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Responsive peptide hydrogels are advanced platforms for wound management
because they can dynamically interact with the wound microenvironment. These
smart materials respond to specific biochemical cues such as pH, reactive oxygen
species (ROS), matrix metalloproteinases (MMPs), and glucose (Glu), enabling
precise control over drug release, enhancement of cellular repair, and
suppression of infection. By adapting to pathological conditions like elevated
pH, persistent oxidative stress, and enzymatic imbalances, peptide hydrogels
promote efficient healing in chronic wounds. Recent advances have expanded
their responsiveness to include physical stimuli like temperature, light, and
magnetic fields, broadening their applicability in deep and complex wound
treatments. Despite promising outcomes, challenges remain in optimizing
biocompatibility, biodegradability, and stimulus precision. Future efforts will
focus on developing multifunctional and personalized hydrogel systems to
achieve smarter, minimally invasive therapeutic strategies for wound care and
beyond.
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Highlights

« Comprehensive review of microenvironment-responsive peptide hydrogels, detailing
their molecular mechanisms in response to key pathological factors (pH, ROS, MMPs,
Glu) and physical stimuli (temperature, light, magnetism) for advanced wound
management.

« Emphasis on clinical translation potential, highlighting applications in chronic and
diabetic wound healing through intelligent drug release, antimicrobial action, and
promotion of cellular repair processes.

« Discussion on future frontiers and challenges, addressing the need for improved
biocompatibility, multi-functionality, and personalized hydrogel systems to achieve
smarter therapeutic strategies.

1 Introduction

Wound healing occurs through four distinct stages: coagulation, hemostasis,
inflammation, proliferation, and remodeling (Liang et al, 2021; Liang et al,, 2022).
When these processes fail to be properly coordinated, the wound progresses from an

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fbioe.2025.1692319/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1692319/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1692319/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1692319&domain=pdf&date_stamp=2025-11-13
mailto:13540638434@163.com
mailto:13540638434@163.com
https://doi.org/10.3389/fbioe.2025.1692319
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1692319

Ma et al.

10.3389/fbioe.2025.1692319

y"‘

Blood vessels
are destroyed,
biood supply
is lost

=l
i 2=
2

o)
Lactic acid

e
Lactic acid

© Stimulate
S nhibit

@ Macrophages ﬂrlmmm () Lamellar bodies. ON:MWMHS %Mhnchnndvh () Carbonic anhydrase
{ﬁ» Final MMPs concentration

PR ) Finsip  HNPE) Final MNP concentration

@G Fins g concentaion

ﬂ, — G Collrupture (1) Basic amino acids .‘ Redbloodcoll s Atories sl vein

FIGURE 1
Microenvironmental differences between acute and chronic wounds.

acute to a chronic state. Acute wounds typically achieve clinical
healing through standard management protocols. However, with the
global increase in the aging population and the rising prevalence of
diabetes, the burden of managing chronic wounds is escalating
(Tehrany et al, 2023). Furthermore, the growing issue of
bacterial complicates wound healing, creating
significant challenges for healthcare systems worldwide (Castafio
et al., 2018).

Regardless of whether the wound is acute or chronic, changes in

resistance

the microenvironment significantly influence the healing process
(Kirchner et al., 2020), particularly the components such as pH,
ROS, MMPs, and Glu levels (Figure 1). The microenvironment of
acute wounds generally exhibits a lower pH. This acidity stems
primarily from the glycolytic activity of macrophages and the
Warburg effect in fibroblasts, processes that increase lactic acid
production and consequently lower the pH (Barker et al., 2017;
Mahanty, 2025). In contrast, chronic wounds typically have a higher
pH, ranging from 7.3 to 8.9 (Wilson et al., 1979), due to bacterial
biofilm formation, ischemia, and hypoxia. However, prolonged
bacterial infections may result in a decline in wound pH. ROS
levels are elevated in the early stages of acute wounds (Zhang et al.,
2023a; Suzuki et al., 2011), where they effectively inhibit bacterial
growth (Rodrigues et al., 2019). In chronic wounds, however, ROS
levels remain persistently high. This sustained oxidative stress
impairs critical healing processes, including macrophage
by fibroblasts,
angiogenesis, thereby delaying wound healing (Zhao et al., 2023;

Xue et al., 2024; Deng et al., 2019; Li et al., 2021; Janda et al., 2016;

transformation,  collagen  synthesis and

Abbreviations: ROS, reactive oxygen species; MMPs,  matrix
metalloproteinases; Glu, glucose; ECM, extracellular matrix; TIMPs, tissue
inhibitors of metalloproteinases; PEG, polyethylene glycol; GelMA, gelatin
methacryloyl; PBA, phenylboronic acid; GOx, glucose oxidase; ConA,
Concanavalin A; UCST, Upper Critical Solution Temperature; LCST, Lower
Critical Solution Temperature; PNIPAM, poly(N-isopropylacrylamide); NIR,
near-infrared; UV, ultraviolet; IR, infrared.
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Gouzos et al., 2020). Additionally, excessive ROS activity leads to the
sustained secretion of MMPs, exacerbating inflammation and tissue
degradation (Raziyeva et al.,, 2021; Daraban Bocaneti et al., 2022;
Xing et al., 2017). Fluctuations in Glu levels also play a crucial role in
wound healing. Elevated Glu levels in both acute and chronic
wounds provide cellular energy, but they also increase the risk of
infection and suppress the release of angiogenic factors, leading to
impaired proliferation during the healing process (Dam and Paller,
2018). Therefore, changes in the wound microenvironment play a
critical and undeniable role in the healing trajectory of
wounds (Figure 2).

In recent years, hydrogels have emerged as an ideal wound
dressing due to their excellent biocompatibility, moisture retention,
and transparency, demonstrating substantial potential for
development (Chen et al., 2023; Khattak et al, 2024; Khattak
et al,, 2025b; Khattak et al., 2025a; Zheng et al., 2024). Hydrogels
not only maintain wound moisture but also serve as drug delivery
vehicles, enabling the precise delivery of therapeutic agents to
targeted areas and effectively modulating the wound
microenvironment (Merino et al., 2015; Liu et al, 2019). With
the advancement of biomaterials research, responsive hydrogels,
also known as smart hydrogels, have become a focal point of study
(Liand Su, 2018). Responsive peptide hydrogels, composed of short-
chain amino acids, self-assemble into bioactive nanostructures
through non-covalent interactions, such as hydrogen bonding
and m-m stacking (Zhou et al, 2024). Their controllable self-
assembly properties and significant bioactivity enable them to
dynamically respond to key changes in the chronic wound
pH, ROS, and
activity—thereby aligning with the specific pathophysiology of
chronic wounds (Sheehan et al., 2021). Consequently, responsive

microenvironment—such  as enzymatic

peptide hydrogels, through precise matching with the wound
microenvironment, can promote the healing of chronic wounds
while preventing prolonged inflammation and tissue damage. As
hydrogel materials continue to evolve, they are poised to
demonstrate broader application potential in the treatment of
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chronic wounds (Tao et al., 2017; Huo et al., 2023; Bera et al., 2019).
Beyond their significant advantages in chronic wound healing, this
class of hydrogels demonstrates broad application prospects in
various disease areas. In cancer therapy, pH- or MMP-responsive
peptide hydrogels can target the tumor microenvironment to enable
localized release of anticancer drugs enhancing therapeutic efficacy
while reducing systemic toxicity. For instance, hydrogels containing
thioether or boronic ester bonds can trigger drug release in tumors
with ROS overexpression and have also been utilized for tumor
imaging (Zha et al,, 2021). In the context of central nervous system
diseases, MMP-responsive hydrogels have been applied for
neuroprotection or neuroregeneration after stroke, releasing
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neurotrophic factors in response to the local inflammatory
microenvironment. Furthermore, these hydrogels have shown
important progress in bone and cartilage repair (Li et al., 2022;
Zhang et al., 2024a; Ren et al., 2020), cardiovascular diseases (Yang
et al, 2022), and inflammatory skin diseases (Noddeland et al.,
2023). Microenvironment-responsive peptide hydrogels, with their
high biocompatibility, programmable smart-response mechanisms,
and multifunctional integration capabilities, are gradually emerging
as a promising platform technology for precision therapy and tissue
engineering in a variety of diseases.

Given the pivotal role of the wound microenvironment in
healing outcomes and the unique potential of hydrogels to
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modulate it, this review aims to provide a timely and comprehensive
analysis of microenvironment-responsive peptide hydrogels, a class
of smart materials designed to interact dynamically with
pathological cues. We will systematically elucidate the molecular
mechanisms and design principles of hydrogels engineered to
respond to key biochemical stimuli in the wound bed. The
review will focus specifically on pH-responsive, ROS-scavenging,
MMP-degradable, and Glu -sensitive peptide hydrogels, examining
their capabilities in promoting targeted drug delivery and tissue
regeneration. Furthermore, we will explore the emerging frontier of
hydrogels responsive to physical stimuli, such as temperature and
light, and discuss the current challenges and future directions for
translating these advanced biomaterials into clinical practice.

2 Microenvironmentalgl stimuli-
responsive peptide hydrogels

2.1 pH-responsive peptide hydrogels

The application of pH-responsive hydrogels in wound healing is
particularly significant, as the pH of wound exudates can vary
considerably depending on factors such as wound type, healing
stage, and infection. Based on this characteristic, pH-responsive
hydrogels are expected to become an ideal choice for wound
dressings. The pH-responsive behavior of hydrogels primarily
arises from the ionizable side groups in the polymer backbone
(Gupta et al., 2002). When exposed to an appropriate pH and
ionic strength, these side groups ionize and accumulate charges,
generating electrostatic repulsion that causes the hydrogel to swell or
deswell (Sharpe et al., 2014; Peppas et al., 2000). Depending on the
ionization and swelling behaviors, pH-responsive hydrogels can be
categorized into two types. Anionic hydrogels remain collapsed at
low pH, whereas an increase in pH leads to ionization-induced
electrostatic repulsion and water absorption, causing the hydrogel to
swell. Conversely, cationic hydrogels exhibit the opposite behavior.
Common monomers used to introduce pH responsiveness include
acrylic acid (AA), methacrylic acid (MAA), and acrylamide (AAm)
(Koetting et al., 2015). Natural polymers such as albumin, gelatin
(Welz and Ofner, 1992), alginate, and chitosan also demonstrate
pH responsiveness. For example, albumin and gelatin can form
stable helical structures under specific pH and temperature
conditions. These structures act as crosslinking points, thereby
modulating the hydrogel’s swelling behavior. Chitosan and
alginate undergo physical crosslinking through charge or
hydrophobic interactions, expanding upon ionization, leading to
charge accumulation and electrostatic repulsion.

Natural
biodegradability, making them particularly suitable for in vivo

pH-responsive  polymers  possess  excellent
applications, especially in drug delivery and wound healing
(Schmaljohann, 2006). In addition to these polymers, reversible
chemical bonds such as Schiff bases can also be used to modulate the
structure and physicochemical properties of hydrogels (Guo et al.,
2022; Sacks et al, 2018). By combining antimicrobial peptides
(AMPs) with pH-responsive hydrogels, drugs can be precisely
released in response to changes in wound pH, enhancing
studies  have

polycaprolactone

antimicrobial Some

efficacy.
tetrapeptides

incorporated

antimicrobial into (PCL)
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embedded in sodium alginate (SA) and N-carboxymethyl
chitosan (NCMC) hydrogels, using NCMC to control the release
in the neutral/alkaline liquid environment of wounds (Miranda
et al., 2023). For diabetic wound infections, one study developed
a bifunctional pH-sensitive hydrogel based on the cationic
antimicrobial peptide DP7 and oxidized dextran. This hydrogel
and AMPs
synergistic antimicrobial effects, demonstrating substantial
therapeutic potentiall (Zhang et al., 2023¢; Wu et al,, 2022b).

In addition, many pH-responsive hydrogels utilize chitosan and

can simultaneously load antibiotics to exert

its derivatives, acrylic acid and its derivatives, as well as
carboxymethyl agarose derivatives as substrates. These materials
are often combined with multifunctional components such as
chondroitin sulfate, tannic acid, metal ions, and plant extracts
(e.g., quercetin), and have been widely applied in areas such as
controlling wound infection and promoting healing (Wang et al.,
2022a; Haidari et al., 2022; Wu et al., 2022a; Resina et al., 2023).

2.2 ROS-responsive peptide hydrogels

ROS are highly reactive ions generated in the human body as
byproducts of aerobic respiration, including hydrogen peroxide,
superoxide anions, and hydroxyl radicals (Tyagi et al, 2021).
While ROS play an essential role in wound healing, their dual
nature cannot be overlooked. In the early stages of healing, ROS
contribute to infection control by eliminating pathogens. In the later
stages, low concentrations of ROS stimulate the polarization of
M2 macrophages, promoting tissue repair. However, excessive
ROS levels can lead to prolonged inflammation and degradation
of the extracellular matrix (ECM). This imbalance drives the wound
into a chronic, non-healing state (Dunnill et al., 2017). Currently,
ROS-responsive hydrogels can be broadly classified into two types.
The first type involves the degradation of hydrogels in oxidative
environments, altering their properties (e.g., drug release or swelling
characteristics). Common responsive units in these systems include
thioketal bonds, diselenide bonds, and boronate ester bonds. The
second type of ROS-responsive hydrogels changes the solubility of
the material (from hydrophobic to hydrophilic) in response to ROS
oxidation, achieving the desired effect. These hydrogels typically
contain responsive units such as thioether bonds and ferrocene
(Saravanakumar et al., 2017).

Among these, boronate ester bonds are the most widely applied.
Under the presence of ROS, boronate ester bonds undergo oxidative
cleavage, releasing active components and eliminating ROS. They
exhibit temperature and pH responsiveness and are commonly
found in multi-responsive hydrogel systems. As proposed by
Pengfei Wang in his study, the phenylboronic acid moiety is one
of the most frequently used ROS-triggered groups for designing
ROS-responsive prodrugs. It enhances the lipophilicity of the drug,
thereby increasing its therapeutic efficacy and providing more
sustained drug activity for wound healing (Wang et al., 2021).
Despite the tremendous potential of ROS-responsive materials in
biomedicine, challenges remain in their application. These include
uncertainties regarding their behavior under different physiological
conditions, degradation products, and the lack of extensive in vitro
toxicity and in vivo studies (Yao et al, 2019). Overall, ROS-
responsive biomaterials offer promising strategies for biomedical
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treatments but require further investigation to address these
challenges.

2.3 MMP-responsive peptide hydrogel

The activity and expression of MMPs in the human body are
strictly regulated under physiological conditions by tissue inhibitors
of metalloproteinases (TIMPs), cytokines, hormones, and cell-to-
cell interactions. In healthy tissues, MMP levels are low and their
activity is limited. However, in pathological conditions such as
inflammatory skin diseases and chronic wounds, MMP activity is
significantly upregulated (Noddeland et al., 2023). The mechanism
of MMP-responsive hydrogel systems is primarily based on proteins
or peptides that can be hydrolyzed by MMPs. When exposed to an
environment with sufficient MMP concentrations, these peptides act
as substrates, undergoing catalytic reactions that result in the
degradation of the hydrogel or drug-loaded microparticles, thus
releasing the encapsulated drug (Lei and Segura, 2009). Currently,
two common approaches for introducing MMP-responsive
behavior into hydrogels are: first, using gelatin as an MMP
substrate (which can serve as a matrix or as a carrier for
encapsulating drugs or RNA); and second, incorporating MMP-
sensitive peptide side chains into the hydrogel matrix or as
crosslinking agents.

Gelatin, a natural protein derived from animal connective
tissues, is a recognized MMP substrate and is widely used in
hydrogel matrices (Fan et al., 2022), microspheres (Cai et al,
2022; Liu et al, 2018; Shao et al, 2023), and nanoparticles
(Zhang et al, 2023b). These applications span across wound
dressings, tissue regeneration, and vascular reconstruction. For
instance, For instance, Ribeiro et al. developed an injectable
gelatin methacryloyl (GelMA) hydrogel modified with nanotubes
loaded with chlorhexidine (CHX). This system serves as an
injectable drug delivery platform for clinical infection ablation
and has demonstrated excellent antimicrobial efficacy (Ribeiro
2020). Gelatin
biocompatibility, and its applications include hydrogel matrices,
RNA,
nanoparticles as drug carriers. However, there are still limitations

et al, offers outstanding stability and

microspheres encapsulating drugs or and gelatin
in the development of gelatin, particularly in the field of hydrogel
matrices, where research remains insufficient and its application
scope is relatively narrow. Future studies may explore new drug
delivery methods to expand its potential.

Additionally, MMP-sensitive peptides are commonly used to
introduce MMP-responsive behavior. Typical applications include
using MMP-sensitive peptides as crosslinking agents, as modifiers of
the hydrogel matrix, or directly within the matrix itself. Among
these, the most common approach is to use MMP-sensitive peptides
as crosslinkers to form responsive hydrogel matrices, which can then
be used to load drugs or other components. This approach has been
combined with materials such as polyethylene glycol (PEG),
hyaluronic acid, collagen, and functionalized chitosan, and has
been widely applied in promoting wound healing. For example,
Daviran et al. designed a hydrogel loaded with human mesenchymal
stem cells (hMSC) related to wound healing, where the hydrogel was
chemically crosslinked from PEG and MMP-degradable peptide
sequences, enabling the release of hMSCs to promote wound healing
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(Daviran et al., 2020). Thai et al. developed three-dimensional cell
spheroids capable of secreting elevated levels of endogenous
nutrients, a key factor for promoting cell proliferation. They used
an MMP-sensitive crosslinker to form PEG hydrogels as a scaffold
for the cell aggregates, and the hydrogel degraded progressively as
the secreted MMPs increased, perfectly matching the requirements
for enhanced cellular vitality (Thai et al., 2023). This indicates that
responsive peptide hydrogels can achieve dynamic responses and
restoration of

precise matching during the healing and

chronic wounds.

2.4 Glu-responsive peptide hydrogels

The high levels of Glu in the wound microenvironment,
particularly in diabetic patients, are a major cause of wound
infection and a significant obstacle to wound healing. In this
context, Glu-responsive hydrogels, used as wound dressings, can
regulate drug release based on the hyperglycemic environment
(Chen et al, 2023). These hydrogels achieve responsiveness
primarily through three mechanisms: the phenylboronic acid
(PBA) dynamic covalent bond system, enzyme-catalyzed cascade
reaction system, and lectin-specific binding system.

In the PBA dynamic covalent bond system, PBA forms a Glu-
responsive hydrogel by interacting with hyaluronic acid
methacrylate (HAMA) (Xu et al., 2022). Upon reaction with Glu,
the hydroxyl groups of PBA form reversible boronic ester bonds,
which leads to the release of the loaded drug. Additionally, these
hydrogels exhibit antioxidant properties (Xu et al., 2022), capable of
scavenging ROS and protecting cells from oxidative stress-induced
damage. Studies (Xu et al,, 2022) have demonstrated that when
combined with natural polyphenol catechins (Gao et al., 2021; Chen
et al, 2020), the hydrogel promotes angiogenesis (increased
expression of VEGF and CD3,;) and reduces inflammation (lower
IL-6 levels and increased IL-10 levels), thereby accelerating wound
healing (Xu et al., 2022).

In the enzyme-catalyzed cascade reaction system, glucose
oxidase (GOy) is
environment of the wound. GOy catalyzes the conversion of Glu

employed to modulate the high- Glu

to gluconic acid and hydrogen peroxide (H,0,) (Sacks et al., 2018),
triggering a cascade reaction: gluconic acid lowers the local pH,
which breaks pH-sensitive bonds (such as imine bonds), while H,O,
activates ROS-responsive elements (such as thioether bonds). To
enhance the functionality of GOx, which inherently lacks additional
biological activities, the team led by Yuheng Liao developed Au-
FePS3 nanosheets by immobilizing GOx-loaded gold nanoparticles
onto FePS3 nanosheets.This system not only preserves the cascade
reaction characteristics but also exhibits antibacterial properties,
promotes oxygenation, and stimulates endothelial cell proliferation
(Jovin et al.,, 2015; Kennedy et al., 2016; Kidwell et al., 2013; Mocco
et al.,, 2016).

The lectin-specific binding system works by crosslinking lectins
(such as Concanavalin A, ConA) with polymeric sugar chains to
form a network (Goldstein and Hayes, 1978; Gabor et al., 2004).
Under high Glu conditions, Glu competes with lectins for binding,
causing the hydrogel network to dissociate and release the loaded
drug. ConA, known for its high affinity and reversible binding, is an
ideal choice as it can bind with Glu to induce hydrogel swelling and
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regulate the high-Glu environment of the wound (Wang et al., 2019;
Brownlee and Cerami, 1979; Seo Young et al., 1984). However, the
volatility of ConA necessitates its effective immobilization. The team
led by Zhang et al. (2006) successfully stabilized ConA by chemical
modifications (carbodiimide, epoxy ring-opening reactions, and
Schiff base reactions), thereby enhancing its stability (Pal
et al.,, 2025).

In summary, Glu-responsive hydrogels precisely regulate drug
release through multiple mechanisms, addressing the challenges of a
hyperglycemic environment while also exhibiting antioxidant,
antibacterial, and wound-healing-promoting functions. These
hydrogels represent an emerging and effective therapeutic
strategy for wound treatment in diabetic patients and those with
other high-Glu conditions.

2.5 Other stimuli-responsive
peptide hydrogels

In recent years, responsive peptide hydrogels designed for
chronic wound repair have experienced rapid growth, particularly
in the past 3-5 years. In addition to traditional peptide hydrogels
that respond to changes in the wound microenvironment, such as
pH, ROS, MMPs, and Glu, hydrogels responsive to other stimuli,
such as temperature (Chi et al., 2020; Pal et al., 2020; Zhang et al.,
2021; Chen et al., 2022), ultrasound (Chen et al., 2022), electric
fields, pressure, magnetic fields (Wang et al., 2022b), infrared (IR),
ultraviolet (UV), and photothermal effects, have also been developed
(Su et al, 2023). Temperature, a common stimulus, can be
categorized into low-temperature and high-temperature stimuli.
Under low-temperature conditions, hydrogels exhibit positive
responsiveness (Upper Critical Solution Temperature, UCST),
while  high-temperature  stimulation results in negative
responsiveness (Lower Critical Solution Temperature, LCST)
(Dzuricky et al., 2018). Temperature fluctuations induce changes
in the hydrogel state and mechanical properties (Chatterjee and Hui,
2021), with 37 °C, the body’s constant temperature, serving as a key
control point for many temperature-responsive hydrogels
(Chatterjee  and ~ Hui,  2021).  For  example, poly
(N-isopropylacrylamide) (PNIPAM) hydrogels exhibit an LCST
near body temperature, at which point the hydrogel undergoes
swelling and contraction (Cheng et al., 2018). The Fang team has
leveraged temperature-responsive hydrogels for targeted cell
therapy, thereby promoting homeostasis and repair (Fang et al.,
2018). Consequently, temperature-responsive hydrogels with an
LCST close to or below 37 °C hold great potential for
applications in wound healing, providing a precise trigger
mechanism without the need for external interventions (Zhang
et al., 2024b).

Light
controllable, and energy-adjustable stimulus
biomedical applications (Zhou et al, 2024).

stimulation is a non-invasive, spatiotemporally
widely used in
Light-responsive
peptide hydrogels incorporate photosensitive groups, such as
azobenzene (Zhou et al., 2024) or coumarin, into the peptide
structure. Upon exposure to specific wavelengths (UV, visible, or
near-infrared light), these hydrogels undergo photochemical
reactions that alter their molecular conformation, hydrophilicity/

hydrophobicity, and crosslinking density, thereby controlling drug
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release and modulating the microenvironment. The photothermal
effect enables the hydrogel to generate localized heat, further
regulating wound healing (Priyadarshi et al, 2025). In wound
healing, light-responsive hydrogels offer precise spatiotemporal
control (Zhou et al, 2024), enabling the targeted initiation of
drug release or modulation of cellular behavior in specific
regions, minimizing the impact on healthy tissues. This capability
overcomes the limitations of temperature-based stimuli and
supports more frequent intervention (Avila-Salas and Duran-
Lara, 2020). Moreover, near-infrared (NIR) light, with its strong
tissue penetration and low phototoxicity (Yan et al, 2016),
combined with photothermal conversion materials (e.g., gold
nanoparticles (Fatima et al., 2024), polydopamine nanoparticles,
carbon-based nanomaterials), can effectively target deep wounds,
such as deep burns or ulcers, through non-invasive remote control.
Therefore, light-responsive hydrogels, with their precise control and
non-invasive nature, offer new solutions for precise wound healing
interventions, particularly in deep wound treatment and
personalized medicine.

In addition to light-responsive hydrogels, hydrogels responsive
to ultrasound, electric fields, magnetic fields, and pressure offer
unique advantages and have become important components in the
intelligent hydrogel toolbox. Ultrasound-responsive hydrogels
utilize ultrasonic energy by incorporating sonosensitizers or
microbubbles into the peptide network (Nele et al., 2020; Sun
et al., 2022; Sirsi and Borden, 2014), producing cavitation effects
(Coussios and Roy, 2008), localized heating, or ROS generation
upon ultrasound irradiation, thereby regulating hydrogel swelling or
drug release. The non-invasive nature of ultrasound, combined with
its excellent tissue penetration, makes it a key tool for deep wound
treatment, particularly for infection sites or tissue regeneration
promotion (Sirsi and Borden, 2014; Chandan et al, 2020).
Electric-responsive  hydrogels, by incorporating conductive
components (e.g., polypyrrole (Carayon et al., 2020), polyaniline,
nanomaterials (Kolosnjaj-Tabi et al., 2019) or utilizing the inherent
ion conductivity of peptides (Carayon et al., 2020), respond to
external electric field stimulation by exhibiting rapid swelling,
deswelling, osmotic pressure changes, or drug release (Carayon
et al., 2020). This immediate, adjustable response is suitable for
wound treatments requiring precise modulation of the
electrophysiological microenvironment (Kolosnjaj-Tabi et al,
2019).

superparamagnetic nanoparticles, such as Fe;O,4 (Lee et al., 2019;

Magnetic-responsive hydrogels incorporate
Luo et al, 2010). Under an alternating magnetic field, these
nanoparticles generate localized heat via the magnetothermal
effect (Rittikulsittichai et al., 2016; Guo et al., 2005) or induce
hydrogel deformation and directional migration through
magnetic forces.Magnetic-responsive hydrogels are suitable for
deep tissue interventions, effectively promoting angiogenesis or
simulating the dynamic mechanical signals of the extracellular
2023).

through specialized network structures or inherent swelling

matrix (Shou et al, Pressure-responsive hydrogels,
properties (He et al, 2023), respond to mechanical stress or
changes in fluid pressure (Fang et al, 2020). During wound
healing, pressure-responsive hydrogels can sense and adapt to
dynamic changes in the wound site, providing adaptive
management, reducing dressing change frequency, and improving
patient comfort (Ning et al., 2025). A representative example is a
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multi-responsive system developed by Supparesk et al., comprising
silicone-coated magnetic nanoparticles assembled with gold
nanorods (Aurods). This hybrid system responds to temperature,
infrared light, and magnetic fields, producing significant thermal
and optical effects for applications like remote-controlled drug
delivery and thermotherapy (Rittikulsittichai et al., 2016). These
multi-responsive hybrid particles show considerable potential in
remote-controlled drug delivery and thermotherapy.

In summary, ultrasound, electric, magnetic, and pressure-
peptide  hydrogels
hydrogels, each showcasing distinct advantages. Ultrasound

responsive complement light-responsive

responsiveness is suitable for deep penetration, electric

responsiveness provides precise electrophysiological control,

force/thermal
offers  dynamic

magnetic responsiveness enables non-contact

manipulation, and pressure responsiveness
adaptability. These multimodal hydrogels collectively advance the
progress of intelligent wound management, providing more
efficient, personalized treatment options for wound healing. In
the future, they will demonstrate greater potential in the
biomedical field, especially in the precise intervention of

wound healing.

3 Conclusion and outlook

Responsive peptide hydrogels have demonstrated significant
potential in the field of wound healing. By modulating the
these
materials can precisely respond to changes in the wound

physicochemical properties of hydrogels, intelligent
microenvironment, such as pH, ROS, MMPs, Glu, etc., enabling
dynamic control of drug release, promoting cellular repair,
inhibiting infection, and accelerating healing. As various
responsive mechanisms, such as light, temperature, ultrasound,
electric fields, and magnetic fields, are gradually integrated into
these systems, the applications of responsive hydrogels in deep
wound treatment and chronic wound repair are expanding.
Furthermore, the role of responsive peptide hydrogels is steadily
increasing in the treatment of inflammatory skin diseases,
intradermal drug delivery, pulmonary delivery, bone and cartilage
repair, prevention of tendon adhesion, cancer therapy, and
cardiovascular diseases.

However, the application of this technology still faces certain
further

biocompatibility, biodegradability, and the precision of stimulus-

challenges, including optimization of hydrogel

response mechanisms. Future research will focus on

multifunctional, intelligent, and tunable hydrogel systems, as well
as their integration with modern therapeutic technologies, to achieve
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