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Accurate gait-phase identification in children with Cerebral Palsy (CP) constitutes
a pivotal prerequisite for evidence-based rehabilitation. Addressing the precise
detection of gait disturbances under natural ambulation, we propose a deep-
learning framework that integrates a stacked denoising autoencoder (SDA) with a
long short-term memory network (SDA–LSTM) to classify four canonical gait
phases. A community-oriented dataset was constructed by synchronizing ankle-
mounted inertial measurement units (IMU) with plantar-pressure insoles; natural
gait sequences of six children with mild CP were acquired in open environments.
The SDA layer robustly extracts discriminative representations from non-
stationary, high-noise signals, whereas the LSTM module models inter-phase
temporal dependencies, thereby enhancing generalization cross-user. In noise-
free conditions the SDA–LSTM framework attained 97.83% accuracy, significantly
exceeding SVM (94.68%), random forest (96.05%), and standalone LSTM (95.86%).
Under additive Gaussian noise with SNR ranging from 5 to 30 dB, the model
preserved stable performance; at 10 dB SNR (Signal-to-Noise Ratio), accuracy
remained 90.96%, corroborating its exceptional robustness. These findings
demonstrate that SDA–LSTM effectively handles the complex, heterogeneous
gait patterns of children with CP and is readily deployable for clinical assessment
and exoskeletal assistance systems, indicating substantial translational potential.
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1 Introduction

CP represents the most prevalent motor disability in childhood (Wang N. et al., 2020).
Primary dysfunctions manifest as movement disorders during postural control and
locomotion, resulting in activity limitations (e.g., ambulation) (Hutton et al., 2000)
(Armand et al., 2016). Children with CP exhibit characteristic gait deviations including
prolonged stance phase, shortened swing phase, and reduced joint angle excursion
amplitudes, significantly compromising mobility and quality of life. Clinically, precise
quantification of gait phases and their dynamic progression constitutes a prerequisite for
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developing personalized rehabilitation protocols and evaluating
interventional efficacy (Chang et al., 2010).

Motion capture systems have been extensively employed for
whole-body kinematics and gait event detection in CP populations
(Chang et al., 2010; Gage, 1993; Wishaupt et al., 2024; Damiano and
Abel, 1996; Sutherland and Davids, 1993). However, conventional
laboratory-based optical motion analysis faces limitations of high
cost, spatial constraints, and inability to achieve long-term
continuous monitoring in daily environments. Recent advances
in wearable IMU offer new pathways for community-based gait
analysis due to their miniaturization, cost-effectiveness, and
integration capabilities (Zhang et al., 2018; Chen et al., 2016).
Research confirms that ankle-worn IMUs effectively capture
acceleration, angular velocity, and joint angle variations during
gait cycles (Hutabarat et al., 2021), while coupling with plantar
pressure signals further enhances gait event detection accuracy. Seel
et al. developed an IMU-based joint angle measurement
methodology for gait analysis (Seel et al., 2014). Nevertheless,
high-amplitude non-stationary noise from motor control deficits
in CP children, combined with inter-subject movement strategy
heterogeneity, compromises feature extraction and generalization
performance in traditional machine learning models. Achieving
concurrent high robustness and cross-user consistency remains a
critical scientific challenge in IMU-driven CP gait analysis.

The convergence of wearable sensors and deep learning provides
innovative solutions. Behboodi et al. detected seven CP gait phases
(Loading Response [LR], Mid-Stance [MSt], Terminal Stance [TSt],
Pre-Swing [PSw], Initial Swing [ISw], Mid-Swing [MSw], Terminal
Swing [TSw]) in real-time using dual gyroscopes (Behboodi et al.,
2019). Lauer et al. achieved 95.3%–98.6% accuracy in gait event
prediction via adaptive neuro-fuzzy inference systems (ANFIS) and
supervisory control systems using lower-limb electromyography
(EMG) (Lauer et al., 2005). Taborri et al. implemented hidden
Markov models (HMM) with dual IMUs for biphasic gait
recognition in CP subjects (Taborri et al., 2015). Yang et al.
attained 95.53% accuracy in pediatric CP gait analysis through
multimodal MRI-IMU-pressure data fusion with CNN-LSTM
architectures (Yang et al., 2024; Wang L. et al., 2020). In prior
work, we proposed a fusion framework integrating stacked
denoising autoencoders with meta-learning for gait phase
recognition, achieving 94.56% accuracy (Cao et al., 2024).

SDA enable unsupervised extraction of low-dimensional robust
features while suppressing sensor drift and artifacts (Wang et al.,
2024; Xiong et al., 2016) - we adapt them to model irregular CP gait
patterns. LSTM networks excel at capturing long-range temporal
dependencies (Luo et al., 2025; Yu et al., 2019) and have proven
effective in healthy gait phase recognition. Building upon these
foundations, this study proposes an SDA-LSTM fusion network for
gait phase recognition in children with CP during unconstrained
natural walking, with the analytical workflow illustrated in Figure 1.

The main contributions of this work are:

1. Construction of a synchronized ankle IMU-plantar pressure
dataset for children with cerebral palsy in community-based
open environments using a flexible ankle exoskeleton;

2. Design of an SDA-LSTM fusion network model, wherein the
Stacked Denoising Autoencoder (SDA), incorporating
Dropout regularization, “actively learns” abnormal
movement patterns, and the Long Short-Term Memory
(LSTM) network further models phase transition dynamics;

3. Systematic evaluation of model generalizability and robustness
employing a dual strategy of cross-subject validation and
multi-tiered noise injection.

2 Materials and methods

In this chapter, we will introduce the materials, methods, and
specific implementation process used in the SDA-LSTM fusion
network model for gait phase recognition in children with
cerebral palsy. The Architecture of the SDA-LSTM hybrid
network as shown in Figure 2.

2.1 Exoskeleton platform

The flexible ankle exoskeleton (FAEXO) employed in this studywas
designed by Ulon Robotics, with its specific structural configuration
illustrated in Figure 2A. FAEXO represents an innovative rehabilitation
assistive device specifically developed for children with CP. Its core
design philosophy involves the decoupling of heavy components from
actuation mechanisms, thereby achieving an optimal balance between
lightweight wearability and precise torque assistance. The system
comprises three principal components: a power backpack, a flexible
transmission system, and an ankle joint module.

The powered backpack serves as the central control unit,
integrating a miniature brushless motor, a high-precision MCU
controller, and a detachable lithium battery. This configuration
significantly reduces inertial loading on the lower limbs, avoiding
interference with the child’s natural gait. The flexible transmission
system employs pre-tensioned aerospace-grade stainless steel cables
(2.0 mm diameter),sheathed within a spring and anchored to a TPU
brace at the distal end of the lower leg, delivering assistive torque
during heel-off. An embedded microcontroller, mounted superior to
the calcaneus, processes IMU data from the heel and transmits it to
the MCU. Posterior to the microcontroller, a stabilizing spring
connects to the medial and lateral midfoot via two steel wires,
applying an upward lifting force during the swing phase. The ankle
joint structure is illustrated in Figure 3.

FIGURE 1
Framework for Gait Phase Recognition in Children with CP. (A)
Feature extraction module based on a SDA. (B) Gait phase
classificationmodule for children with CP, implemented using a LSTM.
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2.2 Data acquisition and pre-processing

Six ambulatory children diagnosed with mild cerebral palsy (CP)
were recruited. Participants were partitioned into two cohorts: cohort A
(n = 5) served as the training set, and cohort B (n = 1) as the validation
set. All participants had previously done exoskeleton during over-
ground walking to achieve habituation prior to data collection. The
protocol was approved by the Institutional Review Board of the
Pingshan County People’s Hospital (No. 20244142) and informed
assents were obtained from all participants.

Data was acquired in an open, community-level environment.
Throughout the experiment, participants walked on level ground at
a self-selected, comfortable speed with minimal external constraints.

Ankle kinematics were captured via two six-axis IMU embedded in the
bilateral exoskeleton units, yielding tri-axial acceleration and angular
velocity data. Sensors were positioned posterior to the calcaneus and
sampled at 100 Hz. Plantar pressure signals were recorded using a dual-
channel thin-film pressure sensor placed beneath the heel and first
metatarsal head of the right foot, sampled at 50Hz. The pressure signals
were transmitted to a microcontroller via universal asynchronous
receiver-transmitter (UART).

IMU signals acquired by the FAEXO system were processed in
Python. Raw IMU data were filtered using a sixth-order Butterworth
low-pass filter with a cut-off frequency of 100 Hz. Plantar pressure
signals were binarized to identify four critical gait events on the right
limb: heel strike, toe strike, heel off, and toe off. Gait phases were
subsequently segmented according to these events.

2.3 Gait-phase segmentation

In most prior investigations, the gait cycle has been partitioned
into four discrete phases: initial heel contact (H), flat-foot contact
(F), push-off (or heel-off) (P), and subsequent limb swing (S)
(Agostini et al., 2013; Rueterbories et al., 2010). Given that the
present cohort comprises ambulatory children with mild cerebral
palsy, this four-phase schema was retained.

Within this study, the gait cycle was segmented into four
sequential locomotor stages according to the four critical gait
events identified from plantar pressure signals. Specifically, the
interval from initial heel strike to first toe contact was designated
as the first phase, termed heel strike (HS). The second phase,
spanning from toe contact to heel off, was defined as full contact
(FC). The third phase, extending from heel off to toe off, was
designated heels off (HO). The final phase, from toe off to the
subsequent heel strike, constituted the swing phase (SP). A complete
gait cycle was delimited from the first heel strike of phase 1 to the

FIGURE 2
Architecture of the SDA-LSTM hybrid network. (A) Structural diagram of the flexible ankle exoskeleton (FAEXO). (B) Data preprocessing pipeline. (C)
Schematic of the stacked denoising autoencoder (SDA), where the 12-dimensional output of the encoder serves as the input to the classificationmodule.
(D) LSTM architecture of the gait phase recognition module. (E) Gait phase (HS, FC, HO, SW) identification results generated by the SDA-LSTM
hybrid network.

FIGURE 3
Schematic of the FAEXO ankle module; in panel. (A) Applying
tensile assistance during the SW phase. (B) The red-framed steel
cables connect to the fixed spring highlighted in the red frame
of panel.
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second heel strike of phase 4. In accordance with these definitions,
each participant’s locomotor data was parsed into four contiguous
gait phases, yielding a sequential trapezoidal profile of the gait cycle,
as illustrated in Figure 2E.

3 Models and evaluation

This study proposes a hybrid neural architecture, SDA-LSTM,
illustrated in Figure 2, for the recognition of gait phases in
ambulatory children with paresis. Comparative experiments were
conducted under both noisy and noise-free conditions against three
benchmark models: support-vector machine (SVM), random forest
(RF), and standard LSTM. SVM constructs an optimal hyperplane
by maximizing the inter-class margin, yielding strong generalization
in low-sample regimes (Jakkula, 2006; Chandra and Bedi, 2021). RF
mitigates overfitting through the ensemble aggregation of multiple
decision trees, demonstrating robustness against nonlinear, high-
dimensional representations (Biau and Scornet, 2016; Breiman,
2001). The evaluation adheres to a rigorous, systematic protocol
to provide a comprehensive appraisal of SDA-LSTM performance in
the gait-phase classification task for children with cerebral palsy.

3.1 Network architecture

The proposed SDA-LSTM hybrid architecture integrates an
SDA with LSTM network, comprising a feature-extraction
module and a gait-phase classification module. The SDA extracts
temporally resolved IMU features while enhancing model
robustness; the LSTM captures spatially dependent local gait-
phase patterns. This synergy enables simultaneous representation
learning and gait-phase classification. The model architecture,
illustrated in the figure, encompasses the following key components.

3.1.1 Feature-extraction module
To effectively capture the dynamic characteristics embedded in

the continuous, time-series gait signals throughout the gait cycle, the
present study first applies z-score normalization to the 12-
dimensional IMU inputs. Subsequently, a sliding-window strategy
is employed to model temporal locality: a window length of
50 samples and a stride of 1 sample are selected, generating
subsequences as specified in Equation 1.

Xi � xi, xi+1, . . . , xi+Lw−1{ } ∈ RLw×D (1)

Denotes the window length, and every frame possesses a feature
dimensionality D (D = 12); the index i marks the starting position of
the sliding window (1≤ i≤T − Lw + 1). The stride s is set to unity to
maximally preserve temporal continuity, and each window is
assigned the classification label corresponding to its terminal
sample. By this mechanism, the sliding procedure emulates the
continuous evolution of gait, thereby augmenting the model’s
temporal awareness and its capacity to extract dynamic features;
the overlapping windows further effect a substantial expansion of
the dataset. The data-processing pipeline is depicted in Figure 2B.

The pre-processed data are subsequently fed into the SDA
network depicted in Figure 2C. The proposed SDA module is

expressly designed to extract discriminative representations from
the input signal; it is constructed by hierarchically stacking
multiple denoising autoencoders (DAEs). Each DAE learns a
noise-robust latent representation, enabling effective denoising
and salient-feature extraction. The module comprises five
principal layers: an input layer (12-D), a first expansion layer
(40-D), a bottleneck layer (8-D), a second expansion layer (40-
D), and an output layer (12-D). The encoder pathway, extending
from the input layer to the bottleneck layer, compresses the raw
sensor data into an eight-dimensional latent representation,
whereas the decoder pathway, spanning from the bottleneck to
the output layer, reconstructs the original input from this
compressed code. To enhance robustness, dropout layers are
interposed within both the encoder and decoder, injecting
stochastic noise during training (Srivastava et al., 2014).

In the proposed SDA-LSTM hybridmodel, the SDA functions as
a dedicated feature extractor, comprising an encoder–decoder
architecture. The encoder projects the input into a low-
dimensional latent space via two fully connected layers,
corresponding to the input layer and the first expansion layer.
During training, dropout (rate = 0.2) is incorporated to enhance
robustness. Formally, for an input vector x, the encoding operation
is defined as Equation 2:

h � fθ x( ) � σ W1x + b1( ) (2)

Where θ denotes the parameter set of the encoder, and σ denotes
the activation function (ReLU).

The decoder reconstructs the original input from the low-
dimensional representation; it is likewise implemented as two
fully connected layers that correspond to the second expansion
layer and the output layer. The decoding transformation is expressed
as Equation 3:

x̂ � gθ′ h( ) � σ W2h + b2( ) (3)

θ′ denotes the parameter set of the decoder.

3.1.2 Gait-phase recognition module
The gait-phase recognition module is implemented with an

LSTM network, depicted in Figure 2D. Long Short-Term
Memory constitutes a specialized recurrent architecture
capable of capturing long-range temporal dependencies,
thereby alleviating the gradient vanishing or explosion issues
endemic to conventional RNNs. Training proceeds through
forward and backward propagation: during the forward pass,
each LSTM cell updates its cell state and computes its output
contingent on the current input and the preceding hidden state;
during the backward pass, gradients are computed, and the
parameters are updated via an optimizer. In this study, the
LSTM comprises an input layer, two hidden layers each
containing 50 units, and a fully connected output layer. The
network receives the 12-dimensional feature sequences extracted
by the SDA and predicts the label of the first time-step
immediately following each sliding window. A final fully
connected layer maps the latent representation to a four-
dimensional class space corresponding to the four gait phases
(HS, FC, HO, SW), thereby accomplishing the gait-phase
recognition task for the pediatric participants.
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3.2 Model training

Consistent with the previously outlined protocol, the dataset was
bifurcated into cohort A (n = 5) and cohort B (n = 1). Model training
was exclusively conducted on cohort A, employing five-fold cross-
validation. Specifically, the data were randomly divided into five
mutually exclusive subsets; in each fold, four subsets (80%) were
used for training and the remaining subset (20%) for validation,
iterating until every subset had served as the validation set once.
Hyper-parameters were held constant across folds, and the average
training loss and validation loss of the five resulting models were
computed to assess hyper-parameter quality. Once optimal hyper-
parameters were identified, the entire cohort A was leveraged as the
training set. After model convergence, the unseen data from the single
participant in cohort B were used for external validation; predictions
generated by the model were compared against ground-truth labels to
evaluate generalizability. The entire network was implemented in
Python 3.11.7 using PyTorch 2.3.1. Each model was trained for
100 epochs with an initial learning rate of 0.0001. The
corresponding training loss and accuracy trajectories are presented
in Figure 4.

The comprehensive training protocol of the network model
encompasses two sequential phases. Phase one is executed within
the feature extraction module. The proposed gait-feature extraction
module adopts a cascaded processing architecture. Initially, raw six-
dimensional IMU data undergo global normalization via Min-Max
Scaling, whereby each feature dimension is linearly mapped onto the
interval [0, 1] to eliminate dimensional disparities. Subsequently, a
sliding window of fixed length 50 and stride 1 segments the

normalized time-series data, and an overlapping sampling
strategy is employed to construct spatio-temporal feature
matrices. These matrices are then fed into a stacked denoising
autoencoder (SDA) for deep feature learning, yielding 12-
dimensional reconstructed features. Throughout the encoding
and decoding stages, Dropout layers (p = 0.2) and ReLU
activation functions are incorporated to emulate noise. Within
this framework, the loss function of the SDA, given N samples, is
defined by the ReLU formulation presented in Equation 4.

LSDA � 1
N

∑N
i�1

xi − x̂i‖ ‖2 (4)

N denotes the batch size.
The second stage encompasses the classification module,

namely, the LSTM-based phase-classification network. This
module leverages a two-layer LSTM that ingests the 12-
dimensional features generated by the SDA and executes gait-
phase classification. Within this study, the over-ground gait cycle
is delineated into four discrete phases:HS, FC, HO, and SW,encoded
as labels 0, 1, 2, and 3, respectively, and these labels constitute the
target outputs of the network. Temporal modeling via the LSTM is
formally expressed as Equation 5:

hT � LSTM h1, ..., h50( ) (5)

During training, the network is optimized by minimizing the
categorical cross-entropy loss, specified in Equation 6.

L � −∑4
k�1

yk logP y � k
∣∣∣∣hT( ) (6)

FIGURE 5
Comparison between the SDA-LSTM model outputs and the ground-truth gait labels under cross-user conditions.

FIGURE 4
Loss and accuracy of SDA-LSTM in classification tasks.
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Using the Adam optimizer. Adam dynamically adjusts
parameter updates through adaptive moment estimation (Pang
et al., 2026), thereby balancing gradient direction and magnitude;
its update rule is given by Equation 7:

θt+1 � θ − η · m̂t��̂
vt

√ + ϵ
(7)

Let η denote the learning rate (lr = 5 × 10−5 in the code), ε a small
constant to prevent division-by-zero (commonly 1 × 10−8), is the
first-moment estimate (mean), and is the second-moment estimate
(uncentered variance).

The final classification layer employs a softmax function to yield
a categorical probability distribution. A fully-connected layer
projects the latent representation into a four-dimensional class
space corresponding to the gait phases HS, FC, HO, and SW.
The softmax expression is specified in Equation 8.

P y � k
∣∣∣∣hT( ) � exp wT

khT + bk( )
∑4

j�1 exp wT
j hT + bj( ) (8)

Where hT ∈ Rd denotes the hidden-state vector of the LSTM
network at the final time step, wk ∈ Rd is the weight vector

corresponding to the k-th class, and bk ∈ R is the class-
specific bias term.

3.3 Benchmark models

To rigorously validate the efficacy of the proposed SDA-LSTM
fusion network for gait-phase recognition in children with CP, three
classical machine-learning algorithms were adopted as comparative
baselines: SVM, random forest (RF), and a standalone LSTM
network. Collectively, these baselines epitomize traditional
machine learning, ensemble learning, and deep learning
paradigms, respectively, and are widely recognized for their
strong empirical performance across diverse domains.

3.4 Model evaluation

Classification accuracy constitutes the primary metric for
evaluating gait-phase recognition capacity. Model performance is
therefore quantified via a two-tier accuracy framework
encompassing (i) overall gait-phase recognition accuracy and

FIGURE 6
Confusion matrices for the four models (SDA-LSTM, SVM, RF, LSTM), illustrating classification performance across the four gait phases (HS, FC,
HO, SW).
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(ii) class-specific accuracies for each individual phase. Performance
across the four gait phases is visualized via confusion matrices.
Overall Accuracy (OA) is formally expressed as Equation 9:

Accuracy � ∑K
i�1Nii

N
(9)

K denotes the number of gait-phase classes, Nii represents the
count of correctly classified samples for class, and N indicates the
total sample size.

4 Results

To rigorously validate the efficacy of the proposed methodology,
the four models were evaluated under cross-user and six-level-noise
conditions via two complementary experiments: gait-phase
recognition and robustness testing. All experimental protocols
were executed in strict adherence to scientific standards to ensure
reliability and validity.

4.1 Accuracy of motion-intention
recognition under cross-user conditions

Based on the ankle joint IMU and gait phase database we established
for CP patients, we conducted cross-user experiments to validate the

SDA-LSTM fusionmodel proposed in this study. Figure 5 shows a visual
comparison of the model’s predicted results and the actual results.

Under cross-user conditions, the proposed SDA-LSTM fusion
model was benchmarked against SVM, RF, and LSTM. Across the
four gait-phase categories, SDA-LSTM attained higher class-wise
and overall accuracies than the comparative models. The overall
accuracies for SDA-LSTM, SVM, RF, and LSTM were 97.83%,
94.68%, 96.05%, and 95.86%, respectively. The recognition
performance of the four models for each gait phase is depicted
via confusion matrices in Figure 6.

Specifically, the rows of the confusionmatrix denote the ground-
truth labels, and the columns denote the predicted labels; the four
classes are HS, FC, HO, and SW. In the proposed SDA-LSTM fusion
model, among samples whose true label is HS, 96.82% were correctly
classified, only 2.86% were misclassified as FC, 0.31% were
misclassified as SW, and none were misclassified as HO. Among
samples whose true label is FC, 98.55% were correctly classified,
1.34% were misclassified as HS, 0.11% were misclassified as HO, and
none were misclassified as SW. Among HO samples, 98.85% were
correctly classified, 1.11% were misclassified as FC, 0.04% were
misclassified as SW, and none were misclassified as HS. In the SW
class, 96.60% were correctly classified, 3.13% were misclassified as
HO, 0.28% were misclassified as HO, and none were misclassified as
FC. The per-phase recognition accuracies of SDA-LSTM, SVM, RF,
and LSTM under cross-user conditions are reported in Table 1. We
have plotted bar charts to demonstrate the recognition accuracy of
the four models across the four gait phases, as shown in Figure 7.

4.2 Model robustness analysis

This experiment quantitatively investigates the robustness of the
SDA-LSTM model against noise perturbations during gait-phase
classification. Contamination severity was systematically
manipulated by injecting additive white Gaussian noise (AWGN)
into the cross-subject test data under offline conditions; model
performance was then evaluated at six noise levels and compared

TABLE 1 Accuracy rates of four gait phase recognition models (SDA-LSTM,
SVM, RF, and LSTM) under across user conditions.

Model HS FC HO SW

SDA-LSTM 96.82% 98.55% 98.85% 96.60%

SVM 92.66% 93.91% 97.43% 95.63%

RF 95.97% 95.41% 97.31% 95.42%

LSTM 96.52% 93.48% 97.72% 96.31%

FIGURE 7
Employs bar charts to compare the cross-user recognition performance of the four algorithms:DA-LSTM, SVM, RF, and LSTM, on the four
gait phases.
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with the pristine (noise-free) baseline. AWGN, ubiquitous in signal
processing and deep learning, serves as a canonical surrogate for
sensor inaccuracies, channel interference, or environmental
disturbances. Concretely, the SciPy-signal library’s awgn routine

was employed to inject AWGN into each input sequence. The
signal-to-noise ratio (SNR), a widely adopted metric quantifying
the relative power of the useful signal to background noise, is defined
in Equation 10:

FIGURE 8
Confusion matrices of SDA-LSTM under six distinct SNR conditions (5, 10, 15, 20, 25, 30 dB).
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SNR dB( ) � 10 log10
Psignal

Pnoise
( ) (10)

Psignal denotes signal power and Pnoise denotes noise power. AWGN
was injected at six discrete SNR levels:5, 10, 15, 20, 25, and 30 dB,
corresponding to noise-to-signal power ratios of 1:3.16, 1:10, 1:31.6, 1:
100, 1:316, and 1:1,000, thereby spanning the continuum from “severely
perturbed” to “nearly pristine.” Labels remained unchanged across all
levels, and the overall accuracy of SDA-LSTM was computed for each
SNR condition. Signal-to-noise ratio (SNR), defined as the power ratio
between the clean signal and the injected noise, serves as the pivotal
robustness metric; a lower SNR denotes stronger noise. The entire
protocol was executed in a Python environment.

AWGN was applied to the data of the single participant in
cohort B, and the corrupted sequences were subsequently evaluated
by the SDA-LSTM fusion network. Recognition accuracies at SNR =
5, 10, 15, 20, 25, and 30 dB were 85.98%, 90.96%, 94.21%, 95.46%,
96.19%, and 96.37%, respectively. The corresponding confusion
matrices for SDA-LSTM are presented in Figure 8.

The per-phase recognition accuracies of the SDA-LSTM model
under the six noise conditions and the noise-free baseline are
reported in Table 2.

To visualize the accuracy trajectories of the four algorithms
across identical SNR levels within a single model, we constructed a

bar plot (Figure 9). Within each algorithmic panel, bar intensities
deepen monotonically with increasing data purity (i.e., decreasing
noise), thereby enabling an unambiguous demonstration of the
SDA-LSTM model’s superior performance in the present task.

The developed SDA-LSTM model achieved gait-phase
recognition accuracies of 85.98%, 90.96%, 94.21%, 95.46%,
97.19%, 96.37%, and 97.83% under additive white Gaussian noise
at SNR = 5, 10, 15, 20, 25, 30 dB, respectively, as well as under
pristine conditions.

To provide an intuitive visualization of the SDA-LSTM fusion
model’s performance across the six noise levels, a radar chart
systematically compares the per-phase accuracies for HS, FC,
HO, SW and the overall accuracy at SNR = 5, 10, 15, 20, 25,
30 dB and under noise-free conditions (Figure 10). Joint analysis of
the radar plot and Table reveals that accuracy exceeds 95% whenever
SNR >15 dB and surpasses 90% whenever SNR >10 dB.

5 Discussion

5.1 Demonstrates robust cross-user
generalization

This study rigorously benchmarked the SDA-LSTM architecture
against three reference models: SVM, RF, and LSTM using an
external dataset to quantify cross-user recognition accuracy in
children with cerebral palsy. The proposed SDA-LSTM achieved
97.83% accuracy, surpassing SVM (94.68%) by 3.15 percentage
points, RF (96.05%) by 1.78 percentage points, and standalone
LSTM (95.86%) by 1.97 percentage points. These margins
underscore the pronounced superiority of deep-learning-based
approaches over conventional machine-learning paradigms.

Gait pathologies in CP present highly non-linear spatio-
temporal dynamics; the SDA-LSTM successfully captured spastic-
type prolongations of the stance phase as well as athetoid-type
trajectory tremors within the swing phase, thereby mitigating phase-
boundary misclassifications that afflict SVM and RF due to their
inherent limitations in manual feature engineering. Although LSTM
inherently accommodates temporal sequences, it inadequately

FIGURE 9
Per-phase and overall accuracies of SDA-LSTM across six noise levels and a noise-free baseline.

TABLE 2 Accuracy of gait phase recognition in six noisy and no noise cases
of gait phase.

SNR (dB) HS FC HO SW All

5 83.93% 92% 81.37% 86.37% 85.98%

10 89.51% 90.44% 93.58% 90.38% 90.96%

15 93.92% 92.3% 97.53% 92.64% 94.21%

20 97.33% 92.33% 98.09% 93.37% 95.46%

25 98.15% 94.45% 98.3% 95.48% 96.19%

30 97.76% 95.79% 98.38% 96.24% 96.37%

NO Noise 96.82% 98.55% 98.85% 96.6% 97.83%
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models cross-phase coupling features induced by fluctuating muscle
tone. By leveraging hierarchical memory units, SDA-LSTM
strengthens long-range dependency learning, markedly enhancing
robustness at transition points across the gait cycle.

Across all four phases: HS, FC, HO, and SW. SDA-LSTM
delivered the highest recognition accuracies relative to SVM, RF,
and LSTM, corroborating the efficacy of temporal networks for gait-
phase identification and demonstrating that the proposed SDA-
LSTM retains commendable accuracy and generalizability under
cross-user deployment scenarios.

5.2 Maintains elevated accuracy across
multi-level noise perturbations

Owing to the intrinsic pathological complexity of cerebral palsy,
children with CP exhibit involuntary movements, abnormal co-
contractions, and dynamic fluctuations in muscle tone during
ambulation, all of which severely distort the kinematic
trajectories of the lower limbs and manifest as high-amplitude
noise in the sensor stream. To contend with these phenomena,
the proposed SDA module incorporates a Dropout mechanism (p =
0.2) that actively emulates the abrupt, pathophysiology-driven signal
disturbances encountered during walking. Validation was
performed by injecting additive noise into the raw data of cohort

B, thereby permitting a systematic evaluation of SNR-dependent
effects on the recognition accuracy of each of the four gait phases
and on the overall classification rate. Results demonstrate that the
SDA-LSTM model maintains a phase-recognition accuracy of
90.96% at an SNR of 10 dB,a degradation of only 6.87% relative
to the noise-free baseline,and retains 85.98% accuracy even under
severe noise (SNR = 5 dB, ≈3.16 : 1 signal-to-noise ratio). Bar plots
further reveal that noise-induced performance loss exhibits
pronounced phase dependency and non-linear decay
characteristics. Specifically, at an SNR of 5 dB, the HO phase,
whose discrimination relies on subtle joint-angle cues such as the
peak knee-flexion angle, experiences a precipitous accuracy drop to
81.37%, thereby constituting the primary vulnerability to noise
contamination.

5.3 Future work

Nevertheless, although the present SDA-LSTM architecture has
demonstrated commendable performance in cross-user and
robustness evaluations, its translation to clinical utility confronts
multifaceted challenges. In forthcoming work, we will prioritize
multi-modal sensor fusion, integrating IMU and plantar-pressure
signals,to augment discriminative capacity, and we will conduct real-
time validation with an exoskeleton in ecologically valid settings,

FIGURE 10
Radar plot illustrating the per-phase (HS, FC, HO, SW) and overall accuracies of SDA-LSTM under six SNR levels (5, 10, 15, 20, 25, 30 dB) and noise-
free conditions. (A) Recall rates and overall accuracy for four gait phases under six noise conditions and no noise. (B–H) Represent recall rates and overall
accuracy for four gait phases under no noise and SNR conditions of 30, 25, 20, 15, 10, and 5 dB, respectively.
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thereby furnishing both empirical evidence and theoretical
foundations for clinical assessment and ultimately enabling
precise quantification and active remediation of gait dysfunction
in children with cerebral palsy.

6 Conclusion

Motivated by the clinical imperative for precise gait-assessment
in children with cerebral palsy (CP), this study proposes a hybrid
SDA-LSTM framework for gait-phase identification. Leveraging
dual-modal signals acquired from IMUs and plantar-pressure
sensors embedded within a soft ankle–foot exoskeleton, natural
walking data were collected in an open community environment
to classify four discrete gait phases (HS, FC, HO, SW). Six
ambulatory children with CP were recruited, and a cross-subject
validation protocol was adopted to examine generalizability. Relative
to SVM, RF, and LSTM baselines, the SDA-LSTM model achieved
an overall accuracy of 97.83% under noise-free conditions,
surpassing SVM (94.68%), RF (96.05%), and LSTM (95.86%).
Even under stringent noise (SNR = 10 dB), the model retained
90.96% accuracy,a degradation of only 6.87% relative to the clean
condition,and maintained 85.98% accuracy at SNR = 5 dB (≈3.16 :
1 signal-to-noise ratio), underscoring its pronounced robustness.
These findings demonstrate that the SDA-LSTM framework
effectively mitigates the non-linear and non-stationary
characteristics inherent in the aberrant locomotor patterns of
children with CP, thereby furnishing a reliable algorithmic
foundation for clinical gait quantification and proactive
intervention.
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