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Background: Knee range of motion (ROM) is a key indicator of rehabilitation after
total knee arthroplasty (TKA). Current tools, such as visual and protractor
measurements, are cumbersome, imprecise, and require professional training,
limiting their use in community or home settings. With the rise of smart
healthcare, there is a need for a simple, accurate, and low-cost ROM
assessment method that reduces healthcare burdens, enables home self-
monitoring, and improves rehabilitation outcomes.

Methods: A total of 1,103 knee images were collected from 1,790 patients who
had undergone TKA. The images were classified into four categories: standard
flexion, substandard flexion, standard extension, and substandard extension and
six categories: 0°, 25°, 50°, 75°, 100°, and 125°. The images were processed using
KROMNet, which was trained with a deep learning architecture that included
convolutional, dilated convolution, channel attention layers, and fully connected
layers. The model was trained and evaluated using a dataset split into training and
test sets, and its performance was assessed with precision, recall, F1-score, and
accuracy metrics for both the four-class and six-class tasks.

Results: KROMNet achieved an accuracy of 95.02% in the four-class task and
94.12% in the more challenging six-class task. In the four-class task, the precision,
recall, and F1-score were 95.04%, 94.96%, and 94.98%, respectively. In the six-
class task, KROMNet demonstrated an accuracy of 94.12%, with precision, recall,
and Fl-scores of 94.64%, 94.59%, and 94.60%, respectively. The model’s
performance was compared with other state-of-the-art methods, including
Hazra's, Du's, Xia's, Victoria's, and Shiwei Liu's models, with KROMNet
consistently outperforming these models in both four-class and six-class tasks.
Conclusion: The KROMNet model proposed in this study offers an accurate,
efficient, cost-effective, and remotely deployable solution for monitoring knee
ROM after TKA. KROMNet not only demonstrates superior recognition
performance under small sample conditions but also shows strong clinical
utility and potential for wider adoption, making it especially suitable for
grassroots, community, and home rehabilitation settings. KROMNet is
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expected to become a key tool in the intelligent rehabilitation system, helping
healthcare reduce costs, increase efficiency, and improve patient experience and

rehabilitation quality.
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osteoarthritis, total knee arthroplasty, knee range of motion, deep networks, rehabilitation

monitoring

1 Introduction

Osteoarthritis (OA) is a degenerative joint disease that leads to
joint pain and dysfunction (Tang et al., 2025; Felson et al., 2000), with
knee osteoarthritis (KOA) being the most common form. KOA
significantly affects both the physical and mental health of patients
(Roos et al., 2011; Davison et al., 2016; Van Dijk et al., 2010). TKA is a
well-established surgical procedure that enhances the quality of life for
patients with end-stage KOA (Carr et al., 2012). As the prevalence of
KOA rises, the demand for TKA continues to increase (Siddiqi et al.,
2022; Huang et al, 2022). Post-TKA rehabilitation is critical for
facilitating early and optimal functional recovery (Artz et al., 2015;
Wang et al,, 2019). Prevailing rehabilitation models comprise either
unsupervised home-based programs or referrals to institutional
settings (e.g., hospital outpatient/rehabilitation centers) for
physiotherapy (Zhao et al, 2025; Mark et al., 2025). The former
often yields suboptimal outcomes due to patients’ limited
comprehension of rehabilitation protocols, and inadequate progress
monitoring (Pua et al., 2015; Magklara et al., 2014; Buus et al., 2021).
The latter frequently compromises adherence due to access
limitations, high costs, and logistical constraints (Bakaa et al., 2022;
Moffet et al., 2015; Pritwani et al., 2024). Overall, these limitations
underscore the necessity for simple, accurate, and cost-effective
rehabilitation monitoring solutions.

Postoperative knee ROM restriction is a common complication
following TKA, often resulting in dysfunction and patient
dissatisfaction (Pua et al, 2017; Devers et al, 2011; Ha et al,
2016). of knee ROM in
postoperative patients is crucial for monitoring recovery and
guiding rehabilitation (Gandhi et al, 2006). After conventional
TKA, knee ROM typically ranges from 110° to 120°, significantly
lower than that of a healthy knee (Kurosaka et al., 2002; Aglietti et al.,
1988; Rand, 1993; Sultan et al., 2003; Ranawat et al., 1997). High-
flexion prostheses commonly used in clinical practice today are
designed to allow a knee ROM greater than 125°, enabling the
patient to perform activities such as squatting and kneeling (Kim
et al,, 2016; Kim et al., 2024; Kim et al., 2009a; Kim et al., 2009b).
However, traditional knee ROM assessment methods, such as visual

Therefore, accurate assessment

inspection and long-arm goniometers, are often inaccurate and
require specialized training (Brosseau et al., 2001; Hancock et al.,
2018). This approach depends on patients regularly returning to the
hospital for functional assessments and rehabilitation guidance.
However, frequent offline follow-ups increase the financial burden
on patients and put significant pressure on hospital outpatient clinics,
especially with the aging population and the rapid increase in TKA
surgeries. This rehabilitation pathway is especially inconvenient for
patients in remote areas or with limited mobility, resulting in delayed
rehabilitation and functional limitations.

With advancements in technology, automatic assessment of
Knee ROM has primarily followed two research paths: The first
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focuses on angle prediction (regression/pose estimation), utilizing
human keypoint detection, bone segment geometric modeling, or
end-to-end regression networks to directly output continuous angles
(Ge et al., 2025; Molteni and Andreoni, 2025; Su et al., 2025; Henry
etal., 2024; Verhoeven et al., 2025). This approach enables error and
consistency evaluation through metrics such as MAE, RMSE, and
Bland-Altman plots. Its advantages include precise quantification
and seamless integration with biomechanical analysis. However, it is
sensitive to labeling quality, viewing angles, obstructions, and soft
tissue deformation, and faces challenges in robustness and cross-
domain generalization, particularly in small sample and
uncontrolled home-based scenarios (Ge et al., 2025; Molteni and
Andreoni, 2025). In addition to visual methods, wearable sensors
Electromyography (SEMG)

Measurement Units (IMU) enable remote monitoring but require

such as Surface and Inertial
professional setup and high patient cooperation, limiting their
clinical applicability (Kumar et al., 2021; Wang et al., 2022; Ma
et al,, 2020; Cho et al., 2020; Feng et al.,, 2025; Pugliese et al., 2025;
Han et al,, 2025). Systems using inertial and optical markers provide
high measurement accuracy but are associated with high costs and
time consumption (Lopez-Nava and Mufoz-Meléndez, 2016; van
der Straaten et al, 2018; Wagner, 2018; Fong and Chan, 2010;
Filippeschi et al., 2017). Markerless motion capture using multi-
camera 3D reconstruction shows potential for ROM assessment but
remains limited by accuracy and implementation challenges
(McGinley et al., 2009; Gorton et al., 2009).

KROMNet provides a cost-effective and easy-to-implement
solution for precise monitoring of total knee replacement
patients,
postoperative knee range of motion assessments. The developed

designed to enable automated classification of
framework achieves evaluation through handheld camera or phone,
eliminating the need for specialized equipment or trained personnel,
thereby effectively overcoming implementation barriers inherent in
existing technologies. Notably, the proposed approach demonstrates
robust performance even with limited training data, effectively
addressing the challenge of accurate ROM monitoring under
small-sample conditions. By simplifying clinical assessment
workflows and enabling reliable remote self-monitoring, this
aims to enhance rehabilitation

approach
management

postoperative

efficiency and ultimately improve long-term

functional recovery in TKA patients.

2 Methods
2.1 Ethical approval and patients selection
This study was approved by the Institutional Review Board

(IRB) of Tianjin Hospital (IRB 2024 Medical Ethics Review 213) and
obtained written informed consent from all participants. All image
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(n=1843)

The doctors assess the patient’s condition

y

Exclusion (n=53) : Patients do not meet the

inclusion criteria or at least meet one exclusion

(n=1790)

Patients meeting the inclusion criteria

criteria

A4

Actotal of 1103 images were
collected

Flexion Straightening
(n=543) (n=560)
A
Standard flexion Substandard Standard extension Substandard

(n=300)

flexion (n=243)

(0=272)

extension (n=288)

FIGURE 1
Patient enrolment and image collection process.

data were anonymized to ensure patient privacy. Participants were
recruited from the orthopedic outpatient clinic at Tianjin Hospital
between April 2024 and January 2025. A total of 1,843 patients
scheduled for primary unilateral TKA were included. After applying
the exclusion criteria, 1,790 patients were included. Eligible
participants were aged 50-80 years and diagnosed with primary
KOA by two experienced surgeons. The exclusion criteria were as
follows: (1) prior lower extremity or spine injury or surgery; (2) hip,
spine, or ankle diseases (including OA); (3) recent lower extremity
trauma or intra-articular therapy (within 3 months); (4) frequent
use of assistive devices; and (5) conditions affecting physical
function, such as depression or neurological disorders (Figure 1).

2.2 Data collection and image acquisition

After signing the informed consent, patients underwent TKA
under regional block or lumbar anesthesia and were provided with
high-flexion prostheses. For patients with severe damage to the
patellar articular surface, the surface was trimmed as necessary.
Before discharge, patients were given rehabilitation instructions and
training by a rehabilitation physician.

At the
photographed at

knee
researcher

3-month postoperative  follow-up, was

the patient’s residence under
supervision. The procedure was as follows: patients were
instructed to lie on a clean bed, wear appropriately sized
trousers, and position the operated leg outward, flexing or

straightening it as much as possible without external force.

Frontiers in Bioengineering and Biotechnology

Images are captured using handheld camera or phone, and the
patient uploads the resulting pictures to the researcher. All uploaded
images are then transferred to a cloud-based storage platform
designated by the researcher for subsequent data analysis and
storage. This image acquisition method in home settings
effectively simulates the patient self-assessment environment,
providing a data foundation for KROMNet’s future deployment
on smartphones or remote rehabilitation platforms, ensuring strong
real-world scalability.

All patient-submitted photographs were thoroughly assessed for
quality by the research team before being classified by radiologists.
To ensure the quality and consistency of data for model training, the
images were screened based on predefined criteria. The exclusion
criteria were as follows: (1) Images that were excessively blurred and
failed to clearly display the knee joint contour; (2) Primary knee
joint regions obstructed by clothing or other objects; (3) Posture of
the patient not adhering to the guidelines (e.g., legs not fully isolated,
external force assistance); (4) Incorrect camera angle that was not
perpendicular to the knee joint sagittal plane; (5) Insufficient
lighting or overexposure, compromising image quality. Initially,
we collected 2,297 images from 1,790 participants’ flexion and
extension attempts. After applying the quality control criteria,
1,145 images were excluded. The remaining 1,152 high-quality
images were classified by radiologists according to the predefined
ROM categories. During the final dataset preparation phase for
model training, an additional 49 images were excluded after being
identified as duplicates or outliers during preprocessing. This
resulted in a final dataset of 1,103 images for the study. The
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FIGURE 2

G

Schematic diagram of the patient’s knee ROM. (a) Standard flexion. (b) Substandard flexion. (c) Standard extension. (d) Substandard extension.

remaining photographs were classified independently by two
experienced radiologists. In the event of a disagreement, a senior
radiologist made the final decision. The images were initially
categorized into two main groups: flexion and extension. And
then further classified into four subcategories based on the Knee
Society Score (KSS) (Lingard et al., 2001; Odum and Fehring, 2017):
(a) Standard flexion (ROM =>125°); (b) Substandard flexion
(ROM <125°); (c¢) Standard extension (ROM = 0°) and (d)
Substandard extension (ROM >0°) (Figure 2). A total of
1,103 photos were obtained from 1,790 participants, including
543 flexion images (300 standard and 243 substandard flexion)
and 560 extension images (272 standard and 288 substandard
extension) (Figure 1).

In response to the need for more detailed differentiation of
patient recovery stages, we expanded the previous four-category
classification into six categories. Specifically, the images were
classified based on ROM thresholds of 0°, 25°, 50°, 75°, 100°, and
125°, providing a more granular representation of recovery progress.
This refinement enhances the model’s ability to capture subtle
variations in ROM, offering more precise clinical guidance,
especially for cases where ROM falls between standard and
substandard classifications. By incorporating these additional
categories, we can more effectively track incremental recovery
milestones, thereby improving the clinical relevance and depth of
post-TKA rehabilitation assessments. The number of images in each
category is as follows: 0° (139 images), 25° (206 images), 50°
(219 images), 75° (221 images), 100° (204 images), and 125
(165 images). (Supplementary Figure S1).

2.3 Image pre-processing

The color images were first converted to grayscale, followed by
binarization using Otsu’s method with automatic thresholding
(Otsu, 1979; Huang et al,, 2012), as shown in Equation 1. This
process effectively segmented the knee region from the background,
providing a reliable data foundation for subsequent classification
and analysis.

_ | maxval if src(x, y) > thresh
dst (x,y) = { 0 otherwise )

In Equation 1, src is input array; dst is output array; thresh is
adaptive threshold value; max val is maximum value.

Frontiers in Bioengineering and Biotechnology

2.4 KROMNet architecture for knee ROM
assessment

The KROMNet architecture consists of six convolutional layers,
two dilated convolution layers, two channel attention layers, and two
fully connected layers. The input of the network are the
preprocessed knee joint images. The proposed KROMNet in this
article used convolutional and max-pooling layers for basic feature
extraction, incorporating a dilated convolutional layer to expand the
receptive field and capture multi-scale morphological features. A
channel attention mechanism was integrated to enhance
discriminative anatomical features adaptively. Two cascaded fully
connected layers at the network’s end establish non-linear decision
mapping, ultimately generating graded probability distributions of
knee ROM through Softmax activation. The architectural
configuration is shown in Figure 3. This architecture is designed
to balance the accuracy of medical interpretation with the
lightweight deployment of the model, enabling its operation in
resource-limited settings and promoting the shift in knee
from  “specialty-dependent”  to

rehabilitation  assessment

“universal self-help.”

2.4.1 Channel attention mechanism

As shown in Figure 2, the curvature of the knee is a key
distinguishing feature for evaluating knee rehabilitation. The
channel attention mechanism introduced in this article enhances
the network’s discriminative ability by dynamically evaluating the
contribution of each channel feature in key feature learning. It
assigns higher weights to more relevant channels, thereby enhancing
their impact on classification while suppressing less important ones.
By modeling the interdependencies between channels and
recalibrating the features, the proposed network emphasizes the
most discriminative data. The process of the channel attention
mechanism is shown in Figure 4.

Feature significance modeling is performed by applying spatial
dimensionality reduction to the input feature map M;. The two-
dimensional features (H x W) of each channel are aggregated into
one-dimensional vectors using global average pooling to extract
channel-level information. This spatial aggregation process is
mathematically represented in Equation 2.

M2:

l HW
e 2

i=1j=1

frontiersin.org
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weight

Conv + Max pooling + ReLU:
1) kernel size—3 X3

2) conv stride—1

3) pooling stride—2

Dilated Conv + Tanh:
1) kernel size—3 X3
2) conv stride—1

3) dilation rates—2

FIGURE 3
The architecture of KROMNet deep network.

weight

“ it

# Channel number @ Element-wise sum

0 Standard flexion

1 Substandard flexion

EN
S

#128 #128

2 Standard extension

3 Substandard extension

Attention Module

(Conv + ReLU + Conv + Sigmoid):
1) kernel size—1X1

2) conv stride—1

Fully Connected Softmax

Conv ReLU Channe‘l-wise
HxW #C Multiply
— HxW#C  — ) —>
M3 A

—> HxW#C
HxW M,
#C
FIGURE 4

The process of the channel attention mechanism.

Weight allocation learning is performed through the fully
connected layer and a nonlinear activation function, where the
nonlinear relationship between channels is learned and the
weight vector is generated. This weight generation mechanism is
mathematically represented by Equation 3. The output value of M;
is considered the importance weight of the corresponding channel.

M;=0(W,-6(W,-M,)) (3)

Where ‘/v1 c R1><1><C/16

and § is the ReLU activation function, W, € RV is the ascending
fully-connected layer and o is the Sigmoid function.
Feature recalibration is performed by multiplying the weight

is the descending fully-connected layer

feature M3 with the original feature map M, channel by channel, as
formulated in Equation 4, resulting in the feature map M, and
completing the channel recalibration.

M4:M1'M3 (4)

This converts the raw M, into a weighted feature map, where
channels with higher weights receive more attention.
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2.4.2 Dilated convolution

As shown in Figure 2, the local features of standard and
abnormal samples are highly similar, limiting the classification
performance when relying solely on local features. Therefore,
integrating global contextual features of holistic lower-limb
kinematic patterns while preserving fine-grained anatomical
details is essential to enhance discriminative capability.
Expanding the network’s receptive field becomes a key
technique. Although traditional convolutional neural networks
(CNN) reduce feature redundancy and enlarge receptive
fields pooling inherent

limitations persist:

through operations,  two

A. Spatial resolution degradation. Pooling operations blur the
spatial positional information in the feature map, hindering
the precise modeling of geometric interdependencies among
key anatomical structures of the leg.

B. Loss of small-target information. Using a typical three-layer
2 x 2 pooling architecture as an example, after three

frontiersin.org
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FIGURE 5
Preprocessing results of patient flexion and extension images. (a) Standard flexion. (b) Substandard flexion. (c) Standard extension. (d)

Substandard extension.

consecutive downsamplings, structural features smaller than
8 x 8 pixels in the original image will be completely lost.

To address this challenge, the study employs dilated convolution
operations that strategically insert zeros within the convolutional
kernels — a mechanism distinct from subsampling approaches,
expanding receptive fields while preserving spatial resolution (Yu
and Koltun, 2016). The size of the receptive field is proportional to a
parameter called the dilation rate; as the dilation rate increases, the
number of zero-paddings also increases. When the dilation rate is set
to 1, dilated convolution becomes equivalent to the traditional
Dilated
input

convolution operation. convolution retains useful

information from the without increasing network
parameters and helps capture more globally representative

information about the original data.

2.4.3 Objective function

In classification problems, the cross-entropy loss quantifies the
divergence between the ground-truth probability distribution (from
expert or training data) and the model-generated probability
The
mathematical formulation of this loss function is given in

distribution, serving as the optimization objective.

Equation 5.

N K
==Y yiclog(hs (x),) (5)

i=lc=1

Where N denotes the number of samples; K represents the
number of categories; y;. indicates the one-hot encoded true label of
the sample. If the true class of sample x; equals ¢, y;. takes 1,
otherwise, it takes 0; hg (x;). denotes the predicted probability that
observed sample x; belongs to class c.

3 Results
3.1 Image pre-processing results

The image preprocessing results, shown for the four-category
classification example in Figure 5, highlight the enhancement of
knee joint structures through the grayscale binarization process. The
classification  results  are

six-category presented  in

Supplementary Figure S2.
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(d)

3.2 ROM assessment results based
on KROMNet

The dataset labels were 0 for standard flexion, 1 for substandard
flexion, 2 for standard extension, and 3 for substandard extension.
The dataset consisted of 1,103 patient-derived knee joint images,
which were divided into a training set and a test set by the 8:
2 criterion.

The KROMNet is configured with a batch size of 16, a
learning rate of 0.0002, and 100 training epochs. The
binarized grayscale images are fed into the model. Figure 6
derived from the channel

presents the attention maps

attention mechanism in the four-category classification
example, emphasizing the model’s ability to capture key
anatomical features within the knee joint region.

The model’s performance was assessed using precision, recall,
F1-score, and accuracy. These metrics were derived from the counts
of true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) across all categories. Recall measures the
model’s ability to correctly identify positive instances, while
precision reflects the accuracy of its positive predictions. The F1-
score, which is the harmonic mean of precision and recall, provides a
balanced evaluation, particularly important when dealing with
potential class imbalance. The formulas for these metrics are

presented in Equations 6-9.

Precision = TP ©)
recision = TP T FP
TP

Recall = ——— 7
= TP EN 2

ision x Recall
Fl - score = 2 X preCZ.SZ.On X Reca (8)

precision + Recall
A p 100% 9)

ccuracy = X
Y TP+FP+FN+TN 0

The proposed KROMNet model demonstrates excellent
classification performance in both four-class and six-class tasks,
as shown in Tables 1, 2. In the four-class task, the precision, recall,
and Fl-score on the training set reach 0.9943, 0.9951, and 0.9947,
respectively, with an accuracy of 99.53%; on the testing set, the
corresponding metrics are 0.9504, 0.9496, and 0.9498, with an
accuracy of 95.02%. In the more challenging six-class task, the
model also achieves outstanding results, with precision, recall,
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FIGURE 6

The attention maps. (a) Standard flexion. (b) Substandard flexion. (c) Standard extension. (d) Substandard extension.

TABLE 1 KROMNet four-category classification results.

Index Precision Recall Fl-score

Accuracy

Training set 0.9943 0.9951 0.9947 99.53%

Testing set 0.9504 0.9496 0.9498 95.02%

TABLE 2 KROMNet six-category classification results.

Index Precision = Recall Fl-score  Accuracy
Training set 0.9860 0.9857 0.9858 98.44%
Testing set 0.9464 0.9459 0.9460 94.12%

and Fl-score on the training set of 0.9860, 0.9857, and 0.9858,
respectively, and an accuracy of 98.44%. On the testing set, these
metrics further improve to 0.9464, 0.9459, and 0.9460, with an
accuracy of 94.12%. In summary, even under limited sample
conditions, the KROMNet model maintains high recognition
performance across classification tasks with varying numbers of
categories.

3.3 Comparison and analysis of
different methods

This study focuses on knee image classification, addressing
feature extraction and robust recognition under small sample
conditions. To wvalidate the proposed method, four advanced
image classification models are compared.

Frontiers in Bioengineering and Biotechnology

A. Hazra’s model. Using 2D CNN-LSTM networks with self-
attention mechanisms to enhance feature extraction (Hazra
and Santra, 2019).

B. Du’s model. Utilizing a channel-space attention module to
focus on key regions and generates diverse samples to reduce
overfitting based on physical mechanisms (Tu et al., 2017).

C. Xia’s model. Improving feature extraction through spatio-
temporal continuity modeling using scattering center
detection and tracking algorithms (Xia et al., 2021).

D. Victoria’s model. A separable CNN with depthwise and
pointwise convolutions, combined with a dropout layer,
reducing parameters and prevents overfitting in small
sample settings (Victoria et al., 2023).

E. Shiwei Liu’s model. ConvNeXt leverages modern CNN
architecture with design modifications inspired by Vision

(ViTs)

performance. It improves efficiency by replacing traditional

Transformers to enhance image classification
CNN blocks with layers designed to better capture fine-
grained features while still maintaining the computational

efficiency of CNNs (Liu et al., 2024).

3.4 Performance analysis of the four-class
classification task

Table 3 provides a comparative analysis of training and test set
accuracy among different methods for the four-class classification
task. As shown in Table 3, for the four-class classification task, the
KROMNet model achieves the highest test accuracy (95.02%), which
is significantly higher than that of existing methods, including Hazra
(92.76%), Du (91.40%), Xia (90.50%), Victoria (89.14%), and Shiwei
Liu (92.76%). It is noteworthy that KROMNet also achieves a
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TABLE 3 Training and testing accuracy of four-class classification for different methods.

Accuracy

Victoria

10.3389/fbioe.2025.1691591

Shiwei Liu

KROMNet

Training set 99.19% 99.65% 86.51% 92.21% 95.47% 99.53%
Testing set 92.76% 91.40% 90.50% 89.14% ‘ 92.76% 95.02%
(a ) Confusion Matrix ( b ) Confusion Matrix
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40 40
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Confusion matrices of different methods on the four-class test set. (a) Hazra's model. (b) Du’s model. (c) Xia's model. (d) Victoria's model. (e) Shiwei

Liu's model. (f) KROMNet model.

training accuracy of 99.53%, which indicates its strong learning

ability and the absence of obvious overfitting.

The confusion matrices for the four-class classification using
different methods are shown in Figure 7. Table 4 further presents in
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detail the classification performance metrics of different methods on
the four-class test set. KROMNet performs best across all evaluation
metrics, achieving a precision of 0.9504, a recall of 0.9496, an F1-
score of 0.9498, and an accuracy of 95.02%. Compared to the
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TABLE 4 Classification results of four-class classification on the test set for different methods.

Index Hazra Du Xia Victoria Shiwei Liu KROMNet
Precision 0.9272 09132 09297 0.8990 0.9291 0.9504
Recall 0.9282 0.9139 0.8982 0.8896 0.9255 0.9496
Fl-score 0.9268 0.9135 0.9076 0.8903 0.9270 0.9498
Accuracy 92.76% 91.40% 90.50% 89.14% 92.76% 95.02%

TABLE 5 Training and testing accuracy of six-class classification for different methods.

Accuracy

Victoria Shiwei Liu KROMNet

Training set 94.33% 96.00%

98.67%

95.88% 99.22% 98.44%

Testing set 89.80% 89.02%

suboptimal Shiwei Liu’s method, which achieves an accuracy of 92.
76% with all other metrics below 0.93, KROMNet exhibits a
comprehensive and significant performance improvement.

3.5 Performance analysis of the six-class
classification task

Table 5 provides a comparison of accuracy among different
methods for the six-class classification task. In this more challenging
six-class classification task, KROMNet achieves a test accuracy of
94.12% - a value comparable to that of the top-performing methods
(Shiwei Liu, 92.55%) - and significantly outperforms Hazra and Xia
(both 89.80%), Du (89.02%), and Victoria (87.84%).

The confusion matrices for the six-class classification test sets
using different methods are shown in Figure 8. Table 6 further
provides a detailed performance comparison of different methods
KROMNet delivers
performance across a precision of 0.9464, a recall of 0.9459, an
F1-score of 0.9460, and an accuracy of 94.12%. This indicates that
KROMNet has achieved the state-of-the-art performance level in
this complex six-class classification task.

on the six-class test set. competitive

4 Discussion

This study aimed to develop and evaluate the KROMNet model
for assessing knee ROM in patients who have undergone TKA. The
results indicate that the proposed method achieved high accuracy in
monitoring of knee ROM, overcoming several limitations of
traditional knee ROM assessment techniques.

Our findings show that the KROMNet model achieved an
accuracy of 95.02% in the four-class task and 97.28% in the six-
class task, despite the small sample size. This performance is further
supported by the confusion matrix and key evaluation metrics,
including precision, recall, and Fl-score. The model’s ability to
accurately distinguish between categories in both the four-class and
six-class tasks demonstrates its effectiveness in assessing knee ROM
during postoperative rehabilitation. These results highlight
KROMNet’s robustness across both simpler and more complex
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89.80%

87.84% 92.55% 94.12%

classification tasks, making it a reliable tool for monitoring knee
recovery. These findings are consistent with previous research, which
emphasizes the critical role of accurate knee ROM measurement in
improving functional recovery and patient satisfaction after TKA
(Gandhi et al., 2006). Compared to traditional methods, such as visual
inspection and long-arm goniometers, the KROMNet model provides
distinct advantages. Conventional techniques rely on clinician
expertise, are prone to inter-observer variability, and are time-
consuming, often resulting in inconsistent and inaccurate results
(Brosseau et al, 2001; Hancock et al, 2018). In contrast,
KROMNet provides a scalable, automated solution that eliminates
the need for specialized equipment and reduces the healthcare burden
associated with manual assessments.

4.1 Clinical justification for ROM thresholds

A key aspect of our approach is adopting the KSS thresholds for
classifying knee ROM, specifically >125° for flexion and 0° for
extension. The selection of the 125° flexion threshold is based on
clear clinical rationale. After conventional TKA, knee ROM typically
plateaus between 110° and 120°, which is often insufficient for
demanding daily activities (Kurosaka et al., 2002; Aglietti et al,
1988; Rand, 1993; Sultan et al., 2003; Ranawat et al, 1997). In
contrast, the high-flexion prostheses used in this cohort are
specifically designed to achieve a ROM greater than 125° (Kim
et al,, 2016; Kim et al., 2024; Kim et al., 2009a; Kim et al., 2009b).
The target of >125° is not arbitrary; it is functionally critical, enabling
patients to perform essential high-flexion activities, such as squatting
and kneeling, which are crucial for satisfaction and quality of life,
especially in certain cultural and occupational contexts (Devers et al.,
2011; Ha et al, 2016). Similarly, achieving full extension (0°) is
biomechanically crucial, as even a slight flexion contracture can
lead to an abnormal gait, increased energy expenditure, and joint
instability (Gandhi et al, 2006). Although rehabilitation is a
continuous process, the binary classification based on these well-
established thresholds offers a clinically meaningful distinction
between patients who have regained functionally adequate ROM
and those who may need further intervention. This makes our
assessment tool highly relevant to functional recovery goals.
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Confusion matrices of different methods on the six-class test set. (a) Hazra's model. (b) Du’s model. (c) Xia's model. (d) Victoria's model. (e) Shiwei

Liu's model. (f) KROMNet model.

4.2 Mechanism analysis of performance
differences

The comparative analysis based on the performance metrics
reveals that differences in classification effectiveness among
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various methods primarily stem from their core architectural
designs. Conventional CNN models, due to their relatively simple
structure and reliance on local convolutional kernels for feature
extraction, have inherent limitations in processing complex
multi-scale features and long-range dependencies, thus
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TABLE 6 Classification results of six-class classification on the test set for different methods.

Index Hazra Du Xia Victoria Shiwei Liu KROMNet
Precision 0.9055 0.8991 0.9066 0.8895 0.9302 0.9464
Recall 0.9089 0.8990 0.9074 0.8839 0.9305 0.9459
Fl-score 0.9069 0.8986 0.9067 0.8852 0.9298 0.9460
Accuracy 89.80% 89.02% 89.80% 87.84% 92.55% 94.12%

limiting their performance potential. While methods such as
Hazra and Du enhance feature representation via attention
mechanisms and multi-channel fusion, their attention-guided
mechanisms and data augmentation strategies fail to strike an
optimal balance between noise suppression and preservation of
essential information. The Xia method, due to its multi-
dimensional feature redundancy, tends to be overly sensitive
to subtle variations in input data; in contrast, the Victoria
method, which uses depthwise separable convolutions,
sacrifices high-frequency details that are critical for accurate
classification—despite reducing computational costs. In
contrast, the proposed method in this work incorporates a
more adaptive feature selection mechanism and a hierarchical
feature fusion strategy—both of which not only strengthen the
discriminative power of feature representations but also
interference.

effectively suppress

Consequently, it consistently achieves superior and balanced

redundancy and noisy

performance across all evaluation metrics.

The ability to remotely and accurately monitor knee ROM
is crucial, especially in post-TKA rehabilitation. The proposed
KROMNet model not only achieves high-precision knee mobility
assessment, but also offers a low-threshold, remote, and
equipment-free solution. It overcomes the limitations of
traditional rehabilitation assessments that rely on manual
and professional tools, making it especially suitable for
resource-limited or remote areas with high accessibility and
social value.

KROMNet allows
rehabilitation data without increasing their workload, while

doctors to access patients’ dynamic
patients can take and upload photos regularly, enabling a new
model of “intelligent monitoring from home.” This approach
enhances patient participation, reduces hospital visits, alleviates
pressure on medical and nursing staff, conserves medical
resources, and truly makes rehabilitation assessment intelligent

and universal.

4.3 Limitations and future directions

Although the KROMNet model demonstrates impressive
accuracy in assessing knee ROM, several limitations should be
considered. A key limitation is its reliance on high-quality images
for both training and testing. Factors such as image resolution,
lighting conditions, and patient positioning can influence the
model’s performance, especially in real-world, less controlled
clinical settings. To address this, future work should focus on
improving image preprocessing techniques, such as automated
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adjustments for varying lighting and patient positioning, thereby
enhancing the model’s robustness and reliability across diverse
settings. Another limitation is the lack of external validation across
various hospitals and patient populations. Although the
KROMNet model performed well within our cohort, further
validation through multi-center studies involving a broader
demographic range is essential. This would ensure the model’s
generalizability and effectiveness across different clinical contexts.
The current system also does not account for other variables that
may influence knee recovery, such as age, comorbidities, and
surgical techniques. These factors may significantly influence
rehabilitation progress and could be incorporated into future
iterations of the model. We plan to integrate these clinical
variables to enhance the model’s accuracy and utility, offering a
more comprehensive assessment of knee rehabilitation. In addition
to improving the existing model, we are actively planning to
expand our research into knee angle prediction. Currently, the
model classifies ROM into categories according to predefined
thresholds. In the future, we aim to develop a continuous knee
angle prediction model that provides more precise assessments.
This enhancement would address the model’s current limitation of
categorical classification and offer more granular insights into a
patient’s rehabilitation progress. By predicting specific knee angles,
we aim to provide clinicians with a more detailed understanding of
patients’ recovery trajectories, thereby improving
postoperative care.

In conclusion, although the KROMNet model represents a
promising tool for assessing knee ROM during postoperative
rehabilitation, there are several areas for improvement. We are
committed to advancing these areas through ongoing research
that will address existing limitations and further enhance the
clinical utility of our model.

5 Conclusion

In conclusion, this study demonstrates that KROMNet offer a
highly accurate and efficient solution for monitoring knee ROM in
post-TKA patients. The proposed method provides several
advantages over traditional ROM assessment techniques and
other advanced evaluation techniques, including improved
accuracy, scalability, cost-effectiveness, and simplicity. Despite its
limitations, the model holds great potential to transform
postoperative care by simplifying the assessment process for
clinicians and allowing patients to self-assess their recovery at
home, ultimately outcomes and

improving  patient

healthcare efficiency.
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