time, referring to the input cohorts mean
as well as ±1 and ±2 standard deviation (SD) stature, BMI and age
values (Table 4). Using the ± second SD values, the min–max range of
the input cohort was covered, except for the maximum age, which
differed by 1.06 years. As mentioned previously, the input cohort was
also analyzed initially to eliminate outliers (in terms of the patient
anthropometry and femur morphology) and ensure the regression
results were not biased due to the influence of individual samples.

2.4 Assessment of the redundancy of the
developed parametric femur modeling
methodology

To evaluate the redundancy of the developed parametric modeling
methodology and the reference femur set, a leave-one-out analysis was
performed. Parametric femur models originally generated for ±1SD
variations (Table 4) using the entire data set were created again, leaving
each time one of the reference femurs out. In other words, 7 parametric
femurs (Average, ±1SD Stature, ±1SD Age, ±1SD BMI) were generated
18 times, leaving out one of the reference femurs (N:18) each time. The
results of each test were compared with the generated parametric femurs
using the complete training set in terms of the mean absolute error.
Subsequently, the overall performance was evaluated separately for
density distribution and geometry based on the maximum mean
absolute error value encountered within all comparisons.

2.5 Assessment of the developed parametric
femur modelling methodology in terms of
the morphological changes and femoral
fracture load variations

The developed parametric femur models were compared with
the reference subject-specific femur set in terms of the
morphological changes. For this purpose, CCD angles were
defined based on the angle between the femur shaft and neck
axis, and the cortical bone thickness was determined at the
anterior mid-shaft region. Mid femur shaft cortical bone area was
calculated in Primer Software (version 14) (Primer, 2018) using the
“cut-section-area” functionality, only considering the cortical bone
elements. The used definition provided the cross-section area of the

TABLE 4 Anthropometric variations used in femur model generation,
applying multilinear regressions.

-2SD -1SD Mean +1SD +2SD

Stature 147.00 154.69 161.68 168.67 175.66

BMI 15.00 21.09 27.18 33.27 39.00

Age 46.50 52.11 57.72 63.33 68.94
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selected elements on the defined cross-section plane which was
placed at the mid-length of the femur and oriented perpendicular to
the femoral axis. Results were compared in terms of the trendline
slopes (linear regression functions) of stature-femur length, age-
CCD angle, and age-cortical bone thickness.

In order to assess whether parametric femur models can predict
the femoral fracture load variations associated with the changing
anthropometry observed within the set of reference femurs, all
femur models were tested in three-point bending, axial torsion,
and lateral fall load cases.

Femoral fracture load under bending loading was determined
applying three-point bending load case according to the experiments
published by Funk et al. (2004) (Figure 2a). According to the publication,
the proximal and distal ends of the femurs (8 cm from the tip-point) were
embedded (enclosed with a polymer, casted in a cylindrical metal pot).
Both endswere allowed to rotate in the coronal plane, where the proximal
end was allowed to move in the superior-inferior direction. A rigid
cylinder-shaped impactorwith a diameter of 12mmwas positioned in the
middle of the proximal and distal center of rotations. The impactor
accelerated for 10 ms with a ramp function to avoid initial coupling
induced vibrations and later moved with a constant velocity of 1.2 m/s in
the medial direction. The contact forces between the impactor and the
femur were monitored along with the impactor displacement.
Additionally, in order to eliminate contact force fluctuations and
increase the accuracy of the fracture force measurements, a foam
block, reported by Ivarsson et al. (2009), was positioned between the
femur shaft and the impactor (Figure 2a).

Axial torsion was simulated based on the experimental study
presented by Martens et al. (1980) (Figure 2b). The distal and
proximal femur were embedded where the distal femur was
constrained in all global translation and rotations, and the
proximal femur was allowed only to rotate around and move in
the superior-inferior axis. A prescribed rotation with a constant
rotation rate of 0.7°/ms around the femoral axis was applied. The
applied torque during the prescribed rotation was measured.

The proximal femoral fracture load under lateral fall loading
was assessed according to the experimental study described by
Courtney et al. (1994) (Figure 2c). Femur models were positioned
with 10° adduction and 15° internal rotation with the distal femur
embedded and constrained, only allowing rotations in coronal
plane. The contact surface of the femur head and the greater
trochanter were reinforced with rigid elements to avoid local
crushing of the bone, to represent the spherical metal plates
attached to bone in experiments. The femur head was deformed
with a constant velocity of 100 mm/s using a rigid impactor where
the contact forces between the impactor and the femur head
were measured.

All three-point bending, axial torsion, and lateral fall
simulations were conducted using reduced models, where the
embedded sections were eliminated and represented with rigid
elements to reduce the computation time (i.e., Figure 2d). The
comparison provided within the subject-specific model
verification (Supplementary Material S4) showed that the model
reduction has no considerable influence on the results.

FIGURE 2
Boundary conditions of three-point bending (a), axial torsion (b), and lateral fall (c) loading. A reduced modeling strategy (d) was applied to assess
femur fractures (DoF: Degrees of Freedom) in all load cases.
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2.5.1 Evaluation of predicted fracture load
variations in terms of the weighted sum of
differences

Femoral fracture load variations observed using parametric
femur models, due to the changing stature, BMI, and age were
compared with the results of reference subject-specific femur set.
Results were evaluated according to the slope of the trendlines
(based on the ultimate loading -stature, -BMI, -age pairs).

The overall error evaluation was designed to penalize strong
correlations or large differences. It was achieved by assessing the
error as the weighted sum of differences. This also enabled avoiding
biased percentage difference values when dealing with small
reference trend line slopes (divided by small values close to zero).

In order to quantify errors of the parametric femur models, regarding
the differences observed in trendline slopes, initially a min-max
normalization was applied based on the maximum and minimum
values observed in the reference femur set (Equation 8). This
normalization eliminated the unit differences between different output-
input parameter combinations such as fracture force (kN)-stature (m), or
fracture moment (Nmm)-Age (year), etc. Thereafter, subtracting the
normalized slope values (kNorm

yx ), absolute differences (DiffNorm
yx )

between the reference femur set and the parametric models was
calculated for each input-output pair (Equation 9) and maximum
(reference or parametric) normalized slope values (kNorm

yxMax ) of the
corresponding input-output combinations were calculated (Equation
10). Subsequently, weighted sum of differences (WSD) was determined
(Equations 11, 12) based on the corresponding weight factors (wyx),
defined depending on the maximum normalized slope values. Finally, the
percentage differences (Diff%) were defined normalizing the WSD
values within the range of minimum and maximum trendline slopes
of the reference femur set (Equation 13).

kNorm
yx � kyx ×

xref
max − xref

min

yref
max − yref

min
: y � kyx × x( ) + b (8)

DiffNorm
yx � abs kNorm

yxReferance − kNorm
yxParametric( ) (9)

kNorm
yxMax � max abs kNorm

yxReferance( )or abs kNorm
yxParametric( )( ) (10)

wyx �
kNorm
yxMax∑kNorm
yxMax

: ∑wyx � 1.0 (11)

WSD � ∑DiffWeighted
yx : DiffWeighted

yx � DiffNorm
yx × wyx (12)

Diff% � WSD

kNormmax
Referance − kNormmin

Referance

× 100.0 (13)

The percentage differences were calculated for parametric models
considering the morphological and femoral fracture load variations
separately. Additionally, the statistical significance of the provided
correlations and trendlines were evaluated in terms of the p-values
and values above 0.01 considered to be non-significant (Li et al., 2023).

3 Results

3.1 Subject-specific femur models

Between the subject-specific femur models and original
femur surfaces (generated by segmented CT scans), a
maximum normal surface distance of 0.49 mm was observed

in surface regions where fracture initiation was predicted (e.g.,
femur shaft or neck). In all models, the maximum normal surface
distance was observed in the trochanteric fossa region (max.
4.1 mm). Due to the morphing operation, the average element
size varied between 1.15 mm and 1.34 mm, where the average
aspect ratio varies between 2.0 and 2.2.

In terms of the reported fracture loading ranges, verification of
the subject-specific femur modelling strategy showed the largest
differences between femur 2 and the maximum 3p-bending fracture
loading (0.7 kN), and femur 3 and the minimum lateral fall fracture
loading (1.9 kN) (Figure 3). The average fracture loading of femur 1,
2, and 3 were %20, %16.05, and %16.20 higher than the reported
average fracture loading in 3-point bending (Funk et al., 2004), axial
torsion (Martens et al., 1980), and lateral fall (Courtney et al., 1994)
experiments respectively. Additionally, all femurs showed
comparable fracture patterns and locations similar to the
experiments (Sup. 4).

Across all load cases, Femur 2 (a 37-year-old male, 179 cm)
exhibited the highest fracture load, whereas Femur 3 (a 77-year-old
female, 169 cm) yielded the lowest. Consistent with its younger age
and larger size, Femur 2 showed increased fracture load compared to
the maximum values reported in experiments (Table 3). In contrast,
the axial torsion result of Femur 3 demonstrated reduced fracture
load relative to experiments conducted on a cohort with an average
age of 56 years. Verification results of the baseline femur modeling
strategy are presented and discussed in detail in the Supplementary
Material S4.

3.2 Principal component analysis for the
geometry and density distribution

Compactness test results showed an exponential decay in terms
of the contribution of the increased number of PCs to the overall
geometric representations (Figure 4a). Regarding the density
distribution, a semi-constant decay was observed in terms of the
contribution of the increasing number of PCs (Figure 4b).

Principal component analysis results were evaluated in terms of
the linear correlations between the subject-specific PVs and the
anthropometric parameters (Figure 5).

Regarding the density distributions, the highest Pearson
correlation coefficient were observed with age-PC1 (R: −0.77),
stature-PC7 (R: 0.54), and BMI-PC14 (R: −0.54) pairs (Figure 5).
Results showed that PC1 governs cortical bone thickness. PC7 and
PC14, on the other hand, exhibit directional changes in the density
distribution on the femur shaft such that density decreases and
increases locally. Density variations yield by these PCs were
presented in Figure 5 in four cross sections at various locations
from mid shaft to proximal region.

Concerning geometry, the highest Pearson correlation constants
were determined for stature-PC1 (R: −0.68), BMI-PC8 (R: −0.58),
age-PC3 (R: 0.57) pairs. PC1 and PC3 were related to variations in
femur size and CCD angle, respectively. Similarly, PC8 was
responsible for small variations in the greater trochanter and
femur head form. These variations were visualized in Figure 5 by
multiplying the PCs with one standard deviation of the
corresponding PVs and adding (red) or removing (blue) them
from the average femur geometry (Equation 6).
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3.3 Verification of the developed parametric
femur modelling methodology in terms of
the morphological changes

Leave-one-out tests resulted in a maximummean absolute nodal
coordinate error of 1.54 mm. Regarding the density distribution the
maximum mean absolute error was 0.15 g/cm3. The observed
maximum nodal coordinate errors were distributed in either
proximal or distal epiphysis. In the case of the density
distribution the observed maximum errors were located on the
endocortical boundary due to the large density gradient between
bone marrow and cortical bone.

Based on the anthropometric input representing the average
and ±1 and ±2 SD of the input cohort (Table 4), new femur models
were created using the parametric models. Geometries and density
distributions of these models are provided in the Supplementary
Material S5. Parametric femur models exhibit increased femur length
with increased stature, local shape variations with increased BMI,
reduced femur neck angle and decreased cortical and trabecular bone
mass with increased age. Additionally, increased BMI resulted in a slight
decrease in cortical bone and a clear increase in trabecular bone volume.

The reference femur set was compared with the parametric
femur modeling results in terms of morphological changes due to
anthropometric variations and the average values. Influences of
stature on the femur length (Fem. L. – Sta.), age on CCD angle
(CCD Ang. – Age) and age on cortical bone thickness (Cort.
T. – Age) were analyzed based on the min-max normalized slope
of the corresponding trendlines (Table 5). Original trendline slope
values (without normalization) are provided in Supplementary
Material alongside the corresponding p-values (Supplementary
Material S5).

Regarding morphological variations, the parametric femur
model was compared with the reference femur set and found to
have weighted sum of differences (WSD) (Equation 12) of 0.047.
Additionally, average percentage difference on morphological
variations between the reference and parametric femur model
was calculated (Equation 13) as 3.719%.

The created average femur (Av.) showed good agreement
with the average values of the reference femur set in terms of
the femur length (Av.: 431.2 mm vs. Ref.: 432.3 mm) and mid
femur shaft cortical bone area (Av.: 347.9 mm2 vs.
Ref.: 355.2 mm2).

FIGURE 3
Subject specific femurmodel verification results in three-point bending (a), axial torsion (b), and lateral fall (c) loading. The dashed lines represent the
min-max range of the corresponding experiments.

FIGURE 4
Compactness test results of the statistical shape (a) and appearance models (b), represented in terms of mean absolute error, where femurs were
recreated using increasing number of PCs.
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3.4 Verification of the developed parametric
femur modelling methodology in terms of
the femoral fracture load variations in 3p-
bending, axial-torsion and lateral fall loading

Simulation results of the reference femur set and the parametric
femur models were evaluated using scatter plots of failure loading
and the corresponding stature, BMI, or age inputs, provided in the
Supplementary Material S5. Figure 6 shows the trendline slopes of
the reference femur set and the parametric model where the
determination coefficients are also provided to represent the
scatteredness.

In all load cases, results showed comparable trendline slopes
between the reference femur set and the parametric femur models
(Figure 6). In the case of the three-point bending and axial torsion, age
and stature yield correlations with fracture loading. In the case of the
lateral falls, results showed that the fracture loading was mainly
influenced by age. The only significant correlation observed using
the reference femur set was in the case of the axial torsion and age
(p: 0.003), where a 2.1% relative difference in trendline slope values was
observed between the reference femur set and parametric femurmodels.

Weighted differences for parametric models compared to the
reference femur set (Figure 7) showed larger values in three-point
bending-age (0.012) and axial torsion-stature (0.018) cases as a
result of the considerably large trendline slope differences, alongside
the strong correlation observed in these cases (Figure 6). All other
cases resulted in weighted difference values below 0.005 due to either
negligible trendline slope differences or corresponding weak
correlations.

TheWSD of the parametric femurs was calculated (Equation 12)
as 0.05. Accordingly, the percentage differences can be given
(Equation 13) as 4.85% for the parametric model, normalizing
the weighted sum of differences within the minimum and
maximum normalized reference trendline slope range (−0.65, 0.50).

The average femur created using parametric modelling showed
similar results with the reference femur set regarding the average
femoral fracture load in three-point bending (Av.: 3.19 kN vs. Ref.:
3.28 kN) where the fracture occurred at the mid-femur shaft, in both
femur sets. In lateral fall (Av.: 6.25 kN vs. Ref.: 5.79 kN) and axial
torsion (Av.: 220 Nmm vs. Ref.: 202 Nmm) load cases, the femoral
fracture loads were overpredicted by the average parametric femur
with a factor of 7.9% and 8.9%, respectively.

4 Discussion

The aim of this study was to develop and test a novel parametric
femur modeling methodology that can represent the influence of
changing stature, BMI, and age in femoral fractures in three-point
bending, axial torsion, and lateral fall cases, taking both geometry
and density distribution of the whole femur into account. Results
have shown that the developed parametric modeling strategy can

FIGURE 5
PCA results on femur geometry and density distribution. Correlation matrices show the Pearson correlation coefficients between the PVs (of the
PCs) and the anthropometric inputs. Geometric influences of corresponding PCswere illustrated by adding (red) or removing (blue) PCs from the average
shape (Equation 5). PCs related to density distribution were presented directly, exhibiting the density distribution changes governed by each PC.

TABLE 5 Comparison of reference femur set and the parametric femur
model in terms morphological changes relative to the input variables
(Stature, BMI, and age). Blue and orange show weight factor (Equation 11)
and the weighted differences (Equation 12), respectively.

Ref. Param. W. W. Err

Fem. L. - Sta. 0.811 0.787 0.457 0.011

CCD Ang. - Age -0.394 -0.514 0.29 0.035

Cort. T. - Age -0.445 -0.449 0.253 0.001
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FIGURE 6
The trendline slopes (without normalization) of the reference femur set and the parametric femur results given for load cases (three-point bending,
axial torsion, and lateral fall) and input parameters (stature, BMI, and age). Blue and orange color present reference femur sets and parametric femurs,
respectively. Determination and p-values of the trendlines were also provided for comparison reasons. Axis scales were adjusted based on the min-max
values of the corresponding scatter plots (Supplementary Material S5) to reflect the relative magnitude of the trendline slopes.

FIGURE 7
Differences observed using parametric femur models compared to reference femur set in terms of the weighted differences.
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predict the anthropometry-related variations in femoral fracture
loading. The developed models can be used to investigate fracture
risk associated with anthropometric variations in complex loading
cases, where femoral loading cannot be reduced to an isolated region
or a single loading mode.

So far, only a limited number of studies have incorporated
parametric femur modeling in fracture assessments. This study is, to
the best of our knowledge, the first to predict fractures across
different load cases including both variations in density
distribution and geometry of the whole femur. Furthermore, it is
also the first parametric femur modeling study that investigates
fracture load variations due to changing stature, BMI, and age to
assess both femoral shaft and proximal femur fractures.

Unlike the previous parametric and statistical femur modeling
studies, which aimed to make patient-specific predictions, this study
aimed to develop parametric femur models to represent femoral
fractures and fracture load variations based on anthropometric
input. In other words, the developed parametric models can be
used to understand the influence of the changing patient
anthropometry on femoral fractures under various loading
conditions. Considering that femoral loading also changes
according to anthropometry, these models can be especially
useful to develop strategies or devices to mitigate femur fractures
for specific patient anthropometries.

Showing the relevance of the used input data, anthropometric
changes and their relationships with the femur morphology in the
subject-specific femur set were similar to those reported in the
literature. Studies reported the influence of stature on femur length
(Menéndez Garmendia et al., 2018), age on CCD angle (Fischer
et al., 2020), and age on cortical bone thickness (Thompson, 1980).
In all cases, the reference femur set exhibited similar results as
reported in the literature, such as increased femur length with
increasing stature, decreasing CCD angle and cortical bone
thickness with increasing age.

Compactness test results yielded only a slight exponential decay
in reconstruction error using increased number of PCs, which
justifies the use of all PCs in the parametric models.
Additionally, the leave-one-out test results showed only minor
variations between the test results. This demonstrates that the
parametric femur results presented in this study were not biased
due to individual femurs.

Parametric models can capture most of the morphological
variations due to the changing anthropometry within the reference
femur set. Correlation results observed using the parametric model
showed similar trends as the reference femur set. In terms of the
morphological variations, parametric model resulted in percentage
differences of 3.72% compared to the reference femur set.

Subject-specific finite element models of the reference femur set
presented femoral fracture load variations due to the changing
anthropometry similar to those reported in the literature, which
emphasizes the relevance of the used input data in terms of the
fracture load variations. The three-point bending results presented
by Funk et al. (2004) showed that stature and BMI were positively
correlated, and age was negatively correlated with the femur shaft
fracture loading. Apart from the influence of the BMI, these
observations were in line with the reference femur set results.

Concerning the lateral falls, Shen et al. (2015) reported
increasing proximal femur fracture loading as a result of the

increasing BMI. Similarly, the reference femur set also showed
increased femoral fracture load with the increased BMI. In
addition, a reduction in femoral fracture load with age was
predicted in the reference femur set which is also in line with the
results presented by Keaveny et al. (2009).

Calculated percentage differences of the parametric model
(4.85%), compared to the reference femur set in terms of the
fracture load variations due to the changing anthropometry,
suggest that the developed parametric models can predict the
fracture load variations of the reference femur set. Parametric
model presented fracture load variations due to the changing
stature, BMI, and age in all load cases similar to the
reference femur set.

Fracture loading results of the developed parametric models
showed clear linear dependency and strong correlations with the
corresponding anthropometric input parameters. This can be mainly
interpreted based on the eliminated scatteredness in terms of
morphological changes achieved through the orthogonality of the
principal components and the multilinear regression functions used,
which eventually yield linear multifactorial dependencies between the
input and output parameters. However, accordingly, the results also
suggest a linear dependency between these morphological changes (as
a result of the anthropometric variations) and the fracture
loading response.

Concerning the evaluation of differences observed between the
subject-specific reference femur set and the parametric femurmodel,
applied quantification aimed to eliminate biases due to trendline
slope values close to zero. Therefore, initially, a min-max
normalization was conducted to eliminate unit differences. Later
the overall difference was calculated in terms of the weighted sum of
differences which ensured that the differences observed within the
strong correlations (or large over-predictions of weak correlations)
were penalized over the weak correlations. Percentage differences
were provided using a second normalization based on the minimum
and maximum normalized trendline values. The reason behind this
quantification was to provide a value that evaluates the differences
compared to the observed range of variations.

Previous studies showed femoral fracture load variations based
on age and changing anthropometry using a large number of
experiments or simulations (Funk et al., 2004; Shen et al., 2015;
Keaveny et al., 2009). In the case of a different loading, a target
cohort, or the presence of an orthopedic device, researchers still need
to conduct a large number of experiments or simulations to
investigate femoral fracture load variations similar to the
previous studies. However, the presented novel parametric
modeling methodology opens new possibilities to investigate
femoral fracture load variations based on the changing stature,
BMI, and age. Such models can allow to investigate femoral
fracture load variations under different scenarios with reduced
costs using only a few simulation models. For example, to
understand the influence of changing the age in the presence of
an orthopedic device, the average model, and its variations (±sd. age)
created using parametric modeling can be investigated by applying
the relevant loading conditions rather than testing or simulating
different cohorts with a large number of samples.

None of the previous studies have developed a femur modeling
strategy using heterogeneous material properties for the whole
femur to represent femur shaft and proximal femur fractures.
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Therefore, in this study, apart from the developed parametric model,
a consistent femur modeling strategy was introduced for the whole
femur. The verification results (Sup. 4) showed that the subject-
specific femur models could reflect the expected influence of
changing stature, BMI, and age on the femoral fracture load
variations. The verification results also showed that the
implemented femur modeling strategy could capture the
mechanics of the femur shaft and proximal femur fractures based
on the fracture patterns and locations.

The main limitation of this study is the number of included
samples. Using eighteen input femurs, it is not possible to generate
representative models for the whole population. Therefore, this
work remains a methodological study documenting the outcomes
of the parametric modeling approach regarding its capabilities to
predict the influence of changing anthropometry in
femoral fractures.

Regarding the failure loading and the anthropometric input
correlations observed in the reference femur set, only the result
pairs of age-axial torsion results showed significant
correlations. Due to the cohort differences between the
previous studies (of femoral fracture load variations due to
changing anthropometry) and reference femur set, rather than a
quantitative evaluation, as reported earlier, results were
compared in terms of the increasing or decreasing femoral
fracture load values.

The material properties were defined using linear and
exponential functions, where each material parameter can be
expressed in terms of each other. In this study, density was
chosen as the input parameter for the statistical appearance
model, which defines the distribution of material properties.
Hence, the average model was generated primarily by averaging
the density values. However, due to the nonlinear relationship
between bone density and material properties, this averaging
caused a slightly different average mechanical behavior compared
to the reference femur set. Accordingly, average failure loading was
slightly overpredicted in axial-torsion by the average parametric
model compared to the reference femur set.

Since subject-specific femur models were not validated against
subject-specific experiments, one can argue that the validation status
of the used subject-specific femurs poses a limitation. The developed
femur modeling strategy was considered a tool to demonstrate the
performance of the parametric modeling strategy. Results showed that
the used subject-specific femur models can reflect the expected
fracture force variations and fracture behavior due to the changing
anthropometry. This was considered sufficient to test the performance
of the developed parametric modeling strategy, which was the main
aim of this study. The validity of the baseline models used in the
parametric model was only considered relevant to the representability
of specific population groups and the direct clinical applicability of the
developed parametric model.

Whether the observed differences between the parametric model
and reference set are acceptable depends on the biomechanical
application. The level of acceptable difference should be decided
based on the impact of the decision (Viceconti et al., 2021). From
that perspective, for example, when the developed parametric model is
used to determine the fixation strategy of femur shaft fractures based
on the changing patient age concerning the torsional loading,
introduced deviations (2.0%) can be considered acceptable.

However, when the developed parametric model is used to
optimize the positioning of a hip stem to reduce the periprosthetic
shaft fracture risk under bending conditions based on the changing
stature, the introduced deviation (9.9%) can be considered large since
the success of a THA application are known to be highly sensitive to
the positioning of the stem (Shishido et al., 2018).

A direct comparison between the reported values in this study
and the previous studies was not possible due to the differences in
modeling strategy and the considered load cases. To our knowledge,
the most relevant study was published by Klein et al. (2017), where
homogeneous femurs and calibrated material models were used, and
models were tested in combined axial compression and 3-point
bending loading.

Additionally, in this study, only the left femurs were selected as
the reference; therefore, any morphological differences that might
exist between the left and right sides, possibly due to the dominance
of one side (Taddei et al., 2016), were not considered.

Further research is required to understand the fracture loading
variations due to the changing anthropometry by focusing on
different cohorts than those presented in this study. In future
studies, male femurs, or increased cohort age could be analyzed
further and compared with the results of this study in terms of the
morphological or fracture loading variations (Dudle et al., 2024).
Particularly, increased age would reveal valuable insights regarding
osteoporotic bone and deviations in its fracture behavior as a result
of the changing anthropometry, which is a major factor in fall-
induced loading condition (Sarvi and Luo, 2019).

5 Summary

In order to investigate the influence of the changing patient
anthropometry in femoral fractures, a large number of experiments
or simulations are required. Parametric femur models offer an
alternative to examining fracture risk for different patient
anthropometries and correspondingly changing loading
conditions with reduced cost. Such models are particularly useful
in the development of orthopedic devices or fracture prevention
solutions. However, no parametric femur models reported in the
literature have so far addressed femoral fractures under various
loading conditions, considering both the geometry and density
distribution of the whole femur. Accordingly, the aim of this
work was to develop and evaluate a novel parametric femur
model that uses stature, BMI, and age as input parameters, while
accounting for both the geometry and density distribution of the
entire femur, to predict fracture loads under lateral fall, axial torsion,
and shaft bending conditions.

For this purpose, a subject-specific femur modeling strategy that
can represent proximal and diaphyseal femur fractures was
introduced and verified based on the available literature. Later,
parametric femur models were developed, combining the
principal component analysis with multilinear regression results.
Assessment results showed that the developed parametric femur
model could predict the proximal and diaphyseal femoral fracture
load variations associated with changing stature, BMI, and age of a
reference femur set.

In the future, similar models can be used in orthopedic device
development or in silico trials for patient-group-specific fracture
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assessments to study the influence of the changing anthropometry in
different load cases without conducting a large number of subject-
specific simulations.
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