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Polyethylene (PE) is one of the widely utilized plastics globally, valued for its
durability but unsustainable due to its resistance to biodegradation in a natural
environment, leading to severe environmental accumulation. Recent studies
have identified microorganisms, insects, and potential PE-degrading enzymes
(PEases) capable of breaking down PE, suggesting a possible route for
biorecycling. However, research in this area remains in its early stages, with
limited understanding of the enzymatic mechanisms involved and the
degradation products formed. A major barrier lies in the chemically inert
nature of PE’s carbon–carbon and carbon–hydrogen bonds, which makes
enzymatic degradation particularly challenging and unlikely to occur through
a single enzyme. Overcoming these limitations requires the discovery and
engineering of complex enzymatic pathways, supported by emerging tools
such as omics technologies, structure-guided design, and computer-aided
enzyme engineering. In parallel, the biotechnological upcycling of PE waste
into value-added chemicals, by first breaking down PE into smaller products
and then using them as microbial feedstocks, holds significant potential but is
currently underexplored. To date, polyhydroxyalkanoate (PHA) remains the most
studied PE waste upcycled biopolymer product, with only a few other studies
showing production of diacids, protein, wax esters, and lipids. This highlights the
need for expanded research into microbial metabolism and metabolic
engineering to enable more diverse and efficient PE waste bioconversion
routes. This review summarizes the current state as an integrated effort for
biorecycling of PE, including PE pretreatment technologies, enzymatic PE
degradation, microbial PE degradation, and PE upcycling into value-added
chemicals via metabolic engineering. This review also highlights key scientific
challenges and outlines future directions for PE degradation and transforming PE
waste into valuable and sustainable products.
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1 Introduction

PE and plastics in general have become one of the most widely used materials due to
their low cost, high durability, and high strength. In the year 2020 alone, 400 million tons of
plastic were produced on a global scale (Yao et al., 2022b). This figure accurately reflects
PEs’ appearance in products used every day, like shopping bags, water and toiletry bottles, as
well as foams for insulation (Elahi et al., 2021; Norton, 2021; Bernat, 2023). Most such
products are intended for single use and are discarded at a high rate. On average, 12% of
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municipal solid waste can be attributed to plastics, the majority of
which is PE (Verma et al., 2016). PE is estimated to account for
about 41% of plastic waste in landfills (Wojnowska-Baryła et al.,
2022). Due to the inherent non-biodegradability of PE, it must be
incinerated, landfilled, or recycled using thermochemical and
mechanical methods. Incinerating PE releases a surplus of toxic
gases into the atmosphere, such as bisphenols, phthalates (Cosier,
2022), mercury, and polychlorinated biphenyls (Verma et al., 2016).
These airborne pollutants are a threat to all life as they settle on crops
and in waterways, eventually entering marine habitats and human
foods (Ozdemir and Yel, 2023). Microplastics, which have been
linked to landfill leachate, pollute our soil and waterways, causing
great harm to surrounding ecosystems (He et al., 2019). Globally, it
is estimated that each year humans consume microplastics in foods
at a rate of five trillion plastic bags due to such pollution
(Wojnowska-Baryła et al., 2022). To combat this, mechanical and
chemical recycling methods have been largely implemented.

Current recycling methods begin with the sorting of the
gathered post-consumer waste (Naderi Kalali et al., 2023). This
step often introduces the most uncertainty. In 2016, it was stated that
only 16% of all discarded plastic waste was successfully collected
(Schyns and Shaver, 2021). Collected plastics must then be sorted
and washed before being mechanically or chemically altered,
requiring energy and water consumption (Altieri et al., 2021).
The wastewater must also be treated. If the waste is to be
mechanically altered, there is a limit to the quality/variety of
potential products (Altieri et al., 2021; Ackerman and Levin,
2023). In the event of chemical recycling, additional chemicals
are added, leading to more waste to be separated and disposed of
(Ackerman and Levin, 2023). PE production is projected to reach
121.4 million tons by the year 2026, millions of tons of which will
continue to accumulate in landfills and marine environments (Yao
et al., 2022b). There are no statistical signs that suggest the
production of plastics (such as PE) will slow in the projected
future. For the sake of all carbon-based lives, a better, eco-
friendly, and sustainable solution must be implemented to cope
with the rising PE waste problem.

Biorecycling and upcycling have substantial advantages over
conventional recycling methods and are part of the solution to the
current plastic pollution crisis. Biorecycling starts from the use of
enzymes and/or microorganisms to break down PE wastes, and the
generated monomers or small molecules can be used as feedstocks
for further microbial conversion into value-added products via
biomanufacturing (Buragohain et al., 2020; Kawai, 2021; Gomes,
2022; Pellis et al., 2023; Patel et al., 2024). In this way, biorecycling
promotes a circular economy while also providing an
environmentally friendly way to lessen harmful plastics in our
ecosystems (Elahi et al., 2021; Soong et al., 2022; Peng et al.,
2023). PE is notoriously resistant to biodegradation due to its
stable chemical structure. Pretreatment of PE has been found
beneficial to help initiate the biodegradation process.
Pretreatments can be achieved by chemical, physical, or
biological/enzymatic means (Buragohain et al., 2020), which
introduce reactive sites, reduce molecular weight, and increase
hydrophilicity (Ciuffi et al., 2024). Pretreatments have proven to
have a significant positive impact on PE biodegradation as well as its
upcycling yield of value-added chemicals. UV pretreatment, one of
the industrially applicable techniques, can alter structural,

morphological, and molecular properties of PE films, as reported
in the literature, resulting in 29.5% weight loss, as opposed to 15.8%
without UV treatment, when exposed to mixed microorganisms
(Lysinibacillus, Xylanilyticus, and Asperillus niger) for 126 days
(Esmaeili et al., 2013). Rising concerns over the reproducibility of
available studies on enzymatic and microbial PE degradation,
coupled with criticisms of the analytical techniques adopted to
demonstrate PE degradation, highlighted the need for more
robust strategies (Jendrossek, 2024; Stepnov et al., 2024).
Redirecting research efforts toward viable PE upcycling routes
that produce value-added chemicals represents a promising and
practical direction. Unlike traditional recycling, upcycling is a
multistage process that typically involves PE breakdown into
small molecules via pyrolysis or thermochemical methods and
then transforming those molecules into high-value chemicals
(Vanaraj et al., 2025). Depending on the microbial strain, value-
added products from PE upcycling can include proteins (Byrne et al.,
2022), polyhydroxyalkanoates (PHAs) (Guzik et al., 2021), waxes
(Gregory et al., 2022), and long to medium chain diacids (Yeo et al.,
2024). These value-added products can be used in cosmetics,
biofuels, pharmaceuticals, and textiles (Huf et al., 2011; Inui
et al., 2017; Sharma et al., 2021).

This review aims to provide a comprehensive analysis of the PE
biorecycling pipeline. The critical role of pretreatment technologies
for effective biological attack, the current state of enzymatic and
microbial degradation, and the specific enzymes and
microorganisms that have shown promise in breaking down PE
are discussed in detail. While biodegradation is critical for
biorecycling, we particularly emphasize the upcycling of PE-
degradation products into value-added chemicals and
biomaterials using metabolically engineered strains. The entire
process, from virgin PE production and its environmental
accumulation to its degradation and ultimate conversion into
value-added chemicals through biological routes, is
conceptualized in Figure 1, which serves as a visual map for the
discussion to follow. The significant challenges and future
perspectives in scaling up these bioprocesses have also been
elaborated.

2 Pretreatment technologies for
enhanced biodegradation

PE is a widely utilized, unreactive plastic material due to its high
durability and great resistance. This high resistance of PE is owing to
the exclusive C-C linear carbon atoms backbone and C-H covalent
bonds that are highly stable (Ellis et al., 2021). This unique property
of PE makes them highly durable during their use phase; however, it
causes challenges in their recycling and upcycling (Lemmens et al.,
2024). Furthermore, the molecular weight of PE, like high-density
polyethylene (HDPE) with high molecular weight, poses a
significant recycling and upcycling challenge by making it more
complicated for oxidizing agents, enzymes, and microorganisms to
access long and dense polymer chains (Sudhakar et al., 2008;
Fontanella et al., 2010). Additionally, PE resistance to
biodegradation is attributed to the tightly packed crystalline
regions due to a high degree of crystallinity along with a low
available specific surface area and high hydrophobicity (Burelo
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et al., 2023). These physical characteristics of PE can be modified
using physicochemical and microbial pretreatment processes or a
hybrid of both. Physicochemical pretreatment involves the addition
of an oxidizing agent, hydrolysis reactions, UV exposure, and
thermal treatment. These pretreatments alter the PE structure,
surface features, and crystallinity, resulting in improved PE
hydrophilicity, affinity to microbes, and reactive surface sites,
therefore, leading to high PE biodegradation and upcycling
(Restrepo-Flórez et al., 2014; Bardají et al., 2020; Burelo et al., 2023).

2.1 Physical pretreatment methods

2.1.1 UV radiation (photo-oxidation)
Pretreatment using ultraviolet (UV) radiation is considered one

of the most environmentally friendly pretreatment techniques. The
exposure of PE to UV results in the generation of oxygen-free
radicals within the PE chains, which can take part in the polymeric
chain reaction pathways (initiation, propagation, and termination)
to result in the formation of comparatively shorter chain molecules,
including olefin and ketones (Vasile and Pascu, 2005; Gewert et al.,
2015; Erdmann et al., 2020). These small molecules, as a result of
photo-oxidation, are then more easily accessible to be attacked by

microbial enzymes for further consumption and degradation
(Taghavi et al., 2021b). Furthermore, higher microbial
colonization and improved hydrophilicity of PE were also
observed by UV radiation pretreatment (Suresh et al., 2011;
Ciuffi et al., 2024). The UV oxidation mechanism of plastic has
been well-studied in past studies (Gewert et al., 2015; Taghavi et al.,
2021a; Taghavi et al., 2021b). However, several studies also reported
sunlight as a UV pretreatment and degradation method (Abd El-
Rehim et al., 2004; Gong et al., 2019). Comparative studies
conducted by Doğan (2021) demonstrated higher degradation of
PE using artificial UV light in a shorter time compared to sunlight.
Even with a general agreement on weathering and PE oxidation
under sunlight, the low-energy UV from the sun is not as effective as
the higher-energy UV from the artificial UV radiation sources
(Jones, 2002; Doğan, 2021). UV treatment of LDPE sheets for
2.1 days with 354 nm UV resulted in the improvement of their
degradation (weight loss) from 9% to 44% in 90 days by the fungi
Curvularia lunata SG1 (Raut et al., 2015). An increase from 15.8% to
29.5% in the biodegradation of LDPE films was reported by mixed
bacteria in 126 days after pretreatment of LDPE films using 55 W
UV lamps irradiation for 25 days (Esmaeili et al., 2013). For the
upcycling of PE into value-added products, the study revealed that
the UV light treatment of LDPE powder enhanced its bioconversion

FIGURE 1
An overview of global PE flow: production, consumption, environmental accumulation, recycling, pretreatment, and upcycling.
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TABLE 1 Major PE pretreatments and their effects on PE biodegradation.

Pretreatment
technology

Sample
type

Degradation approach Pretreatment
conditions

Degradation
time

Wt. loss (%) -
pretreated

Wt. loss (%) -
unpretreated

Ref.

Ozonation LDPE films Fungi Aspergillus sp. Gamma rays
1,000 kGy

90 days ~3.6% None Sheik et al. (2015)

Fungi Paecilomyces lilacinus ~2.0% None

Fungi Lasiodiplodia theobromae ~3.0% None

Physico-chemical (oxidation) LDPE pellets Yeast
Y. lipolytica DSM 8218

1%–10% anionic surfactant
(60 days)

30 days 0.20% 0.12% Buron-Moles et al.
(2025)

Yeast
Y. lipolytica DSM 3286

0.20% 0.16%

UV PE
shopping bag

Microbial consortium 245 nm UV (72 h, 24 cm sample
distance)

90 days ~6.5% Not discussed Taghavi et al. (2021b)

245 nm UV (72 h, 12 cm sample
distance)

~7%

245 nm UV (120 h, 12 cm sample
distance)

~8.5%

UV LDPE films Fungi Penicillium sp., Rhizopus arrhizus <300 nm UV (10 days) 180 days ~3.5% ~1.7% Mahalakshmi and
Andrew (2012)

UV LDPE films Fungi Curvularia lunata SG1 354 nm UV (2.1 days) 90 days ~44% ~9% Raut et al. (2015)

Photocatalytic (TiO2 and 5M
NaOH)

LDPE powder UV irradiation 254 nm, 5 mW cm−2 UV 800 h ~87% ~55% Lu et al. (2025)

UV LDPE film Bacterial consortia
PB1, PB2, PB3, LS

UV-C irradiation (15 W,
50 Hz), 40 h

120 days 2.2%–5.27% 1.3%–2.8% Muangchinda and
Pinyakong (2024)

Sunlight Sun exposure of 40 h 1.7%–4.6%

Thermal 60 °C (hot air-oven), 40 h 1.4%–3.2%

UV LDPE film Mixed Bacteria Lysinibacillus
xylanilyticus and Aspergillus niger

Two 55 W UV lamps irradiation,
25 days

126 days 29.5% 15.8% Esmaeili et al. (2013)

Ozonation/O2-oxidation LDPE film Bacteria
Pseudomonas sp. Rh926 (strain 15G3)

80 °C for 20 h, flow rate of 0.4 L/min 30 days 25% 3% Jha et al. (2024)

UV with acid PE Enzymes laccase and manganese
peroxidase from P. simplicissimum

Not discussed 90 days 38% Not discussed Sowmya et al. (2015)

Autoclaving Not discussed 16%

Surface-sterilization Wash with ethanol for 1 min and
sodium hypochlorite solution for

3 min

7.7%

(Continued on following page)

Fro
n
tie

rs
in

B
io
e
n
g
in
e
e
rin

g
an

d
B
io
te
ch

n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
4

A
b
id

e
t
al.

10
.3
3
8
9
/fb

io
e
.2
0
2
5
.16

9
2
6
5
1

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1692651


by Cupriavidus necator H16, which was able to accumulate poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHB-V) up to 3.18% ±
0.4% of cell dry mass (Montazer et al., 2019). Table 1 shows
several PE microbial degradation studies using UV-pretreated PE,
summarizing PE weight loss (%) performance with several microbial
strains under different PE UV-pretreatment conditions.

2.1.2 Thermal treatment
Thermal treatment is another viable way of boosting PE

degradation as it modifies the properties such as morphology and
crystallinity, and creates oxidized groups on the PE surface. As
described in several studies, partial degradation of PE can be
accomplished after thermal pretreatment (Albertsson et al., 1998;
Awasthi et al., 2017a). Thermal pretreatment of PE is usually carried
out in a hot air oven operated around 60 °C–150 °C for a long time,
similar to UV pretreatment (Awasthi et al., 2017b; Crystal Thew et al.,
2024; Muangchinda and Pinyakong, 2024). Oxidized groups, including
hydroxyl, carboxyl, and carbonyl groups, are formed along with the
reduction of PE chain size as a result of thermal treatments.
Microorganisms can then attack these oxidized groups and degrade
PE more effectively (Albertsson et al., 1995). The microbial and
enzymatic attachment to PE is modulated by the presence of
oxidized groups, which reduce the overall PE surface hydrophobicity
(Tribedi and Sil, 2013; Awasthi et al., 2017a). The incubation of
thermally pretreated HDPE with B. sphericus, showed an increase in
the degradation, from 3.5% (untreated) to 9%, when incubated
(Sudhakar et al., 2008). The 60-day incubation of HDPE films with
K. pneumoniae CH001 manifested thick biofilm formation on the
HDPE surface and 18.6% degradation after thermal pretreatment of
10 days in a hot air oven at 70 °C, oxidizing the HDPE chains (Awasthi
et al., 2017b). The formation of biofilm increases the surface
hydrophilicity of PE, resulting in a faster degradation rate. Another
study reported that increasing the pretreatment temperature caused
more fungal filaments (hyphae) to grow on the surface of the low-
density polyethylene (LDPE) (Manzur et al., 2004). In comparison to
UV pretreated LDPE, a study found a higher number of hydroxyl and
carbonyl groups contained by thermally pretreated LDPE (Manzur
et al., 2004). Thermally oxidized PE wax supplemented with tryptone
soya broth (TSB) resulted in the production of 1.24 g/L PHA by C.
necatorH16 compared to 0.39 g/L PHA without thermally oxidized PE
wax (Radecka et al., 2016). A study conducted by Torres-Zapata et al.
(Torres-Zapata et al., 2022) demonstrated the conversion of PE to
triglycerides (TGs) through a thermochemical and biotechnological
procedure where hydrothermally processed PE oil was utilized as a
carbon source by Yarrowia lipolytica to improve biomass growth and
TGs production yield by 130%. Furthermore, several PE microbial
degradation studies using thermal pretreated PE are also illustrated in
Table 1, summarizing PE weight loss (%) performance with several
microbial strains under different thermal pretreatment conditions.

2.2 Chemical pretreatment methods

2.2.1 Acid/alkaline treatment
Chemical pretreatment of PE is accomplished by exposing PE to

highly concentrated acids and solutions that induce PE oxidation by
acting as an oxidizing agent. Chemical pretreatments can create
polar and unsaturated groups on the surface of PE (Crystal ThewT
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et al., 2024). The use of strong acids results in the liquid etching of
the PE surface, thus enhancing the formation of surface cracks/pits
and overall surface roughness (Mijovic and Koutsky, 1977).
Although reports mention significant PE surface etching using
strong acids at higher temperatures of above 60 °C, chemical
pretreatments are preferred at lower temperatures (Mijovic and
Koutsky, 1977; Balasubramanian et al., 2014). Several studies have
reported the use of chemical pretreatment as part of a cascade PE
pretreatment, rather than a sole pretreatment method. A study
carried out by Balasubramanian et al. (2014) reported the use of
cascade pretreatment for HDPE films by subjecting films to UV for
60 h, followed by 50 °C for 70 h thermal pretreatment, and chemical
pretreatment using KMnO4/HCl and citric acid. Nitric acid (99.0%)
at 80 °C was utilized by Hasan et al. (2007) for cascade pretreatment
of UV-treated LDPE. Pretreated LDPE was utilized as the sole
carbon source for growth and was inoculated in a medium
containing Fusarium sp. AF4. The fungus growth and structural
properties were analyzed. When the fungus P. citrinum was used on
the LDPE pretreated with nitric acid, the biodegradation was
significantly more effective, with a weight loss of around 47.22%
compared to 38.82% without pretreatment (Khan et al., 2023).

2.3 Alternative pretreatment methods

In addition to the adopted and well-explored conventional
pretreatment methods, several emerging methods can also
improve the overall degradation efficiency of PE. The use of
ionizing radiation (gamma-ray) is reported to be an effective
method for the formation of free radicals, reactive intermediates,
and excited states in plastic (Crystal Thew et al., 2024). The species
generated owing to the excitation of the plastic modifies the
structure by undergoing a crosslinking or chain scissoring
mechanism. Exposure of LDPE to 1000 kGy gamma radiation
induced the generation of a carbonyl group within LDPE, which
helped enhance the biodegradation when incubated with
Lasiodiplodia theobromae (Sheik et al., 2015). Surface plasma
treatment is another emerging technique to improve surface
roughness, radical formation, and increase the hydrophobicity of
the plastic (Abourayana and Dowling, 2015). Thermo-irradiation
pretreatment, involving the exposure of LDPE and LLDPE to high-
energy gamma rays followed by their thermal treatment at 150 °C
and 90 °C for 7 days, was carried out for the enhancement of
biodegradation of LDPE and LLDPE using Bacillus
amyloliquefaciens (Novotný et al., 2018). A decrease in the
LLDPE dry weight by 1.1 ± 0.3 to 3.2 ± 1.3% was observed
within 40–60 days of inoculation, along with the appearance of
carbonyl groups in the FTIR spectra. Biodegradation of plasma-
pretreated LDPE sheets was investigated using Pleurotus ostreatus
(Gómez-Méndez et al., 2018). Oxygen glow plasma was utilized, at
600 V for exposure of 6 min, for the LDPE sheets pretreatment. A
76.57% decrease in the surface contact angle of the LDPE sheet was
observed after plasma pretreatment due to the improved LDPE
surface hydrophobicity. Pleurotus ostreatus colonization was
increased from 45.55% to 88.72% after plasma pretreatment
(Gómez-Méndez et al., 2018). Surface roughness was also boosted
by 99.81% after pretreatment. These studies highlight the
importance of shorter pretreatment times for plasma and gamma

radiation pretreatments compared to conventional UV and thermal
pretreatments, which can last several days (Table 1). Oxidative
surface treatment of PE using air or oxygen has been reported to
enhance the downstream production of value-added products such
as PHA via upcycling. Introducing small amounts of air or oxygen
during PE pyrolysis generates carbonyl and hydroxyl groups in the
resulting hydrocarbons, making themmore accessible for utilization
by Cupriavidus necatorH16 and potentially resulting in higher PHA
titers of 1.26 g/L compared to 0.46 g/L from untreated PE waste (Hu
et al., 2024).

3 Enzymatic degradation of PE

3.1 Challenges in direct enzymatic attack on
native PE

The use of enzymes (PEase) for PE degradation is a well-
known and established method for effective PE degradation.
However, the availability of the research data for direct
enzymatic degradation of native PE is very limited. One recent
study reported the use of three enzymes from a bacterial
consortium and showed the successful start of untreated PE
hydrolysis (Gao and Sun, 2021). The initial step of oxidizing
PE is the most difficult part of the enzymatic PE degradation
process, which is attributed to the strong C-C and C-H chemical
bonds. Therefore, most of the enzymatic PE degradation studies
have reported the use of pretreatment technologies for oxidation
initiation and to enable enzymatic degradation (Ghatge et al.,
2020). This assertion needs further exploration, particularly
knowing that PE does not contain any hydrolysable bonds.
Hydrolases likely only take part in PE biodegradation steps
that incorporate a bond that they are capable of cleaving after
the pretreatments (Jin et al., 2023). Furthermore, the genetic
enhancement of existing PEases and the discovery of new
variants for effective PE recycling remain a big challenge with
very little exploration. This is largely due to the intricate, multi-
step nature of PE degradation, reliance on imprecise degradation
quantification techniques, and the limited understanding of each
degradation stage, which hinders the development of highly
efficient enzymes (Jin et al., 2023). Figure 2 shows the overall
mechanism of PE enzymatic degradation, including
biodeterioration of modified PE with functional groups,
depolymerization into smaller molecules, and absorption of
small molecules into microorganisms.

3.2 Key enzyme classes involved in PE
degradation

3.2.1 Oxidoreductases (laccases, peroxidases,
monooxygenases)

The enzymatic degradation of PE proceeds in two distinct stages:
the initial adsorption of enzymes onto the PE surface, followed by
the subsequent hydro-peroxidation or hydrolysis of chemical bonds
(Mohanan et al., 2020). The biological sources of these PE-degrading
enzymes are diverse, including microorganisms from various
environments and the digestive systems of certain invertebrates

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Abid et al. 10.3389/fbioe.2025.1692651

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1692651


(Carr et al., 2020). Oxidoreductases, a class of PEase enzymes like
laccases, peroxidases, and certain monooxygenases, are promising
for the successful oxidation and degradation of PE. Laccases and
peroxidases, including lignin and manganese peroxidases, have been
reported to play a crucial role in the oxidation of PE waste collected
from the environment (Jin et al., 2023). Laccases are the most
extensively studied PEases. However, more effort has been made
towards the biological sources for laccase isolation compared to
recombinant enzymes (Gao et al., 2022; Yao et al., 2022b; Zhang
et al., 2022). Oberbeckmann et al. (2021) combined a protein
analysis and genetic engineering to observe the production of
laccases and manganese peroxidases during the degradation of
PE. Gene sequencing for algae-bacteria (Jacksonvillea sp.) was
carried out by Mishra et al. (2021) to find genes related to
forming a biofilm and breaking down PE. This work suggested
the production of a variety of enzymes, including laccases, esterases,
and peroxidases, which are key to degrading PE. Degradation of PE
using R. ruber C208 reported the exclusive presence of multicopper
oxidase (laccase) in the extracellular portion, indicating laccase’s
crucial role in the oxidation and degradation of PE (Santo et al.,
2013). The synergistic effect of a dual enzyme system consisting of
glutathione peroxidase and laccase (from a marine fungus) was
studied on PE film (Gao et al., 2022). The effect of laccase from
Psychrobacter sp. NJ228 on unpretreated PE was studied by Zhang
et al. (2022). Through various analytical methods, their findings
demonstrated a reduction in PE crystallinity and hydrophobicity,
13.2% weight loss in PE particles, alteration in PE morphological
features, and formation of oxygen-based functional groups. The
concerns with such reported PE degradation efforts using enzymes
are diverse, owing to the aspects involved, such as the PE
composition (e.g., portion of weight loss from degradation of
oligomers and additives, instead of PE itself), as well as the
limited quantity of PE material used and the swift loss of low
molecular weight fractions within the PE (Liu et al., 2025).

Alkane monooxygenase (AlkB) of Pseudomonas sp. E4 is
reported to be involved in the initial oxidation of PE by
mineralization of 19.3% of the carbon PE into CO2 (Yoon et al.,
2012). The formation of C-O and -OH functional groups on the
LDPE surface after surface treatment with phenylalanine
monooxygenase ensures its potential to oxidize PE, as illustrated
in Figure 2. Reduction in LDPE molecular weight in Pseudomonas
aeruginosa was also observed while treating LDPE with isocitrate
lyase in combination with phenylalanine monooxygenase.
Microorganisms that break down short-chain alkanes typically
use methane monooxygenase (Pinto et al., 2022). For medium-
chain alkanes (C5–C17), initial hydroxylation is usually catalyzed by
two types of enzymes: soluble cytochrome P450s, specifically
cytochrome P450 CYP153 alkane hydroxylase, and integral
membrane nonheme iron monooxygenases, such as AlkB
(Schneiker et al., 2006; Pinto et al., 2022). Various pathways can
initiate the breakdown of PE using these PEases. These pathways
include the addition of a hydroxyl group (−OH) at either end of the
polymer chain (terminal or sub-terminal hydroxylation) or along
the chain itself (in-chain hydroxylation). This process introduces
functional groups such as alcohols, aldehydes, ketones, and
carboxylic acids, which make the PE more susceptible to further
degradation (Temporiti et al., 2022). Despite extensive research
focusing on this class of PEases, there still remains a deficiency
of thorough experimental evidence indicating the role of oxygenases
in PE degradation. Moreover, the contribution of other specific
enzymes in the PE degradation process has yet to be clearly
established, as highlighted in a recent expert review by
Jendrossek (Jendrossek, 2024).

3.2.2 Hydrolytic enzymes (e.g., esterases, lipases)
Another class of PEase, known as hydrolytic enzymes, is well

studied for its prominent effect on PE degradation. The participation
of hydrolytic enzymes, like esterases, in the PE degradation was

FIGURE 2
An overview of the mechanism of PE enzymatic degradation and its further assimilation.
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reported to occur after conversion of oxidized PE to an ester via
Baeyer–Villiger monooxygenases (BVMO), as revealed by a PE
degradation mechanism study (Zadjelovic et al., 2022). Studies
reported an increase in the presence of enzymes like lipase,
esterase, and cutinase during PE degradation (Jin and Jia, 2024).
Esters were also found among the PE breakdown products, which
suggests that these enzymes might play a role in the degradation
process (Jin and Jia, 2024). However, the exact way these hydrolases
help degrade PE is still a mystery. The production of bacterial
esterase from three different marine bacterial isolates (Bacillus
subtilis H-248, Marinobacter sp. H-244, and Marinobacter sp. H-
246) was studied for their degradation effect on PE films. Within
90 days, the highest PE film weight loss was observed using H-246
isolate. Lipases work by the degradation of long carbon chains
within the PE material. 30 kDa lipase produced from Aspergillus
niger MG654699.1, with a biocatalytic activity of 176.55 U/mL,
resulted in 3.8% weight loss of PE as described by Safdar et al. (2024).
Surface deterioration, alteration in functional groups, and the
physical impact of lipase were studied. Lipase, like Pelosinus
fermentans lipase 1 (PFL1), reported by Kim et al. (2024),
degraded oxidized LDPE films by cleaving the newly formed
ester bonds, resulting in a reduction of weight average by 44.6%
and a reduction in number average molecular weights of oxidized
LDPE films by 11.3%. These hydrolytic enzymes take part in the
initial and subsequent degradation stages of PE by targeting ester
linkages, followed by hydrolysis and chain scission (Sutkar and
Dhulap, 2025), as shown in Figure 2. Although studies have reported
the activity of oxidative enzymes on PE, the idea that PE can undergo
efficient enzymatic degradation remains controversial (Stepnov
et al., 2024). This skepticism largely originates from the lack of
independent studies that have successfully reproduced earlier
findings to validate the idea.

3.3 Strategies for enhancing enzyme activity
and stability

Metal ions play a very crucial role in enzyme-catalyzed
degradation reactions, often performing as a cofactor and
influencing the catalytic activity of enzymes. For instance, multi-
copper oxidoreductases manifested an increase in the PEase activity
with the addition of copper ions (Santo et al., 2013). Significant
acceleration in PE degradation using MnP was observed with the
addition of Mn(II) into the culture medium with T. versicolor and P.
chrysosporium (Iiyoshi et al., 1998). Therefore, selecting the correct
auxiliary agents is crucial for enhancing PEase activity. Several
environmental factors, including pH value, light exposure,
temperature, and oxygen, can significantly influence the
degradation and enzyme activity, as these factors not only
influence the enzyme performance and stability but also weaken
the PE structures, making it more vulnerable to enzyme attack
(Pospíšil et al., 2006; Choi et al., 2024). Directed evolution, rational,
and semi-rational approaches have been discussed in the literature
to potentially engineer redox potential, pH performance, and
thermal stability of PEases like laccases (Mate and Alcalde, 2015;
Pardo and Camarero, 2015). Aniline in laccase has also been
rationally designed by computer-aided laccase engineering for
high stability and to confer affinity (Santiago et al., 2016).

Researchers improved the thermal stability of an evolved high-
redox potential laccase from fungal sources by first replacing its
second cupredoxin domain with the corresponding domain from a
different fungal laccase, followed by using computational methods
to design recombinant chimeras that stabilized the enzyme’s flexible
surface loops (Vicente et al., 2020). Protein engineering studies for
enhanced PE degradation have, unfortunately, not been
documented in the literature yet, even for promising PEases like
laccases. This protein engineering field represents a significant area
for future research to advance the activity and stability of PEases.
Furthermore, the limited understanding of the PE degradation
pathways and of each step involved in it hampers the
development of effective future strategies for enzyme activity
improvement and the development of precise analytical
techniques for the demonstration of PE degradation.

4 Microbial degradation of PE

4.1 Diversity of PE-degrading
microorganisms

4.1.1 Bacterial degraders (Pseudomonas,
Rhodococcus, and Bacillus)

A wide range of bacteria capable of PE degradation have been
isolated from landfills, compost, and marine habitats in recent years.
Bacteria can degrade PE by adhering to its surface (using the
substrate PE as a food source) and secreting enzymes that
degrade PE and catalyze a chain of redox reactions (Hou et al.,
2022; Srikanth et al., 2022). Such PE degradation enzymes include
monooxygenase, hydroxylase, and dioxygenase (Hou et al., 2022).
Currently, the most researched bacteria capable of PE degradation
include Pseudomonas, Rhodococcus, and Bacillus. The Pseudomonas
sp. AKS2 strain is reported to degrade 5% ± 1% of PE feedstock in
45 days without prior oxidation (Lv et al., 2024). However, it is
noteworthy that by introducing modulating agents like mineral oil,
the hydrophobic interactions can increase, causing more frequent
plastic and bacterial attachment, leading to higher PE degradation
(Tribedi and Sil, 2013). The same phenomenon is seen when PE is
exposed to Rhodococcus ruber. When incubated in liquid culture for
30 days, 8% weight reduction of the PE is observed, and increased by
50% when exposed to mineral oil (Gilan et al., 2004). When LDPE
was exposed to Bacillus subtilis ATCC6051 and Bacillus
licheniformis ATCC14580 for 30 days, Yao et al. (2022a) reported
a weight reduction of 3.49% and 2.83%, respectively. While
significant development has been made, further research is
required to completely comprehend the mechanisms of PE
degradation and to improve the efficiency of bacterial
degradation. Moreover, most of the PE degradation studies using
microorganisms primarily rely on PE weight loss as an indicator of
degradation (Gilan et al., 2004; Ghatge et al., 2020; Yao et al., 2022a).
However, this approach is subject to criticism as the reported weight
loss may potentially result from the breakdown of additives and
leachate, which can constitute a significant portion of PE (Ghatge
et al., 2020). Such studies should be further validated using advanced
biochemical, physicochemical, and molecular biology techniques to
ensure accurate assessment of true PE degradation (Weber et al.,
2017; Danso et al., 2019).
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4.1.2 Fungal degraders (Penicillium, Asperillus, and
Phanerochaete)

Fungi can also degrade PE in the presence of pro-oxidant ions by
adhering to the PE’s surface and secreting PE-degrading and
lignocellulolytic enzymes (i.e., laccase, cutinase, LiP, and MnP)
(Cowan et al., 2022; Srikanth et al., 2022). Lignocellulolytic
enzymes are ordinarily used to break down lignin, a complex
polymer in plant cells. These enzymes have been found to
degrade PE, along with a complex polymer (Temporiti et al.,
2022). Similar to the degradation of PE by bacteria, the fungal
degradation mechanism promotes oxidation reactions, which
increase the hydrophilicity of the PE, promoting greater adhesion
by the fungi (Srikanth et al., 2022). Fungi use an elongating cell
structure called a hypha, which utilizes polarized exocytosis to create
new cell material, to integrate with the PE surface (Steinberg et al.,
2017). Fungal species that show effective degradation of PE include
Penicillium, Aspergillus, and Phanerochaete (Srikanth et al., 2022).
Sowmya et al. (2015) reported that UV-pretreated PE exposed to
Penicillium simplicissimum showed 38% weight loss.
Balasubramanian et al. (2014) addressed the use of Aspergillus
terreus MF12 for microbial treatment of HDPE in combination
with physical and chemical pretreatments. HDPE degradation of up
to 20.8 ± 0.1% was observed with combined pretreatment. Bautista-
Zamudio et al. (2023) reported 70% weight loss of pre-treated PE
when exposed to Phanerochaete chrysisporium for 15 days at 37 °C.
These microorganisms are capable of PE degradation by utilizing
innate biological processes. Although these studies utilizing fungal
degraders have demonstrated high PE weight loss through microbial
activity, there remains insufficient evidence to validate whether such
weight loss reflects only PE biodegradation or if it is partially
attributable to the breakdown of additives and other components
within the PE. This skepticism is mainly due to the lack of
independent studies confirming earlier findings.

4.1.3 Insect gut microbiota
Yeast and bacteria extracted from the gut of waxworms and

wood-feeding termites have been observed to be capable of breaking
down PE. Enterobacter spp., found in the wood-feeding termite gut
microbiome, caused up to 81% weight loss of exposed LDPE after
120 days (Ali et al., 2024). A recent study demonstrated that dye-
decolorizing peroxidases (DyPs) from the gut microbiota of
mealworms were capable of initiating LDPE oxidation when fed
with LDPE (Klauer et al., 2025). The gut microbiota of mealworms
was found to degrade PE, with alkene groups detected in the fecal
matter (frass) (Brandon et al., 2018). While the formation of these
alkenes has been linked to the catalytic activity of
CYP152 peroxygenases and the decarboxylase OleT, the complete
mechanism of how these enzymes contribute to the overall PE
degradation process remains unclear (Jin et al., 2023). Recently, it
was reported that the larvae of Achroia grisella and Plodia
interpunctella, and the beetle Uloma can degrade PE due to their
ability to metabolize long-chain hydrocarbons (Yang et al., 2015;
Kundungal et al., 2025). It was also reported that the wax worm
Galleria mellonella, was capable of oxidizing and depolymerizing PE
by secreting saliva containing the key PEases (Sanluis-Verdes et al.,
2022). However, a revisit to this study showed that the previously
observed results were misinterpreted, and whether key PEase
enzymes exist in the wax worm saliva remains a question

(Stepnov et al., 2024). Additionally, a potential limitation in the
available body of research lies in the way PE degradation is assessed
or monitored in specific and controlled laboratory conditions. For
instance, studies reporting PE degradation involving Tenebrio
molitor have demonstrated degradation in terms of PE
consumption in its diet (Jin et al., 2023). Studies using insects for
PE degradation utilize the persistent weight of G. mellonella as
evidence of PE uptake by the insect for their energy requirements
(Kong et al., 2019). The presence of alkene groups in the frass of PE-
fed mealworms has been reported as evidence of PE degradation by
the gut microbiota of mealworms (Brandon et al., 2018), instead of
providing an experimental investigation more aligned towards a
complete picture of PE degradation. Comprehensive experimental
investigations, beyond weight measurements, are essential to fully
validate the utilization of PE as an energy source by insects. Such
reports thus lack a complete understanding of the PE
degradation mechanism.

4.2 Mechanisms of microbial PE
biodegradation

The general steps used by microorganisms to degrade PE are
microbial adhesion, enzyme secretion, and intracellular metabolism.
For microbial adhesion to occur, the hydrophobic surface of PE
must be pretreated, often by UV exposure. Such pretreatment
decreases the hydrophobicity, allowing the microorganisms to
interact with the PE surface (Temporiti et al., 2022). Bacteria
create a biofilm, a layer of cells that embed into the PE surface
with the purpose of gene transcription and cell growth (Arampatzi
et al., 2011). The presence of a biofilm allows the concentration of
PE-degrading enzymes to localize on the PE surface, as the biofilm is
also hydrophobic (Cai et al., 2023). Microbes secrete enzymes
outside the cell that are capable of PE breakdown. Fungi secrete
lignocellulolytic enzymes (laccases and peroxidases), which would
ordinarily be used to break down lignin (Temporiti et al., 2022).
Bacteria secrete oxidoreductases and hydrolases, which promote a
chain of redox reactions (Hou et al., 2022; Srikanth et al., 2022).
These secreted enzymes initiate the depolymerization of the PE.
Microbes can also utilize degraded plastics as an energy source. The
secreted exoenzymes break down the substrate (PE) into small,
water-soluble molecules (monomers/oligomers) that can pass
through the microbes’ cell membrane (Hou et al., 2022).
Intracellularly, the small monomers are oxidized and utilized as a
carbon/energy source in central metabolic pathways (β-oxidation/
Krebs cycle) (Elahi et al., 2021).

4.3 Optimization of microbial degradation
conditions

To maximize degradation, further optimization of conditions is
required to increase the key enzymes’ efficiency. Raut et al. (2015)
reported that optimal bioreactor conditions for microbial PE
degradation should include pH 7.6, temperature of 38 °C,
agitation of 190 rpm, and an incubation period of 262 days.
Under such conditions, 48% degradation of LDPE by C. lunata
SG1 was achieved. However, optimal conditions largely depend on
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the microbial strain used and the specific mechanism of degradation;
in-depth knowledge of metabolic activities for each microorganism
is required for successful optimization of the degradation
conditions. Cai et al. (2023) provided optimal conditions
discovered for both fungal and bacterial PE degradation. The
breakdown of various plastics, including PE, by Pseudomonas
and Arthrobacter is optimized at temperatures between
30 °C–70 °C (Cai et al., 2023). Nutrient availability for the
prosperity of microbial life is also important. Nitrogen and
phosphorus are essential elements for the growth of microbes. A
carbon-to-nitrogen ratio of 30:1 was described as optimal for
microorganisms utilizing lignocellulosic degradation (Xie et al.,
2022). The optimal ratio of phosphorus, in the form of PO3−

4 ,
and potassium is described as 1:12 by Sun et al. (2022).

4.4 Microbial consortia for enhanced
degradation

Individual bacterial strains, owing to their constrainedmetabolic
capabilities, may not be fully effective in degrading PE when used in
isolation. A strategic solution to this challenge is to create a synthetic
microbial consortium where each specialized microbe contributes a
specific enzyme to the overall PE degradation pathway (Salinas et al.,
2025). Research has shown that implementing microbial consortia
rapidly enhances PE degradation. Salinas et al. (2024) reported an
18% weight loss of LDPE when exposed to C2 consortia (comprised
of B. subtilis RBM2, F. oxysporum RHM1, and A. alternata RHM4)
in just 30 days. This is compared to the degradation of LDPE by P.
aeruginosaWD4, which is around 9% after 100 days. Evidence of the
success of such consortia in overcoming single-strain degradation of
PE was provided. Due to the absence of a standardized set of
analytical criteria for confirming PE biodegradation, assessments
of PE degradation via microbial consortia often rely on indicators
such as PE deterioration and weight loss (Liu et al., 2025).
Nonetheless, the use of microbial consortia for PE breakdown is
advantageous over single bacteria as it decreases the required
microbial contact time and maximizes PE degradation.

5 Upcycling PE-derived small
molecules into value-added products

Directly applying plastic-degradingmicrobes or enzymes to plastics
in the environment presents significant logistical challenges. However, a
viable approach involves using enzymes to first break down plastic
waste into its constituentmonomers or using pyrolysis to convert plastic
waste into smaller products. These simpler products can then be utilized
as a carbon source (feedstock) for microbial growth, allowing
microorganisms to undergo bioconversion into value-added
chemicals under controlled conditions (Xu et al., 2023; Suresh et al.,
2025). This process is often referred to as biocatalytic upcycling,
providing a promising strategy for managing plastic waste. An
integrated multistage upcycling pipeline for PE waste is illustrated in
Figure 3, where PEwaste is collected and segregated from disposal lands
and water bodies, and converted into aliphatic hydrocarbons like
alkanes and alkenes, pyrolysis oil, and gas products via a pyrolysis
process, followed by their utilization as a substrate for microbial

conversion platforms to produce a variety of value-added products,
including waxes, lipids, diacids, proteins, and polyhydroxyalkanoates
(PHAs) for various industrial applications such as lubricants, cosmetics,
biofuels, nylon monomers, food or feed ingredients, and
biodegradable plastics.

5.1 Strategy and pathways for converting
decomposed PE into value-added products

Thermochemical routes of PE upcycling for the formation of
molecules such as C1-C40 mono-olefins, alkanes, and alkenes suffer
from low productivity, low selectivity, and low product value (Zhao
et al., 2020). Biological recycling alone is not a viable solution, as PE
is extremely resistant and very stable. Researchers showed slow
degradation rates of PE as the major challenge in this area of
research (Abd El-Rehim et al., 2004). Only 1-3 wt.% loss was
reported in 40–60 days of PE degradation using microbial
systems (Ghatge et al., 2020). Furthermore, the current focus is
more inclined towards the growth of microbial cells, with CO2 as a
major product, instead of PE degradation. Therefore, a novel PE
degradation approach is needed to address the PE waste problem. A
hybrid approach for PE upcycling consists of PE oxidative pyrolysis
as a first stage, by utilizing porous catalysts with appropriate active
redox metal oxide sites, for decomposing waste PE into alcohols,
aldehydes, C5-C30 alkanes, and carboxylic acids as a major PE
decomposition product (Yeo et al., 2024). The following step
consists of utilizing engineered microbial strains for the
conversion of PE decomposition products and their intermediates
into a series of value-added chemicals (Yeo et al., 2024).

Zhao et al. carried out PE pyrolysis at 500◦C–550 °C and showed
the production of some aromatics (<5%), alkanes (10% or less),
alkadienes and cycloalkanes (20%–30%), and mostly liquid products
(50%–60%) (Zhao et al., 2020). Some potentialmicrobial platforms (like
yeast) can potentially utilize some of the PE decomposition products
(like alkanes) to produce value-added chemicals (like dicarboxylic acids)
by converting the alkane’s terminal methyl group and fatty acids via ω-
oxidation into the carboxylic groups, followed by metabolizing fatty
acids and dicarboxylic acids by undergoing a β-oxidation pathway (Lee
et al., 2018), as shown in Figure 4. Thermal oxo-degradation (TOD) at
500 °C in an oxidative, noncatalytic environment breaks down HDPE
into a mix of hydrocarbons, alcohols, aldehydes, and carboxylic acids
suitable for microbial use (Brown et al., 2023). Candida maltose,
Scheffersomyces stipites, and Saccharomyces cerevisiae were tested for
their ability to grow on TOD products as the sole carbon source. The
enriched consortia primarily converted the model alkane hexadecane
into a C16–C16 wax ester, as reported by Gregory et al. (Gregory et al.,
2022). This highlights the potential for using such microbial systems to
produce valuable wax esters following themetabolic pathways as shown
in Figure 4. PHAs are valuable biopolymers with wide-ranging
industrial applications, and they can be produced through several
metabolic pathways, including acetoacetyl-CoA synthesis, fatty acid
biosynthesis, and fatty acid β-oxidation. The choice of pathway depends
on the bacterial strain and the substrates provided (Vicente et al., 2023).
The preferred metabolic pathway to produce PHAs using PE-derived
substrates is shown in Figure 4. Regardless of the pathway, all routes
converge at the same final step, which is catalyzed by the key enzyme
PHA synthase (PhaC). This highlights the versatility of microbial
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systems in producing a variety of value-added products. Furthermore,
genetic engineering offers powerful tools to enhance and modify these
metabolic pathways, enabling the biosynthesis of novel and valuable
biochemicals. Through targeted genetic modifications, microbes can be
engineered not only to improve yield and properties but also to upcycle
PE degradation products into new value-added products (Connor et al.,
2023). Table 2 summarizes the variety of value-added products reported
in the literature by utilizing PE-derived feedstocks as a carbon source.

5.2 Major products from the bioconversion
of PE pyrolysis-derived feedstocks

5.2.1 Long-chain dicarboxylic acids
Alkanes-assimilating microorganisms, mainly yeast, are

potential candidates for the biomanufacturing of dicarboxylic
acids (DCA). Candida tropicalis, an alkane-assimilating yeast
strain, shows a strong potential to convert PE-derived alkanes
into DCA via ω-oxidization (Lee et al., 2018). Several efforts have

been made in the past to increase the DCA yield either by enhancing
the ω-oxidization pathway and/or by blocking the β-oxidation
pathway to redirect the metabolism of fatty acids and alkanes
towards the production of valuable DCA (Picataggio et al., 1992).
The bioconversion efficiency has been further enhanced by
overexpressing the cytochrome P450 monooxygenase and
NADPH–cytochrome reductase genes, which encode the rate-
limiting ω-hydroxylase enzyme involved in the ω-oxidation
pathway of alkanes (Picataggio et al., 1992). Figure 4 shows the
general metabolic pathway to produce dicarboxylic acids using
alkanes and alkenes as feedstock. Currently, the majority of long-
chain DCA (≥C10) production takes place in China, where pure
alkanes are fermented using Candida tropicalis strains developed
through traditional physical and chemical mutagenesis. These
strains can produce over 130 g/L of dodecanedioic acid (DDDA)
from decane (Xu CY, 2002). An interesting study by Yeo et al. (2024)
demonstrated the potential of converting mixed plastic waste,
including PE, into valuable DCAs using a chemo-biological
approach. Pyrolysis oil, obtained from household plastic waste

FIGURE 3
An integrated biorecycling and upcycling pipeline for PE waste.
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and rich in hydrocarbons (C7–C32), was processed using a
genetically engineered Candida tropicalis strain with a blocked β-
oxidation pathway to produce α,ω-diacids. Medium-chain
hydrocarbons were extracted by distillation at 200 °C and
hydrogenated to mitigate toxicity, enabling successful microbial
conversion. Notably, the cells were able to sustain growth even in
the presence of an 8% concentration of hydrogenated compounds. A
successful biotransformation resulted in 94.3% of the α,ω-diacids in
the range of medium-chain length (C7 to C14) (Yeo et al., 2024).
Despite the growing interest in upcycling plastic waste, studies
specifically focused on the synthesis of α,ω-DCAs from PE-
derived products remain limited. Therefore, the promising step
toward valorizing PE waste highlights the need for further
research into efficient and scalable DCA production from PE-
derived substrates.

5.2.2 Wax esters
Wax esters are of great industrial importance, with the longer

chain lengths (range from C32-C36) having the highest value
(Domergue and Miklaszewska, 2022). PE upcycling into wax
esters has been reported by combining chemical catalysis and
bioconversion for the volatilization of PE deconstruction
products. Gregory et al. (2022) conducted studies in which
microbial consortia were fed a mixture of PE-derived n-alkanes
(ranging from C4 to C35). The main metabolite generated from the
model alkane hexadecane by enriched consortia was identified as a
C16–C16 wax ester. The incubation of Rhodococcus aetherivorans

consortia 1 (E1) and Rhodococcus aetherivorans consortia 2 (E2)
with hexadecane led to the formation of hexadecanol within 24 h,
followed by the production of hexadecanoic acid after 48 h,
indicating the existence of terminal oxidation. Quantitative
analysis after 14 days in nitrogen-limited medium revealed cetyl
palmitate (C16–C16 ester) as the major metabolite for both E1
(35.6 mg/g CDW) and E2 (30.18 mg/g CDW), as reported in
Table 2. Additionally, along with other value-added compounds
such as hexadecanoic acid, lauryl palmitate (C16–C12 ester), and
myristyl palmitate (C16–C14 ester), 1-hexadecanol was identified as
the second most abundant metabolite (Gregory et al., 2022).
Bacterial mechanisms have been studied for utilizing such
hydrophobic substrates, describing the enzymatic pathways
involved in their degradation and transformation (Wentzel et al.,
2007). However, very few studies explored the PE upcycling into wax
esters, highlighting a promising area for future research, due to the
anticipated growing demands for biological waxes, especially wax
esters, in the pharmaceutical, food, and lubricant industries
(Wentzel et al., 2007).

5.2.3 Polyhydroxyalkanoates (PHAs)
Upcycling of PE using microbial systems has been extensively

studied for the production of PHAs as a value-added biodegradable
polymer (Sohn et al., 2020). The PE is first pyrolyzed to generate
hydrocarbon wax, which is then oxidized to produce a mixture of
fatty acids. After purification, this mixture served as the carbon
source for microbial growth and selection (Guzik et al., 2021). The

FIGURE 4
Major metabolic pathways for converting PE-derived alkanes and alkenes into value-added products.
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study carried out by Guzik et al. (2021) focused on optimizing the
production of medium-chain-length polyhydroxyalkanoate (mcl-
PHA) using Pseudomonas putida KT2440, fed with a fatty acid
mixture derived from PE by a chemo-biotechnological approach.
Following initial screening in shake flasks, Pseudomonas putida
KT2440 was selected for scale-up studies in bioreactor
experiments. P. putida KT2440 was fed with PE-derived fatty
acids in a 20-L bioreactor. The fermentation process achieved
high yields of 83.0 g/L cell dry weight, with 65% of that being
PHA, within just 25 h. The initial exploration of PE upcycling in
PHA was carried out by utilizing PE pyrolysis wax, which was
produced by breaking down low molecular weight PE into PHA.
Later, transition-metal-catalyzed oxidation resulted in the formation
of a fatty acid mixture instead of paraffin waxes, which enhanced the
biomanufacturing efficiency of PHA owing to better solubility
(Schwab et al., 2024). Another study carried out by Ekere (Ekere
et al., 2022) reported a novel recycling method for waste Tetra Pak®
packaging PE materials. The polyethylene-Tetra Pak (PE-T)
component of this packaging material, obtained via a separation
process using a “solvent method”, was utilized as a carbon source for
the biosynthesis of PHAs by the bacterial strain Cupriavidus necator
H16. Bacteria growth after 48–72 h, at 30 °C, in TSB (nitrogen-rich)
or BSM (nitrogen-limited) media supplemented with PE-T resulted
in the accumulation of 40% w/w PHA in TSB fed with PE-T. 1.5% w/

w PHA in the TSB control, and no PHA was detected in the BSM
control. It is well known that the PHAs are usually synthesized by
microbes within their cells and stored as carbon and energy reserves
in specialized sub-cellular structures called carbonosomes,
particularly under nutrient-limited conditions (Tanamool et al.,
2013). Figure 4 also illustrates the metabolic pathway for
converting PE pyrolyzed products into PHAs. Several studies
carried out to produce PHAs using PE-derived feedstocks are
summarized in Table 2.

5.2.4 Recombinant proteins
Pseudomonas bacteria are especially notable for their ability to

efficiently use both individual alkanes and mixtures of alkanes as the
sole carbon source to support their growth (Chayabutra and Ju,
2000; Obayori et al., 2009). PE-derived substrate was reported to be
successfully converted into recombinant proteins by utilizing a novel
Pseudomonas bacterial strain using a two-step process (Connor
et al., 2023). Connor et al. (2023) reported a biomass
development of up to 1 × 109 cfu/mL by utilizing hexadecane
from PE decomposition product as a sole carbon source. The
chemically depolymerized PE, containing a mix of branched and
unbranched alkanes, was reported to be converted by Pseudomonas
aeruginosa into silk protein, achieving titers of 11.3 ± 1.1 mg/L.
Byrne et al. (2022) utilized HDPE undergone a pyrolysis process,

TABLE 2 Microbial platforms and products from polyethylene (PE)-derived feedstocks.

Value-added
product

Microbial strain PE-derived feedstock Biomass
growth

Production titer/
rate/yield

Ref.

Silk protein Pseudomonas aeruginosa RR1 Hexadecane (C16) >1 × 109 cfu/mL 11.3 ± 1.1 mg/L Connor et al.
(2023)

Lipid Yarrowia lipolytica DSM1345 PE pyrolysis oil (C9-C16) OD600 3.56 122 mg/L Zhou et al.
(2023)

Polyhydroxyalkanoate
(PHA)

Pseudomonas putida KT2440 PE-derived fatty acid mixture 83.0 g L-1 CDW 65 (% CDW) Guzik et al.
(2021)

Wax esters (Cetyl palmitate) Rhodococcus aetherivorans
consortia 1 (E1)

Hexadecane (C16) Not discussed 35.6 mg/g CDW Gregory et al.
(2022)

Rhodococcus aetherivorans
consortia 2 (E2)

Not discussed 30.18 mg/g CDW

Wax esters (Myristyl
palmitate)

Rhodococcus aetherivorans
consortia 1 (E1)

Hexadecane (C16) Not discussed 3.6 mg/g CDW

Rhodococcus aetherivorans
consortia 2 (E2)

Not discussed 6.0 mg/g CDW

Polyhydroxyalkanoate
(PHA)

Ralstonia eutropha H16 Oxidized PE wax 3.66 g L-1 CDW 1.24 g L-1 Radecka et al.
(2016)

Medium-chain α,ω-diacids
(C7–C14)

Candida tropicalis Ct6 Mixed plastic with PE, pyrolysis
oil (C10-C12 alkanes)

OD600 ~57 100% yield Yeo et al.
(2024)

Polyhydroxyalkanoate
(PHA)

Cupriavidus necator H16 ATCC
17699

Non-Oxygenated PE Wax 1.42 g L-1 CDW 0.46 g L-1 Johnston et al.
(2017)

Protein Microbial consortia (Spurr River
sediment cultures)

Linear alkenes (C5 to C25) Not discussed 0.136 g Byrne et al.
(2022)

Microbial consortia (farm compost
cultures)

Not discussed 0.010 g

Polyhydroxyalkanoate
(PHA)

Pseudomonas aeruginosa PAO-1 PE pyrolysis wax ~10 g L−1 CDW 25 (% CDW) Guzik et al.
(2014)

Pseudomonas aeruginosa GL-1 ~0.39 g L−1 CDW ~18.9 (% CDW)
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which resulted in a mixture of C5-C25 alkene compounds that served
as the primary substrate. These compounds were fed to enrich
cultures from six different environmental inocula, including
vermicompost, mud, and river sediments. The microbial
communities in these cultures assimilated the alkene compounds,
converting them into cellular biomass and thus producing proteins.
After 5 days, the cultures showed an increase in protein content
ranging from 0.010 g to 0.136 g, depending on the inoculum source.
This shows the potential of producing recombinant proteins using
PE-derived products as a feedstock. However, very limited work has
been done in this area, and considerable future potential is evident.

6 Future perspectives and challenges

Biorecycling and upcycling are capable solutions for their
replacement with the less efficient, disproportionately high-cost,
and/or ecologically harmful conventional methods, including
landfill, mechanical, and chemical recycling, to overcome the PE
waste problems. Although all recycling strategies have their
associated carbon footprints, mechanical and chemical recycling,
compared to biological recycling, are constrained by product
downcycling, quality deterioration, and limited recycling cycles,
ultimately failing to achieve a fully circular carbon system.
Mechanical recycling avoids about 25 wt.% of CO2 emissions due
to the low quality of recyclates (Vollmer et al., 2020). The results
indicate that mechanical recycling of LDPE has a significant impact on
global warming, corresponding to 152 kg CO2-eq per 1,000 kg of LDPE
(Ruggeri et al., 2025). In contrast, another study reported an emission
burden of 324.64 kgCO2-eq per 1,000 kg using anaerobic digestion
treatment (Gadaleta et al., 2022). However, pyrolysis, as a part of a two-
stage upcycling strategy, can substitute fossil-fuel-based feedstocks,
avoiding roughly 30 wt.% of incineration-related CO2 emissions
(Vollmer et al., 2020). Biorecycling and biological upcycling, while
still in early stages, offer transformative potential by converting PE
waste into value-added chemicals. With continued advancements in
enzyme engineering, process integration, recirculation of carbon from
byproducts as a feedstock, and renewable energy use, the carbon
intensity of biorecycling and upcycling is expected to decrease,
thereby questioning the assumed superiority of conventional
recycling approaches. PE biorecycling can be catalyzed using
purified enzymes and enzyme cocktails for better performance.
Bacterial and fungal degraders are also potential candidates for
their implementation in future scale-up studies of PE degradation.
However, cell-free systems show potential advantages over bacterial
and fungal systems in terms of mild reaction conditions and
applications in areas where conditions are unsuitable for fungal and
bacterial cultures. The key challenge in the industrial applicability of PE
biorecycling is the nature of mixed PE waste, containing tons of
different types of PE single-use products, possessing a range of
thermostability, crystallinity, and structural properties. Use of
enzyme cocktails can be a potential solution to overcome a mixed
PE waste problem, since enzyme cocktails are already implemented in
industries for complex compounds degradation, such as lignocellulose
(Lopes et al., 2018). Combining diverse proteins and functional
domains creates new possibilities for developing innovative PEases.
For instance, the use of surface adhesion proteins along with PEases
could potentially increase the overall PE degradation (Zhang et al.,

2023). Utilizing microbial consortia is another promising method for
industrial biorecycling of PE (Skariyachan et al., 2021). Even though
enzyme cocktails and microbial consortia show candidacy, there are
several major challenges to their industrial applicability. Interpreting
currently available data on the biological breakdown and metabolism
of PE is challenging because many studies depend on relatively
imprecise and criticizable analytical techniques, including weight
loss measurements, microscopy, and infrared spectroscopy, to
demonstrate PE degradation (Stepnov et al., 2024). Further
complications in the widespread applicability of such technologies
lie in the degradation demonstration of PE that is not pure (e.g.,
containing metabolizable additives) (Cuthbertson et al., 2024),
resulting in the overestimation of PE recycling efficiency.
Furthermore, very limited data is available for industrial-scale
economic modeling and feasibility analysis of PE biorecycling
methods (Verschoor et al., 2022). However, if PE can be utilized as
the sole carbon source for microbes or microbial consortia at an
industrial scale, biorecycling and upcycling of PE waste would become
a highly effective solution (Verschoor et al., 2022; Bergeson et al., 2024).

Utilizing PE waste as a potent feedstock for microbial systems
for biorecycling and its upcycling into value-added chemicals also
poses bottlenecks and challenges in terms of bioreactor design,
continuous processing optimization, and feedstock logistics
(Bergeson et al., 2024). PE-derived monomers, as well as partially
degraded PE, serve as critical feedstocks within the upcycling
framework for designing new processes to produce value-added
chemicals and biofuels (Hou et al., 2021). In addition to the
uncertain characteristics of the PE-derived feedstock obtained
from processes like pyrolysis, the large-scale industrial
implementation of waste PE pyrolysis faces several operational
hurdles (Orozco et al., 2022). These challenges primarily stem
from the low thermal conductivity and adhesive properties of PE,
along with the energy-intensive (endothermic) nature of the
pyrolysis process. As a result, designing an appropriate pyrolysis
reactor with a suitable catalyst is essential to ensure efficient and
controlled plastic conversion for its efficient upcycling (Solis and
Silveira, 2020; Orozco et al., 2022). Several microbial strains, as listed
in Table 2, can utilize PE-derived feedstocks for their conversion
into value-added products. However, until now, PE upcycling using
microbial strains has largely been limited to the production of PHAs
as a value-added product (Sohn et al., 2020; Connor et al., 2023).
Very few studies focused on the production of proteins, lipids, and
diacids, as provided in Table 2. Thus, there are a lot of future
opportunities to broaden the variety of value-added products
obtainable through microbial upcycling of PE. For such a
purpose, it is necessary to employ novel microbial and genetically
engineered strains with efforts in genetic manipulation, genetic
modification, recombinant DNA technology, and gene cloning to
engineer metabolic pathways for the cutting-edge biomanufacturing
of new products via upcycling of PE waste (Rezaei et al., 2024).

The integration of omics technologies like proteomics,
genomics, metabolomics, and transcriptomics has transformed
the future of microbiome research for plastic waste biorecycling
by providing deeper knowledge into microbial systems (Yang et al.,
2025). Multi-omics technologies are quite significant in gut
microbiome research, where microbial distribution patterns
influence host interaction and functional roles (Tropini et al.,
2017). The application of machine learning and statistical models
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to identify non-intuitive patterns between input features and
experimental outcomes in metabolic engineering research has
been limited. However, there is potential to utilize machine
learning in active learning frameworks for accelerated
development of biochemical production strains for high-yield
biomanufacturing of value-added chemicals (Kumar et al., 2021).
Recently, a new PEase was discovered from Lysinibacillus fusiformis
via a combination of computational structure analysis and
preliminary activity-based screening (Zhang et al., 2023). Despite
recent advancements, the utilization of omics technologies in PE
biodegradation remains limited. In the case of microbial degraders,
only about 2% of environmental microorganisms can be cultured
under laboratory conditions, leaving many unexplored fungi,
extremophiles, and several bacteria, presenting substantial
opportunities for future research (Wade, 2002). Future design
approaches are likely to focus on customizing enzymes for
targeted properties. Deep learning determined de novo enzyme
design that offers promising prospects for creating highly
efficient PEases (Jin et al., 2023). Furthermore, directed evolution
plays a crucial role in enhancing enzyme selectivity, stability, surface
adhesion, and degradation efficiency of PEase.

Although active research is underway in the field of PE
biorecycling and its upcycling into value-added chemicals, a
supportive policy and regulatory framework is essential to drive
the adoption and expansion of these solutions. This includes setting
clear regulatory frameworks, promoting collaboration between
industry, academia, and government, and introducing financial
incentives to encourage the development and placement of
biorecycling technologies. Establishing a regulatory framework
that outlines quantities and types of PE allowed, along with
required pre-treatment procedures and monitoring protocols, is
also crucial. Engaging local communities and stakeholders in
decision-making can help address PE waste concerns
collaboratively. It is also important to highlight that Life Cycle
Assessment (LCA) is utilized to explore new biorecycling
approaches. For instance, Wang et al. (2021) examined the
environmental impacts of combining biorecycling via anaerobic
digestion with pyrolysis. Integrated pathways (biorecycling and
pyrolysis) to standalone processes were compared. Their findings
showed that the combination of anaerobic digestion with pyrolysis
notably reduces the overall environmental impact, identifying it as
the most sustainable option among those assessed. Hernández et al.
(2023) carried out a detailed techno-economic analysis and LCA
study of PE waste upcycling into several value-added products. Their
study demonstrated pyrolysis of PE followed by conversion to
lubricant oils as the most economically favorable technology.
LCA of PE pyrolysis, involved in the upcycling of PE, indicates
that the primary environmental advantages come from substituting
fossil-derived products with the oils and chemicals (alkanes, alkenes,
waxes, and gases) produced through this process (Garcia-Garcia
et al., 2024). Along with LCA, carbon neutrality analysis is also
crucial to evaluate the environmental performance of the proposed
biorecycling and upcycling technologies (Zhang et al., 2024).
Implementation of integrated and non-conventional technologies
is yet to be studied for the range of PE waste streams. Continued
future progress is expected to contribute significantly to overcoming
PE waste accumulation through effective biorecycling and upcycling
strategies.

7 Conclusion

The growing accumulation of PE waste poses a significant
environmental challenge, driving the need for sustainable
recycling and upcycling strategies. This review highlights up-to-
date findings and discoveries for PE biorecycling using both
enzymatic and microbial systems. PE pretreatment provides a
potential for better decomposition performance. Microbial
consortia and the fusion of enzymes would be a better option for
higher-scale PE decomposition compared to using a single microbe
or enzyme. However, the area of PE biorecycling using enzymes and
microbes still needs more exploration and better understanding to
discover or identify specific enzymes responsible for PE
decomposition and decomposition pathways, along with the
exploration of combining enzymes, strains, and process
engineering. A hybrid chemical-biochemical conversion approach
for upcycling PE into value-added products shows great potential,
but current research data is very limited to come up with an
industrially applicable approach. The first stage of an upcycling
technique has its challenges in terms of lower PE decomposition
product yield to effectively utilize decomposition products as a
feedstock for the second stage of biomanufacturing using
microbial strains. Initial PE decomposition includes oxidative and
catalytic treatments, breaking down PE into soluble intermediates
such as paraffins and fatty acids, which enhance microbial uptake
and bioconversion efficiency. Very few PE upcycling products have
been explored till now. Acquired product titers are low, and a limited
understanding of the metabolic pathways makes it challenging to
improve product titers. Future metabolic engineering with the
assistance of computer-aided and omics technologies is required
to make biomanufacturing of value-added products from waste PE
an environmentally benign and economically competitive option.
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