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Introduction: Fatigue is a major factor contributing to road accidents, and
extensive research has focused on its physiological and behavioral
characterization. Due to safety and economic constraints, studies on driving
fatigue are commonly conducted in simulated environments, where fatigue is
typically induced through prolonged tasks and assessed using a Time-on-Task
(ToT) approach. However, ToT-based labeling may not accurately reflect
individual variations in fatigue onset.

Methods: This study compared fatigue onset in matched simulated and real
driving conditions by evaluating two labeling approaches: the traditional ToT-
driven method and a novel physiology-driven method based on
electroencephalographic (EEG) parameters. Experimental periods of Low and
High Fatigue were defined using both approaches, and physiological and
behavioral responses were analyzed through ocular and cardiac activity.
Results: When using the ToT-driven approach, no significant differences
emerged between low and high fatigue periods across the two environments.
In contrast, the EEG-driven labeling revealed clear physiological responses to
fatigue onset, as evidenced by changes in ocular and heart activity.
Discussion: The findings demonstrate that the method used to define fatigue
substantially influences the detection of fatigue onset. The results highlight the
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importance of physiology-based labeling for capturing individual fatigue dynamics
and provide novel insights into how fatigue manifests differently in simulated and

real driving contexts.
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mental fatigue, physiological assessment, EEG, simulated driving, real driving, time-on-
task, heart activity, ocular activity

Introduction

Mental fatigue has a dramatic impact on road safety. It is
estimated that up to a third of road accidents might be caused by
fatigue while driving (World Health Organization, 2023; Zwahlen
et al,, 2016). Its impact is not limited to road accidents. Also in the
maritime (Fan and Yang, 2024; Grech, 2016; Liitzhoft et al., 2011)
and aviation (Caldwell, 2005; Wilson et al., 2007) field, fatigue has
long been recognized as one of the main factors contributing to fatal
and non-fatal accidents. However, while the impact of fatigue in
maritime and aviation contexts is limited due to the relatively small
number of individuals operating in those domains, its impact on
road safety is amplified by the large number of people who drive on a
daily basis (Directorate-General for Mobility and Transport
European Commission, Oxford Research, Panteai, Tetra Tech,
TIS, 2023). Indeed, with an approximative
300 million drivers in Europe (ACEA’s, Vehicles on European
Roads, 2024), around 20% of drivers have reported driving at
least once while being too tired to keep their eyes open

estimate of

(European Commission, 2021). From this, it is easy to imagine
the huge impact of fatigued driving on road safety globally.

The detrimental effects of fatigue reside in the fact that it can
alter human performance to a point where the individual is not able
to perform a task, i.e., in this case driving a vehicle, adequately and
therefore safely (Behrens et al., 2023). Fatigue can be divided into
muscular fatigue and mental fatigue (Behrens et al., 2023), which can
be modulated by both internal (age, gender, and others) and external
factors (duration, intensity, and others). The first can be defined as a
reduction of voluntary force capacity and it is only marginally
involved in fatigue-related reduction of performance in operative
contexts such as while driving. The second, cognitive or mental
fatigue, can be defined as a decline in an objective cognitive
performance measure (Behrens et al., 2023) (such as reaction
time or accuracy). This decline can be observed both during the
execution of a task as well as after the task is completed, depending
on both internal and external factors (Wang et al., 2014). A well-
established interpretation of fatigue-related performance decline
suggests that during prolonged tasks, the required effort
outweighs the perceived reward, leading to reduced motivation
and, consequently, impaired performance (Benoit et al, 2019).
Supporting this interpretation, Hopstaken and colleagues
observed that the decline in cognitive performance due to time-
on-task (ToT) was reversed when task rewards were increased
(Hopstaken et al., 2015). Also in the case of prolonged driving,
the associated fatigue has been observed to reduce driving
performance (Sagaspe et al., 2008). In this context, fatigue-related
declines in cognitive performance can have severe, and potentially
tragic, consequences, such as, for instance, a failure to brake in time
when a pedestrian is crossing the road. Despite the fact that there is a
broad consensus on the impairing effects of fatigue, there is not a
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unitary definition of this construct, and it is often used
interchangeably with terms like tiredness and drowsiness. In his
report on road safety, Phillips (Phillips, 2014) listed several
definitions of fatigue used in literature, highlighting the multi-
component nature of the fatigue construct. In the present
manuscript, we refer to fatigue as defined by Craig and
colleagues (Craig et al., 2006): “a psychophysiological state that
occurs when a person is driving and feeling tired or drowsy, to the
extent that they have reduced capacity to function, resulting in
performance decrements and negative emotions and boredom as
they attempt to stay awake during the task”. Considering both the
physiological and psychological dimensions of fatigue offers
important operational advantages. Defining fatigue as a
physiological state enables robust and objective measurement
through various methodologies. Simultaneously, acknowledging
its psychological ~dimension accounts for the subjective
experience of fatigue, where individuals may feel fatigued even if
they have not yet reached a point of impaired task performance
(Phillips, 2015). Physiological and subjective measures are indeed
among the most used approaches in fatigue-related research. In
terms of fatigue subjective assessment, users are asked to rate their
perception of fatigue through questionnaires. Researchers developed
subjective  data. These

questionnaires may be either self-declared or filled out by an

several questionnaires to collect
external user reporting the severity of observed sleepiness or
fatigue. For the self-declared, one of the most adopted is the
Karolinska Sleepiness Scale (Kaida et al., 2006) (KSS), which asks
drivers to rate their mental state on a scale ranging from alertness to
sleepiness. A similar approach is adopted by the Stanford Sleepiness
Scale (Shahid et al., 2012). A further self-reported questionnaire that
focuses specifically on the concept of fatigue, rather than sleepiness,
is the Chalder Fatigue Scale (Cella and Chalder, 2010) (CFS). It
requires participants to rate the severity of fatigue-related
symptoms, which are categorized into two domains: physical and
mental. On the other hand, physiological signals coming from the
user are collected and analyzed in order to assess its internal state. In
recent years, researchers have developed a large body of knowledge
regarding the physiological characterization of fatigue and sleepiness
(Geldreich, 1939; Thiffault and Bergeron, 2003; Brandt et al., 2004;
Fan et al,, 2007; Oron-Gilad and Ronen, 2007; Bundele and Banerjee,
2009; Danisman et al., 2010; Borghini et al., 2012; Kong et al., 2015;
Fu et al., 2016; Awalis et al., 2017; Kong et al., 2017; Choi et al., 2018;
Fujiwara et al., 2019; Ghourabi et al., 2020; Doudou et al., 2020;
Bafna and Hansen, 2021; Arefnezhad et al., 2022; Di Flumeri et al.,
2022). It has been observed that the fatigued state is associated with
changes in the physiological responses of the drivers. Fatigue has
linked to a
Electroencephalography (EEG), researchers have demonstrated

been change in brain activity. Using

that low-frequencies EEG bands are characteristic of a fatigued
state. Particularly, an increase in Alpha (Di Flumeri et al., 2022;
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Fujiwara et al, 2019), Theta, and Delta (Nguyen et al., 2017;
Arefnezhad et al., 2022) rhythms has been observed during
fatigue, as well as the appearance of rapid oscillatory phenomena,
known as “spindles,” in the theta and alpha bands themselves
(Houshmand et al., 2021; Simon et al, 2011). An additional source
of information to understand fatigue is represented by ocular activity,
which can be studies either with videorecording or by electrodes which
capture  electrical  oscillations caused by eye dynamics
(Electrooculography, EOG). It has been found that an increase in
blink rate (Papadelis et al., 2007) (EBR), blink duration (Danisman
et al, 2010; Shekari Soleimanloo et al., 2019) (EBD), and percentage of
eye closure (Sommer and Golz, 2010) (PERCLOS) is associated with
fatigue. The peripheral nervous system provides also relevant
information to understand fatigue and drowsiness. Heart activity is
particularly studied in this context since it is particularly easy to collect
this data using non-intrusive and wearable devices. Both electrical,
Electrocardiography (ECG), and optical signals, Photopletysmography
(PPQG), are commonly used to assess cardiac correlates of fatigue. The
time-varying distance between consecutive heartbeats, i.e., the heart rate
variability (HRV), has been observed to be linked to drowsy state, where
HRV was found to decrease in sleepiness compared to alertness
(Alaimo et al, 2020; Fujiwara et al, 2019). The effort spent to
understand physiological and psychological markers of fatigue is
aimed at developing solutions to mitigate or to prevent fatigue-
related impairments which can impact on users’ safety, such as the
development of Advanced Driver Assistance Systems (Doudou et al,,
2020) (ADAS), equipping the modern vehicles and aimed to detect
drowsiness and to alert drivers.

Nevertheless, while certain mental states such as workload, stress,
and attention can be experimentally induced or modulated in intensity
through the use of specific cognitive tasks, mental fatigue is more
difficult to elicit in a controlled manner. In most cases, it can only be
allowed to emerge spontaneously over time, with a high degree of inter-
individual variability (Ackerman, 2011). To induce fatigue, researchers
usually ask participants to perform extensive driving tasks lasting
1 hour or more, both in simulated and real driving (Fu et al., 2016;
Joshi et al., 2020; Vicente et al., 2016). Two tasks’ features are usually
manipulated by researchers to induce fatigue: difficulty and duration.
The difficulty represents the amount of cognitive resources needed to
perform the task. The higher the difficulty, the higher, or the sooner, the
mental fatigue occurrence. On the other hand, the duration represents
the extension of cognitive demand. Researchers often rely on task
duration to induce fatigue, an effect known as time-on-task (ToT)
(Ackerman and Kanfer, 2009; Lim et al.,, 2010; Hopstaken et al., 2015;
Behrens et al., 2023). Performance decreasing with ToT is considered as
the most common consequence of fatigue increasing. Although ToT
approach represents a well-recognized method to induce mental
fatigue, there are some results which conflict with the decrease in
performance due to increasing ToT (Hockey, 2011; Nakagawa et al,
2013). These findings have been attributed to a learning effect taking
place during the execution of a task, as well as by a reduced motivation
in attending the task, with a redirection of the effort and consequent
decrease in performance. Considering these findings, the ToT approach
may not always be the most reliable method for defining fatigue levels in
prolonged tasks. In particular, it relies on the assumption that all
individuals experience fatigue at the same point in time, typically at the
end of the task. Therefore, according to this assumption, the last part of
the experiment is taken as representative of a fatigued condition, in
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contrast with the beginning considered representative of maximum
alertness. However, this may not accurately reflect individual variability
in fatigue onset and progression. A more robust approach to “label”
fatigue severity along an experiment would involve the use of an
objective, user-tailored measure of fatigue, as an alternative to the
traditional ToT method. This approach would offer several key
advantages: it accounts for inter-individual variability; avoids a priori
assumptions about the presence of fatigue; eliminates the need to rely
on self-reported measures, which may themselves influence
participants’ perception of fatigue; enables the investigation of
fatigue onset in addition to more advanced fatigue states; and
provides a continuous and objective reference for training Al
models with a validated ground truth. Physiological information
represents optimal candidate to detect fatigue. As reported above,
researchers already adopted physiological signals, from brain to
ocular and heart activity, to assess the fatigued state. Among them,
brain activity appears to be the most effective candidate for detecting the
onset of fatigue. It is indeed plausible that changes in mental state first
manifest in the central nervous system before becoming observable in
peripheral physiological responses (Giorgi et al., 2023).

Besides this mere methodological approach, another concern
when dealing with driving fatigue is the experimental setting. To
minimize risks for participants, most experiments are conducted
using driving simulators. This approach relies on the assumption
that drivers’ physiological and behavioral responses in simulated
environments closely mirror those observed in real driving
conditions. However, this assumption does not fully consider that
on-road driving and driving simulation differ substantially,
of the
consequences of errors during actual driving. Despite growing
adoption of driving simulators, comprehensive and robust

particularly due to drivers’ awareness real-world

investigations between simulated and real driving remain limited
(Engstrom et al., 2005; Li et al., 2013; Le et al., 2020; Shechtman et al.,
2009). Most of these studies focused on comparing simulated and
real driving in normal conditions (i.e., unimpaired) as well as under
the influence of a high cognitive load and distraction, leaving a lack
of robust evidences regarding the validity of driving simulator for
studying mental fatigue while driving.

In line with this perspective, in the present study the primary
aim was to compare two different approaches in assessing mental
fatigue. We investigated fatigue-related physiological correlates
obtained with both a ToT-driven approach and with an EEG-
driven approach. With ToT-driven approach, the initial and the
final part of a low-demanding driving task, lasting 45 min, were
considered respectively as low fatigue and high fatigue periods. With
the EEG-driven approach, an EEG-derived index to detect
drowsiness (Di Flumeri et al., 2022) was used to label epochs as
low fatigue and high fatigue based on the minimum and maximum
levels of drowsiness detected through EEG analysis. The choice to
adopt an EEG-derived index for drowsiness relies on the
interpretation of fatigue as “a psychophysiological state that
occurs when a person is driving and feeling tired or drowsy”
(Craig et al,, 2006). A secondary aim was to explore potential
differences in the manifestation of fatigue between simulated and
real driving environments. Both subjective and physiological
responses during the driving task were compared across the two
conditions. The study addressed the
questions (RQs):

following  research
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Simulated Driving
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FIGURE 1

Van Drivers

Truck Drivers
Spain

Simulated and Real environments adopted for the driving study. Experiments took place in two locations, Italy (left) and Spain (right). The real-world
environments (Study 2, bottom) were accurately reproduced in the simulator software (Study 1, top). Both simulated and real-world driving consisted in a
high-demanding driving task (red) and low-demanding driving task (blue). Analysis was performed on the longest straight part (circled in yellow) in order
to reduce interindividual variability when comparing physiological correlates of fatigued driving.

1. RQ1: Do physiological correlates of fatigue onset differ when
assessed using a ToT-driven approach versus an EEG-driven
approach? If yes, which of them promote sensitivity towards
physiological linked to the
phenomenon, ie., mental fatigue? Our hypothesis is that

responses investigated
using an EEG-driven approach will take into account the

inter-individual ~ variability —in fatigue  development,
increasing the difference between low and high fatigue
periods. Therefore, a higher significant effect is expected for
the EEG-driven ToT-

driven approach.

approach compared to the

2. RQ2: Do subjective and physiological correlates of fatigue
onset differ between simulated and real driving conditions?
Given the exploratory nature of RQ2, no a priori hypotheses
were formulated.

To answer these questions, we collected and analyzed data
through a prolonged and monotonous driving protocol, identical
across both simulated and real-world environments. The focus on
the onset of fatigue, rather than its more severe stages, stems from
the rationale that early intervention is more effective in preventing
the detrimental effects of fatigue. Accordingly, we aimed to compare
the ability of a ToT-driven approach and an EEG-driven approach
to detect the onset of mental fatigue.

Methods
Participants

A total of twenty-eight professional male drivers (n = 28, 28 M)
were recruited to take part in the study. For the present manuscript,
a subset of these participants was considered. This consisted of
fourteen drivers (n = 14, 14 M) with an average age of 30.57 yo
(+10.23 SD). The choice of reducing the number of participants
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considered for the analysis is based on two criteria: first, participants
with corrupted data (at least one among brain, ocular, or heart
activity) were excluded from the analysis (excluded n = 4); second,
participants experiencing motion sickness due to the simulated
environment were excluded from the analysis (excluded n = 10).
The inclusion criteria for participation in the study were: possession
of a valid driver’s license; normal or corrected-to-normal vision; no
use of psychoactive drugs; and absence of any diagnosed
mental illness.

The experiment was conducted following the principles outlined
in the Declaration of Helsinki of 1975, as revised in 2008, and it was
approved by the Sapienza University of Rome and Roma Tre
Ethical Committee.

Experimental protocol

Driving experiments were conducted in two locations: Rome
(Ttaly), and Leon (Spain), where different professional drivers were
recruited: respectively, van drivers and truck drivers. Indeed, the
location selected in the two cities provided distinct driving
environments which best met the road requirements needed to
perform experiments with the two different vehicles. In Italy, where
van drivers were recruited, the location “Fiera di Roma” was
selected. It is a suburban private complex in the periphery of
Rome, prohibited to public traffic. This location was chosen
because it was possible to rent the entire location for a few days
and close it to the public. It was constituted by two road
infrastructures (Figure 1, left, red and blue). The first, in red, was
a short racetrack, presenting a few straights and a high number of
curves with various steering angles, thus resulting in a complex
driving environment. The second, in blue, presented few ninety-
degrees curves and long straights, so it was considered an easy
driving environment. As described below in this paragraph, these
characteristics were used to design two different driving tasks along
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Both simulated and real-driving experiments lasted approximately 90 min from participants arrival to the end of the experiment. Data analysis in the
present manuscript focused on the low-demanding driving task, which lasted 45 min. The assumption, confirmed by comparing subjective reports before

("Subjective 2") and after the driving task ("Subjective 3"), was that in a 45-

min task a moderate level (i.e., onset) of fatigue would be induced.

the experiment, a high-demanding and a low-demanding one
(Figure 1, left, respectively in red and blue). Likewise, with the
same aim of selecting a controlled and safe environment for the tests
in Spain with truck drivers, it was chosen an abandoned
urbanization in Villatoldanos, Leon. Despite being a public road,
this area does not present traffic. Differently from “Fiera di Roma”
exhibition place, this location is constituted by a single road
This
exploited to design two different driving paths along the same

infrastructure with various intersections. feature was
road infrastructure. This was necessary to design two different
tasks in terms of difficulty (Figure 1, right, in red the high-
demanding task and blue the low-demanding one), as done for
the Italian location. Once the locations for the realistic driving task
were selected, they were precisely recreated in a virtual environment
to ensure that participants experienced identical scenarios. The only
difference was that in one case participants drove in a Simulated
environment (Figure 1, Study 1), while the other took place in a Real
setting (Figure 1, Study 2). All participants performed first the
Simulated driving and then, after 5-6 months, the Real driving,
in fixed order. This choice was made because the ethical committee
required to reduce at minimum the number of participants for the
Real driving due to safety concerns. Therefore, being aware of the
possibility of participants withdrawing because of motion sickness
due to simulated driving, and motion artifacts interfering with
optimal data collection, we preferred to perform first the
Simulated driving. Once we had a sufficient number of high-
quality data, we were able to recruit these same participants also
for the Real driving, which was expected to induce less motion
sickness and consequently result in reduced data loss.

Independently from the locations, the protocol adopted for both
Simulated and Real driving was identical both in Italy and Spain and
therefore it was described here once, and it is shown in Figure 2. The
experiment lasted around 90 min, from the arrival of participants at
the location to the end of the test. At their arrival, inclusion criteria
to take part in the study were checked, and then participants were
provided with the informed consent form to sign, in order to accept
participation in the study. After this preliminary phase, the devices
for data collection were set up.

The simulated driving setup consisted of a real car seat, in a
cockpit with a steering wheel, manual gearshift, and pedals, as well as
a three-monitor display providing a 160" field of view. Participants
were instructed to sit comfortably and were given the opportunity to
practice with the simulator. A 5-min training session was conducted
on the Monotonous scenario to ensure that all participants began the
driving task with a consistent level of familiarity with the simulated
environment. The realistic driving setup involved a Renault Trafic
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van. Similarly, participants were allowed to familiarize themselves
with the vehicle by driving for 5 min on the same low-demanding
task, ensuring a uniform level of confidence across all participants
before starting the experiment. After the familiarization phase, the
data collection started. While sitting on the seat, participants were
instructed to close their eyes and relax for 1 min (“Eyes Closed”
condition, EC). The same procedure was performed again but
participants were asked to open their eyes and to look in front of
them (“Eyes Open” condition, EO1). Participants were then asked to
rate their level of fatigue and drowsiness before starting the high-
demanding driving task. To do this, the KSS and the CFS
questionnaires were provided (described below in this section).
After this, the driving session started. Participants were asked to
drive first in the high-demanding task and then in the low-
demanding driving tasks, in fixed order. The high-demanding
task lasted 15 min. It was aimed at challenging the mental
resources of participants to increase the chance of inducing
fatigue in the following easy and monotonous driving task.
Participants were asked to drive as fast as possible to increase the
difficulty of the task (Garcia et al.,, 2010; Thiffault and Bergeron,
2003). After the first driving task, a new “Eyes Open” condition was
performed (“EO2”) and questionnaires were provided. Then,
participants attended the low-demanding driving task, which
lasted 45 min. This task was designed to be easy and repetitive,
in contrast with the previous high-demanding driving task. The
switch from a high-demanding to a low-demanding and easy driving
task it is supposed to increase the chance of experiencing fatigue
while driving (Garcia et al., 2010; Thiffault and Bergeron, 2003).
After the second driving task, the last “Eyes Open” condition was
performed (EO3). A representation of the experimental protocol
adopted to conduct the experiment is provided in Figure 2.
Considering that during the first high-demanding driving task
participants were instructed to drive as fast as possible, leading to
a high number of artifacts both in EEG and other signals, the
assessment of fatigue described in the present paper was focused on
the data related to the low-demanding task (Figure 2), in which data
was expected to be less impacted by artifacts rejection. Therefore, in
the present paper the collection of subjective data before and after
the low-demanding driving task were referred to “Before task” and
“After task” (respectively named “Subjective 2”7 and “Subjective 3”
in Figure 2).

Fatigue was supposed to arise as a consequence of the
experimental task, however, in order to promote the fatigue
onset, experiments took place in the afternoon. In fact, literature
reports that the daily moments in which users are more likely to
experience fatigue while driving are during the afternoon and during
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the night (Zhang et al., 2023). As described in the Participants
section, some of the participants experienced motion sickness
This is
experiments therefore, before starting to drive, the concept of

during the tests. common in simulated driving
motion sickness was briefly introduced to the participants,
together with main symptoms. They were instructed to pay
attention to eventual symptoms and if necessary, they could ask
for a pause or withdraw from the experiment with no consequences

on their reward.

Subjective assessment

Two questionnaires were provided at participants” arrival and
after each driving task: the KSS (Kaida et al., 2006) and the CFS
(Cella and Chalder, 2010), aimed to assess respectively the level of
drowsiness and fatigue of participants. The choice of providing both
questionnaires might be interpreted as redundant measures. This
choice was made because, even if fatigue and drowsiness are distinct
phenomena in terms of a conceptual and neurophysiological point
of view, they are often considered two degrees of intensity on a
continuous scale ranging from alertness to sleepiness (Kamran et al.,
2019). In this view, the choice to ask the participants to fill out both
questionnaires was made because, being contiguous phenomena,
they are often hard to distinguish between each other, especially if
poor
Questionnaires were provided according to the mother language

considering  the sensitivity of subjective measures.
of participants, therefore experimenters provided them translated in
Italian and Spanish. Participants were instructed to fill in the

questionnaires autonomously after their explanation.

Karolinska sleepiness scale

KSS (Kaida et al., 2006) requires participants to rate their current
state of sleepiness on a scale from 1 (extremely alert) to 9 (extremely
sleepy-fighting sleep).

Chalder fatigue scale
CFS questionnaire (Cella and Chalder, 2010)
participants to answer several questions about fatigue-related

requires

symptoms on a scale from 0 (none) to 3 (very high). In the
original form, CFS questions refer to two different dimensions
called “physical symptoms” and “mental symptoms.” Considering
the aim of the present investigation (i.e., mental fatigue), only the
questions related to this dimension were used.

Neurophysiological assessment

Several neurophysiological signals have been considered to
characterize fatigue onset. Specifically, Electroencephalography
(EEG), Electrooculography (EOG), and Photoplethysmography
(PPG)
experiment. Initially, also Electrodermal Activity (EDA) was

measures have been recorded during the driving
considered. When analyzing the data, a high number of motion
artifacts were found in EDA signal, being the sensors placed on the
wrist of the non-dominant hand. Since the intention was to have a
consistent dataset for each measure and each participant, we decided

to discard this signal in order to maintain an adequate number of
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participants for the remaining signals (EEG, EOG, and PPG). In any
case, a preliminary analysis (not published here) on the available
data (n = 17 showed no significant impact of fatigue onset on EDA-
derived components, Skin Conductance Level and Response.

Electroencephalographic assessment
The Mindtooth wearable GmbH,
Germany; https://mindtooth-eeg.com) was used to collect EEG

device (BrainProducts

data while driving. It is a high-grade EEG recording headset
developed and validated during the Mindtooth Project (Sciaraffa
et al, 2022) (GA 950998). It consists of 8 Ag/AgCl electrodes,
holding water-based sponges in order to avoid the use of gel,
placed according to the 10-10 International System (AFz, AF3,
AF4, AF7, AF8, Pz, P3, and P4), in addition to a ground and a
reference electrode placed on the mastoids. The sampling frequency
was set at 125 Hz.

To avoid interference due to the mainline electrical power, a
50 Hz notch filter was applied. The EEG signal was then band-pass
filtered [low-pass filter cut-off frequency: 40 (Hz), high-pass filter
cut-off frequency: 2 (Hz)]. After filtering, the o-CLEAN (Ronca
et al,, 2024) algorithm was applied to detected EEG epochs affected
by eyeblink artifacts. For other kinds of artifacts, dedicated
algorithms of the EEGLAB toolbox for artifacts detection and
rejection (Brunner et al., 2013) were applied using MATLAB. In
particular, the processed EEG signal was divided into epochs of 1 s
and a threshold criterion has been applied to reject artefactual data.
It consists in labelling as artifacts all the epochs exceeding +200 pV.
All the epochs labelled as artifacts were later removed in order to
have a clean EEG signal for the analysis. It was estimated a total of
3.15% of data loss due to artifacts rejection both in EEG and EOG
(EEG-derived) signals (data rejection percentage per channel,
mean + standard deviation): AFz = 2.64 + 2.84, AF3 = 3.14 *
3.46, AF4 = 2.83 £ 3.12, AF7 = 2.99 + 3.01, AF8 = 4.03 + 4.86, Pz =
3.22 +4.38, P3 = 3.09 + 4.18, and P4 = 3.25 + 4.48). Independent
Component Analysis (ICA) was not applied during artifact removal,
as the preprocessing pipeline was designed to minimize data loss
while preserving the neurophysiological signals of interest. Instead,
artifact handling relied on alternative procedures considered more
suitable for the characteristics of the present dataset and
experimental design.

The clean signal was used to compute the Global Field Power
(GFP) of the Alpha band over the parietal electrodes. The GFP was
adopted as it provides a measure of cortical brain activity and has the
advantage of representing, in the time domain, the degree of
synchronization within a specific cortical region of interest in a
given frequency band (Skrandies, 1990). The Alpha band was
adopted because the present work aims at using a previously
validated EEG index for mental drowsiness which is based on
increased Alpha activity on parietal region (Di Flumeri et al,
2022). According to Klimesch (Klimesch, 1999),
participants the Alpha band was defined using the Individual

for each

Alpha Frequency (IAF), estimated from the peak frequency
within the alpha band during the ‘EC’ resting state condition,
when participants were sitting with their eyes closed on the
simulator seat at the beginning of the experiment. This
procedure was adopted since the alpha peak is prominent when
an individual is resting (Klimesch, 2012). Then, an EEG “strict”
Alpha was defined as IAF Alpha = (IAF - 1): (IAF +1) Hz. This
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definition of the Alpha band is more restrictive (thus “strict”)
compared to most of the Alpha band definitions that can be
found in scientific literature, which is (IAF - 2): (IAF +2) Hz.
This approach was adopted to avoid the impact from closer EEG
frequency bands (Theta and Beta) variations on the Alpha band, as
proposed in the original study (Ronca et al.,, 2022). The GFP was
calculated over all the EEG parietal channels for each epoch using a
Hanning window of the same length of the considered epoch (1 s
length, which means 1 Hz of frequency resolution).

The EEG was used to compute a Mental Drowsiness index (Di
Flumeri et al., 2022) (MDrow) every s. To improve stability, the
index was segmented using 60-s windows with a 15-s overlap, thus
reducing the temporal resolution from 1 s to 15 s.

For each segment, the MDrow index was calculated as follows:

Alpha GFP [Task]

MDrow =
"% max(Alpha GFP [Rest])

Where the low-demanding task was considered as the Task,
while Rest consisted in the ‘EC’ condition. The rationale at the basis
of MDrow index was the well-recognized assumption in literature
that drowsiness consists in a vigilance decrease with a parallel
reduction of sensorial and cognitive processing (Kamran et al.,
2019; Shen et al., 2006). It is assumed that a resting state with
closed eyes is the condition representing the greater suppression of
cognitive and sensory processes, thus characterized by the highest
values of alpha brain rhythms (Mathewson et al.,, 2011). According
to this assumption, the similarity between the Alpha activity during
the task of interest and the Alpha activity during a closed eyes resting
state condition provides an indication of the drowsy state: the closest
to 1 the ratio is (or even higher than 1), the more the individual
is drowsy. In this way, the index is positively related to the
fatigue level.

Electrooculographic assessment

For the collection of EOG data, a minimally invasive approach
was also adopted. Specifically, EOG activity was estimated directly
from the EEG signal, using the AFz channel to capture the vertical
component of ocular movements. This method enabled accurate
detection of ocular activity without the need to place electrodes near
the eyes, thereby reducing the invasiveness of EOG monitoring
while driving. Eyeblink detection was performed using a customized
implementation of the Reblinca algorithm (Di Flumeri et al., 2016).
From the raw EEG signal, Reblinca algorithm extracted blink events,
which were then used to calculate eyeblink rate (EBR), eyeblink
duration (EBD), and eyeblink amplitude (EBA).

EBR refers to the number of blink-related artifacts detected
within a defined time window, typically expressed in blinks per min,
and serves as an indicator of blink frequency. EBD represents the
temporal span of each blink artifact, measured in milliseconds, and
reflects the duration of eyelid closing and reopening process. EBA
quantifies the peak amplitude of the blink-induced artifact on the
EEG signal.

Photoplethysmographic assessment

For PPG signal it was adopted a non-invasive wearable device,
the Empatica E4 wristband (https://www.empatica.com/en-eu/
research/e4/), placed on the non-dominant wrist of participants.
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PPG signal, recorded with a sampling frequency of 64 Hz, was used
to estimate heart rate (HR) and heart rate variability parameters in
the frequency domain. These consisted in low frequencies (LF), high
frequencies (HF), and their ratio, LF/HF (labelled hereinafter HRV).
The recorded PPG raw signal was filtered using a 5th-order
Butterworth band-pass filter (0.4-4 Hz) to reject the continuous
component and the high-frequency interferences, such as that
related to movements. A further reason for applying the band-
pass filter was to emphasize the “pulse” process of the PPG signal
(Goovaerts et al., 1976). These wave patterns related to the pulse,
i.e., the beats, were then detected using the Automatic Multiscale-
based Peak Detection algorithm (Charlton et al., 2022; Ismail and
Karwowski, 2020; Pankaj et al., 2021) and the temporal distance
between consecutive beats (inter-beats interval, IBI) was measured
to compute the HR values every 60 s. The raw PPG was first
segmented into 30-second windows with a 5-second overlap to
ensure sufficient temporal resolution while maintaining robustness
against transient noise. Within each window, inter-beat intervals
were extracted, and artifact detection was applied directly to the IBI
rather than the raw PPG waveform. Artifact
In this
approach, each IBI was compared against the mean of the

time series
identification relied on standard deviation criteria.

detrended IBI series, and values exceeding +2 standard deviations
were flagged as outliers and corrected with local mean, thereby
reducing the impact of abrupt signal fluctuations while preserving
physiological variability. To further account for spurious trends, the
data were linearly de-trended, and smoothing was applied using a
moving average filter with a 5-point window. Importantly, these
correction procedures were not performed on the PPG signal itself
but exclusively on the derived IBI series, given the susceptibility of
amplitude measures to movement-related artifacts. The IBI signal
was also used to estimated heart rate variability. Specifically, it was
analyzed in the frequency domain by computing the Lomb-Scargle
periodogram (Ruf, 1999) of the IBI signal. Previous analysis
demonstrated that this method is able to provide a more accurate
estimation of Power Spectrum Density (PSD) in respect to the
Fourier Transform-based methods typically used for HR data
(Simonetti et al, 2023). Following best practices present in
literature, the PSD of the IBI signal was computed over the Low
and High Frequencies (LF: 0.04-0.15 Hz; HF:0.15-0.4 Hz). The ratio
between LF and HF values, each of them normalized with respect to
the entire spectrum, was then computed as a relevant indicator of
heart rate variability (HRV). The HRV analysis was performed using
a MATLAB toolbox, the HRVAS MATLAB suite (Ramshur, 2010).
When processing the PPG signal, artifacts due to movements were
removed interpolating the data between two portions of good
quality data.

Analysis design

In the present study, subjective and neurophysiological fatigue
assessment was performed only on the low-demanding driving task
(please refer to Figure 2), for two reasons. The first and main reason
was that, coherently with RQI and literature review, the 45-min-
long low-demanding driving allowed the adoption of the most
common ToT-driven approach to define periods of low

(beginning) and high fatigue (conclusion). The second reason
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was that the high number of motion artifacts due to the intense
driving activity (high speed on a complex circuit) during high-
demanding driving would lead to an inaccurate estimation of
neurophysiological features, undermining the reliability of the
driver’s state assessment.

Also, it has to be considered that, considering the whole 45 min
low-demanding driving task, participants were performing different
motor activities (i.e., they could be either driving straight or turning
left or right). For this reason, the position of the vehicle along the
experimental driving path was used to isolate those moments in
which participants were driving on the longest straight portion of
the path (circle in yellow in Figure 1). The analysis was then
performed considering only these portions of the data, where
every driver was performing the same identical activity, that is
driving straight without the need of controlling the direction,
acting on the wheel and on the gearbox (around 1 min
This
behavioral and cognitive differences in the epochs considered.

duration). procedure was adopted to minimize the

The main aim of the present work was to compare two different
approaches in investigating drivers’ mental states while driving
(RQ1). One approach consisted on the common adoption of ToT
to define fatigue levels (low fatigue at the beginning, high fatigue at
the end for everyone), while the second approach, i.e., the innovative
solution proposed by this work, consisted in using the EEG-derived
MDrow index (Di Flumeri et al., 2022) as objective ground-truth to
identify and label fatigue levels individually. Consequently, two
kinds of segmentation and analysis were performed on the data.
In the first segmentation (referred to as “ToT-estimated fatigue”),
“Low fatigue” was defined as the first two repetitions of the longest
straight road (beginning of the driving task). Conversely, “High
fatigue” was defined as the last two repetitions of the longest straight
road (end of the driving task). This segmentation represents the
assumption, well present in literature, that the lowest level of fatigue
is experienced at the beginning of a task while the highest level of
fatigue is experienced at the end of a task. In the second
segmentation (referred to as “EEG-estimated fatigue”), MDrow
was used to detect the individual (i.e., for each participant) time
windows in which drivers experienced the highest and the lowest
level of fatigue during the low-demanding driving task. A value for
each min was computed and the two one-min segments (i.e., two
repetitions of the straight road) in which the MDrow showed the
highest and the lowest values were labelled as “High fatigue” and
“Low fatigue” conditions respectively.

In both cases, the labelled time windows were then used to
segment the other neurophysiological parameters to investigate
eventual differences due to the intensity of fatigue comparing
“Low fatigue” and “High fatigue” conditions. To normalize data,
the first 2 min of the low-demanding driving task were taken as
baseline. This choice was made to establish a baseline comparable to
the investigated task. Using the driving task allowed us to account
for brain activity related to motor control (e.g., steering wheel,
pedals, etc.). Neurophysiological data used to characterize fatigue
(HR, HRV, LF, HF, EBR, EBD, and EBA) were then normalized
subtracting the baseline of the corresponding feature. Questionnaire
data and the MDrow index were not normalized, since they are
directly comparable between participants. To answer RQ2,
subjective and physiological responses in simulated and real
driving conditions have been then compared. We implemented
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Analysis of KSS scores before and after the driving tasks

highlighted a significant increase of fatigue which was consistent in
both simulated a real driving (p < 0.001). It is relevant to observe that
the median reported KSS score was 4, below the threshold of
sleepiness (6, on a scale from 1 to 9). This result demonstrates that the
protocol induced a moderate level of fatigue rather than sleepiness.

linear mixed-effects models (LMMs) to each

neurophysiological measure and questionnaires separately, with

analyze

the measure serving as the dependent variable. The models
included three fixed factors: Environment (Simulated vs. Real),
Fatigue (Low vs. High), and Location (Italy vs. Spain). The
Location factor accounted simultaneously for differences in
type, location-specific
characteristics. The temporal gap between simulated and real

vehicle driving route, and other
driving sessions was not modeled explicitly, as this information
was redundant: all Italian participants performed real driving
6 months after the simulation within a two-day period, whereas
Spanish participants completed real driving 5 months after the
simulation, also within a two-day period. Participant identity was
entered as a random effect, with both random intercepts and
random slopes specified, thereby allowing baseline levels and the
influence of predictors to vary across individuals. Post hoc power
analysis was computed for significant factors and/or interaction of
multiple factors. This analysis was computed considering n = 14,
and a = 0.05.

Following the LMM analysis, a series of post-hoc t-tests
were conducted.

Gaussian distribution of each variable was verified using
Shapiro-Wilk test, and parametric or non-parametric post-hoc
account for

adjusted

test was applied accordingly. To multiple

comparisons, p-values were using the
Holm-Bonferroni method.

The RQ1 working hypothesis is that an EEG-driven approach
should enhance the accuracy of the analyses and increase sensitivity
to the phenomenon, by enabling a more precise, subject-specific
segmentation of the data and thereby reducing the impact of inter-
individual variability. If confirmed, we expect the EEG-driven
approach to vyield larger effect sizes compared to the more

conventional time-on-task (ToT-based) approach. Regarding
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Analysis of CFS scores before and after the driving task revealed a
trend toward increased fatigue during the post-task period (p =
0.082). A significant interaction between the fixed effects of Fatigue
and Environment was observed (p < 0.001), suggesting that self-
perceived fatigue varied between the simulated and real-world
conditions. However, the CFS may exhibit limited sensitivity to the
onset of fatigue, as the mental symptoms it assesses are not easily
triggered by a short (45-min), low-demanding driving task.

RQ2, no specific working hypothesis was formulated, given the
scarcity of empirical evidence supporting differences between
simulated and real driving conditions.

Results

In this section, the results of questionnaires are presented first.
After this, two parallel and similar analyses are presented regarding
the neurophysiological characterization of fatigue during the driving
task, one using the MDrow to define “Low fatigue” and “High
Fatigue” conditions (EEG-estimated fatigue), the second analysis
assuming the “Low fatigue” condition as the beginning of the driving
task, and the “High fatigue” condition at the end of the driving task
(ToT-estimated fatigue).

Subjective assessment

Karolinska Sleepiness Scale

Statistical analysis revealed a significant main effect of Time on
KSS scores, p = -0.896, 95% CI [-1.388 -0.584], F(1, 11.999) =
19.066, p < 0.001 (Figure 3). The effect of Time (t = —4.366, df = 12)
yielded a large effect size (Cohen’s f = 1.26), and the estimated power
was approximately 98%, indicating strong sensitivity to detect this
effect. No effect was observed for the effect Environment, p = —0.250,
95% CI [-0.640 0.140], F(1, 12.704) = 1.572, p = 0.232, as well as the
interaction of the two factors, B = —0.177, 95% CI [-0.420 0.066],
F(1, 23.80) = 2.053, p = 0.165. Statistical analysis revealed no
significant main effect of Location, p = -0.281, 95% CI [-1.081,
0.519], F(1, 12.01) = 0.588, p = 0.458. The effect of Location
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(t = -0.767, df = 12) yielded a small effect size (Cohen’s f =
0.22), 11%,
indicating low sensitivity to detect this effect.

and the estimated power was approximately

Chalder Fatigue Scale

Statistical analysis revealed a not significant effect of Time on
CFS scores, p = —0.056, 95% CI [-0.119 -0.112], F(1, 12.00) = 3.021,
p = 0.108 (Figure 4). No effect was observed for the effect
Environment, p = 0.009, 95% CI [-0.042 0.060], F(1, 12.00) =
0.115, p =
Environment and Time results in a signiﬁcant main interaction,
B = -0.050, 95% CI [-0.073 -0.026], F(1,12.00) = 16.764, p = 0.001.
The effect of the interaction between Task and Time (t = —4.094, df =
12) yielded a very large effect size (Cohen’s f ~ 1.18), and the
estimated power was approximately 97. Post-hoc analysis revealed a

0.741, while the analysis of the two factors

significant increase in CFS values after the driving task in the Real
environment, T-Stat (39) = 2.826, p = 0.047, Cohen’s d = —0.823. No
significant differences emerged between the remaining comparisons
(all p > 0). In addition, a significant effect of the fixed effect factor
Location was observed, p = —0.184, 95% CI [-0.245 -0.123], F(1,
12.00) = 35.343, p < 0.001. The effect of Location (t = —5.945, df =
12) yielded a very large effect size (Cohen’s f =~ 1.72), and the
estimated power was approximately 100%.

Different time windows—-EEG-estimated
fatigue vs. ToT-estimated fatigue

Figure 5 illustrates the segmentation outcomes based on the
EEG-driven (on the left) and ToT-driven (on the right) approaches
for both simulated and real driving environments. In the ToT-driven
approach (Figure 5b), low and high fatigue conditions were defined
a priori as the initial and final parts of the driving task, respectively.

As a result, the segmentation is identical across participants,
with green and red segments consistently marking the early (low
fatigue) and late (high fatigue) portions of the task. Conversely, the
EEG-driven approach (Figure 5a) relied on individual EEG data,
using the MDrow index to identify the time segments corresponding
to minimum (low fatigue, green) and maximum (high fatigue, red)
fatigue levels for each participant. This method naturally resulted in
a high degree of inter-individual variability in the segmentation
timing. While low fatigue conditions tend to be concentrated toward
the beginning of the task (left side of the figure) and high fatigue
conditions toward the end (right side), the exact location and
these differ
participants, reflecting the personalized nature of EEG-based
fatigue detection.

distribution  of segments markedly between

Neurophysiological assessment of
fatigue onset

MDrow

Of course, running the LMM following the EEG-estimated
fatigue segmentation, a significant main effect of the fixed effect
Fatigue, p = —0.081, 95% CI [-0.106 —0.055], F(1,16.22) = 37.387,
P < 0.001 is found (Figure 6a), with higher MDrow during the ‘High
fatigue’ condition according to the research hypothesis. The
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Representation of low and high fatigue periods defined with both the EEG-driven approach (a) and the ToT-driven approach (b). In b, all the
participants are supposed to experience the lowest and the highest level of fatigue synchronously. In a, EEG-driven segmentation revealed a wide
interindividual variability in the timing of both lowest and highest fatigue periods.
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FIGURE 6

MDrow variations across fatigue conditions using two different segmentation approaches: the EEG-driven approach (a) and the ToT-driven
approach (b). No significant differences emerged from the interaction between the factors Fatigue and Environment, indicating that the intensity of the

experienced fatigue was comparable across the two environments.

estimated power to detect an effect of Fatigue was approximately
99% (with t = —-6.115, df = 13), which corresponds to a big effect size
(Cohen’s f = 1.70). No significant effect of Environment was
observed, p = 0.028, 95% CI [-0.040 0.096] F(1,13) = 0.631, p =
0.441. No effect was observed for the interaction between the two
fixed effects Fatigue and Environment, p = -6.106 x 107, 95% CI
[-6.642 x 107 6.6 x 10~*] F(1, 26.00) = 0.003, p = 0.955. A significant
effect of the main fixed effect Location was observed, p = —0.113,
95% CI [-0.198 -0.042], F(1,12.004) = 7.293, p = 0.018. The Location
effect (t = —2.701, df = 13) corresponded to a large effect size
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(Cohen’s f=0.75). The estimated statistical power for detecting this
effect was approximately 90%.

Considering the ToT -driven segmentation, LMM results
revealed a significant main effect of the fixed effect Fatigue,
B = —0.044, 95% CI [-0.073 -0.015], F(1, 16.00) = 6.073, p =
0.008. The effect of Fatigue (t = -3.017, df = 16.548)
corresponded to a medium-to-large effect size (Cohen’s f = 0.74),
with an estimated power of approximately 88%.

No effect was observed either on fixed effect Environment, § =
0.029, 95% CI [-0.038 0.096], F(1, 13.00) = 0.704, p = 0.418, nor its
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FIGURE 7

EBR variations across fatigue conditions using two different segmentation approaches. (a) Values obtained defining fatigued periods through the
EEG-driven approach highlighted no significant changes considering the single factors Fatigue and Environment. A marginal effect of the interaction
between the fixed effects Fatigue and Environments was observed (p = 0.062). (b) Conversely, defining fatigue with the ToT-driven approach resulted in

no significant changes in EBR. Data were normalized by subtracting baseline value.

interaction with fixed effect Fatigue, B = —0.016, 95% CI [-0.041
0.009], F(1, 26.00) = 0.802, p = 0.362, Figure 6b). A significant effect
of the main fixed effect Location was observed, p = —0.113, 95% CI
[-0.191 -0.035] F(1,12) = 7.963, p = 0.015. The effect of Location
(t=-2.822, df = 12) yielded a large effect size (Cohen’s f = 0.82), and
the estimated power was approximately 93%, indicating strong
sensitivity to detect this effect.

EOG

Analysis of EOG data segmented using MDrow (EEG-estimated
fatigue) revealed a different impact across the three blink-
related measures.

LMM run on EBR data resulted in an absence of significant effect
for both the fixed effects Fatigue, B = —0.377, 95% CI [-1.747 0.993],
F(1,19.38) = 0.291, p = 0.596, and Environment, = —0.329, 95% CI
[-1.646 0.988], F(1, 27.87) = 0.239, p = 0.629 (Figure 7a). The
interaction between the two factors revealed a tendency to a
significant effect which did not reach the significant level, f =
1.190, 95% CI [-0.074 2.454], F(1, 36.00) = 3.406, p = 0.073. A
significant effect was observed for the factor Location, f = —1.787,
95% CI [-3.278 —0.295], F(1, 14.83) = 5.507, p = 0.033. The effect of
Location on EBR (t = —2.347, df = 15) yielded an effect size of
Cohen’s f = 0.61, and the estimated power was approximately 58%,
indicating weak sensitivity to detect this effect.

Following the ToT-driven segmentation, no significance was
found for both factors Fatigue, p = —0.546, 95% CI [-1.353 0.261],
F(1,12.00) = 1.753, p = 0.210, and Environment, = —1.207, 95% CI
[-2.199 0.145], F(1, 12.01) = 6.950, p = 0.112. No effect was found
also for the interaction of the two fixed factors Fatigue and
Environment, p = 0.017, 95% CI [-1.155 1.189], F(1, 12.00) =
0.003, p = 0.959 (Figure 7b), while a significant effect of the fixed
effect factor Location was observed, p = -1.913, 95% CI
[-3.334 -0.492], F(1, 12) = 6.950, p = 0.022. The impact of
Location factor (t = —2.636, df = 12) yielded an effect size of
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Cohen’s f = 0.761, and the estimated power was approximately
68%, indicating weak sensitivity to detect this effect.

Using the EEG-driven approach, a similar dynamic was
observed in EBD feature, with the difference that the interaction
between the two fixed effects Fatigue and Environment was found to
reach the significance threshold, f = 0.007, 95% CI [0.001 0.012], F
(1, 36.00) = 5.446, p = 0.025 (Figure 8a). The effect of the interaction
between the factors Fatigue and Environment on EBD (t = —2.334,
df = 36) yielded an effect size of Cohen’s f = 0.37, and the estimated
power was approximately 43%, indicating weak sensitivity to detect
this effect. Following LMM analysis, post-hoc t-tests were conducted
for all pairwise comparisons. However, none of these comparisons
reached statistical significance. No effect was found for the single
factor Fatigue, p = —0.002, 95% CI [-0.009 -0.004], F(1, 14.60) =
0.219, p = 0.647, as well as for the factor Environment, f = —4.708 x
107, 95% CI [-4,713 x 10™* —-4.702 x 107*], F(1, 21.07) = 0.021, p =
0.885. No effect was found for the fixed factor Location, p = -0.005,
95% CI [-0.012 0.002], F(1, 12.72) = 1.283, p = 0.278.

Considering the ToT segmentation, no effect nor tendency was
observed in EBD data for both the factors Fatigue, f = 4.884 x 107,
95% CI [4.878 x 107* 4.889 x 107], F(1, 13.05) = 0.029, p = 0.867,
and Environment, p = 9.252 x 107, 95% CI [9.244 x 10™* 9.260 x
107*], F(1, 12.02) = 0.045, p = 0.835, as well as for their interaction,
B = 0.001, 95% CI [-0.002 0.005], F(1, 24.00) = 0.458, p = 0.835
(Figure 8b). A significant effect was found also for the fixed effect
factor Location, f = -0.010, 95% CI [-0.017 -0.002], F(1, 12.00) =
4.752, p = 0.050. The impact of Location factor on EBD (t = —2.180,
df = 12) yielded an effect size of Cohen’s f = 0.627, and the estimated
power was approximately 52%, indicating weak sensitivity to detect
this effect.

LMM analysis on EBA data segmented with EEG resulted in a
tendency to a significant effect of the fixed effect Environment,
B = —3.514, 95% CI [-7,130 0.102], F (1, 12.38) = 3.579, p = 0.082,
which was observed to be higher in simulated driving (Figure 9a).
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FIGURE 8

EBD variations across fatigue conditions using two different segmentation approaches. (a) Values obtained defining fatigued periods through the
EEG-driven approach highlighted a significant interaction between the fixed effects Fatigue and Environments (p = 0.013). (b) Conversely, defining fatigue
with the ToT-driven approach resulted in no significant changes in EBD. Data were normalized by subtracting baseline value.

EOG - Eyeblink Amplitude

a EEG-estimated Fatigue

b ToT-estimated Fatigue

80 80
60 - ; 60 - ;
40 40 -
= 20- < 20- ¢
04 Hod 0 o s‘}
& . o i
w 20~ -+ - W -20 .
-40 - -40
-60 - -60 -
-80 — -80 - ‘

Factors p [ 1 [ 1 Factors p
Fatigue 0.380 Low High Environment Low  Highlrarigue 0.959
En\{ironment 0.082 Fatigue — Real Fatigue Environment 0.540
Fatigue * Env. 0.001 ) Fatigue * Env. 0.752

- ~— Simulated -
Location Location 0.955

FIGURE 9

EBA variations across fatigue conditions using two different segmentation approaches. (a) Values obtained defining fatigued periods through the
EEG-driven approach highlighted a marginal increase of blink amplitude in the simulated environment compared to the real one (Environment, p =
0.066). In addition, a significant interaction between the fixed effects Fatigue and Environments was observed (p = 0.013). (b) Conversely, defining fatigue
with the ToT-driven approach resulted in no significant changes in EBA. Data were normalized by subtracting baseline value.

No effect was observed for the factor Fatigue, f = -=1.912, 95% CI
[-5.528 1.704], F(1, 13.25) = 0.824, p = 0.380. Conversely, a
significant interaction between Environment and Fatigue was
observed, B = 5.567, 95% CI [2.576 8,557, F(1, 24.00) = 13.314,
p = 0.001. The effect of the interaction between the factors Fatigue
and Environment on EBA (t = 0.863, df = 14) yielded an effect size
of Cohen’s f = 0.227, and the estimated power was approximately
18%, indicating weak sensitivity to detect this effect. Post-hoc
analysis revealed no significant differences in terms of EBA
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between all the comparisons investigated. However, EBA during
‘High’ fatigue periods in Simulated environments showed a
tendency to an increase compared to both low fatigue periods
in Simulated driving, T-Stat = 2.465, p = 0.091, and also compared
to “High” fatigue periods in Real driving, T-Stat = 2.610, p = 0.077.
No effect was observed for the fixed effect factor Location, =
0.918, 95% CI [-2.698 4.534], F(1, 24.00) = 12.314, p = 0.001.
Running the analysis on EBA data segmented with a ToT-driven
approach, no effect for any of the factors considered was observed
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FIGURE 10

HR variations across fatigue conditions using two different segmentation approaches. (a) When fatigue periods were defined using the EEG-driven
approach, HR was significantly higher during high fatigue compared to low fatigue across both simulated and real driving environments (p = 0.038). (b) No
significant effect of fatigue or environment on HR was observed when using the ToT-driven approach. Data were normalized by subtracting

baseline value.
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FIGURE 11

HRYV variations across fatigue conditions using two different segmentation approaches: the EEG-driven approach (a) and the ToT-driven approach
(b). Both approaches resulted in no significant impact of Fatigue as well as Environment on HRV. Data were normalized by subtracting baseline value.

(Figure 9b). Both the factors Fatigue, p = —0.167, 95% CI [-6.417
6.083], F(1, 12.33) 0.003, p 0.959, and Environment,
B = -2.301, 95% CI [-9.455 4.853], F(1, 12.10) = 0.397, p =
0.540, did not impact significantly on EBA. The interaction
between the two fixed effects was also investigated and no
significant effect was observed, p = 0.532, 95% CI [-2.723
3.787], F(1, 24.00) = 0.103, p = 0.752. No effect was found also
for the fixed effect factor Location, p = —0.161, 95% CI [-5.639
5.317], F(1, 12.20) = 0.003, p = 0.955.
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The EEG-driven approach highlighted an increase in HR during
fatigued periods, as highlighted by the significant main effect of the
factor Fatigue, B = —1.593, 95% CI [-2.986 —0.199], F(1, 35.71) =
5.025, p = 0.031 (Figure 10a). The effect of Fatigue (t = -2.242, df =
36) yielded an effect size of Cohen’s f = 0.37, and the estimated
power was approximately 55%, indicating weak sensitivity to detect
this effect. On the contrary, driving in the Simulated or Real
environment did not impact on HR while driving, Environment,
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FIGURE 12

LF variations across fatigue conditions using two different segmentation approaches: the EEG-driven approach (a) and the ToT-driven approach (b).
Both approaches resulted in no significant impact of Fatigue as well as Environment on LF. Data were normalized by subtracting baseline value.

B =0.656,95% CI [-1.507 2.820], F(1, 13.05) = 0.353, p = 0.563. The
interaction between the two factors Fatigue and Environment was
also investigated, resulting in a not significant effect, f = 0.173, 95%
CI [-1.202 1.549], F(1, 39.00) = 0.004, p = 0.949. No significant main
effect of Location on HR was observed, p = -0.572, 95% CI [-1.950,
0.806], F(1, 38.56) = 0.662, p = 0.421.

Taking into account data segmented using ToT-driven
approach, it was observed no significant effect of both Fatigue,
B =1.440, 95% CI [-0.453 3.333], F(1, 17.08) = 2.220, p = 0.154, and
Environment, p = 0.215, 95% CI [-1.197 2.347], F(1, 16.04) = 0.039,
p = 0.845, as well as no effect was observed for their interaction,
B = —0.283, 95% CI [1.125 2.706], F(1, 30.12) = 0.242, p = 0.626
(Figure 10b). Statistical analysis revealed no significant main effect
of Location on [outcome measure], p = 0.300, 95% CI [-1.491,
2.091], F(1, 17.11) = 0.108, p = 0.746.

LMM run on HRV data segmented using the EEG-driven
approach resulted in an absence of significant effect of the two
factors Fatigue, B = —0.032, 95% CI [-0.128 0.064], F(1, 13.59) =
0.413, p =0.531, and Environment, = 0.028, 95% CI [-0.117 0.173],
F(1, 12.02) = 0.147, p = 0.708 (Figure 11a), as well as of their
interaction, = —0.054, 95% CI [~0.126 0.018], F(1, 24) = 2.142, p =
0.156 (Figure 1la). No effect was observed for the fixed effect
Location, B = 0.071, 95% CI [-0.081 0.223], F(1, 12.04) =
0.835, p = 0.379.

Analogous results were observed for the ToT-driven approach,
where the two factors Fatigue, 3 = —0.084, 95% CI [-0.185 ],F(1,
15.98) = 3.139, p = 0.096, and Environment, p = 0.034, 95% CI
[-0.067 0.136], F(1, 13.50) = 0.421, p = 0.527, did not impact on
HRV while driving. Also the interaction between the two main
effects was not significant, p = -0.018, 95% CI [-0.102 0.066], F(1,
24.00) = 0.186, p = 0.670 (Figure 11b), as well as the fixed effect
Location, p = 0.110, 95% CI [-0.029 0.249], F(1, 12.05)
2.430, p = 0.145.

The single components of HRV were also investigated, LF and
HF. Regarding LF, adopting the EEG-driven approach it was
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observed a significant interaction between the factors Fatigue and
Environment, f = -0.176, 95% CI [-0.332 —0.020], F(1, 35.65) =
4.816, p = 0.035 (Figure 12a). The effect of the interaction between
the fixed effect factors Fatigue and Environment (t = —1.463, df = 24)
yielded an effect size of Cohen’s f = 0.299, and the estimated power
was approximately 27%, indicating weak sensitivity to detect this
effect. Post-hoc t-test revealed no significant difference between all
the comparisons investigated. Considering the single factors, no
effect was observed for Fatigue, p = —0.096, 95% CI [-0.272 0.080],
F(1, 17.17) = 1.142, p = 0.300, Environment, f = 0.068, 95% CI
[-0.147 0.283], F(1, 12.26) = 0.381, p = 0.548. as well as for Location,
B =-0.101, 95% CI [-0.258 0.056], F(1, 35.65) = 1.595, p = 0.215.
the alternative approach, the ToT-driven
segmentation, no effect was observed for both Fatigue,
B = —0.134, 95% CI [-0.306 0.038], F(1, 22.59) = 2.323, p =
0.141, and Environment, B = 0.054, 95% CI [-1.612 1.520], F(1,
35.84) =0.413, p = 0.525, as well as no significant effect was observed
for the interaction of the two factors, p = 0.066, 95% CI [-0.101
0.224], F(1, 36.00) = 0.398, p = 0.512 (Figure 12b). No effect was
observed for the fixed effect Location, p = 0.085, 95% CI [-0.087
0.257], F(1, 24.67) = 0.931, p = 0.344.

Analysis run on HF data segmented with the EEG-driven
approach showed no impact of both Fatigue, p = 0.085, 95% CI
[-0.107 0.277], F(1, 26.79) = 0.749, p = 0.394, and Environment
type, p = —0.075, 95% CI [~0.259 0.109], F(1, 33.09) = 0.643, p =
0.428, as well as no effect was observed considering their interaction,
B = 0.156, 95% CI [-0.028 0.340], F(1, 36.00) = 2.780, p = 0.104
(Figure 13a). No significant effect was observed for the fixed effect
Location, f = 0.232, 95% CI [0.003 0.461], (1, 13.41) = 3.947, p =
0.068. Similarly, the ToT-approach in segmenting HF data showed

Adopting

analogous results: no significant effect of Fatigue, § = 0.191, 95% CI
[-0.007 0.389], F(1, 48.00) = 1.893, p = 0.064, and Environment,
B =-0.060,95% CI [-0.258 0.138], F(1, 48.00) = 0.349, p = 0.558, nor
of their interaction, p = —-0.118, 95% CI [-0.316 0.078], F(1, 48) =
0.1.371, p = 0.247 (Figure 13b). No effect was observed for the fixed
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FIGURE 13

HF variations across fatigue conditions using two different segmentation approaches: the EEG-driven approach (a) and the ToT-driven approach (b).
Both the approaches resulted in no significant impact of Fatigue as well as Environment on HF. Data were normalized by subtracting baseline value.

effect Location, p = 0.016, 95% CI [-0.182 0.214], F(1, 48.00) =
0.024, p = 0.876.

Discussion

The ability to detect fatigued states derives from decades of
academic and industrial research. Researchers have long worked to
characterize the physiological (Bundele and Banerjee, 2009; Nguyen
et al., 2017; Fujiwara et al., 2019; Alaimo et al., 2020; Arefnezhad
et al.,, 2022) and behavioral (Brandt et al., 2004; Fairclough and
Graham, 1999; Ghourabi et al., 2020) markers of fatigue and
drowsiness. To induce fatigue, users are often required to
perform a task over an extended period. Indeed, several findings
in literature support that performing a long-lasting task resulted in a
fatigued state, a concept known as Time-on-Task (ToT) effect.
According to this framework, fatigue is assumed to increase with
task duration. Even if some evidence challenges the universal
validity of the ToT effect, the final part of a prolonged driving or
cognitive task is typically interpreted as a fatigued state (Ackerman
and Kanfer, 2009; Lim et al., 2010; Hopstaken et al., 2015; Behrens
et al,, 2023). This issue is made worse by two key limitations: (i)
fatigue is a spontaneous phenomenon that cannot be directly
modulated through task parameters (unlike, for example, mental
workload, which can be manipulated by adjusting task difficulty);
and (ii) there is no established ground-truth measure that allows for
continuous monitoring and quantification of an individual’s
fatigue level.

In this context, the primary aim of the present manuscript was to
compare the results obtained in assessing mental fatigue onset on
drivers with the common ToT-based approach, towards an
innovative physiology-driven approach based on the use of EEG-
derived parameters (RQI). To address this, a multi-steps
experimental protocol requiring to drive in different conditions
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was conducted, and the 45-min-long low demanding driving task
was analyzed. The first step consisted in verifying whether the
experimental protocol induced fatigue. Subjective reports, in the
form of questionnaires, were used to collect drivers’ perception of
the fatigued state. Two questionnaires were provided, KSS and CFS.
As confirmed by subjective reports of sleepiness, participants
perceived an increase in fatigue during the low-demanding
driving task, although no significant increase of CFS was
observed. The values of KSS scored after the driving task were
found to be significantly higher than those scored before the task
(Figure 3), while values of CFS questionnaires increased, but only
marginally (Figure 4). In respect to the CES (Cella and Chalder,
2010), the marginal increase may be attributed to the nature of the
CFS questionnaire, which targets symptoms of fatigue that typically
emerge in chronic or prolonged conditions and which are not likely
to develop in a 45-min-long low-demanding driving task. Even
though only the mental fatigue subscale was considered in this study,
CFS questionnaire may be more suitable for studying longitudinal or
chronic fatigue, which is more likely to induce the insurgence of the
symptoms checked by the questionnaire, such as, for example, the
loss of motivation, or difficulty in concentrating. In addition,
statistical analysis revealed a significant effect of Location on CFS
scores, indicating that self-reported fatigue was influenced by the site
at which the experiments were conducted (Italy vs. Spain). Several
contextual differences between the two settings may account for this
effect, including the experimenters involved, the type of vehicle
employed (a van in Italy vs. a truck in Spain), and task-related
characteristics such as variations in the driving route (e.g., the
presence of curves). However, despite the overall difference in
CES scores between the two locations, no significant interactions
were observed between Location and the other fixed-effect factors.
This suggests that, although CFS values differed across experimental
sites, the pre- to post-task changes in fatigue were consistent and
generalizable and not driven by the specific Location. Regarding
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KSS, it was developed and validated as a questionnaire aimed at
investigating drowsiness. Although conceptually distinct, mental
fatigue and drowsiness are often viewed as varying intensities
along the same continuum from alertness to sleep (Kamran et al.,
2019). Due to their overlap and the limited sensitivity of subjective
measures, both questionnaires were administered to better capture
these states. According to this view, it is interesting to note that even
if significantly increased, KSS values after the driving task scored a
median of 4, which is below the threshold for sleepiness (equal to 6,
on scale from 1 to 9), but higher than the median value of 2
(alertness) scored before the driving task. This consideration
supports the idea that what was experienced during the 45-min-
long driving task was fatigue rather than sleepiness. Once it was
confirmed that the experimental protocol effectively induced fatigue
as perceived by participants, it became appropriate to proceed with
the comparison between the EEG-driven and the ToT-driven
approaches. Indeed, to address RQ1 data collected during a 45-
min-long task were labelled as low and high fatigue using both an
EEG-driven approach, where the MDrow index (Di Flumeri et al.,
2022) was used to detect the lowest and highest fatigue experienced,
in parallel with a ToT-driven approach, where the initial and the
final segments of the task were considered as the lowest and highest
fatigue periods respectively. As illustrated in Figure 5, the EEG-
driven and ToT-driven approaches led to different segmentations of
the driving task. This divergence highlighted how the choice of
fatigue assessment method can substantially influence the
observation of fatigue-related changes over time. Looking at the
segmentation, it appears evident that the EEG-driven approach
presents high variability in the time windows labelled as low and
high fatigue for different drivers. The observed high variability
might be interpreted as the fact that the EEG-driven approach
captured the interindividual variability, revealed by the marked
differences between low and high fatigue periods of different
users. In contrast, the ToT-driven approach assumes a uniform
fatigue progression across all individuals, assigning the same
temporal segments as low and high fatigue for every participant,
and so disregarding individual differences in terms of fatigue
perception and progression over time. Both the EEG-driven and
ToT-driven approaches revealed a significant increase in MDrow
values during high fatigue compared to low fatigue, in both
simulated and real-world settings. However, the EEG-driven
approach yielded a stronger statistical significance (p < 0.001)
than the ToT-driven approach (p = 0.025) (Figure 6). These
findings indicate that brain correlates of fatigue increased in both
cases, but segmenting the data based on EEG allowed for a more
pronounced distinction between low and high fatigue periods. On
one hand, the result on the EEG-driven approach was an implicit
consequence of the method: since the MDrow index has been used to
segment data into the two conditions (Low and High fatigue), then
its comparison is statistically relevant. On the other hand, the
analysis of the ToT-driven approach: (i) confirmed the reliability
of the MDrow index, that was significantly higher in the end of the
experiments; but (ii) also demonstrated the less sensitivity of this
approach in identifying the individual periods of highest fatigue. It
should be noted that a significant effect of Location was observed on
MDrow, for both the EEG-driven and the ToT-driven approaches.
Importantly, no significant interactions emerged between Location
and the other fixed-effect factors, supporting the generalizability of
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the results across the two methods, regardless of the site in which the
experiments were conducted. The true added value of the innovative
approach proposed in this study, however, emerges in the analysis of
the additional physiological parameters considered. In fact, it was
observed that, by adopting the ToT-driven approach, fatigue onset
did not impact on the physiological response of drivers, i.e., absence
of significant differences between low and high fatigue for all the
features extracted from ocular (EBR, EBD, and EBA) and cardiac
(HR, HRV, LF, and HF) activity. None of the factors considered,
Fatigue and Environment, as well as their interaction, were found to
impact physiological activity. In contrast, by adopting the EEG-
driven approach, it was possible to recognize the effect of fatigue
onset on physiological response of drivers. Ocular activity showed a
different response to fatigue onset depending on whether the driving
task was performed in a simulated or real environment. Results of
LMM analysis revealed a significant interaction of the factors
Fatigue and Environment on eyeblink duration (EBD, Figure 8a)
and amplitude (EBA, Figure 9a). However, post hoc pairwise
comparisons did not result to be significant for either ocular
metric. Although post hoc pairwise comparisons did not reach
statistical significance for either ocular metric, an opposite trend
in the impact of fatigue onset was observed across all metrics. As
shown in Figures 8a, 9a, during simulated driving, all metrics tended
to increase in high fatigue periods compared to low fatigue periods.
Conversely, in real driving, the same metrics showed a decreasing
trend with fatigue onset. This observation suggests that driving in a
simulated or real environment may induce a different response on
ocular metrics. This could be induced by several factors. Performing
visual task using a screen can induce an alteration of eye moisture
(Bafna and Hansen, 2021) which can in turn affects the eyeblink
behavior. Indeed, one of the functions of eyeblinks is indeed to
regulate the balance of eye moisture levels (Portello et al.,, 2013).
Screens adopted for the simulated task might have caused a change
in the moisture levels of the eyes which in turn induced blinking
strategies to recover the homeostasis level (Eckstein et al., 2017).
Alternatively, the differential response may be attributed to the
cognitive and physiological effect of experiencing fatigue while
driving in a simulated environment compared to experiencing
fatigue driving a real vehicle on the road. Regarding heart
activity in response to fatigue onset, measures of heart rate
variability, HRV, LF, and HF, were not found to be impacted
both by fatigue onset and the driving environment. Changes in
HRV-related measures have been widely adopted to characterize
fatigue (O’Keeffe et al., 2020; Wilson et al., 2007). An increase in LF
has been positively linked to an activation of the sympathetic branch
of the autonomous nervous system, which is triggered when users’
arousal or stress increases (Pham et al., 2021). Conversely, literature
suggests that HF arise in response to the parasympathetic system
stimulation, which is active during relaxing situations (Awais et al.,
2017; Forcolin et al., 2018). HRV metrics is usually computed as the
ratio between LF and HF (Pankaj et al., 2021), therefore it can be
interpreted as a measure reflecting the balance between sympathetic
and parasympathetic branches of the autonomous nervous system.
In the present study, no significant variation of HRV-related metrics
was observed, suggesting that the driving task did not induce a
detectable modulation of the autonomous nervous system activity.
An increase in heart rate (HR, Figure 10a) was observed during high
fatigue compared to low fatigue periods independently from the
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driving environment, but again only if adopting the EEG-driven
approach. Previous studies reported an increase of HR during
cognitively demanding tasks, often interpreted as a marker of
increased task engagement (Kennedy and Scholey, 2000; Darnell
and Krieg, 2019). In this context, the increase in HR may reflect a
compensatory physiological response to maintain performance as
fatigue onset emerges. The absence of HRV modulation could be
attributed to the relatively short duration of the task, designed to
induce only mild fatigue onset rather than a deeply fatigued state.
Thus, the HR increase without accompanying HRV changes may
indicate heightened cognitive effort to counteract the initial effects
of fatigue.

To summarize the findings highlighted, adopting a ToT-driven
approach in defining fatigue intensity during a 45-min-long task
performed in both simulated and real driving conditions, no
physiological response to fatigue onset was observed. In contrast,
adopting an EEG-driven approach, a physiological response to
experiencing fatigue in the two environments, simulated and real,
emerged. Considering this finding together with the results of
subjective ratings of participants who reported an increase of
experienced fatigue after the driving task, it appears that
the EEG-driven detect
physiological traces of fatigue onset, which the ToT-driven

adopting approach allowed to
approach failed to detect. It has to be noted that the results are
similar between the two approaches in terms of trends, the difference
mainly consisted of the effect size, consequently leading to
statistically ~ significant evidence when using the EEG-
driven approach.

This finding answered the first research question (RQI)
posed in the present manuscript. It was demonstrated that,
when dealing with early symptoms of fatigue, i.e., fatigue
onset in a relatively short duration task, the ToT-driven
the
physiological reactions to the investigated phenomenon. On
the other hand, the EEG-estimated approach showed higher

sensitivity, providing convincing evidence for its potential in

approach is not sensitive enough towards small

fatigue detection compared to the conventional ToT-estimated
approach. Nevertheless, further studies are needed to clarify the
relationship between fatigue development, neurophysiological
responses, and performance deterioration. In this regard, it
would be advisable to adopt the MDrow index in less
complex experimental settings, since the complexity of a real
driving task may introduce additional noise into the
investigation.

The secondary aim of this study (RQ2) was to explore eventual
differences in experiencing fatigue in a simulated setting compared
to a real driving task. To the best of authors’ knowledge, no prior
study performed such a rigid controlled comparison, using identical
participants and driving tasks across conditions. Subjective reports,
and specifically the KSS, suggest that participants experienced
fatigue in both simulated and real-world settings. Segmenting the
data with an EEG-driven approach revealed that some of the
physiological parameters considered showed different dynamics
between simulated and real driving. Specifically, eyeblink
duration and amplitude showed opposite dynamic to fatigue
onset in the two different environments. Among heart-related
parameters, no difference was observed between simulated and

real driving fatigue onset. HR was found to increase during high
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fatigue both in simulated and real setting, while the other metrics
were not affected either by fatigue levels or driving task. These
results support the adoption of an objective physiological
benchmark to define fatigue conditions in an unobtrusive manner.

If validated by future studies, adopting this approach offers key
advantages. First, it will be possible to continuously monitor the
driver, without any need for their input (as the case for subjective
reports). One could argue that today, there are already some
measures that can be used to continuously infer the mental state
of a driver, for example, the driving performance. While driving and
cognitive performance are often used as a proxy for mental states,
behavioral signs typically emerge only after fatigue has already
compromised task execution, potentially too late to prevent risk.
Second, unlike the conventional ToT-driven approach, the EEG-
based method adopted here could detect the onset of fatigue in a
relatively short driving task, allowing for earlier and more effective
intervention. Third, EEG-based fatigue detection can be used to label
physiological, behavioral, and environmental data in order to train
Al models in building a larger framework for understanding fatigue
in operative contexts. Last but not least, in increasingly automated
vehicles, the driver is often disengaged from physical control for
extended periods.

Despite this, the driver must remain “in the loop” and ready to
intervene in critical transitions. In such cases, behavioural cues
become sparse or even unavailable, making them unreliable
indicators of the driver’s readiness. Therefore, continuous and
objective monitoring of the driver’s internal state through
neurophysiological indicators becomes not only advantageous
but essential.

Despite the relevance of these findings, several limitations
should be acknowledged. Future of this
investigation should include a larger and more gender-balanced

implementations

sample. Initially, 14 males and one female were recruited. However,
the female participant was excluded from the final analysis to
maintain a homogeneous sample. Although the sample used for
the present study reflects the gender imbalance in the Italian and
Spanish transport sector, it limits the generalizability of the findings
to the broader population. Also, a key aspect of the present study is
represented by the involvement of professional drivers. This choice
was made thinking about a translational approach of the proposed
method in real world. Indeed, professional drivers are a category
which is strongly impacted by mental fatigue while driving,
However, we acknowledge that professional drivers represent a
subgroup of the general population. Therefore, before extending
the present findings to the entire population, eventual bias due to the
profession of the drivers should be accounted (professional vs. non-
professional). Another limitation concerns the fixed order of task
administration: participants always completed the simulated driving
before the real driving. This decision was made to minimize safety
risks associated with inducing fatigue in real-world driving, but it
may have introduced order effects that should be considered when
interpreting the results. Lastly, some variability was present between
the experiments conducted at the two locations. With the current
analytical design, it was not possible to fully account for potential
biases arising from differences in location, vehicle, driving task, or
experimenters. Future studies should explicitly model these factors
in the analysis to better control for their possible influence on
the results.
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