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The ACL rupture is a prevalent and debilitating joint injury that has garnered
significant clinical and scientific interest. Surgical reconstruction is often
necessary for ACL rupture, yet numerous clinical cases indicate that the
outcomes of such procedures are frequently suboptimal. Research has
highlighted that the treatment of ACL rupture is particularly challenging due
to factors such as the inflammatory response, the formation of vascular scar
tissue, and the slow healing of tendon-bone interface attachment points. These
complications result in poor integration of tendon grafts within bone tunnels.
Recent advancements in stem cell research have introduced new possibilities for
ACL rupture treatment. However, stem cell therapy is not without its limitations,
including safety concerns such as the risk of aberrant differentiation leading to
oncogenesis. Exosomes, a type of extracellular vesicle secreted by stem cells,
have been found to modulate immune responses, promote neovascularization,
influence scar formation, and regulate bone homeostasis in vivo. This review
seeks to systematically evaluate the therapeutic potential of stem cell-derived
exosomes in the context of ACL rupture repair.

KEYWORDS
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Highlights

o ACL Rupture Challenge: Anterior cruciate ligament (ACL) ruptures are common
knee injuries that often require surgical intervention, but outcomes may be suboptimal
due to various complications.

 Complications of ACL Repair: Factors such as inflammatory responses, vascular scar
tissue formation, and delayed tendon-bone healing hinder effective integration of
grafts in surgical repairs.
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o Stem Cell Research Advances: Recent advancements in stem
cell therapies present new potential for improving ACL repair;
however, concerns about safety and aberrant cell
differentiation persist.

o Exosomes in Tissue Repair: Stem cell-derived exosomes can
modulate immune responses, promote neovascularization,
and regulate scar formation, offering promising therapeutic
avenues for ACL repair.

o Systematic Evaluation: This review critically assesses the
therapeutic potential of exosomes in enhancing ACL
rupture repair, highlighting their role in tissue regeneration

and functional recovery.

Introduction

The ACL is a crucial anatomical structure that connects the
femur to the tibia, serving to stabilize and control the anterior-
posterior movement of the knee joint. With the increasing
popularity of sports and physical fitness activities, the risk of
ACL injury has steadily risen. ACL rupture typically results from
traumatic hyperextension, direct impact, or unnatural movements
that exert excessive stress on the ligament, leading to its complete
(Tian et al, 2023).
200,000 patients suffer ACL injuries, making it one of the most

rupture Annually, approximately
prevalent ligament injuries in musculoskeletal disorders. Clinically,
ACL

predominant treatment approach (Zou et al, 2023; Silvers-

reconstruction via surgical intervention remains the
Granelli et al, 2017). This procedure often employs knee
arthroscopy to insert a graft that replaces the damaged ligament.
However, despite surgical advancements, the re-injury rate remains
concerning, with an estimated 11.7% of ACL reconstructions failing
and up to 94% of tendon graft reconstructions leading to re-tearing
(Chen H. et al., 2021; Peng et al., 2022; Wang et al., 2021).
Successful graft healing, particularly through the regeneration of
Sharpey fibers and proper integration into the bone marrow tract, is
essential for effective ACL repair. The tendon-bone interface, where
the ligament attaches to the bone, plays a critical role in this healing
process (Lipner et al,, 2014). At this interface, ligament fibers transition
gradually into bone tissue, intertwining with the connective tissue on
the bone’s surface. This complex attachment site comprises four
uncalcified
fibrocartilage, calcified fibrocartilage, and bone tissue (Lipner et al.,

distinct  histological ~ zones:  organized tendon,
2014). However, the transition from the soft ligament to the hard bone
presents challenges, as impaired neovascularization, excessive collagen
fibrosis, and inflammatory responses hinder the formation of
fibrocartilage at the tendon-bone junction. Consequently, these
factors contribute to a heightened risk of ACL re-tearing following
surgical reconstruction, driven by the fragility of the healed ligament.
Given these limitations, there is a pressing clinical need for improved
adjuvant therapies to mitigate the risk of ACL re-injury and enhance
long-term outcomes for patients.

With the rapid advancement of bioengineering, mesenchymal
stem cell (MSC) adjuvant therapy has emerged as a promising
strategy for treating ACL injuries. MSCs, sourced from a wide
range of tissues, offer several advantages including low cost,
multipotent differentiation capacity, and immunomodulatory

potential, positioning them as highly prospective candidates for
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ACL repair (Chen et al., 2023). Despite these benefits, MSC therapy
also encounters significant limitations and challenges. Studies have
reported that MSCs may exhibit immunogenicity, tumorigenic
potential, and ectopic differentiation, raising critical safety
concerns for their clinical application (Gleeson et al, 2015).
Consequently, decellularization therapy has gained traction as a
research focus within bioengineering.

Beyond the limitations of cell-based therapies, the biological
environment of the injured ACL itself presents a series of
interconnected hurdles that impede successful regeneration.
These include: 1) a potent early inflammatory response that
creates a catabolic milieu, disrupting the healing process (Zhang
et al, 2022a); 2) the challenge of orchestrating controlled
neovascularization to support repair without promoting fibrosis
(Komro et al, 2020); 3) the inherent propensity for the
formation of biomechanically inferior fibrotic scar tissue at the
tendon-bone interface, rather than a regenerated, graded
fibrocartilage (Zou et al, 2023); and 4) the need to provide
specific osteochondral cues within the bone tunnel to guide the
complex process of graft integration. Overcoming this multifaceted
biological problem requires a therapeutic strategy capable of multi-
targeted regulation (Smigielski et al., 2016).

Stem cell-derived exosomes—nanoscale extracellular vesicles
(30-150 nm) loaded with bioactive molecules—are formed
through the inward budding of the plasma membrane, leading to
early endosomes that mature into multivesicular bodies (MVBs) via
ESCRT-dependent (Kowal et al, 2014) or ESCRT-independent
pathways involving tetraspanins and ceramide (Babst, 2011).
During maturation, intraluminal vesicles encapsulate functional
biomolecules from the parent cell. MVBs are transported to the
plasma membrane by Rab GTPases (e.g., Rab27a/b) (Henne et al.,
2011) and release exosomes via SNARE-mediated fusion (e.g.,
VAMP?) (Cui et al., 2022).

Exosomes offer several advantages over direct stem cell
transplantation. Firstly, they circumvent many of the technical and
safety issues associated with cellular therapies, such as challenges
related to cell viability, ectopic differentiation, and immune rejection
(Trounson and McDonald, 2015). Secondly, exosomes can be
employed as drug carriers, facilitating targeted delivery through
various administration routes, including direct injection,
intravenous infusion, aerosols, and topical application, thus
enabling customization based on the specific therapeutic goal.
Lastly, exosomes exert multifaceted therapeutic effects by releasing
vesicles loaded with biologically active factors. These factors promote
cellular proliferation, attenuate inflammation, stimulate angiogenesis,
and ultimately contribute to tissue repair and regeneration.

Given these attributes, exosome-based therapies derived from
stem cells hold considerable promise in the treatment of ACL
ruptures by directly addressing these biological challenges. As
natural carriers of bioactive molecules, exosomes can be
engineered to deliver a precise combination of anti-inflammatory
miRNAs (to quench early synovitis), pro-angiogenic and anti-
angiogenic factors (to fine-tune vasculature), anti-fibrotic signals
(to inhibit scar formation), and osteochondral morphogens (to
direct tissue differentiation). This review aims to explore the
current clinical challenges and limitations of ACL injury
treatments, evaluate the potential of stem cell and exosome-based

therapies in tissue engineering, and elucidate the underlying
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FIGURE 1
Exosome structure and mechanisms in tissue repair.

mechanisms through which exosomes contribute to ACL repair and
regeneration (Figure 1).

Anatomy of the ACL

The ACL is a pivotal structure within the knee joint, serving
primarily to stabilize the knee and prevent anterior translation of the
tibia relative to the femur. Anatomically, the ACL originates from
the posterior aspect of the medial surface of the lateral femoral
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condyle and courses obliquely downward and anteriorly to insert on
the anteromedial aspect of the tibial plateau. It is composed of two
primary bundles: the anteromedial (AM) bundle and the
posterolateral (PL) bundle. These bundles twist in a helical
configuration as they extend posteriorly, laterally, and superiorly,
terminating in a fan-shaped attachment on the posterior-superior
aspect of the medial surface of the lateral femoral condyle. The
femoral attachment site of the ACL covers an area approximately
20 mm by 10 mm at its maximal diameter, and the ligament itself
measures approximately 4 cm in length (ranging from 3.7 to 4.1 cm).
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TABLE 1 Summary of in vivo studies using stem cell-derived exosomes in various rat models.

10.3389/fbioe.2025.1691651

Exosome Administration Assays and Key findings Safety References
source regimen evaluations assessment
Rat TMJ-OA BMSC-exos 20 pg/joint (protein); days 1, = Elisa: NO, MMP13; WB: = MSC-exos promote No joint toxicity/ 27
model 3, 5 post-modeling s-GAG, Col2; HE: joint repair via foreign body reaction;
synovitis; macrophage adenosine/ AKT/ERK/ cell viability >90%;
M2 polarization AMPK signaling normal short-term
(CD206") in vitro physiology
Rat knee OA miR-140-5p- 100 pg/dose (protein); Behavior: Joint mobility, =~ hUSC-140-exos deliver = No excessive 47
model overexpressing Weekly x 4 weeks thermal pain threshold; = miR-140-5p to inflammation/rejection;
hUSC-Exos ELISA: IL-1B, TNF-a; downregulate VEGFA, | normal liver/kidney
WB: Col2, aggrecan; inhibit vascular function
Safranin-O invasion, protect
cartilage
Rat diabetic skin BMSC-exos FHE hydrogel +50 pL Wound closure rate, re- = FHE hydrogel exhibits No infection, allergy, or = 48
wound model exosomes (1 x 10° particles/ | epithelialization; HE: self-healing, tissue necrosis
mL); Applied immediately granulation tissue and injectability,
and every 3 days for 2 weeks = collagen; THC: CD31, antibacterial and pH-
a-SMA responsive exosome
release
Rat tendon defect = TDSC-exos 50 pg (protein); single CCK-8 and scratch TDSC-exos deliver p-HA scaffold 49
model implantation with assay: Proliferation/ miR-144-3p to enhance = biocompatible; cell
sustained-release scaffold migration; HE and tendon cell viability >95%; no
masson: Healing/ proliferation, migration, | adhesion/limitation
collagen; RT-qpcr/WB: | and early healing
miR-144-3p/ARID1A
Rat chronic KGN-pretreated 100 pg/mL, 50 uL/rat; days 1, | Safranin-O/fast green, KGN priming enhances | No hemorrhage, 50
rotator cuff tear BMSC-exos 7,14 post-op; SAH sustained | Col2 IHC: Cartilage; exosome chondrogenic calcification, or
release up to 96 h sirius red: collagen activity, promoting abnormal proliferation
maturity; RT-qPCR: cartilage regeneration
SOXO9, aggrecan, Col2al = and collagen maturation
Rat ACL Hypoxia-pretreated | Dose not specified; single Micro-CT: BV/TV; HE | Hypo-exos promote No hydrogel-related 51
reconstruction BMSC-exos injection + hydrogel and safranin-O/fast H-type vessel formation | edema, synovitis, or
model sustained release >14 days green: Healing interface; = via HIF-1a/miR-126, tumor-like lesions;
THC: CD31/EMCN; accelerating tendon- normal immunity
biomechanics: Load/ bone healing
stiffness
Rat ACL BMSC-exos 200 pg (total protein); single | Micro-CT: Tunnel BMSC-exos + cartilage | No rejection, foreign 73
reconstruction implantation during surgery =~ widening; HE and fragments activate body response, or
model masson: Collagen BMP7/Smad5 signaling, = fibrosis; normal joint
integration; IF: BMP7/  suppress tunnel function
Smad5 expression widening, enhance
integration

Each bundle contributes differently to knee stability depending on
the degree of knee flexion or extension.

Pathologic changes in ACL injuries

Pathologically, an ACL injury typically manifests as a partial or
complete tear of the ligament, resulting from either acute trauma or
repetitive mechanical stress. The injury leads to a disruption in the
ligament’s structural integrity, characterized by the tearing or
rupture of the collagen fiber meshwork that constitutes the
ligament. This disruption severs the connections between
collagen fibers, accompanied by local damage to fibroblasts and
extracellular matrix (ECM) components (Hasegawa et al., 2012).
Table 1 response to the injury, fibroblasts undergo apoptosis and
necrosis, while neutrophils, macrophages, and other inflammatory
cells rapidly accumulate at the site, releasing a cascade of
that exacerbate tissue

inflammatory  mediators damage.

Frontiers in Bioengineering and Biotechnology

Simultaneously, matrix metalloproteinases (MMPs) within the
ECM become activated, further degrading collagen and other
matrix components, thereby impeding the natural tissue
repair process.

In addition to cellular and matrix disruptions, vascular
permeability in the injured region increases, leading to plasma
leakage, cellular extravasation, and the formation of hematomas
and edema. In the initial stages of injury, this results in a pronounced
inflammatory response characterized by swelling, pain, and

hematoma formation.

Immune mechanisms of stem cell-
derived exosomes in vivo: effects of the
inflammatory response on ACL injury

The immune response to ACL injury is complex, with
inflammation occupying a central role. Inflammation constitutes

frontiersin.org
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the body’s non-specific defence mechanism against injury, aimed at
eliminating damaging factors and initiating tissue repair. Following
injury, pro-inflammatory cytokines such as TNF-a, IL-1, and IL-6
are released, activating signalling pathways including NF-kB and
MAPK. This promotes the expression of inflammatory genes and
induces macrophage polarisation towards the MI phenotype.
M1 macrophages play a pivotal role in early repair processes,
including the clearance of tissue debris and the promoetion of
collagen deposition (Wynn and Vannella, 2016).

Berberine (BBR) has demonstrated anti-inflammatory effects in
a rat model of adjuvant-induced arthritis (animal study, preclinical
evidence). In this study, BBR was administered orally at doses of 40,
80, and 160 mg/kg for 14 days. It significantly reduced paw swelling,
inflammatory cell infiltration, and joint destruction, while
modulating macrophage polarization from M1 to M2 phenotype
by downregulating M1 markers (iNOS, TNF-q, IL-1B, IL-6) and
upregulating M2 markers (Argl, IL-10, TGF-f1). These effects were
mediated through the AMPK/NF-kB pathway, as BBR enhanced
AMPK activity and suppressed phosphorylation of p65 and IkBa, as
well as COX-2 expression (Zhou et al., 2019). Further in vitro studies
confirm BBR suppresses galectin-3 expression via the AMPK/NF-kB
pathway in macrophages, thereby attenuating activation (Pei et al.,
2019). Moreover, in a randomized, double-blind clinical trial of RA
patients, the JAK inhibitor tofacitinib reduced synovial levels of
MMP-1, MMP-3, and multiple chemokines, an effect associated
with inhibition of STAT1/STAT3 phosphorylation
et al., 2015).

However, as tendon injuries progress into the healing phase, an

(Boyle

excessive inflammatory response can be detrimental, leading to
tissue fibrosis, scarring, and delayed healing. Thus, a balanced
anti-inflammatory response is crucial during this phase to ensure
optimal tissue repair (Kim et al., 2017; Weinfeld, 2014). Thus, timely
regulation of inflammation during the healing phase is critical. In a
rat tendon injury model, aspirin mitigated inflammation and fibrosis
by inhibiting the JNK/STAT-3 signalling pathway, thereby reducing
the risk of re-rupture (Wang Y. et al., 2019). Further studies indicate
that modulating pathways such as PTEN/PI3K/AKT and MAPK can
alleviate inflammation, improve biomechanical properties, and
promote tendon healing (Wang Y. et al., 2019).

Anti-inflammatory mechanisms of stem
cell-derived exosomes

Exosomes play a significant role in regulating the body’s
inflammatory response by encapsulating and delivering anti-
inflammatory molecules and signaling proteins. These EVs
modulate the amplitude and duration of inflammation through
various mechanisms. Zhang et al. provided preclinical evidence
from a rat TMJ-OA model and in vitro chondrocyte cultures,
demonstrating that MSC exosomes promoted joint repair by
activating the adenosine/AKT/ERK/AMPK signaling axis. This
mechanism counteracted IL-1B-induced damage by enhancing
s-GAG synthesis and inhibiting the production of nitric oxide
and MMP13 (Zhang S. et al,, 2019). Inhibition of these pathways
via AKT or ERK phosphorylation inhibitors reduced exosome-
mediated cell proliferation and migration. This underscores the
crucial role of exosome CD73 in mediating these effects, as
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demonstrated by CD73 inhibitor AMPCP and adenosine receptor
antagonist theophylline (Zhang S. et al., 2018).

In addition to their effects on joint repair, MSC exosomes
modulate macrophage polarization, shifting macrophages from
the pro-inflammatory M1 phenotype to the anti-inflammatory
M2 phenotype. Zhao et al. provided preclinical evidence from a
murine model of myocardial ischemia/reperfusion and in vitro
studies, demonstrating that MSC-derived exosomes (MSC-Exo)
polarized macrophages via the delivery of miR-182, which
inhibited TLR4 expression to promote M2 polarization and
reduce inflammation (Zhao et al., 2019).

Exosomes also exert direct effects on T cells and B cells,
contributing to their immunomodulatory potential. T-cells and
B-cells play a synergistic role in the anti-inflammatory process
through interaction and information exchange: T-cells direct
B-cells to differentiate and produce specific antibodies by
secreting cytokines, while B-cells activate T-cells through antigen
presentation, which together can achieve effective clearance of
pathogens and precise regulation of inflammatory responses,
ensuring that the immune response is both efficient and does not
cause excessive damage to the host tissues. In vitro mechanistic
studies have shown that exosomes carrying active CD73 protein can
suppress T cell activity via the adenosineergic pathway, thereby
reducing inflammation (Kerkela et al., 2016). Preclinical studies in
murine aGVHD models and in vitro T cell cultures demonstrated
that BM-MSC-derived EVs inhibit CD3" T cell activation, an effect
attributed to their unique miRNA profile (e.g., miR-125a-3p) (Fujii
etal, 2018). Similarly, studies in a rat heart transplant model and co-
culture systems showed that exosomes from IDO-overexpressing
BMSCs (IDO-BMSCs) enhanced immunomodulation by increasing
Tregs, reducing CD8" T cells and pro-inflammatory cytokines, and
elevating anti-inflammatory cytokines like IL-10 (He et al., 2018; He
et al., 2020). Additionally, MSC-exosomes delivering miRNA-181a
were shown to regulate T cells, thereby reducing myocardial
ischemia-reperfusion (I/R)
effects (Wei et al., 2019).

Although much is known about the immunosuppressive effects

injury through anti-inflammatory

of exosomes on T cells, less is understood regarding their impact on
B cells. Evidence from in vitro co-culture studies using B cells from
healthy donors and plasma-derived exosomes indicates that
exosomes can increase the expression of checkpoint receptors
PD-1 and LAG3 on B cells, thereby inhibiting B cell function.
This effect was observed with exosomes from both healthy
individuals and patients, suggesting a natural suppressive role for
circulating exosomes (Schroeder et al., 2020).

While stem cell-derived exosomes offer great potential in
immunoregulation, they also present certain challenges. Research
in this field is complicated by the lack of standardized experimental
conditions and preparation methods, making it difficult to compare
results across studies. Future research needs to focus on
systematically studying exosomes from various sources and
identifying the specific mechanisms through which they regulate
inflammation. Although significant progress has been made in
understanding the signaling pathways involved, a more
comprehensive and detailed understanding of these pathways is
required. Additionally, further studies in in vivo models of
inflammation are needed to verify the therapeutic effects of

exosomes and advance their clinical applications.
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Role of targeted transport in the
treatment of acl rupture

Drug delivery methods, such as targeted carriers and controlled
release technologies, remain in the research phase, and their clinical
application faces significant challenges. The feasibility and efficacy
of these approaches require further exploration to determine their
potential in preventing ACL re-tear injury.

Stem cell-based drug delivery has emerged as a promising
approach in the field of tissue engineering. Due to their inherent
properties of migration and homing, stem cells can localize to
injured sites and facilitate targeted drug delivery. Following
injury, the SDF-1/CXCR4 pathway becomes activated, guiding
stem cells to the injury site. SDF-1 expression increases in
damaged tissues, creating a chemotactic gradient that attracts
circulating CD34 (+) progenitor cells to the injury site (Lau
et al, 2011). This mechanism is also supported by platelet-
derived SDEF-1, which
differentiation into endothelial progenitor cells, promoting tissue
repair (Stellos et al., 2008).

Stem cells not only migrate to injury sites but can also serve as

regulates stem cell adhesion and

drug carriers, providing sustained drug release over an extended
period. This reduces the frequency of drug administration and
enhances drug stability, bioavailability, and efficacy (Liu Z. et al,
2020). Preclinical studies in murine models of myocardial infarction
have demonstrated the potential of engineered cell-mimicking
systems. For instance, synthetic MSCs (synMSC) fabricated from
PLGA microparticles and MSC membranes promoted angiogenesis
and alleviated left ventricular remodeling (Luo et al, 2017).
Similarly,  platelet-inspired (PINC:s)
prostaglandin  E2-modified platelet membranes and cardiac

nanocells combine
stromal cell factors to target ischemic heart tissue, thereby
activating endogenous stem/progenitor cells and promoting
angiogenesis during myocardial ischemia/reperfusion (I/R) injury
(Su et al., 2019).

However, stem cell transplantation procedures carry inherent
risks, including surgical trauma, infection, bleeding, and
complications related to anesthesia. The long-term effects of stem
cells, such as tumor formation and tissue malformation, also remain
uncertain, along with potential interactions between stem cells and
drugs (Gleeson et al., 2015; Moll et al., 2022; Zhang et al., 2017).

Exosomes offer an alternative therapeutic strategy, with their
stable biological nanoparticle structure and ability to carry bioactive
molecules such as proteins and nucleic acids. Exosomes have shown
potential as drug delivery vehicles, offering enhanced targeting and
efficacy. Preclinical studies in tumor xenograft models have
demonstrated the efficacy of engineered nanovesicles for targeted
therapy. Zhang et al. reported that biofunctionalized liposome-like
nanovesicles (BLNs) showed superior antitumor efficacy over
clinical liposomal doxorubicin in a HER2-overexpressing mouse
model (Zhang P. et al, 2018). Similarly, Garofalo et al. used
bioluminescence imaging in nude mouse models to confirm that
exosomes loaded with oncolytic virus and paclitaxel could
specifically target tumors and enhance anti-tumor effects
(Garofalo et al., 2019).

Exosomes have also shown promise in tendon-bone injury
repair. For instance, Evidence from rotator cuff tear models—a

related tendon-bone injury—shows that purified exosome products
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(PEP) enhanced healing, suggesting potential applicability to ACL
repair (Ren et al, 2021; Han et al, 2022). In knee joint anti-
inflammatory therapy, human urine-derived stem cell exosomes
(hUSC-140-Exos)  exhibited of ECM
components, such as collagen II and aggrecan, while inhibiting

increased  secretion
apoptosis (Liu Y. et al., 2022). However, it must be explicitly stated
that these models provide only indirect evidence and conceptual
analogies for ACL repair, with their clinical translation readiness yet
to be validated in the ACL context.

Presently, the specific application of exosomes in ACL rupture
repair remains at the exploratory frontier, with their mechanisms of
action far from elucidated. Future research must transcend analogies
derived from other tissues, committing to generating data from the
ACL itself to unlock its true potential for targeted therapy.

Extended-release exosome loading

In the field of modern medicine, the development of drug
delivery with
exosome-based systems gaining attention for their potential in

systems has seen significant advancements,
both targeted and sustained drug release. Exosomes, as biological
nanoparticles, offer a unique mechanism for the storage and
controlled release of therapeutic agents, enabling prolonged
therapeutic effects that hold promise for disease treatment.

A particularly promising innovation in this area involves the
combination of exosomes with materials like hydrogels to enhance
their sustained release capabilities. For example, FHE hydrogels
demonstrate multifunctional properties, including rapid self-
healing, injectable shear-thinning behavior, efficient antibacterial
activity, and bioactive exosome release. Wang C. et al. (2019)
demonstrated that FHE@exo hydrogels significantly improved the
healing of diabetic full-thickness skin wounds. The study showed
that FHE@exo hydrogels outperformed both exosomes and FHE
hydrogels used individually, indicating that the sustained release of
exosomes in combination with hydrogels can synergistically
promote wound healing in diabetic patients.

Similarly, sustained-release exosome systems have shown
potential in treating tendon injuries. For instance, Song et al.
employed a photopolymerized hyaluronic acid (p-HA) scaffold
equipped with tendon-derived stem cell exosomes (TDSC-Exos)
to treat tendon injuries in a rat model. This pHA-TDSC-Exos
scaffold served as a controlled release system for treating tendon
defects, with miR-144-3p in TDSC-Exos promoting tendon cell
proliferation and migration by targeting the AT-rich interactive
domain 1A (ARID1A) (Song et al., 2022).

In a rat model of chronic rotator cuff tear, a controlled
laboratory study (Level: preclinical) demonstrated that exosomes
derived from kartogenin-preconditioned MSCs (KGN-Exos), when
delivered via a sustained-release sodium alginate hydrogel,
significantly promoted tendon-to-bone healing. This was
evidenced by enhanced cartilage formation, collagen maturation,
and superior biomechanical properties compared to untreated
exosomes (Cai et al., 2023).

In the treatment of ACL injuries, extended-release exosomes
have also demonstrated potential benefits. Zhang T. et al. (2022)
showed that exosomes derived from hypoxically cultured bone
marrow mesenchymal stem cells (Hypo-Exos) enhanced graft
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osseointegration after ACL reconstruction. The study revealed that
Hypo-Exos, when adhered to hydrogels, provided continuous
release around the graft site for at least 14 days. Bone volume/
total volume ratio (BV/TV) measurements of the femur and tibial
bone tunnel areas, as well as grafted bone, indicated significantly
better outcomes in the Hypo-Exos group compared to the control
and normoxic exosome (Norm-Exos) groups (P < 0.05).

These findings highlight the critical role of exosome loading in
enhancing tissue repair, particularly in the context of ACL injuries.
However, further research is necessary to fully elucidate the
mechanisms underlying exosome-mediated healing in these
applications.

Stem cell-derived exosomes promote
neoangiogenesis

The application of exosomes in vascular regeneration holds
great promise, particularly in promoting wound healing and
addressing tendon injuries such as rotator cuff and ACL injuries.
Exosomes derived from pluripotent stem cells, specifically
mesenchymal stem cell exosomes (hiPSC-MSC-Exos), have been
shown to stimulate the formation of new blood vessels and
accelerate their maturation at wound sites (Zhang J. et al., 2015).

Further research has identified angiopoietin-2 (Ang-2) within
human umbilical cord mesenchymal stem cell-derived exosomes
(hucMSC-Exos). Treatment with hucMSC-Exos enhances Ang-2
expression in wound areas and in human umbilical vein endothelial
cells (HUVECs), contributing to tube formation and angiogenesis
(Liu et al., 2021). Additionally, hueMSC-Exos promote the nuclear
translocation of [-catenin and increase the expression of
proliferative nuclear antigen, cyclin D3, N-cadherin, and f-
catenin while decreasing E-cadherin expression. This highlights
the critical role of Wnt/B-catenin signaling in hucMSC-Exos-
induced angiogenesis (Zhang B. et al., 2015).

A series of preclinical studies in diabetic rat models and in vitro
endothelial cell cultures have consistently demonstrated the pro-
angiogenic effects of MSC-derived exosomes. Teng et al. reported
that hucMSC-exosomes promoted wound healing by increasing
CD31 and VEGF expression and reducing TNF-a (Teng et al,
2022). PV A/alginate
nanohydrogels (exo@H) were shown to upregulate VEGF via the

Similarly, exosomes encapsulated in
ERK1/2 pathway, accelerating diabetic wound repair (Zhang Y.
et al,, 2021).
Furthermore, evidence from both animal models and
that  pharmacological

preconditioning enhances exosome efficacy. Exosomes from

mechanistic  cell ~studies indicates
pioglitazone-pretreated MSCs (PGZ-Exos) promoted angiogenesis
by activating the PI3K/AKT/eNOS pathway (Zhang T. et al., 2022).
Likewise, exosomes from atorvastatin-pretreated MSCs (ATV-Exos)
exerted pro-angiogenic effects via the AKT/eNOS pathway,
mediated by upregulation of miR-221-3p (Hu et al, 2021; Yu
et al., 2020).

Exosomes also contribute to bone tunnel healing after ACL
reconstruction. Hypo-Exos have been found to increase the
abundance of H-type blood vessels within the bone tunnel area
at week two post-surgery, significantly enhancing graft integration
(Zhang T. et al., 2022). Preclinical evidence from rat femoral fracture
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models and in vitro studies demonstrates that uMSC-Exos promote
angiogenesis and bone healing via VEGF upregulation (Zhang Y.
et al, 2019). The underlying mechanism involves Hypo-Exos
promoting angiogenesis via the miR-126 and SPRED1/RAS/ERK
signaling pathways. (mechanistic in vitro studies)Knockdown of
hypoxia-inducible factor 1 (HIF-la) diminishes these effects,
suggesting that HIF-la is crucial for Hypo-Exos-mediated
cardiovascular production and fracture healing (Liu W. et al,,
2020). Furthermore, exosome HMGB1 from myelo-depleted
MSCs under hypoxic conditions has been reported to increase
angiogenesis through the JNK/HIF-la (Gao
et al., 2021).

However, in tendon-bone healing, such as after ACL injury,

pathway

excessive vascularization may adversely affect tissue repair.
Uncontrolled vascular growth, driven by an od re-tear rates in
ACL injuries. More research is required to fully understand the
mechanisms behind angiogenesis in ACL healing and to develop
strategies that balance vascular growth to optimize long-term
healing outcomes.

Stem cell-derived exosomes
inhibit scarring

Injury to the ACL often results in scar tissue formation, which
can hinder recovery. The ACL is crucial for maintaining knee
stability and function. When damaged, the body initiates a self-
healing response, often involving scar tissue formation. However,
this scar tissue is typically less elastic and more rigid than normal
tissue, which can increase the risk of re-injury (Zou et al., 2023;
Ateschrang et al,, 2018). Scar tissue, being a substitute structure,
lacks the functional qualities of the original tissue, leading to
increased stiffness and reduced joint performance.

Recent studies have shown that exosomes, which are small EVs,
play a significant role in regulating scarring. Exosomes can inhibit
scar formation through various mechanisms, including anti-
inflammatory effects, regulation of fibrosis, modulation of
angiogenesis, and degradation of ECM components (Zhou et al.,
2023; Bian et al., 2022; Tutuianu et al., 2021). For instance, Wang C.
et al. (2019) (Xu et al,, 2023) demonstrated that FHE@exosome
(FHE@exo) hydrogel injections promoted skin regeneration with
fewer scars, suggesting that exosomes effectively inhibit scar tissue
formation. Dinh et al. (Dinh et al., 2020) found in animal models
that exosomes derived from lung stem cells (LSC-exo) reduced
collagen accumulation and myofibroblast proliferation, mitigating
lung fibrosis and scar tissue formation in models of bleomycin and
silica-induced fibrosis. Exosomes also inhibit scarring by targeting
specific cellular pathways. For example, adipose-derived stem cell
exosomes (ADSC-Exos) effectively inhibit the proliferation and
migration of fibroblasts, reducing the expression of collagen type
I and III (Coll, Col3), a-SMA, and other fibrotic markers while
increasing SIP1 levels, thereby improving hypertrophic scar fibrosis
(Li et al, 2021). In another study, ADSC-conditioned medium
(ADSC-CM) reduced collagen deposition and scarring through
the p38/MAPK signaling pathway in vitro, ex vivo, and in vivo
models (Li et al., 2016). Additionally, studies combining patient
samples and mouse models show that microRNA-33 released by
bone marrow mesenchymal stem cell-derived exosomes (BMSC-
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Exos) inhibits the IL-2/ST214 axis, alleviating skin fibrosis (Xie
et al.,, 2023).

Exosomes have also shown promising results in preventing
scarring after tendon injuries. Exosomes derived from
mesenchymal stromal cells (MSCs) have been reported to mimic
the M2 macrophage phenotype, promoting tendon remodeling and
reducing scar formation in Achilles tendon injuries (Chamberlain
et al, 2021). Tendons treated with tendon stem cell-derived
exosomes (TSC-Exos) exhibit more organized and continuous
tissue structure, suggesting that TSC-Exos help regulate the ECM
and inhibit scarring (Zhang M. et al., 2020). Preventing scar tissue
formation at the tendon-bone junction is critical for successful ACL
repair. Early research suggests that BMSC-Exos may enhance
tendon-to-bone healing by upregulating cartilage gene expression
and boosting the BMP7/Smad5 signaling axis. In a rat model of ACL
reconstruction, BMSC-Exos combined with cartilage fragments
significantly reduced femoral tunnel width, suggesting improved
healing with less scar formation at the tendon-bone interface (Zhang
etal,, 2023). The balance between angiogenesis and scar formation is
another key factor in tissue repair. While new blood vessels provide
oxygen and nutrients to repair tissues, excessive angiogenesis can
lead to tissue fibrosis and scarring (Guillamat-Prats, 2021; An et al.,
2021). Managing this balance is a significant challenge in ACL
repair. Animal study evidence shows that FEP dressings combined
with exosomes (FEP@exo) have shown promise in diabetic wound
models by promoting cell proliferation, granulation tissue
formation, and re-epithelialization, while reducing scar tissue
formation and promoting the regeneration of skin appendages
(Wang M. et al., 2019).

Exosomes not only promote angiogenesis but also possess
antifibrotic properties, mediated by the release of matrix
(MMPs). This dual functionality makes

exosomes a potent therapeutic option for reducing scarring while

metalloproteinases

accelerating wound healing (Bian et al., 2022). Overall, exosomes
hold immense potential in preventing scar formation and improving
healing outcomes in tendon and ligament injuries.

In the field of ACL injury repair, exosome therapy has
demonstrated significant advantages in tendon-bone healing and
anti-inflammatory scar formation by virtue of its unique molecular
regulatory mechanisms. Exosome therapy has a more precise and
comprehensive regulatory capability than traditional methods such
as PRP, MSC transplantation, graft augmentation surgery and
scaffold-mediated tissue engineering.

PRP therapy relies on growth factors (e.g., PDGF, VEGF,
TGF-B1) released upon platelet activation to drive healing by
promoting fibroblast and bone progenitor cell proliferation, but
high concentrations of TGF-B1 may trigger haphazard deposition of
collagen fibres at a later stage, leading to disturbed collagen
alignment, which in the long term may exacerbate fibrosis and
scar hardness. The anti-inflammatory mechanism of MSC
transplantation can only weakly regulate the activity of immune
cells through limited cytokines (e.g., IL-10), and its ability to regulate
macrophage polarisation (M1/M2 transformation) is insufficient to
inhibit
inflammation (Le et al., 2018); MSC transplantation can directly

excessive scar proliferation caused by persistent
replenish the functional cells of the tendon bone interface through
the multidirectional differentiation potential of the stem cells.

However, transplanted cells have a low homing efficiency and
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short survival time, and their direction of differentiation is
(e.g.
hypoxia, mechanical stress), which often results in an imbalance
between
differentiation of tendon fibres. The amount of soluble factors

significantly affected by the local microenvironment

over-differentiation  of osteoblasts and under-
(e.g, PGE2, IDO) secreted by immunomodulation-dependent
cells is easily interfered by the inflammatory environment, and
may be ineffective in the acute inflammatory phase due to the
overdose of pro-inflammatory factors (e.g., TNF-a), resulting in
fluctuating anti-inflammatory effects and unstable inhibition of scar
formation (Wang et al., 2020; Liu J. et al., 2022); graft augmentation
surgery and scaffold-mediated tissue engineering are more reliant on
physical support and structural guidance: the former provides
mechanical stability through the implantation of autologous/
allogeneic grafts, and the other provides mechanical stability
through the Graft-
enhanced surgery and scaffold-mediated tissue engineering rely

implantation of autologous/allografts.
more on physical support and structural guidance: in the former,

the implantation of autologous/allogeneic grafts provides
mechanical stability, but the nature of healing is the gradual
replacement of grafts by host tissues, and the accompanying
foreign-body reaction (especially in the case of allogeneic grafts)
will continue to activate inflammatory pathways (e.g., NF-«B),
which will increase the risk of excessive fibrotic scarring (Uma
et al,, 2009); in the latter, the use of biological scaffolds to mimic
extracellular matrices can be loaded with growth factors, but it is
difficult to fully match the rate of scaffold degradation and cellular
adhesion with the pace of human tissue regeneration. Although the
latter uses biological scaffolds to mimic the extracellular matrix, the
degradation rate and cell adhesion of the scaffold material are
difficult to match the regeneration rhythm of human tissues, and
the traces of local microenvironmental “artificial intervention” may
be too strong, leading to the abnormal activation of fibroblasts, and
triggering the disorder of scar tissue.

In contrast, exosomes, as nanoscale vesicles secreted by stem
cells, carry miRNAs, proteins, and other active components, and
promote tissue repair through multi-targeted synergistic effects. In
tendon-bone healing, the miRNAs (e.g., miR-140, SOX-9) and
(BMP-2, VEGF) induced the

differentiation of tendon stem cells to fibroblasts, and at the

growth factors precisely
same time, promoted osteogenesis of bone progenitor cells,
constructed the “tendon-fibrocartilage-bone” gradient interface,
and enhanced biomechanical integration; In anti-inflammatory
scar formation, exosomes block M1-type macrophage activation
by inhibiting the NF-kB pathway,
inflammatory phenotype, reduce the release of pro-inflammatory
factors, such as TNF-a and IL-6, and regulate TGF-B1 signalling to

induce M2-type anti-

inhibit excessive deposition of type I collagen and promote the
formation of flexible scars by type III collagen, so as to achieve the
orderly collagen metabolism, inhibit fibrosis and scar formation and
optimize the healing process (Li et al., 2022). The effect is further
optimised by inhibiting fibrosis and scar formation.

In conclusion, exosome therapy shows more precise and
comprehensive therapeutic effects in tendon-bone healing and
anti-inflammatory scars, and has the advantages of non-
invasiveness and stability, so it has a greater potential for clinical
application in the treatment of ACL, and it is expected to bring a
better prognosis and fewer postoperative complications for patients.
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Conclusion and prospect

In summary, mesenchymal stem cell-derived exosomes (MSCs-
exos) show promising potential in the treatment of ACL injuries by
enhancing the repair process. These exosomes release biological
factors that interact with various mechanisms, including immune
modulation, inhibition of scarring, and promotion of angiogenesis,
to support ACL recovery. The unique targeting capabilities and
sustained release properties of MSCs-exos contribute positively to
the healing of ACL injuries (Arabpour et al, 2021). Anti-

interleukin 10 (IL-10),
(TGF-B), and chemokine
CCL1 within exosomes help to reduce inflammation at the injury
site (An et al, 2021). Additionally, exosome-derived cytokines
promote the expression of factors like TGF-f3 and MMP3,
which inhibit the excessive synthesis and deposition of collagen

inflammatory molecules such as

transforming growth factor f

fibers, ultimately reducing scar formation by reorganizing collagen
in scar tissue (Wang et al., 2017). Furthermore, exosomes release
endothelial ~ growth (VEGF),
metalloproteinases (MMPs), and microRNAs that stimulate the

vascular factor matrix

proliferation and migration of endothelial cells, thereby
accelerating vascularization and promoting ACL repair (Olejarz
et al., 2020).

However, the timing and extent of exosome-mediated repair
depend on the severity of the injury and the local microenvironment,
making it a challenge to balance these multiple repair mechanisms
effectively. Finding the optimal regulatory balance remains a
significant hurdle in promoting ACL repair. Following ACL
injury, the resolution of inflammation is critical for effective
tissue repair. The initial inflammatory response is initiated by the
infiltration of immune cells, including macrophages, neutrophils,
and lymphocytes. These cells release inflammatory mediators such
as IL-6, TNF-q, and IL-1f, which facilitate the clearance of necrotic
tissue and pathogens, thereby creating a favorable environment for
healing. Although chronic inflammation can lead to tissue
degeneration, a tightly regulated inflammatory resolution process
promotes the degradation and remodeling of the ECM by
modulating the activity of fibroblasts and tenocytes, thereby
establishing the foundation for successful tissue repair (Brigant
et al,, 2018; Yang and Xia, 2021). Consequently, maintaining a
controlled inflammatory response through exos is essential for the
repair of ACL injuries. Despite these advantages, exosome-based
therapies face substantial challenges. The easily degradable nature of
exosomal proteins and nucleic acids necessitates stringent
preparation, storage conditions, and special processing methods
(Zhang Y. et al, 2020). The isolation of MSC-derived exosomes
(MSC-exos) is typically achieved through several techniques,
including ultracentrifugation, density gradient centrifugation,
immunoaffinity capture, nanofiltration, and ultrafiltration. While
various methods for isolating MSC-exos exist, none has been
universally accepted as the gold standard. Ultracentrifugation is
one of the most widely used techniques, which utilizes a stepwise
gradient centrifugation process to separate MSC-exos from cell
culture supernatants or biological samples (Boing et al, 2014).
The procedure begins with low-speed centrifugation to remove
cells and larger debris, followed by medium-speed centrifugation
to eliminate smaller fragments and microparticles. Subsequently,
high-speed centrifugation is employed to isolate exosomes, which
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are precipitated at the bottom of the centrifuge tube. The exosome
pellet is then collected and resuspended to obtain purified MSC-
exos. Ultracentrifugation is a well-established and efficient exosome
isolation technique that effectively separates exosomes from other
cellular debris, providing high purity with relatively simple
operation and low cost, making it suitable for a variety of sample
sources (Chen J. et al., 2021; Xu et al., 2023). However, this method
also has some drawbacks, including a lengthy process, potential
structural alterations due to high centrifugal forces, the need for
specialized and costly equipment, possible residual impurities that
may cause structural damage or aggregation, and co-isolation with
lipoproteins. These factors may limit its application in certain
experimental contexts. Furthermore, prolonged or improper
storage can significantly diminish the biological activity of
exosomes (Coughlan et al., 2020). Their storage conditions are
notably stringent, primarily due to their susceptibility to
structural damage and functional alterations in adverse
environments. The integrity of the exosomal membrane and the
bioactive components it contains—such as proteins and nucleic
acids—are particularly sensitive to variables including temperature,
pH, and storage duration. Moreover, using phosphate-buffered
saline (PBS) as a diluent for exosomes can significantly reduce
their viability over short periods. However, studies have shown
that human albumin and trehalose-containing PBS (PBS-HAT) can
improve exosome preservation at —80 °C, though further research is
needed to confirm its efficacy as an optimal storage condition (Boing
et al., 2014).

Exosomes also hold great potential for targeted therapy and
systemic drug delivery, but significant challenges remain regarding
drug-loading techniques and modes of administration. Exosomes
can be administered via intravenous injection or subcutaneous
injection, and the administration route plays a critical role in
treatment efficacy. Intravenous injection enables the rapid
systemic distribution of exosomes but may trigger immune
responses or lead to their swift clearance by the circulatory
system (Kamerkar et al, 2017). Nasal administration, a non-
invasive approach, is particularly suitable for treating central
nervous system disorders, although its absorption efficiency may
present certain limitations. Local injection allows for achieving high
concentrations in target tissues, typically offering a favorable safety
profile; however, its applicability is confined to localized lesions
(Zhang X. et al., 2021). Oral administration, being more convenient
and patient-friendly, faces challenges such as degradation in the
gastrointestinal tract, necessitating strategies to enhance its
bioavailability (Ju et al., 2013). Therefore, selecting an appropriate
delivery route requires a comprehensive evaluation of the disease
type, target tissue requirements, patient compliance, and the
physicochemical properties of exosomes, aiming to strike an
optimal balance between safety and feasibility. Intra-articular
injection is the most common method for treating knee joint
conditions, and has shown promising results in rat models of
knee arthropathy, although further experiments are needed to
determine the optimal delivery method for various conditions.

As drug carriers, exosomes can be loaded either pre-secretively
or post-secretively, making them a highly promising drug delivery
system due to their unique structural and biological properties. In
pre-secretory drug loading, the loading of drugs by endogenous
cellular mechanisms, such as transgenesis or co-culture, enables
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efficient natural loading and targeted modification with uniform
drug distribution and high biocompatibility. However, this method
requires complex cell culture and transfection techniques, and has
restricted drug selection and loading, limited control over loading
efficiency, and the potential to disrupt membrane proteins that are
critical to exosome function, and is particularly ineffective for
certain drugs that may affect cell survival (Barile and Vassalli, 2017).

Post-secretory drug loading, where a therapeutic agent is added
to exosomes, can lead to exosome aggregation, membrane damage
and low yield. In contrast, postsecretory drug loading, which
involves direct loading of drugs by physical or chemical means,
offers the advantages of flexibility, high loading capacity, and rapid
manipulation, but may damage exosome membranes, affecting their
stability and function, as well as poorly distributing the drug
uniformly and potentially introducing additional toxicity. Overall,
presecretory loading is suitable for molecules such as RNA or
proteins that require high drug stability, while postsecretory
loading drugs are more suitable for rapid loading of small
molecule compounds or for improving loading efficiency in
specific applications (Ha et al., 2016). Post-isolation drug loading
strategies for BMSC-derived exosomes encompass physicochemical
methods (co-incubation, electroporation), genetic engineering, and
surface functionalization (Ha et al, 2016; Kimiz-Gebologlu and
Oncel, 2022; Sadeghi et al, 2023), with application-specific
shoulder injury
combinatorial anti-inflammatory and angiogenic effects. Method

optimization  for therapeutics ~ requiring
selection necessitates rigorous optimization based on drug
physicochemical properties (molecular weight, solubility) and
therapeutic parameters (target specificity, pharmacokinetics).
factors

Macromolecular — angiogenic

sonication/electroporation  for

preferentially  employ
structural  preservation and
enhanced permeability (Zeng et al, 2023), while gene-based
therapeutics utilize electroporation for nucleic acid integrity
maintenance. Chemical conjugation enables precision targeting,
with polymer-based co-delivery systems proving effective for
(e.g.
cocktails) requiring sustained release profiles (Xu et al, 2020).

multi-agent combinations anti-inflammatory/angiogenic
Small-molecule anti-inflammatories predominantly utilize passive
loading via incubation/freeze-thaw cycles due to molecular stability
(Xi et al, 2021), though

hydrophilicity poses challenges for lipophilic drug encapsulation.

inherent exosomal membrane

To overcome this limitation, advanced nanotechnological
approaches have emerged: 1) Hybrid vesicle systems employing
liposome-exosome membrane fusion for hydrophobic cargo
Ultrasound-mediated ~ transient ~ membrane
permeabilization enhancing lipid-soluble drug entrapment

through acoustic modulation of membrane fluidity (Shi et al,

transfer;  2)

2023). These innovations address critical biophysical barriers in
exosomal drug loading while preserving vesicle integrity and
bioactivity. Improvements in exosome drug-loading technology
are critical for advancing exosome-based targeted drug delivery
systems, and future research is essential to address these challenges.

The clinical translation of MSCs-Exos confronts several critical
challenges, chiefly characterized by a paucity of human clinical trials,
predominant reliance on animal model-derived data, and absence of
standardized clinical protocols. The paucity of human clinical
investigations constitutes the principal impediment to therapeutic
development, with current research (as of October 2023) remaining
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predominantly confined to preclinical exploration through in vitro
analyses and animal experimentation. Although preclinical
evidence suggests therapeutic potential in tissue regeneration
neurorestorative
(Xin et al,
2013) - these findings lack robust clinical validation in human

and immunomodulation-exemplified by

effects observed in murine stroke models

populations. The translational barrier primarily stems from

fundamental interspecies disparities in injury response
mechanisms, particularly evident in central nervous system
pathologies where rodent models inadequately recapitulate
MHC-I-like

molecules of matricellular origin on their surface, which may

human pathophysiology. —Exosomes carry
trigger a host immune response but are significantly less
immunogenic than intact cells (Li et al., 2025). For example,
exosomes from allogeneic MSCs did not trigger significant T cell
activation in rodent models (Zhang et al, 2022c). Notably,
exosomes carry pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs)
that may activate intrinsic immunity and need to be excluded
from contamination by strict quality control (Shen et al., 2022).
This persistent dependence on preclinical data introduces
substantial uncertainty regarding clinical efficacy, underscoring
the imperative for rigorous human trials to bridge the
translational gap between experimental models and therapeutic

applications.
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