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Microbially induced carbonate precipitation (MICP) offers a promising biological
approach to sequester atmospheric CO2 as stable mineral carbonates, mitigating
climate change impacts. This perspective highlights the complexity underpinning
prokaryote-driven biomineralization processes, emphasizing the necessity for
holistic evaluation beyond simple carbonate formation. Key metabolic pathways
such as carbonic anhydrase-mediated CO2 hydration, ureolysis, photosynthesis,
and sulfate reduction contribute variably to mineral precipitation and the carbon
footprint. Furthermore, calcium carbonate polymorphs with varying stability
forms can affect carbon storage durability, while net carbon sequestration
estimates often overlook critical factors including respiratory CO2 release,
growth phases, and embodied emissions in microbial nutrient substrates.
Finally, differentiating between transient microbial organic carbon and long-
term mineral carbon storage is essential for accurate carbon accounting.
Lifecycle carbon footprints vary significantly with metabolic strategies and
substrate choices, impacting sustainable application prospects. Advancing
MICP as an effective carbon removal technology requires integrated
assessment of microbial physiology, environmental interactions, and process
lifecycle emissions to optimize CO2 drawdown with environmental and
economic viability.
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Introduction

The escalating challenges of climate change to a warming planet highlight the critical
need for a diverse array of carbon removal technologies (Schweitzer et al., 2021), with
microbially induced carbonate precipitation (MICP) increasingly recognized as a
promising candidate (e.g., Mitchell et al., 2010; Okyay and Rodrigues, 2015; Gilmour
et al., 2024; Wilcox et al., 2025). MICP harnesses the metabolic versatility of prokaryotes
to drive the precipitation of stable carbonate minerals, notably calcium carbonate
(CaCO3), thereby locking away atmospheric CO2 into solid form (e.g., Zhu and
Dittrich, 2016).
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A range of biotic and abiotic factors have been shown to
contribute to MICP and often act in combination to achieve
biomineralization. Central to many biological processes is the
enzyme carbonic anhydrase, which catalyzes the hydration of
CO2 to form bicarbonate (e.g., Meldrum and Roughton, 1933;
Douglas and Beveridge, 1998; Smith and Ferry, 2000; Fu et al.,
2021). Other commonmetabolic strategies relevant toMICP include
various ammonia-producing strategies (e.g., via urease or
deamination of amino acids during catabolism) as these elevate
pH (e.g., Kamennaya et al., 2012; Clarà Saracho and Marek, 2024),
photosynthetic uptake of CO2 to shift carbonate equilibrium (e.g.,
Riding, 2006), and dissimilatory sulfate reduction (e.g., Lin et al.,
2018; Castro-Alonso et al., 2019) where H2S production is the
mechanism by which pH is increased. Additionally, microbial cell
walls and extracellular polymeric substances (EPS) present in
biofilms, further assist by trapping divalent cations and providing
additional nucleation surfaces, ultimately promoting or modulating
the formation and stability of carbonate minerals (e.g., Zhu and
Dittrich, 2016). The rate of prokaryote-driven carbonate
precipitation is dependent on pH, availability of nucleation sites,
concentration of dissolved inorganic carbon (DIC) and saturation of
divalent Ca2+ and Mg2+ ions (e.g., Castanier et al., 2000; Zhu and
Dittrich, 2016).

Advocates of CO2 sequestration via MICP emphasize its wide-
ranging potential for stable carbon storage, citing laboratory successes
where bacterial activity accelerated carbonate mineralization rates by
orders of magnitude (e.g., Power et al., 2016; Abdelsamad et al., 2022).
Unlike many conventional carbon sequestration methods, MICP can
proceed under ambient conditions, reducing energy inputs and
offering the promise of long-term CO2 storage through the
formation of stable minerals (e.g., Wilcox et al., 2025).

Despite these promising attributes, much of the current
literature does not fully consider limitations. First, whole-system
carbon accounting is often incomplete. Second, the physiological
constraints of the microorganisms themselves— respiration, growth
phase and tolerance to elevated CO2— are insufficiently understood
inMICP systems. Third, the geochemical stability of the precipitated
carbonates is highly dependent on the mineral type, local pH and
environmental conditions, raising concerns about the potential for
carbonate dissolution and the re-release of sequestered CO2.

The above-mentioned issues are not only critical for scientific
accuracy but also for informing policy, monitoring, verification and
accounting (MVA) costs and carbon trading frameworks. Carbon
markets and regulatory bodies increasingly demand evidence of
permanence in sequestration projects (e.g., Meitner, 2024), requiring
mechanisms like MICP that offer long-term storage to be heavily
scrutinised. These issues are explored in this perspective (Figure 1)
with the aim of providing a pathway to progress these technologies
out of laboratories and into broader use. Table 1 provides a concise
summary of the key quantitative data discussed throughout
this article.

Carbon accounting

The apparent simplicity of MICP as a carbon sequestration
strategy belies a relatively complex carbon footprint. A critical
oversight in current literature is the frequent absence of a holistic

understanding of carbon balances, which requires evaluating all
carbon inputs and outputs across the entire process lifecycle. This
omission risks significantly overestimating net CO2 sequestration by
ignoring critical emissions associated with processes such as nutrient
production, metabolism, and other operational conditions.
Currently, existing studies rarely validate CO2 sequestration when
accounting for these factors, often failing to provide explicit,
quantitative carbon footprint values for essential substrates like
yeast extract or glucose that would be needed for the cultivation
of MICP-associated microbes at an industrial scale.

Embodied emissions in materials for MICP

Recent industrial life-cycle assessments have begun quantifying
these substrate-related emissions in carbon dioxide equivalent, or
CO2e, expressing the total greenhouse gas emissions as an amount of
CO2 equivalent. For example, producing 1 kg of yeast extract powder
in the European Union generates 3.34 kg of CO2e emissions, with
processing accounting for 71% of the total, agricultural sourcing
making up 23%, and transport and packaging comprising the
remaining portion (CarbonCloud, 2025). Indeed, factors such as
the production and sourcing of nutrients for yeast cultivation, the
energy required to maintain optimal growth conditions, subsequent
processing steps, and losses through respiration and fermentation all
contribute to making yeast extract a relatively high CO2 emitter
(Hagman et al., 2014; Vásquez Castro et al., 2023). Urea, which is
often cited as an important component of someMICP approaches, is
a highly energy-intensive product, emitting approximately 1.8 kg of
CO2 per kg of urea primarily due to fossil fuel consumption during
the Haber-Bosch process (e.g., Smith et al., 2020; Luo et al., 2023).
The use of urea together with yeast extract would therefore
compound the emission profile of any MICP process conducted
on suchmedia. To better understand how changes in input materials
affect emissions in MICP, readers are directed to Porter et al. (2021),
who highlight that carefully selecting and optimizing input sources
can significantly lower emissions. Notably, they found that replacing
laboratory-grade calcium chloride with industrial-grade alternatives
reduced emissions by ~18%–49.62%. Even greater reductions were
observed when industrial by-products were used as nutrient sources.
Other options, such as making a judicious choice of less carbon-
intensive nitrogen sources, can help reduce the overall
environmental impact of microbial cultivation. Further work to
quantify and subsequently reduce embodied emissions would be of
significant assistance in progressing these technologies in terms of
economics and sustainability.

MICP metabolic processes affect emissions

The rate of MICP can vary depending on which metabolic
pathway predominates, environmental factors, and microbial
activity levels (e.g., Fahimizadeh et al., 2022). Likewise, the
carbon footprint of MICP also varies depending on the specific
biochemical process employed. According to the life cycle
assessment by Porter et al. (2021), heterotrophic processes, such
as ureolysis, are the most carbon-intensive, producing 2.06–3.91 kg
CO2 per kilogram of precipitated calcium carbonate. This high
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footprint is primarily attributed to the use of energy-intensive
inputs like purified urea. By contrast, autotrophic processes
generate lower direct emissions, ranging from ~1.2 kg CO2 per
kilogram of CaCO3. Notably, the use of only the carbonic

anhydrase enzyme results in the lowest carbon footprint, at
~0.67 kg CO2 per kilogram of CaCO3. However, the relatively
high monetary costs of purified enzymes can be prohibitive for use
in many industries (e.g., Jo et al., 2013).

FIGURE 1
Integrated overview of carbon flows in microbially induced carbonate precipitation (MICP) systems, highlighting the full carbon accounting from
inputs to outputs.
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Biomass vs. mineral material for
carbon locking

Microbial communities, especially autotrophs, drive carbon draw
down both via MICP and the formation of biomolecules. The latter
ranges in the degree of permanence from labile (LOM) to refractory
organic matter, each with different stability profiles (e.g., Dranseike
et al., 2025). LOM, produced throughmicrobial carbon assimilation, is
unstable and typically returns to the atmosphere within years via
respiration and decomposition (e.g., Visser et al., 2016; Hoikkala et al.,
2016), limiting its sequestration potential. In contrast, mineral
carbonates can provide long-term carbon storage, emphasizing the
importance of distinguishing between these forms in carbon
accounting. This duality is especially evident for CO2 uptake by
cyanobacteria, where the balance between organic matter
formation and carbonate mineralization varies by species and
environment (e.g., Kamennaya et al., 2012; Jung et al., 2024).
Therefore, robust accounting methods are essential, as failing to
distinguish between different forms of sequestered carbon can
result in a significant overestimation of net CO2 removal. Mineral
carbonates are typically measured using mineralogical analyses (e.g.,
X-ray diffractometry, scanning electron microscopy), while transient
LOM requires dynamic methods such as isotopic tracers (δ13C) and
decomposition studies (e.g., Preston et al., 2006). Without clear
differentiation, net CO2 removal can be overestimated if transient
LOM is credited as stable mineral carbon. Measurements of total
inorganic carbon (TIC) versus total organic carbon (TOC) can be used

to distinguish and quantify sequestration by analysing the difference
between the two forms of carbon (e.g., Jones et al., 2023).

Other physiological considerations

Respiration

Microbial respiration represents a key process in MICP, yet this
factor receives limited attention in most experimental studies for
CO2 sequestration. Many investigations emphasize the ability of
microbes to convert carbon into mineral forms, often neglecting
comprehensive accounting of respiration within the same system.

Respiration always results in less carbon loss than the total
carbon input, since net growth cannot occur if all consumed carbon
is respired. The relationship between carbon consumption and
retention in microbial biomass is described by carbon use
efficiency (CUE; e.g., Geyer et al., 2016; Mendonça et al., 2024).
For heterotrophic microbes, this metric expresses the proportion of
carbon retained in biomass relative to total carbon consumed, while
for autotrophic organisms, CUE is defined as the ratio of carbon
retained in biomass to carbon fixed. For example, a heterotrophic
microbe with a CUE of 0.5 loses approximately half of consumed
carbon to respiration, whereas a CUE of 0.8 indicates a more
efficient mode of growth, with only 20% of carbon lost to respiration.

Variation in CUE among prokaryotes is substantial (Saifuddin
et al., 2019), making it essential to determine CUE values for target

TABLE 1 Summary of key published quantitative parameters related tomicrobially induced carbonate precipitation (MICP) processes and associated carbon
footprints.

Category/Parameter Quantitative
Value(s)

Notes Source

Yeast extract CO2e emissions 3.34 kg CO2e/kg 71% processing, 23% agricultural sourcing;
remainder transport/packaging

CarbonCloud 2025; Hagman et al., 2014;
Vásquez Castro et al., 2023

Urea CO2 emissions 1.8 kg CO2/kg Produced via Haber-Bosch process Smith et al., 2020; Luo et al., 2023

Laboratory vs. industrial grade chemicals ~18%–49.6% emission
reduction

Replacing laboratory-grade with industrial-grade
calcium chloride

Porter et al. (2021)

By-product nutrient sourcing Higher emission reduction Using industrial by-products as nutrients Porter et al. (2021)

MICP-heterotrophic CaCO3 footprint ~2.06–3.91 kg CO2/kg CaCO3 Highest, due to energy-intensive inputs Porter et al. (2021)

MICP-autotrophic CaCO3 footprint ~1.2 kg CO2/kg CaCO3 Lower direct emissions Porter et al. (2021)

Carbonic anhydrase-only CaCO3 ~0.67 kg CO2/kg CaCO3 Lowest reported for MICP Porter et al. (2021)

Microbial carbon use efficiency (CUE) 0.53 ± 0.25 (mean ± Standard
Error)

Fraction lost to respiration, mean across
prokaryotes

Saifuddin et al. (2019)

Pure glucose, aerobic CUE ~0.6 Typical yield with pure cultures, glucose, and O2 Geyer et al. (2016)

High-CUE microbes Up to ~0.9 Exceptionally efficient metabolic strains Saifuddin et al. (2019)

CO2 inhibition of growth Up to 40% CO2 Bacterial growth linearly inhibited up to this
concentration

Eklund (1984)

Optimal MICP temperature for
commonly studied organisms

25–30 °C For Sporosarcina pasteurii; most studies use
mesophilic temperatures

Omoregie et al. (2017)

Precipitation, stationary phase >24 h Sporosarcina silvestris: active mineralization
during constant stationary phase

Seidel et al. (2025)

The table includes carbon dioxide emissions for various substrates such as yeast extract and urea, metabolic carbon use efficiency (CUE), inhibition effects of elevated CO2 on microbial growth,

and optimal experimental conditions reported in recent studies. Values are cited from multiple sources as detailed in the manuscript and provide a consolidated reference for metabolic,

environmental, and operational factors influencing MICP efficacy and sustainability.
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microbial strains used in MICP applications. Saifuddin et al. (2019)
indicate that, on average, about half of consumed carbon (mean =
0.53 ± 0.25 Standard Error) is lost to respiration across prokaryotes,
though considerable variability exists among species. Closely related
taxa tend to exhibit broadly similar CUE values, yet some species
demonstrate notably higher efficiency. In addition, variations in
CUE reflect differences in energy conservation and biomass
formation efficiency, which are influenced by both the nature of
the substrate and the organism’s metabolic capabilities.

Under aerobic conditions with ample glucose availability, pure
cultures often exhibit a yield of approximately ~0.6 (Geyer et al., 2016).
In certain cases, particularly when utilizing more reduced substrates or
when the organisms display exceptionally efficient metabolic
performance, yields can approach ~0.9 (Saifuddin et al. 2019).
Therefore, selection of substrates and microbial strains with elevated
CUE values may enhance the overall efficiency of MICP processes.

Growth phase

Most MICP studies are performed entirely during the
exponential growth phase, when microbial populations are
rapidly increasing. It is during this period that both calcium
carbonate precipitation and CO2 uptake typically reach
completion, and as a result, most experimental findings are based
on observations made within this limited window of microbial
activity. Most experiments investigating MICP do not consider
the distinct growth phases of the microbes involved, such as the
lag phase, exponential growth phase, or stationary phase.

This emphasis on the exponential phase has important
implications for the interpretation and practical application of
MICP. For instance, if one assumes that only the enzyme
carbonic anhydrase is relevant and that its expression remains
constant, then the number of enzyme molecules will increase
exponentially alongside microbial growth. However, as nutrient
availability declines and the culture transitions into the stationary
phase, the number of enzyme molecules plateaus. At this point, the
process likely achieves its maximum potential, but this peak is
generally short-lived, and some form of media renewal will be
required to maintain a healthy population of target microbes.

In a recent study by Seidel et al. (2025), a strain of Sporosarcina
silvestris showed steady calcium carbonate precipitation during the
stationary phase. While cell counts remained stable in that study,
calcite precipitation continued over 24 h, demonstrating active
mineralization beyond the exponential growth phase. To date,
however, there has been limited research focused on the kinetics
and biomineralization conditions necessary for efficient MICP
beyond the initial growth phase. Even fewer studies (e.g., Murugan
et al., 2021) have addressed strategies formaintainingmaximumMICP
performance in industrial systems over extended periods. Closing these
knowledge gaps is essential for advancing MICP technology from
controlled laboratory settings to practical, large-scale applications.

Elevated CO2

In addition to these considerations, the effects of elevated CO2

on microbes and their gene expression have received only limited

attention in most studies. While some studies suggest fewer
profound impacts of elevated CO2 levels on microbial diversity
(e.g., Ahrendt et al., 2014), the gene expression of key MICP
enzymes under such conditions remains poorly understood (e.g.,
Xiao et al., 2015; Clarà Saracho and Marek, 2024). Indeed, Eklund
(1984) showed that growth rates of MICP-capable bacteria like
Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus cereus were
linearly inhibited with increasing CO2 concentrations by up to 40%.
Elevated CO2 concentrations can have significant negative effects on
microbial growth (Yu and Chen, 2019; Wan et al., 2018; Ennaciri
et al., 2022) and, to some extent, on the gene expression of carbonic
anhydrase (e.g., Xiao et al., 2015), presenting further scalability
challenges for MICP. These adverse impacts are likely more
pronounced in aerobic taxa, although concomitant acidification
of the medium may also affect other microbial groups. Efforts to
either maintain lower CO2 concentrations or employ taxa tolerant of
elevated CO2 or pH instability, would be highly beneficial. In
addition, use of anaerobes for MICP are largely unexplored, these
organisms may have some advantages in settings where elevated
CO2 atmospheres are being considered.

Temperature

With a few exceptions (e.g., Okwadha and Jin, 2010; Omoregie
et al., 2017; Peng and Liu, 2019; Zhang et al., 2021), temperature is
often insufficiently addressed in MICP studies. Most research
considers it only as necessary for supporting the growth of the
target biomineralizing organism, despite its significant influence on
both microbial activity and carbonate precipitation rates. Optimal
MICP temperatures for many of the well-studied organisms, such as
Sporosarcina pasteurii, are usually at relatively low temperatures of
up to 30 °C (e.g., Omoregie et al., 2017). While elevated temperatures
can accelerate reaction kinetics and enhance mineralization, enzyme
activity lifespans may vary (e.g., Peng and Liu, 2019 and references
therein). More research is thus warranted to explore organisms
adapted to elevated temperatures. Furthermore, while these more
efficient enzyme kinetics can be advantageous, they may require
substantially higher process temperatures. This, in turn, necessitates
thermotolerant microbial strains and greater energy input for
heating, which undermines one of MICP’s main benefits, its
potential for low energy demand and environmental
sustainability. Further research is thus needed to explore this
trade-off. If higher temperature processes are determined
(through carbon accounting) to be preferable, work to develop or
select robust, thermotolerant strains or enzymes will be crucial for
advancing MICP technologies toward scalable and economically
viable applications.

Carbonate mineral stability

MICP produces a range of carbonate minerals of varying
thermodynamic stabilities, most commonly calcite, aragonite, and
vaterite (e.g., Anbu et al., 2016; Chang et al., 2017; Zehner et al.,
2020), representing different carbonate mineral phases or
polymorphs of the same chemical composition but different
crystal structures. Metastable vaterite and aragonite are more
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susceptible to dissolution than calcite, but no single precise pH value
universally defines the onset of dissolution for these minerals, since
temperature, ionic strength and the degree of saturation of the
solution also play a role (e.g., Cooke and Kepkay, 1980; Plummer
and Busenberg, 1982; Svenskaya and Pallaeva, 2023 and references
therein). Other phases important in MICP include amorphous
carbonate as well as Mg-calcite (e.g., Défarge et al., 1994; Jones
and Peng, 2014).

The optimal outcome for durable CO2 storage is the exclusive
formation of calcite, the most stable and least soluble polymorph of
calcium carbonate, which ensures long-term immobilization of
carbon. However, achieving the exclusive formation of the calcite
phase during MICP is a significant scientific and engineering
challenge due to the complex interplay of biochemical and
environmental parameters that govern carbonate polymorph
selection. The MICP process can foster the nucleation of
metastable phases such as vaterite and aragonite, which often
appear either concurrently with or prior to calcite precipitation
due to kinetic and local saturation effects (e.g., Khanjani et al., 2021).
One core difficulty lies in the sensitivity of phase outcomes to subtle
fluctuations in parameters such as pH, temperature, calcium and
urea concentrations, bacterial species and activity levels, and the
specific nature of additives or impurities present in the system (e.g.,
Dhami et al., 2013; Anbu et al., 2016 and references therein;
Khanjani et al., 2021; Haystead et al., 2024). For example, high
supersaturation or rapid mixing can promote the nucleation of
vaterite or aragonite (e.g., Sun et al., 2015), while the presence of
magnesium ions can stabilize these less stable forms and inhibit their
transformation to calcite (e.g., Boon et al., 2020).

The cumulative effect of these interacting factors means that
establishing a robust, reproducible method for suppressing
metastable phases and reliably producing phase-pure calcite
remains a persistent obstacle for both laboratory-scale and field-
scale MICP applications. This challenge is further compounded by
the inherent variability of biological systems and the natural
progression of polymorphic transitions over time (e.g., Dhami
et al., 2013; Khanjani et al., 2021).

Addressing these challenges through targeted process
optimization and environmental monitoring will be essential.
Placing a strong emphasis on developing and validating
reproducible methods is paramount. Systematic approaches that
include rigorous standardization of microbial inoculum, substrate
concentrations, and environmental parameters, coupled with
comprehensive reporting of experimental details, will significantly
enhance cross-laboratory comparability. The adoption of
reproducibility-focused protocols not only facilitates more reliable
suppression of metastable phases but also enables consistent
generation of phase-pure calcite, ultimately advancing the
scalability and practical deployment of MICP technologies. This
focus will help bridge current gaps between experimental success
under controlled conditions and reliable performance in complex,
real-world environments.

Conclusion

While MICP holds potential as a biologically driven method for
durable CO2 sequestration, realizing its full impact requires a more

holistic and integrated evaluation. Current research focused on carbon
sequestration often overlooks key factors such as whole-system
carbon accounting, physiological constraints and the stability of
the resulting carbonate minerals. Effective deployment of MICP
must distinguish between transient organic biomass and stable
mineral carbon, accurately track emissions from inputs, and
account for microbial growth dynamics, carbon use efficiency, and
tolerance to elevated CO2 and temperature. Additionally,
reproducible control over polymorph formation, with an emphasis
on generating stable calcite, is essential to ensure long-term carbon
immobilization. Future progress depends on developing standardized
methodologies, selecting robust microbial strains, optimizing nutrient
sourcing, and validating mineral stability under field conditions.
Addressing these challenges will be critical to transitioning MICP
from a promising laboratory technique to a reliable and scalable
solution for climate change mitigation.
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