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Temporomandibular joint osteoarthritis (TMJOA) remains a clinically
underrecognized and insufficiently studied disorder, despite exerting a
comparable impact on quality of life as knee osteoarthritis (knee OA). TMJOA
can lead to chronic pain, limited mouth opening, joint dysfunction, and
craniofacial deformities, yet it receives disproportionately less research
attention and lacks standardized diagnostic and therapeutic frameworks. While
TMJOA and knee OA share several hallmark pathological features—including
cartilage degeneration, subchondral bone remodeling, and synovitis—these
manifestations are shaped by joint-specific anatomical and biomechanical
environments, resulting in distinct disease trajectories. Current evidence
highlights that the pathogenesis of TMJOA remains poorly defined, with
unresolved questions surrounding the role of mechanical loading in altering
the cartilage microenvironment, the mechanisms underlying pathological
calcification, and the influence of sex hormones such as estrogen and
progesterone on disease onset and progression. In contrast, decades of knee
OA research have yielded validated preclinical models, detailed molecular
insights, and emerging regenerative strategies. This review systematically
compares the two forms of osteoarthritis from clinical, anatomical, and
pathological perspectives. We propose that TMJOA research may benefit
significantly from cross-joint insights derived from the more extensively
studied knee OA. Cross-comparative approaches not only provide a valuable
framework for understanding joint-specific disease mechanisms but also offer
new directions for the development of targeted therapies and diagnostic tools
tailored to TMJOA. Bridging the current knowledge gap through interdisciplinary
and translational research may ultimately improve outcomes for patients affected
by this overlooked joint disease.

osteoarthritis, temporomandibular joint, knee, comparison, craniomaxillofacial surgery

1 Introduction

The knee joint and temporomandibular joints (TM]) are among the most frequently
used joints in the human body. The knee is essential for locomotion, while the TM]J, one of
the most complex joints, is critical for chewing, speaking, and breathing. Osteoarthritis
(OA) is a common degenerative joint disease marked by cartilage degradation, subchondral
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TABLE 1 Overview of comparison of clinical symptoms to pathology in knee OA and TMJOA.

Differential item Knee OA

Prevalence ~14.6%

PubMed articles® 2167 (in 2024)

Symptoms Persistent pain, joint stiffness,

functional limitation

TMJOA

8%-16%

404 (in 2024)

Joint clicking, limited mouth
opening, occlusal pain

Differences References

similar Cross et al. (2014),

Kalladka et al. (2014)

Knee OA articles far outnumber TMJOA -
articles

Both present with pain and restricted
joint function

Glyn-Jones et al. (2015),
Ahmad et al. (2009)

Severe surface fissures, extensive
fibrosis

Pathological Features-
cartilage degeneration

Pathological Features-
subchondral bone

Sclerosis, cysts and osteophyte

Pathological Feature-
pathological calcification

Double tidemark phenomenon
with calcification at top and
bottom layers

Pathological Features-
Synovitis

Significant synovial thickening
and inflammatory response

Fissures predominantly in the deep
layer, milder surface damage

Erosion, osteophyte, flattening, and
pseudocyst-like lesions

Upward shift of the calcification
front, absence of double tidemark
phenomenon

Synovial thickening with increased
vascularization

Knee OA shows cartilage surface fissures,
absent in TMJOA

Li et al. (2021), Wallace
et al. (2009)

Subchondral bone remodeling in
TMJOA greatly affects condylar
morphology

(Link et al., 2003);
(Embree et al., 2011)

Pathological calcification in knee OA is
characterized by a “double tidemark,”
absent in TMJOA

Hawellek et al. (2016),
Wang et al. (2022b)

Similar, both are OA-promoting factors Scanzello and Goldring

(2012), Benito et al. (2005)

“PubMed was searched using the following keyword schemes: ([([tibiofemoral] OR [knee]) AND ([cartilage] OR [meniscus])]) and ([([temporomandibular] OR [jaw]) AND ([cartilage] OR

[meniscus] OR [disc] OR [disk])]).

bone remodeling, and synovial inflammation, leading to pain,
stiffness, and functional impairment.

Knee OA is highly prevalent, affecting approximately 14.6% of
the population, with incidence increasing with age. It is a major
cause of disability worldwide and has been extensively studied in
terms of epidemiology and pathogenesis (Cross et al., 2014). By
contrast, TMJOA is similarly prevalent (8%-16%) and equally
detrimental to patients’ quality of life, causing pain, restricted
mouth opening, slowly progressive craniofacial deformities, and
even ankylosis, yet it has received disproportionately limited
research attention (Wang et al., 2025).

Marked disparities exist between knee OA and TMJOA in terms
of basic research, clinical studies, therapeutic development, and
funding. For instance, the annual number of total knee
replacements is nearly 2,000 times that of TMJ replacements
(Bielajew et al, 2021). While research in knee OA has led to
detailed
degradation, and therapeutic strategies, TMJOA lacks well-

insights into inflammatory pathways, cartilage
established diagnostic and treatment frameworks.

Given anatomical and pathological similarities between the two
conditions, knee OA research offer valuable reference points for
advancing TMJOA studies (Table 1). This review aims to compare
knee OA and TMJOA from clinical and basic science perspectives,
highlighting how cross-joint insights may promote mechanistic

understanding and therapeutic innovation for TMJOA.

2 Clinical heterogeneity
2.1 Anatomy and histology

The knee and TMJ both are synovial hinge joints with articular
surfaces and fibrocartilaginous structures (the meniscus in the knee
and the articular disc in the TM]J) that contribute to joint stability
and function. The temporomandibular joint is capable of both
rotational and translational movements, while the knee joint,
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divided into the tibiofemoral and patellofemoral joints, enables
flexion, extension, and rotational movements.

Biomechanically, the forces exerted on the knee joint during
light jogging can exceed four times body weight (approximately
3,080-3,600 N) (D’Lima et al., 2012). In contrast, occlusal loading on
the TMJ approximates body weight (770-900 N) (Pizolato et al.,
2007). The main types of loads applied in both joints are
compressive and shear loads, but tensile loads play a greater role
in the TM]J than in the knee (Patel et al., 2019). Notably, occlusal
force is modulated by peripheral and central neuromuscular
feedback, maintaining TM] loading within physiological limits
(Ogino and Tadi, 2023).

Structurally, TM] condylar cartilage consists of fibrocartilage,
containing both type I and type II collagen, unlike the hyaline
cartilage in the knee (Wadhwa and Kapila, 2008). TMJ cartilage is
classified as secondary cartilage, forming in conjunction with
intramembranous ossification, whereas knee cartilage originates
as primary cartilage through endochondral ossification (Breeland
et al, 2023). TMJ cartilage also exhibits enhanced regenerative
capacity and greater potential for interstitial growth.

Subchondral bone in both joints includes the subchondral plate
and trabecular bone. While structurally similar, subchondral bone
dynamically adapts to mechanical loading by remodeling trabecular
orientation and density in response to stress (Goldring and
Goldring, 2016). Continuous bone modeling adjusts the contour
and geometry of the subchondral region to maintain joint function
under varying load conditions.

2.2 Epidemiology

Knee OA is the most prevalent form of OA, affecting
approximately 365 million people worldwide (H et al, 2022).
Among individuals aged 60 and above, symptomatic knee OA
occurs in about 10% of men and 13% of women, with an overall
prevalence of 14.6% (Zhang and Jordan, 2010). The prevalence is
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expected to rise with population aging and increasing rates of
overweight and obesity. A cross-sectional study in Greece found
that knee OA was more common in women, increased with age, and
was more prevalent in rural areas. Additionally, obesity and low
educational attainment were identified as risk factors (Andrianakos
et al., 2006).

In contrast, epidemiological data on TMJOA are limited and
inconsistent due to variations in diagnostic criteria. Nonetheless,
one study reported a prevalence of 8%-16%, with higher rates
observed in women and older individuals, mirroring patterns
seen in knee OA (Kalladka et al., 2014).

Despite its significant impact on quality of life, TMJOA remains
under-researched compared to knee OA. The disparity in research
attention, therapeutic development, and funding likely reflects
differences in perceived clinical importance. However, the high
prevalence and burden of TMJOA warrant increased research
efforts. Integrating insights from knee OA studies may accelerate
understanding of TMJOA pathogenesis and support the
development of effective treatments.

2.3 Symptoms and diagnosis

The European League Against Rheumatism (EULAR) defines
three key symptoms for the diagnosis of knee OA: persistent knee
pain, limited morning stiffness, and reduced joint function. The
severity of knee OA can range from mild discomfort to joint
immobilization (Heidari, 2011).

TMJOA exhibits overlapping clinical features, including joint
pain, restricted mobility, and abnormal joint sounds. In early stages,
TMJOA is often associated with synovitis, leading to pain, limited
mouth opening, stiffness, and characteristic joint noises such as
crepitus and clicking (Schiffman et al., 2014). In advanced cases,
structural deformities may occur, including mandibular deviation,
facial asymmetry, occlusal instability, and malocclusion (Chen
et al., 2005).

Diagnostic criteria for TMJOA have been established through
the Research Diagnostic Criteria for Temporomandibular Disorders
(RDC/TMD), introduced in 1991 with support from the National
Institute of Dental Research (NIDR) and widely adopted
internationally (J. Craniomandibular Disorder Facial Oral Pain,
1992) (R and Sf, 2016). The most recent and widely accepted
diagnostic ~ framework is the Diagnostic Criteria  for
Temporomandibular Disorders (DC/TMD, 2014), which has
replaced the older RDC/TMD system. Imaging techniques such
as magnetic resonance imaging (MRI) and computed tomography
(CT) are commonly employed, with MRI offering high reliability for
detecting disc displacement (Schiffman et al., 2014).

For knee OA, diagnostic grading systems are more mature. The
Kallgren-Lawrence system and the International Osteoarthritis
Research Society criteria are widely used. In addition, advanced
MRI-based scoring systems such as the Whole-Organ MRI Score
(WORMS), the Boston-Leeds Osteoarthritis Knee Score, and the
MRI Osteoarthritis Knee Score have further improved diagnostic
precision (Guermazi et al., 2013).

In summary, while the diagnostic framework for knee OA is
standardized, TMJOA
established. There is a pressing need for refined scoring

well-developed and remains less
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systems and improved imaging protocols to enhance

diagnostic accuracy for TMJOA.

3 Pathological heterogeneity

OA, once considered a purely mechanical disease, is now
recognized as a multifactorial joint disorder involving cartilage,
subchondral bone, and synovium (Figure 1). Multiple risk factors
converge to disrupt tissue homeostasis, driving disease progression.

3.1 Cartilage

Progressive cartilage degradation is a hallmark of OA, involving
extracellular matrix breakdown, proteoglycan loss, and collagen
disorganization, tissue’s

ultimately impairing the

biomechanical function.

3.1.1 Cartilage degeneration

Cartilage homeostasis in OA 1is disrupted by an imbalance
between anabolic and catabolic processes. Excessive matrix
metalloproteinases (MMPs) degrade collagen and proteoglycans.
Although chondrocytes initially respond by increasing proteoglycan
synthesis and secreting tissue inhibitors of MMPs (TIMPs), these
compensatory efforts are insufficient. Progressive matrix loss leads
to water accumulation, fiber disorganization, and structural
weakening. In advanced stages, surface fissures and cracks
develop, exposing the subchondral bone (Loeser et al., 2012).

In knee OA, degeneration begins with matrix depletion and
progresses to fibrillation, superficial erosion, and deep-layer
cracking. Fibrillation is an early indicator of hyaline cartilage
damage, preceding full-thickness defects and subchondral exposure.

In contrast, TMJOA exhibits a different degeneration pattern.
Surface damage is less prominent, while fissures tend to appear in
deeper cartilage layers. Other features include erosive resorption,
sclerosis, osteophyte formation, and subchondral pseudocysts
(Wang et al, 2015). This difference may reflect the unique
fibrocartilage composition of TM] cartilage, containing both type
I and type II collagen, which may confer greater reparative capacity
(Wadhwa and Kapila, 2008).

These contrasting degradation patterns highlight joint-specific
differences in pathology. While both conditions involve ECM
breakdown and homeostasis disruption, knee OA shows more
severe surface erosion due to higher mechanical loading, whereas
TMJOA exhibits deeper, localized damage potentially linked to
cartilage composition and loading patterns (Li et al., 2021).

3.1.2 Pathological calcification in cartilage
Physiological calcification occurs in bones, teeth, and growth
plates, but OA is characterized by ectopic cartilage calcification. In
knee OA, calcification affects both superficial and deep cartilage
layers, resulting in the characteristic “double tidemark.” Recent
studies dual calcification mechanisms:

suggest “top-down”

mineralization at the surface and “bottom-up” from the
osteochondral junction (Wang et al., 2023).
In TMJOA, calcification remains less understood. Observations

include an upward shift in the calcified cartilage front and cartilage
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thinning, but the “double tidemark” phenomenon has not been
reported (Zhang et al., 2016). Whether this reflects true mechanistic
differences or research gaps remains unclear.

These disparities suggest that pathological calcification in knee
OA is more advanced in both understanding and staging. Further
investigation is needed to clarify whether TMJOA follows a different
calcification trajectory or simply lacks comprehensive study.

3.2 Subchondral bone

knee have demonstrated that
subchondral bone exhibits distinct pathological changes at

Extensive studies on the

different stages of OA. Early alterations include thinning of the
subchondral bone plate, increased porosity, disruption of trabecular
architecture, increased trabecular separation, and reduced trabecular
thickness. These changes are followed by compensatory remodeling
characterized by thickening of the subchondral plate and trabeculae,
subchondral sclerosis, and reduced marrow space (Hiigle and
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Geurts, 2016). Subchondral bone cysts and osteophyte formation
observed on conventional radiographs are considered hallmarks of
late-stage OA (Li et al., 2013).

In TMJOA, pathological changes of the condylar subchondral
bone are considered major contributors to the radiographic
manifestations of the condyle. Common degenerative changes
osteophyte,flattening,
lesions—all of which reflect subchondral bone remodeling

include erosion, and pseudocyst-like
(Comert Kili¢ et al, 2015). These subchondral alterations are
frequently associated with limited mouth opening and pain, and
they represent a significant etiological factor in dentofacial
deformities (Li et al., 2022).

Emerging evidence indicates that subchondral bone changes in
both knee OA and TMJOA share similar radiographic features,
primarily driven by imbalanced bone remodeling. This
imbalance—between resorption and formation—leads to reduced
subchondral bone modulus (Day et al., 2001). In TMJOA, condylar
degeneration is often characterized by bone loss (Demirturk et al.,

2024), while knee OA studies tend to focus on altered biomechanical
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properties. This discrepancy likely reflects the joints’ differing
functions. The TMJ endures continuous occlusal loading, and a
rabbit model of TMJOA has shown that bone microarchitecture is
highly responsive to the direction and magnitude of mechanical
load. Even minor mechanical shifts may trigger subchondral
degeneration (Fujisawa et al, 2003), highlighting the need to
further investigate the biomechanical properties of the condylar
subchondral bone in TMJOA.

3.3 Synovitis

Synovitis occurs throughout all stages of OA and impairs the
joint’s lubricating function (Scanzello and Goldring, 2012). MRI
studies in 39 knee OA patients revealed synovial thickening of
varying severity, with fibrin deposition and inflammatory cell
infiltration more pronounced in advanced stages. Synovitis,
detectable even in early OA, can be assessed by MRI to classify
patients in clinical trials and identify candidates for synovial-
targeted therapies (Roemer et al.,, 2011).

Histological studies have identified the presence of intima
hyperplasia, fibrosis, and increased vascularity in TMJOA,
suggesting a multifactorial process that includes both immune
activation and mechanical stress. This dynamic process reflects
the unique biomechanical environment of the
temporomandibular joint (Feng et al, 2021).The complexity of
in TMJOA that

vascular, and mechanical factors may play distinct roles in

synovial micro-lesions suggests immune,
disease progression compared to knee OA.

While synovitis is a well-established biomarker and therapeutic
target in knee OA, its role in TMJOA remains underexplored.
Clarifying the inflammatory mechanisms in TMJOA may reveal
novel intervention points and support the development of joint-

specific treatment strategies.

4 Pathogenic heterogeneity

The diverse pathological features observed across joint tissues in
OA raise an ongoing debate: are these tissue alterations initiators of
disease, or are they secondary consequences of OA progression?
Relying solely on clinical manifestations and gross pathological
descriptions is insufficient to resolve this question. A more
nuanced understanding necessitates in-depth exploration of
tissue-specific micro-lesions and their interrelated roles in OA
pathogenesis.

4.1 Cartilage

4.1.1 Chondrocyte death
Cell death is
multicellular organisms, and recent studies have highlighted the

a fundamental physiological process in

critical role of regulated cell death in the progression of OA (Yu
et al,, 2021). In knee OA, various forms of chondrocyte death have
been identified as key contributors to disease progression, leading to
the proposal of corresponding therapeutic targets. Acid-sensing ion
channel 1a (ASICla) and the NLRP3 inflammasome have been
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implicated in pyroptosis of chondrocytes in OA (Wu et al.,, 2019;
Zhang et al, 2021). Ferroptosis has been shown to exacerbate
extracellular matrix degradation (Yao et al, 2021), while
autophagy dysregulation due to cellular senescence is another
major mechanism under investigation (Caramés et al., 2010). A
study utilizing miR-181a-5p antisense oligonucleotides (ASO) to
inhibit chondrocyte apoptosis in rats and mice demonstrated that
miR-181a-5p is a key pro-apoptotic factor (Nakamura et al., 2019).

Recent research in TMJOA has identified circGCNI1LI, a
circular RNA that promotes chondrocyte apoptosis by targeting
miR-330-3p and TNF-a (Zhu et al,, 2020). Additionally, signaling
pathways such as Indian hedgehog (Ihh), modulated by CaMKI],
drive hypertrophy by upregulating Thh and suppressing PTHIR,
whereas PTHIR signaling acts to inhibit hypertrophy through the
Thh-PTHTrP feedback loop (Long et al., 2019). In TMJOA, reduced
FGFR3-mediated of Thh
Thh-Smo-Gli-Runx2 axis to promote hypertrophy (Yang et al,

suppression permits the
2019). The Wnt signaling pathway is also implicated: the canonical
Whnt/p-catenin pathway promotes Col X and Runx2 expression via
Dnmt3b downregulation, while the non-canonical Wnt/JNK
pathway induces hypertrophy and chondrocyte migration (Zhou
et al., 2019).

Although cell death is recognized as a crucial driver of OA

progression, its specific role in TMJOA remains poorly
characterized. Most current studies in TMJOA focus on signaling
pathways,  with  limited  identification = of  definitive

therapeutic targets.

4.1.2 Matrix degeneration

Chondrocytes initiate cartilage matrix degeneration in response
to excessive mechanical loading, leading to increased water content,
GAGs loss, and proteoglycan degradation. Even without
macroscopic joint changes, ADAMTS-4 and ADAMTS-5 cleave
aggrecan core proteins from the hyaluronan backbone, disrupting
GAG function and cartilage permeability (Pratta et al., 2006). Early
chondrocyte compensatory synthesis precedes superficial fibrosis
and matrix degradation, with MMP-13 playing a key role in type II
collagen breakdown. Dysregulated anabolic and catabolic activity
accelerates OA progression and structural deterioration (Loeser
et al.,, 2012).

In knee OA, enzymatic degradation and mechanical damage
primarily affect type II collagen and proteoglycans, compromising
cartilage integrity. Urinary collagen type-II C-terminal cleavage
(uC2C) with
indicating potential as an early biomarker (Ren et al., 2023). An

neoepitope correlates cartilage degradation,
imbalance between collagen and proteoglycans weakens cartilage’s
load-bearing capacity, exacerbating degenerative joint disease
(Gauci et al., 2017).

In TMJOA, lubrication impairment alters frictional properties
and surface wear, triggering pro-inflammatory mediator release and
enzymatic degradation under mechanical stress. The Ras-related
protein Rap-2a (RAP2A) modulates TMJOA progression via the
Hippo/YAP pathway, influencing chondrocyte phenotypic shifts
and matrix synthesis (Ma et al., 2020).

The primary molecular signaling pathways involved in knee OA
and TMJOA differ, leading to distinct manifestations of micro-
lesions. This raises a critical question: how do anatomical and
differences  contribute  to

biomechanical joint-specific
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pathogenesis? Investigating systemic factors such as inflammation
and metabolism, along with local mechanical and molecular
alterations, may be crucial for a deeper understanding of OA
heterogeneity.

4.1.3 Pathological calcification

Basic calcium phosphate (BCP) and calcium pyrophosphate
dehydrate (CPPD) are key pathological minerals in joint diseases
(Rosenthal, 2018). CPPD crystals, linked to acute inflammatory
arthritis and degenerative conditions, deposit in joints, spine, and
soft tissues, causing chondrocalcinosis and  worsening
OA symptoms.

Extensive studies on knee OA have demonstrated that initial
calcification presents as nanosphere formation, progressing to the
erosion of deeper, more compact structures in advanced stages,
corresponding to chondrocyte apoptosis and hypertrophy. These
chondrocytes contribute to mineralization, influenced by the
balance between inhibitors (proteoglycans, collagen-II) and
promoters (collagen-I, collagen-X, Runx-2), which degrade the
matrix and favor calcium phosphate deposition. This calcification
disrupts cartilage ECM, alters mechanical properties, and accelerates
OA progression (Hu et al., 2021).

Collagen fiber fragmentation and disorganization, fiber gap
enlargement, matrix vesicle generation and increased mineral
deposition in the matrix surrounding hypertrophic chondrocytes
in cartilage were observed after abnormal stress-related surgery on
the rat TMJ and intensified over time (Zhang et al, 2016).
Pathological calcification follows a “bottom-up” pattern and is
accelerated by chondrocyte-derived exosomes. Lysyl oxidase
(LOX), a key enzyme in collagen cross-linking, promotes
cartilage calcification, and its inhibition has potential to reduce
mineralization (Wang X. et al., 2022).

Pathological calcification is a complex organic-inorganic
interaction. Current research on pathological calcification
primarily focuses on the cardiovascular system. The receptor
activator of nuclear factor kB (RANK)/RANK ligand (RANKL)/
osteoprotegerin (OPG) system plays a fundamental role in bone
metabolism. Numerous studies have demonstrated that increased
RANKL levels and decreased OPG levels are associated with the
promotion of vascular calcification (Fernandez-Villabrille et al.,
2024). However, the specific mechanisms by which the RANK/
OPG axis contributes to pathological calcification in OA remain
largely unexplored. Future studies on OA may benefit from
insights gained in cardiovascular research, particularly in
elucidating the mechanisms of pathological calcification across
different joints and developing strategies to prevent or mitigate
its progression.

4.2 Subchondral bone

The micro-lesion remodeling process of subchondral bone
appears largely conserved across different joints affected by OA.
It is characterized by increased osteoclast-mediated bone
resorption and dysregulated osteoblast-mediated bone
formation. Aberrant mechanical strain disrupts osteoblast
homeostasis, marked by elevated expression of interleukin-6

(IL-6), prostaglandin E2 (PGE2), matrix metalloproteinases
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(MMPs), and receptor activator of nuclear factor kB ligand
(RANKL), (OPG)
production (Ni et al., 2011). In early OA, apoptotic osteocytes

alongside reduced  osteoprotegerin
upregulate RANKL to activate osteoclasts and promote bone
resorption. As OA progresses, ongoing cartilage degradation
increases mechanical loading on subchondral bone, prompting
osteocytes to adapt by upregulating Wnt signaling and
suppressing sclerostin (SOST) expression (Li et al., 2019).
Additionally, studies analyzing tibial plateau samples from OA
patients have shown that transforming growth factor-p1 (TGF-
B1) in osteocytes enhances osteoblast-driven bone anabolism in
late-stage OA via activation of Smad2/3
et al., 2020).

Key cytokines such as RANKL and TGF-B1, which mediate
subchondral bone remodeling in knee OA, appear to play similar
roles in TMJOA (Corrado et al,, 2013). Notably, estrogen and
progesterone may directly influence TMJOA progression by

signaling (Dai

acting on bone cells. Estrogen suppresses osteoclast activity
through the Wnt pathway, while progesterone inhibits bone
resorption via NF-«B signaling. (Xue et al., 2017; Ye et al., 2018).
Although current evidence is limited, these mechanisms align with
the markedly higher prevalence of TMJOA in females. In contrast,
knee OA shows less pronounced sex-related differences, suggesting
the existence of TM]J-specific targets responsive to estrogen and
progesterone that warrant further investigation.

4.3 Synovitis

Synovial micro-lesions in knee OA marked by mononuclear cell
infiltration and lining cell proliferation, in many early or mild OA
patients (de Lange-Brokaar et al., 2014).

In TMJOA, exhibit
histological changes. Muto observed synovial hyperplasia, cell

synovial ~micro-lesions various
loss, and fibrin deposition following trauma. Nozawa-Inoue
reported enhanced vascularization and
thickening in an arthritis model, suggesting immune
involvement (Muto et al.,, 2003). Dijk Graaf identified intima
hyperplasia and fibrosis in the synovial membrane during
different stages of TMJOA (Dijkgraaf et al., 1997).

Synovitis occurs throughout all stages of OA and impairs joint
knee  OA, NF-xB

NLRP3 inflammasome pathways are key mediators of synovial

synovial lining

lubrication.  In activation  and
inflammation, leading to cytokine release and cartilage damage
(Goldring et al., 2011). In TMJOA, NF-«B signaling has also
been implicated, but additional factors such as HMGBI1-induced
angiogenesis, enhanced vascularization, and the influence of
mechanical loading and sex hormones play distinct roles. While
both conditions involve inflammatory activation, TMJOA appears
to exhibit more pronounced vascular and hormone-related
responses (Ou et al.,, 2021).

While synovitis appears early and persists in OA, its precise
triggers and progression mechanisms remain unclear, particularly
regarding systemic versus localized factors. The histological
variability in TMJOA suggests distinct immune, vascular, and
mechanical contributions across joints. Future research should
explore early synovial changes as potential biomarkers or
therapeutic targets, enabling joint-specific disease modulation.
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5 Discussion

Despite significant progress in OA research, major challenges
persist in elucidating the divergent pathophysiological mechanisms
and developing optimal treatment strategies for both knee OA and
temporomandibular joint osteoarthritis TMJOA. While innovations
in imaging techniques and biochemical markers have enhanced
diagnostic accuracy and therapeutic monitoring, fundamental
knowledge gaps remain—particularly regarding the joint-specific
biological processes that underlie disease initiation and progression.

The anatomical and biomechanical differences between the knee
and the TM]J) are central to their distinct disease trajectories. Knee OA
primarily results from chronic axial loading and repetitive weight-
bearing stress, leading to superficial cartilage erosion and well-
characterized subchondral remodeling. In contrast, TMJOA is driven
by multidirectional masticatory forces, neuromuscular feedback, and
craniofacial biomechanics, contributing to unique pathological features
such as deep-layer cartilage fissures, fibrocartilage-specific degeneration,
and distinct calcification patterns. These disparities highlight the need
for joint-specific mechanistic research to improve pathophysiological
understanding and therapeutic targeting.

Decades of research have positioned knee OA as a well-
characterized model of joint degeneration, supported by validated
preclinical models, extensive molecular mapping, and established
clinical protocols. TMJOA, by contrast, remains comparatively
underexplored. The lack of standardized diagnostic criteria
validated imaging-based grading systems, and large-scale clinical
trials continues to limit progress in the field. As emphasized in this
review, TMJOA research is further constrained by a scarcity of
robust animal models and a disproportionate gap in basic and
translational studies compared to knee OA. Addressing this
imbalance requires concerted, interdisciplinary efforts involving
oral and maxillofacial specialists, rheumatologists,
musculoskeletal radiologists, and biomedical researchers.

Knee OA and TMJOA share key pathological features—cartilage
degeneration, subchondral bone remodeling, and synovitis—but
differ in histological composition, mechanical environment, and
calcification patterns. Knee OA is characterized by surface cartilage
and well-established
diagnostic frameworks, whereas TMJOA presents with deep-layer

fissures, double tidemark calcification,

fissures, absent double tidemark, and less standardized diagnostic
These
importance of cross-joint comparisons to identify both shared

criteria. similarities and differences underscore the
mechanisms and joint-specific targets for future therapies.

Emerging regenerative therapies—including exosome-based
treatments, mesenchymal stem cell applications, and cartilage tissue
engineering—show considerable promise in restoring joint function
and delaying disease progression. However, their clinical translation
remains hindered by heterogeneity in patient responses, insufficient
long-term outcome data, and regulatory limitations. Although such
strategies have been extensively investigated in knee OA, their
application in TMJOA remains in its infancy. Dedicated exploration
of TMJOA-specific regenerative approaches may not only accelerate
clinical advances in this neglected joint but also offer transferable
insights into tissue-specific therapeutic design across the OA spectrum.

Looking ahead, future research should prioritize the integration of
molecular, biomechanical, and clinical datasets to uncover both

shared drivers of OA and joint-specific mechanisms. Precision
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medicine approaches—such as omics-based profiling, patient
stratification, and computational modeling—hold great potential
for developing personalized intervention strategies. For example,
the semiquantitative MRI scoring system established for knee OA,
which evaluates joint cartilage, meniscus, osteophytes, bone marrow
abnormalities, synovitis, and effusion, may serve as a valuable
reference for improving the diagnostic framework of TMJOA.

By systematically addressing the unique anatomical, functional,
and molecular characteristics of TMJOA, while leveraging the
extensive knowledge base of knee OA, the field may advance
toward a mechanism-driven, and

more comprehensive,

individualized framework for OA management.
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