



#### **OPEN ACCESS**

EDITED BY Cheng Hu, Sichuan University, China

Vinoy Thomas, University of Kerala, India Shuaishuai Zhang, South China Normal University, China

Katarzyna Czerwiec, 

RECEIVED 25 July 2025 ACCEPTED 09 September 2025 PUBLISHED 23 September 2025

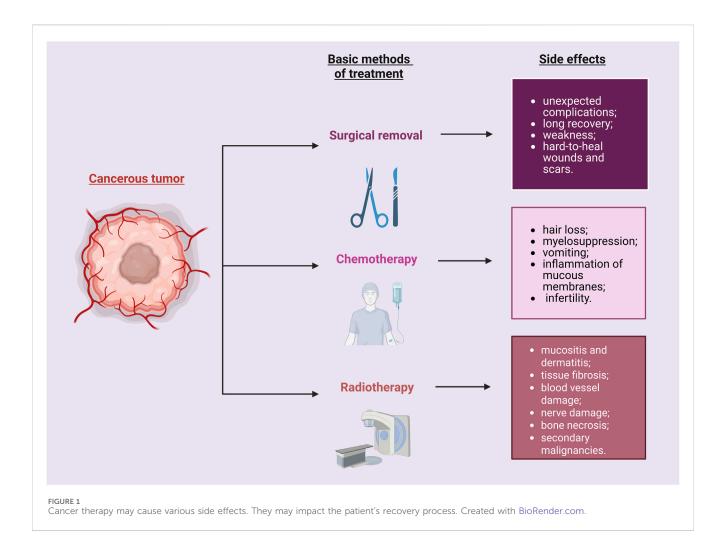
Czerwiec K, Szczecińska W and Pikuła M (2025) Hydrogels as a new platform of therapeutic systems in oncological treatment - use as a protective barrier and drug carriers. Front. Bioeng. Biotechnol. 13:1673253 doi: 10.3389/fbioe.2025.1673253

© 2025 Czerwiec, Szczecińska and Pikuła, This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted. provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these

# Hydrogels as a new platform of therapeutic systems in oncological treatment - use as a protective barrier and drug carriers

Katarzyna Czerwiec<sup>1\*</sup>, Weronika Szczecińska<sup>2</sup> and Michał Pikuła<sup>3,4</sup>

<sup>1</sup>Division of Clinical Anatomy, Laboratory of Tissue Engineering and Regenerative Medicine, Medical University of Gdansk, Gdansk, Poland, <sup>2</sup>The Department of General Surgery, Hospital Copernicus in Gdansk, Gdansk, Poland, <sup>3</sup>Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland, <sup>4</sup>Department of Biochemistry, University of Physical Education and Sport, Gdańsk, Poland

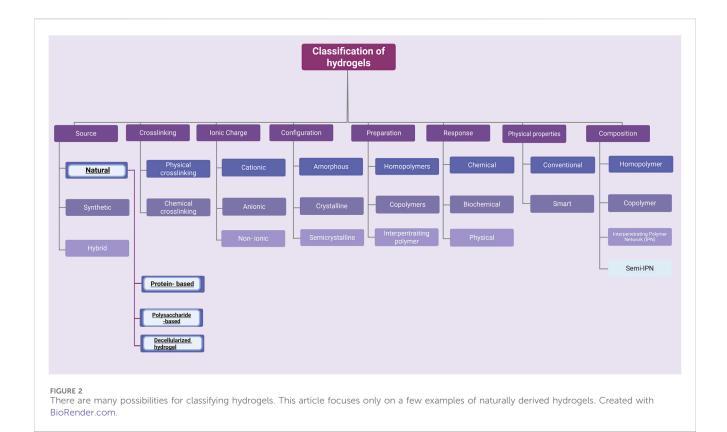

Hydrogels as three-dimensional polymer networks capable of reversibly absorbing water are of increasing interest among researchers. Hydrogels, especially those of natural origin such as alginate, chitosan, hyaluronic acid, peptide hydrogels, thanks to properties such as biocompatibility, biodegradability, bioactivity, can serve as an effective protective barrier or drug carrier. Thanks to the possibility of their modification, they can be an innovative platform supporting anticancer treatment. The examples presented in this publication confirm that these products can increase the effectiveness of treatment and reduce the effects of side effects.

hydrogels, oncology, alginate, chitosan, hyaluronic acid, peptide hydrogels

### 1 Introduction

One of the greatest socio-economic problems of the 21st century is cancer. It causes 1 in 6 deaths worldwide. This disease constitutes a significant obstacle to extending life expectancy, but also a serious problem related to social and macroeconomic costs, which vary depending on the type of cancer, geographical location or gender (Bray et al., 2024). The global economic cost of cancer between 2020 and 2050 is estimated to be \$25.2 trillion (in international dollars). Cancers with the highest economic costs include: cancer of the trachea, bronchi and lungs, cancer of the colon and rectum, breast cancer, liver cancer, and leukaemia (Chen et al., 2023). Cancer is a disease that originates from normal body tissues. But, due to persistent pathological features, it grows in an uncontrolled manner and is not susceptible to factors regulating cell growth, maturation and function (Brown et al., 2023). In the development of this disease, there is a change in cellular metabolism, which meets the energy and biosynthetic needs of uncontrolled proliferation of cancer cells (Xu et al., 2023).

Radiotherapy, chemotherapy and surgery play an essential role in the treatment of cancer individually or in combination. Cancer treatment is evolving, which is associated with technical progress in surgery, radiotherapy, as well as the discovery of new drugs such as cell cycle checkpoint inhibitors, immune response modifiers: CAR-T immunotherapy, anti-PD-1 and anti-PD-L1 antibody therapy (Mee et al., 2023). The type of cancer, its location and the stage of cancer advancement determined by the TNM classification allow




us to choose the best treatment option and its progression (Rosen and Sapra, 2025). One of the methods of early prevention of this disease is prophylaxis. We are unable to determine one specific factor responsible for the development of cancer, because usually a number of factors related to addictions, lifestyle and the surrounding environment are involved in the development of cancer (Vineis and Wild, 2014; Collatuzzo and Boffetta, 2023). It is extremely important to perform preventive tests that will allow for the observation of disturbing changes at their early, non-advanced stage, as well as annual check-ups in people at increased risk of hereditary cancers.

Since any treatment can cause side effects, the treatment of cancer is no different (Figure 1). It is important to remember that each person may respond differently to the treatment given. The purpose of chemotherapy is to inhibit cell proliferation and multiplication to avoid the spread of abnormal cells and prevent metastasis to other organs. Chemotherapy preparations interfere with the synthesis of RNA, DNA or proteins (Sun Y. et al., 2021). When the chemotherapy drug works properly, cell death occurs or programmed cell death is triggered by apoptosis. The effects of chemotherapy are a reflection of their mechanisms of action. Drugs administered during chemotherapy affect rapidly multiplying cells, hair follicles, bone marrow and the digestive tract, therefore undesirable effects may include: excessive hair myelosuppression, vomiting, inflammation of mucous

membranes, other adverse effects on the digestive system, and infertility (Amjad et al., 2025; Katta et al., 2023). It should be emphasized that in the case of chemotherapy, due to its non-selectivity, the toxic effect affects not only abnormal cells, but also those that are healthy. The bioavailability of these chemotherapy drugs is poor for cancer tissues, so higher doses of chemotherapeutics are needed, resulting in increased toxicity in healthy cells. Multidrug resistance may also occur in such conditions (Senapati et al., 2018). Side effects affecting healthy tissue are the cause of high mortality among cancer patients. New solutions are being sought that will enable the delivery of an optimal dose of chemotherapy drug so that it has the least possible impact on healthy cells.

Radiotherapy is a treatment method that uses high-energy rays or radioactive substances to damage cancer cells and stop them from growing and dividing (Gianfaldoni et al., 2017). High frequency waves cause ionization in the tissue. Ionization occurs as a result of an electron being knocked out of the atomic orbit by an electromagnetic wave. Free electrons cause the formation of free radicals – unstable molecules with high chemical reactivity (Tumilaar et al., 2024). The DNA of the cell nucleus is a structure susceptible to damage as a result of ionization. DNA is damaged when a free electron hits the DNA strand and as a result of the action of free radicals. Ionizing radiation damages cancer cells



more effectively than normal cells. Radiotherapy is by nature a conservative treatment - radiation treatments are painless and bloodless, but they last relatively long. The side effects of radiotherapy depend primarily on the location of the tumour and the dose of radiation received (Barazzuol et al., 2020). During radiotherapy, the skin is particularly exposed to the effects. The earliest adverse events of radiotherapy include mucositis and dermatitis (Iacovelli et al., 2020). Over time, tissue fibrosis, blood vessel damage, nerve damage, bone necrosis, and secondary malignancies may occur (Li et al., 2023). From a trivial inconvenience it can develop into a life-threatening situation. Radiation-induced mucositis first begins with acute inflammation of the mucosa, tongue, and throat after exposure to radiation (Rao et al., 2021). During this time, a cascade of immune reactions occurs, including recruitment of immune cells, release of inflammatory cytokines, chemotactic mediators, and growth factors. The described condition can progress to an acute stage, where food and water intake is prevented, which is associated with weight loss, and also a septic complication, which is a consequence of protective epithelial barriers and the basement membrane (Maria et al., 2017).

Currently, advanced techniques and products are being sought that reduce the risk of negative effects caused by radiotherapy and chemotherapy. Hydrogel is a three-dimensional network of hydrophilic polymer matrices that are able to retain a large amount of water (>10%) (Ho et al., 2022; Zhao et al., 2023; Lee et al., 2023). Crosslinking, which arises between hydrophilic matrices, maintains a constant, stable structure that is not dissolved in the aquatic environment. The unique property of this group of materials - the ability to absorb large amounts of water is caused by the presence of functional groups in their

structure such as: OH, -COOH, -CONH, -NH2, -SO3H (Dodda et al., 2023). There are many classifications of hydrogels due to their different properties: chemical, physical or source of origin (Bashir et al., 2020; Bustamante-Torres et al., 2021; Khan et al., 2024) (Figure 2). One way to classify hydrogels is by cross-linking. Cross-linking is the process by which covalent or ionic bonds are formed between polymer chains. This process creates a network structure responsible for the mechanical properties of the hydrogel. This allows for modifications of polymers and biomolecules, which promote specific hydrogel characteristics. There are two methods of hydrogel cross-linking: chemical and physical (Akhtar et al., 2016). The formation of covalent bonds between polymer chains is commonly described as chemical cross-linking. The reaction requires a cross-linking agent that initiates and forms the bonds (Alavarse et al., 2022). The covalent bond between polymers is characterized by durability (compared to physical cross-linking), and the reaction product itself is characterized by increased stability in a physiological environment and desirable mechanical properties. Several chemical cross-linking methods are distinguished, including the Diels-Alder "click" reaction and Schiff base formation (Hu et al., 2019). Physical cross-linking, on the other hand, relies on reversible intermolecular interactions—ionic, electrostatic, hydrophobic/ hydrophilic, and hydrogen bonds. Hydrogels created using physical cross-linking are characterized by the absence of crosslinking agents, which can cause cytotoxicity, self-healing properties, injectability (at room temperature), and stimuli sensitivity (Priya et al., 2024; Bashir et al., 2020). For medical applications, the greatest attention is paid to hydrogels of natural origin. Thanks to the similarity to natural tissues, through softness and elasticity, as well as the ability to retain large amounts of water or biology

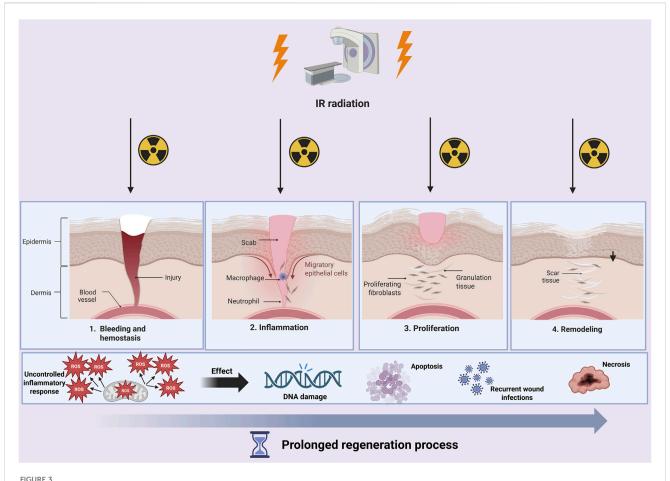
|                   | Source                         | Properties     | Form of hydrogels                       |
|-------------------|--------------------------------|----------------|-----------------------------------------|
| Natural hydrogels | Protein-based hydrogels        | Softness       | Dressings                               |
|                   |                                | Toughness      | Drug delivery                           |
|                   | Polysaccharide-based hydrogels | Biocompability | Tissue scaffolds                        |
|                   |                                |                | Barrier materials                       |
|                   | Decellularized hydrogel        | Stretchability | Personal care products and cosmetics    |
|                   |                                | Deformability  | Sorbents for heavy metals or ionic dyes |
|                   |                                |                | Agriculture agents                      |

solutions, it makes them present to candidates for use in regenerative medicine and tissue engineering. New possibilities offered by the modification of hydrogels or combining hydrogels with specific properties allow for the design and creation of new constructs that have the ability to respond to changing conditions that may occur in a living organism or be used for human needs (Ahmed et al., 2025) (Table 1).

Hydrogels enable prolonged release of chemotherapeutic agents, thereby enhancing treatment effectiveness. Furthermore, in radiotherapy, hydrogels can serve as a carrier to load the right dose of radionuclides that can be disseminated throughout tumour cells (Norouzi et al., 2016). One of the advantages of using hydrogels and nanomaterials is reducing cancer resistance to chemotherapy (Cao et al., 2021). The development of multidrug resistance is the most common cause of death. Hydrogels enable the administration of active substances directly to the tumour (Yadav et al., 2022). Placing the chemotherapy agent in a hydrogel allows for prolonged, controlled release at a lower dose than oral or intravenous administration (Sun et al., 2023). Therefore, there is a significant need for personalized, targeted immunotherapy that allows for the local and controlled release of antibodies, cytokines, and CAR-T cells (Zhu et al., 2024). The greatest barrier to CAR-T cell therapy is ineffective infiltration of solid tumours, which is caused by physical and biological obstacles within the tumour. Hydrogels are effective drug delivery systems that enable a precise and controlled release profile of CAR-T cells (Zhou et al., 2022). Such a carrier can also act as a niche, protecting CAR-T cells from sudden loss of viability after intratumorally administration, or modify the tumour environment by neutralizing hypoxia (Shin et al., 2023). In the field of oncology, research conducted by Gollins et al. (2008) demonstrated the advantages of hydrogel dressings over gentian violet (GV) for patients undergoing radiotherapy treatment on the chest wall or in the head and neck region. However, current recommendations advise against the use of GV, as better healing outcomes are observed with the moist wound bed facilitated by hydrogel dressings. The dry crust formed over the affected area when using GV led to impaired healing (Gollins et al., 2008). Hydrogels appear to be ideal candidates for such smart wound care products (Op 't Veld et al., 2020).

In this paper, issues related to natural hydrogels: alginates, chitosan and hyaluronic acid, peptide hydrogels, regarding their use in chemo- and radiotherapy were analysed. These biomaterials with a polysaccharide structure are characterized by biocompatibility, bioactivity, and the ability to support the

regeneration of damaged tissue. Thanks to the possibility of chemical modification of these biomaterials, it is possible to create solutions with the desired features.


# 2 Alginate in oncological treatment

Alginate belongs to linear, anionic, acidic polysaccharides of natural origin. Their source is brown algae from the family *Phaeophyceae*, examples: *Ascophyllum nodosum*, *Laminaria hyperborea*, *Macrocystis pyrifera*, *Ecklonia maxima*, *Laminaria digitata*, *Laminaria japonica*, and *Scagassum*. Bacteria *Azotobacter sp.*, *Pseudomonas sp*. Are also used for alginate extraction (Hasnain et al., 2020). It is composed of linear copolymers of mannuronic acid (M) and guluronic acid (G) linked by 1-4 bonds. These alduronic acid residues can form the same types of structures - MM, GG or their combinations MG, GM in different proportions. This is mainly due to the source of alginate. The arrangement of these residues affects the physical and chemical properties of alginate (Hasnain et al., 2020; Shao et al., 2025; Yin et al., 2025).

### 2.1 Alginate in radiotherapy

One of the key issues is that IR radiation during radiotherapy can affect the process of wound formation and healing. Wound healing during radiotherapy is more complex and complicated than in the case of typical wound healing. It is important to be aware that IR can interact with water, which constitutes 70% in the tissues of the human body, and thus produce reactive oxygen species (ROS), which are responsible for DNA damage. Overproduction of ROS leads to the development of high oxidative stress, which causes the regeneration process during healing to become longer. The presence of open wounds and a weakened immune system during the course of cancer and chemotherapy are prone to skin infections and even to cause deep tissue necrosis (Figure 3).

Simultaneously, the number of oncologic patients is increasing, in whom the administration of radiotherapy or chemotherapy can result in development of non-healing wounds. Approximately 95% of patients undergoing radiotherapy or radio chemotherapy will develop a skin condition due to the administration of high doses of ionizing radiation, known as radiodermatitis (RD) (Singh et al., 2016). The severity of radiation-induced radiodermatitis (RD) is



During wound healing and radiotherapy treatment, a cascade of pathological processes can occur. Not only will the healing process be prolonged, but DNA damage, cell apoptosis, or even necrosis may occur. Created with BioRender.com.

assessed using the NCI CTCAE [National Cancer Institute-The Common Terminology Criteria for Adverse Events] grading scale and may manifest as erythema, dry desquamation, or moist desquamation. Discomfort, pain, and aesthetic concerns associated with this adverse effect can significantly impair patients' quality of life, potentially leading to treatment interruptions or even discontinuation (Singh et al., 2016). Therefore, a more advanced wound healing management becomes imperative.

In advanced wound care management, Bonomo et al. (2019) highlight the pivotal role of topical calcium alginate dressings in patients experiencing radiation dermatitis (RD) due to radiotherapy and cetuximab treatment. Their findings suggest that early application of these dressings in cases of grade 2 and 3 RD with presence of moist desquamation significantly improved patients' compliance, treatment tolerability, and reduced interruptions in radiation treatment. Therefore, authors recommend calcium alginate dressing in management of above-mentioned wounds.

The reports in Cao et al. (2024) indicate the positive effects of hydrogel and alginate dressings in a patient with grade 4 radiation dermatitis with head and neck cancer. The hydrogel dressing maintained a moist environment, supported autolytic debridement of necrotic tissue, and thus the process of phagocytosis, which was responsible for the removal of dead

debris and bacteria. The alginate dressing allowed for the removal of excess exudate while providing optimal moisture. An additional advantage was the support of blood clotting and accelerated wound healing. Complete wound healing occurred within 20 days after 17 dressing changes. As the wound healed, the patient's comfort improved significantly (Cao et al., 2024).

One example of preventing IR-induced skin injury is a dressing created by Zhang J. et al. (2021). Their hydrogel dressing, in which the main components were: alginate, hyaluronic acid, polylysine. Adding curcumin and (–)-epigallocatechin gallate to them allowed for a reduction in inflammation, due to antioxidant and anti-inflammatory properties (Zhang J. et al., 2021).

As another demonstration of the use of alginate-containing hydrogel as a dressing potentially supporting wound healing during radiotherapy is the product developed by Kodous et al. (2024). The researchers synthesized a hydrogel consisting of polyvinyl alcohol and sodium alginate, which was loaded with hesperidin. This flavonoid was subject to controlled release from the hydrogel. The hydrogel treatment reduced the expression of TNF-alpha, NF $\kappa$ B, iNOS and COX2 compared to the BJ-1 cell line stimulated with LPS (Kodous et al., 2024).

Due to the moisturizing properties of sodium alginate researchers (Hao et al., 2022) used it along with interferon-induced protein alpha 6 (IFI6) and graphene oxide to create a

TABLE 2 List of publications discussed in the text.

| Type of therapy               | Type of<br>hydrogel | Application                                | Method of administration  | Goal of<br>therapy                                    | Research<br>model                                                                                                                                                                                 | Conclusions                                                                                                                                                  | References              |
|-------------------------------|---------------------|--------------------------------------------|---------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Radiotherapy                  | Alginate            | Radiation<br>dermatitis                    | Dressings                 | Protective factor                                     | Human (case report)                                                                                                                                                                               | The dressing caused re-epithelialization                                                                                                                     | Cao et al. (2024)       |
| Radiotherapy                  | Alginate            | IR-induced skin<br>injury                  | Dressings                 | Protective factor                                     | In vivo: female<br>BALB/c mice                                                                                                                                                                    | The dressing accelerated wound healing, improved vascularization, reduced inflammation and had an antibacterial effect                                       | Zhang Z. et al. (2021)  |
| Radiotherapy                  | Alginate            | Chronic wounds                             | Application to the skin   | Hesperidin-<br>releasing carrier                      | In vitro BJ-1 human normal skin cell line                                                                                                                                                         | The hydrogel<br>showed<br>antioxidant and<br>anti-inflammatory<br>properties                                                                                 | Kodous et al. (2024)    |
| Radiotherapy                  | Alginate            | IR-induced skin injury                     | Spray                     | Protective factor                                     | In vivo: mouse<br>model<br>In vitro:<br>HaCaT cell line                                                                                                                                           | Antibacterial,<br>antioxidant, anti-<br>inflammatory<br>action                                                                                               | Hao et al. (2022)       |
| Radiotherapy                  | Alginate            | Infected full-<br>thickness skin<br>wounds | Injectable dressing       | Protective factor                                     | In vitro: Mouse embryo fibroblast cell line (NIH <sub>3</sub> T <sub>3</sub> ) In vivo: male Sprague-Dawley rats                                                                                  | Antibacterial,<br>antioxidant,<br>hemostatic action                                                                                                          | Alinezhad et al. (2024) |
| Photodynamic<br>therapy       | Alginate            | -                                          | injection into the tumour | enhancing the<br>effect of<br>photodynamic<br>therapy | In vitro: 4T1 cells, DC2.4 Mouse Dendritic Cell Line In vivo: 4T1 tumor-bearing mice                                                                                                              | hydrogel for<br>permanent<br>luminescence,<br>enhanced the<br>immunogenicity of<br>photodynamically<br>generated antigens<br>through the<br>presence of R837 | Shu et al. (2021)       |
| Radiotherapy/<br>Chemotherapy | Alginate            | solid tumors,<br>metastatic tumors         | injection into the tumour | enhancing the<br>effect of<br>radiotherapy            | In vivo: BALB/c mice, nude mice, SPF New Zealand white rabbits In vitro: Murine breast cancer 4T1 cells or CT26 colorectal cancer cells, patient- derived xenograft tumour model (prostate tumour | Inhibition of tumor<br>metastasis<br>combined with<br>checkpoint<br>blockade                                                                                 | Chao et al. (2018)      |
| Chemotherapy                  | Alginate            | Lung cancer                                | Areosol                   | Drug delivery<br>system (paclitaxel)                  | In vitro:<br>Human non-small<br>cell lung cancer,<br>A549,<br>Calu-6 cell line                                                                                                                    | In vitro cytotoxicity<br>testing of<br>paclitaxel-loaded<br>alginate<br>microparticles<br>showed similar<br>efficacy compared<br>to free paclitaxel          | Alipour et al. (2010)   |
| Chemotherapy                  | Alginate            | Solid tumours                              | Injection into the tumour | Enhancing the<br>therapeutic<br>response              | In vitro:<br>CT26 cell line,<br>In vivo:<br>4T1-tumor-bearing<br>BALB/c mice,<br>BALB/c mice                                                                                                      | Enabling adjuvant<br>release<br>synchronized with<br>chemotherapy or<br>radiotherapy with<br>low individual                                                  | Sun et al. (2021a)      |

TABLE 2 (Continued) List of publications discussed in the text.

| Type of<br>therapy      | Type of<br>hydrogel | Application                                   | Method of administration             | Goal of<br>therapy                                       | Research<br>model                                                                                                                                                                                                                    | Conclusions                                                                                                                                                                                                                            | References               |
|-------------------------|---------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                         |                     |                                               |                                      |                                                          | bearing murine<br>CT26 colon<br>tumours                                                                                                                                                                                              | doses, repeatedly<br>administered over<br>a long period of<br>time,                                                                                                                                                                    |                          |
| Chemotherapy            | Alginate            | Hepatocellular<br>carcinoma, breast<br>cancer | Peritumoral injection,               | Drug delivery<br>system (paclitaxel,<br>R837)            | In vitro: human renal epithelial cells 293 T or mouse breast cancer cells 4T1 Subcutaneous - H22 murine hepatocellular carcinoma cell line Subcutaneous - 4T1 an animal model for stage IV human breast cancer In vivo: C57BL/6 mice | Peritumoral<br>injection of the<br>hydrogel induced a<br>potent antitumor<br>immune response<br>against various<br>types of cancer                                                                                                     | Liu et al. (2024c)       |
| Chemotherapy            | Alginate            | Breast cancer                                 | -                                    | Drug delivery<br>system (letrozole)                      | In vitro:<br>MCF-7 human<br>breast cancer cell<br>line, human<br>foreskin fibroblast<br>normal cell<br>line (HFF)                                                                                                                    | The presented system demonstrated significant cytotoxicity against MCF-7 breast cancer cells. Coupling letrozole-containing niosomes to these scaffolds allowed for sustained and controlled drug release                              | Mahdizadeh et al. (2024) |
| Radiotherapy            | Chitozan            | Radiation skin injuries                       | Injectable hydrogels                 | Drug delivery<br>system<br>(Epigallocatechin<br>gallate) | In vitro: Human Umbilical Vein Endothelial Cells (HUVEC) In vivo: Animal model (rats)                                                                                                                                                | The hydrogel enhanced cell proliferation in vitro, scavenged ROS, and stimulated the expression of cytokines and angiogenesis-related genes. It demonstrated significant anti-inflammatory and pro-angiogenic effects in animal models | Wang et al. (2023)       |
| Photothermal<br>therapy | Chitozan            | Tongue cancer                                 | Injection into and around the tumour | Non-surgical<br>therapy for tongue<br>cancer treatment   | In vivo: BALB/c nude mice,                                                                                                                                                                                                           | Sublingual<br>carcinoma cells<br>were inhibited by a<br>single PTT session                                                                                                                                                             | Su et al. (2021)         |
| Radiotherapy            | Chitozan            | Wound skin injury<br>caused<br>radiotherapy   | Dressings injectable<br>hydrogel     | Protective factor,<br>drug delivery<br>system            | In vitro:<br>HaCaT cell line,<br>In vivo:<br>BALB/c mice                                                                                                                                                                             | Suppression of inflammation, regulation of macrophage polarization                                                                                                                                                                     | Zhou et al. (2025)       |
| Radiotherapy            | Chitozan            | Combined radiation-wound injury               | Injectable hydrogel                  | Protective factor                                        | In vitro:<br>iMSCsderived from<br>human iPSCs,<br>L929 cell line,<br>human umbilical<br>vein endothelial                                                                                                                             | The hydrogel<br>demonstrated<br>antibacterial<br>activity, promoting<br>collagen deposition                                                                                                                                            | Peng et al. (2024)       |

TABLE 2 (Continued) List of publications discussed in the text.

|                                          | lucu, List of po | blications discusse                         | u iii tile text.                               |                                                                                                                                        |                                                                                                         |                                                                                                                                |                                     |
|------------------------------------------|------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Type of<br>therapy                       | Type of hydrogel | Application                                 | Method of administration                       | Goal of<br>therapy                                                                                                                     | Research<br>model                                                                                       | Conclusions                                                                                                                    | References                          |
|                                          |                  |                                             |                                                |                                                                                                                                        | cells (HUVECs) In vivo: Animal model (mice)                                                             | and angiogenesis at<br>the wound site                                                                                          |                                     |
| Radiotherapy                             | Chitozan         | Grade IV<br>multiforme<br>glioblastoma      | -                                              | Attraction and<br>accumulation of<br>GBM cells in a<br>hydrogel<br>introduced into<br>the surgical cavity<br>after tumour<br>resection | In vitro:<br>F98 murine GBM<br>cell line                                                                | Development of a<br>hydrogel<br>formulation                                                                                    | Parès et al. (2024)                 |
| Chemotherapy                             | Chitozan         | -                                           | Administration at the site of tumour resection | Drug delivery<br>system<br>(doxorubicin)                                                                                               | In vitro:<br>L929 cell line, Bone-<br>marrow-derived<br>DCs, 4T1-Luc2<br>In vivo: female<br>BALB/c mice | The hydrogel<br>induced dendritic<br>cell maturation,<br>prevented tumor<br>recurrence, and<br>eliminated distal<br>metastases | Seo et al. (2024)                   |
| Chemotherapy                             | Chitozan         | -                                           | -                                              | Drug delivery<br>system (5-<br>fluorouracile)                                                                                          | -                                                                                                       | Development of a<br>hydrogel<br>formulation                                                                                    | Wan et al. (2024)                   |
| Chemotherapy                             | Chitozan         | Colorectal cancer                           | -                                              | Drug delivery<br>system (5-<br>fuorouracile)                                                                                           | In vitro:<br>HCT-116 colorectal<br>cancer cell line                                                     | Improving the propertieIs of hydrogels                                                                                         | Bin Jumah et al. (2024)             |
| Chemotherapy                             | Chitozan         | Head and neck<br>squamous cell<br>carcinoma | administration at the site of tumour           | Drug delivery<br>system (Erlotinib,<br>curcumin)                                                                                       | In vitro: FaDu cell line In vivo: FaDu tumour -bearing Foxn1nu mice                                     | Optimized formulation. Anticancer efficacy                                                                                     | Haider et al. (2024)                |
| Chemotherapy                             | Chitozan         | Colon cancer                                | Injectable hydrogel                            | Drug delivery<br>system (5-<br>flourouracile<br>shikonin)                                                                              | In vitro:<br>HUVEC, HCT-116<br>cell line,                                                               | Targeted drug<br>deluvery                                                                                                      | Daneshmehr et al. (2024)            |
| Photodynamic<br>therapy                  | Chitozan         | -                                           | -                                              | Control<br>photodynamic<br>therapy activity                                                                                            | In vitro:<br>A375 cell line,<br>human dental pulp<br>stem cells,                                        | The antioxidant properties of the hydrogel. Photodynamic therapy has been proven to be selective – it acted on cancer cells    | Azadikhah et al. (2021)             |
| Chemotherapy                             | Chitozan         | Hepatocellular<br>carcinoma                 | Injectable hydrogel subcutaneously             | Drug delivery<br>system<br>(doxorubicin)                                                                                               | In vitro:<br>L929 cell line,<br>HepG2 cell line,                                                        | pH-responsive<br>hydrogels<br>In vitro, they<br>demonstrated pH-<br>dependent gel<br>degradation and<br>doxorubicin release    | Qu et al. (2017)                    |
| Chemotherapy/<br>Photodynamic<br>therapy | Chitozan         | Breast cancer                               | Injection into the tumor                       | Drug delivery<br>system (tegafur)                                                                                                      | In vitro: 4T1 cell line, MCF-7 cell line, In vivo: 4T1 tumour- bearing BALB/c mice                      | Supporting the anti-cancer effect of the resulting hydrogel through the use of chemotherapy and photodynamic therapy           | Zhang Z. et al. (202                |
| Chemotherapy/<br>Radiotherapy            | Chitozan         | Melanoma                                    | Transdermal system                             | Drug delivery<br>syste (cytostitics)                                                                                                   | In vitro:<br>L929 cell line                                                                             | The physicochemical modifications used                                                                                         | Kudłacik-Kramarczy<br>et al. (2021) |

TABLE 2 (Continued) List of publications discussed in the text.

| Type of<br>therapy            | Type of hydrogel   | Application                                         | Method of administration                                                              | Goal of<br>therapy                                                 | Research<br>model                                                                                    | Conclusions                                                                                                                                           | References           |
|-------------------------------|--------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| петару                        | Tiyuroget          |                                                     | administration                                                                        | тегару                                                             | modet                                                                                                | in the hydrogel<br>enabled precise<br>release of active<br>substances                                                                                 |                      |
| Photodynamic<br>therapy       | Chitozan           | -                                                   | Injectable hydrogel                                                                   | Control<br>photodynamic<br>therapy activity                        | In vitro:<br>HepG2 cell line,<br>MCF-7 cell line                                                     | Selective<br>neutralization of<br>cancer cells                                                                                                        | Belali et al. (2018) |
| Chemotherapy/<br>Radiotherapy | Chitozan           | Oral mucositis                                      | Nanofibrous sheet                                                                     | Drug delivery<br>(Eudragit <sup>®</sup> , human<br>growth hormone) | In vitro: human dermal fibroblasts In vivo: animal model (dog)                                       | Supporting and accelerating wound healing                                                                                                             | Choi et al. (2016)   |
| Radiotherapy                  | Hyaluronic acid    | IR-induced acute<br>skin injury                     | Hydrogel patch                                                                        | Protective factor                                                  | In vitro:<br>L929 cell line<br>In vivo:<br>Female BALB/c<br>mice                                     | Alleviating and<br>accelerating the<br>healing of radiation<br>wounds                                                                                 | Xia et al. (2025)    |
| Radiotherapy                  | Hyaluronic<br>acid | Radiation-induced<br>skin injury                    | Injectable hydrogel                                                                   | Protective factor                                                  | In vitro:<br>L929 cell line<br>In vivo:<br>C57BL/6J mice                                             | Antioxidant properties of the hydrogel, acceleration of healing of wounds resulting from radiotherapy                                                 | Shen et al. (2025)   |
| Radiotherapy                  | Hyaluronic<br>acid | Radiation<br>combined with<br>skin wounds           | Injectable hydrogel                                                                   | Protective factor                                                  | In vitro:<br>HUVECs,<br>HaCaT cell line,<br>L929 cell line,<br>In vivo: male C57/<br>BL/6 mice,      | Antioxidant effect,<br>improvement and<br>acceleration of<br>wound healing                                                                            | Fang et al. (2023)   |
| Neoadjuwant<br>radiotherapy   | Hyaluronic<br>acid | Surgical wound<br>after neoadjuvant<br>radiotherapy | Wound dressing                                                                        | Protective factor                                                  | In vitro: HUVECs,<br>NIH3T3 cell line,<br>In vivo: female<br>BALB/c mice                             | Antioxidant<br>properties,<br>promote<br>angiogenesis and<br>wound healing                                                                            | Wang et al. (2024)   |
| Chemotherapy                  | Hyaluronic acid    | Breast cancer                                       | Intravenous<br>administration                                                         | Drug delivery<br>(paclitaxel)                                      | In vitro: MCF-7 cell line, HL7702 cell line In vivo: BALB/c nude mice                                | Controlled release<br>of the active<br>substance through<br>the hydrogel                                                                              | Liu et al. (2023)    |
| Chemotherapy                  | Hyaluronic<br>acid | Solid tumors                                        | Injectable hydrogel                                                                   | Drug delivery<br>(Endostatin)                                      | In vitro: Lewis lung cancer (LLC cells), HUVECs In vivo: female C57 mice                             | Increasing the local concentration of the active substance while reducing the concentration of the active substance in serum                          | Wang et al. (2021)   |
| Chemotherapy                  | Hyaluronic<br>acid | Breast cancer                                       | Intravenous<br>administration                                                         | Drug delivery<br>(cytochrome c)                                    | In vitro: MCF-7 cell line, U87 cell line, In vivo: MCF-7 breast tumour xenografts (female nude mice) | Targeted<br>administration of<br>the active<br>substance and its<br>release at the site of<br>cancer cells,<br>causing a strong<br>anti-cancer effect | Li et al. (2016)     |
| Radiotherapy                  | Hyaluronic<br>acid | Osteoradionecrosis                                  | Administration after<br>extraction or after the<br>formation of<br>osteoradionecrosis | Drug delivery (rat<br>mesenchymal<br>stem cells, BMP-2)            | In vitro: rat mesenchymal stem cells In vivo: male Spraguee-Dawley rats                              | Accelerated bone<br>healing following<br>BMP-2<br>administration.<br>Administration of<br>BMP-2 and stem                                              | Jin et al. (2015)    |

TABLE 2 (Continued) List of publications discussed in the text.

| Type of<br>therapy | Type of hydrogel    | Application                      | Method of administration                | Goal of<br>therapy               | Research<br>model                                                                                                                                                                    | Conclusions                                                                                                                                                        | References         |
|--------------------|---------------------|----------------------------------|-----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                    |                     |                                  |                                         |                                  |                                                                                                                                                                                      | cells allowed for the effective treatment of osteoradionecrosis                                                                                                    |                    |
| Radiotherapy       | Hyaluronic<br>acid  | Lung cancer                      | Injectable hydrogel                     | Drug delivery<br>(cytarabine)    | In vitro: Lewis lung cancer cell line In vivo: LLC- tumour- bearing female C57BL/6J mice                                                                                             | Combining the hydrogel with radiotherapy allowed for inhibition of lung tumor growth in a mouse model                                                              | Tang et al. (2019) |
| Radiotherapy       | Peptide<br>hydrogel | Radiation-induced<br>skin injury | Application to the skin                 | Induction of angiogenesis        | In vitro:<br>3T3 cell line,<br>HUVECs,<br>In vivo: female<br>BALB/c mice                                                                                                             | Antioxidant and anti-inflammatory effects                                                                                                                          | Hao et al. (2023)  |
| Radiotherapy       | Peptide<br>hydrogel | Radiation-induced ototoxicity    | Injectable hydrogel                     | Delivery system (dexamethasone)  | In vitro: HEI-OC1 cell line HNE-1 cell line, CNE-2 cell line, HSC-3 cell line CAL-27 cell line                                                                                       | Controlled and sustained release of the active ingredient demonstrated anti-inflammatory properties. Intratympanic injections of the hydrogel protected hair cells | Liu et al. (2024b) |
| Chemotherapy       | Peptide<br>hydrogel | Osteosarcoma                     | Injectable hydrogel                     | Delivery system<br>(doxorubicin) | In vitro: murine K12 osteosarcoma cell line, NIH3T3 fibroblast cell line, In vivo: female BALB/c mice with K12 cells,                                                                | An increased<br>accumulation of<br>the active<br>substance in<br>tumors was<br>demonstrated                                                                        | Zhu et al. (2023)  |
| Chemotherapy       | Peptide<br>hydrogel | Esophageal cancer                | Injectable hydrogel<br>(intrtumorally)  | Delivery system<br>(doxorubicin) | In vitro: AKR oesophageal cancer cell line, HEEC human normal esophageal epithelial cell line, In vivo: NOD/SCID mice                                                                | By extending the<br>duration of<br>administration of<br>the active<br>substance, it<br>reduced systemic<br>toxicity                                                | Ye et al. (2024)   |
| Chemotherapy       | Peptide<br>hydrogel | Melanoma                         | Injectable hydrogel                     | Delivery system<br>(doxorubicin) | In vitro: B16-F10 cell line, Bone marrow- derived dendritic cells (BMDCs) harvested from femurs and tibiae mice, RBCs isolated from fresh mouse blood, In vivo: Female C57BL/ 6 mice | Thanks to the controlled release of the active substance, a strong anti-cancer effect was observed                                                                 | Jin et al. (2018)  |
| Chemotherapy       | Peptide<br>hydrogel | -                                | Injectable hydrogel<br>(intratumorally) | Delivery system<br>(paclitaxel)  | In vitro: human HCC cell line (HepG2), murine H22 hepatoma cell line, HUVECs,                                                                                                        | Increasing the accumulation of the active substance at the tumor site                                                                                              | Raza et al. (2019) |

TABLE 2 (Continued) List of publications discussed in the text.

| Type of therapy | Type of<br>hydrogel | Application | Method of administration                              | Goal of<br>therapy                              | Research<br>model                                                              | Conclusions                                                                        | References        |
|-----------------|---------------------|-------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------|
|                 |                     |             |                                                       |                                                 | In vivo: female<br>BALB/c mice                                                 |                                                                                    |                   |
| Chemotherapy    | Peptide<br>hydrogel | -           | Injectable hydrogel<br>(areas of cancerous<br>tissue) | Delivery system<br>(gemcitabine,<br>paclitaxel) | In vitro: 4T1 cell line, In vivo: BALB/c female mice (4T1- tumo- bearing mice) | Both active<br>substances ensured<br>a long-lasting and<br>concentrated<br>release | Liu et al. (2022) |

TABLE 3 List of clinical trials using natural hydrogels with status: completed (clinicaltrials.gov from 02/09/2025).

| Type of<br>biomaterial | Disease entity                                                                            | Name of the study                                                                                                                                                     | NTC<br>number | Phase             |
|------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| Alginate               | Hydrogel Injection to Assist<br>Endoscopic Submucosal Dissection                          | Hydrogel Injection to Assist Endoscopic Submucosal Dissection                                                                                                         | NCT03321396   | Not<br>Applicable |
| Hyaluronic acid        | Actinic Keratoses                                                                         | Effects of Topical Diclofenac on Tumor Metabolism                                                                                                                     | NCT01935531   | IV                |
| Hyaluronic acid        | Cancer Pain                                                                               | 35kDa Hyaluronan Fragment Treatment of Colorectal and Rectal<br>Cancer                                                                                                | NCT06209970   | Not<br>Applicable |
| Hyaluronic acid        | Ototoxicity                                                                               | Study to Evaluate Safety and Efficacy of DB-020 to Protect Hearing in Patients Receiving Cisplatin for Cancer Treatment                                               | NCT04262336   | I                 |
| Hyaluronic acid        | Genitourinary Syndrome of<br>Menopause                                                    | Management of Cancer Therapy Related Vulvovaginal Atrophy                                                                                                             | NCT05782920   | Not<br>Applicable |
| Hyaluronic acid        | Prostatic Adenocarcinoma                                                                  | Hypofractionated Radiotherapy Versus Stereotactic Irradiation With<br>Hyaluronic Acid                                                                                 | NCT02361515   | Not<br>Applicable |
| Hyaluronic acid        | Non-Invasive Papillary Carcinoma of<br>Bladder                                            | ONCOFID-P-B in the Intravescical Therapy of Patients With Non-muscle Invasive Cancer of the Bladder.                                                                  | NCT04661826   | II                |
| Hyaluronic acid        | Recurrent Prostate Cancer,<br>Brachytherapy Remedial,                                     | Brachytherapy for Recurrent Prostate Cancer                                                                                                                           | NCT01956058   | II                |
| Hyaluronic acid        | Breast Cancer<br>Endometrial Cancer                                                       | Non-Hormonal Vaginal Moisturizer in Hormone-Receptor Positive<br>Postmenopausal Cancer Survivors Experiencing Estrogen<br>Deprivation Symptoms on Vulvovaginal Health | NCT01738152   | Not<br>Applicable |
| Hyaluronic acid        | Advanced or Metastatic Solid Tumors<br>Advanced or Metastatic Colorectal<br>Cancer (mCRC) | First-in-human Study of CA102N Monotherapy and CA102N Combined With Trifluridine/Tipiracil (LONSURF) in Subjects With Advanced Solid Tumors                           | NCT03616574   | I                 |

hydrogel that would find application in treating radiation-induced skin. Analyses conducted by the team of researchers on an animal model showed that such a designed hydrogel alleviates inflammation in the treatment of radiation-induced skin, and also induces granulation tissue formation, collagen deposition, or angiogenesis. Thanks to these changes, it was possible to close the wound more quickly.

In terms of treating infected wounds during oncological treatment, the Alinezhad et al. (2024) presented a hydrogel containing alginate, hyaluronic acid, polydopamine nanoparticles cross-linked with  $\rm Zn^{2+}$ . This type of dressing could potentially be used in photothermal therapy, because the use of near infrared (NIR) caused the generation of heat and the destruction of bacteria - *E. coli* and *S. aureus* (Alinezhad et al., 2024).

Alginates have found application in photodynamic therapy (Shu et al., 2021). This method is based on a phototoxic reaction, which occurs through the interaction of a photosensitising substance and

light of the appropriate wavelength for the substance. The reaction occurs only in the presence of a photosensitiser, which is characterized by its ability to absorb quanta of energy, transmitted in the form of light. This causes a transition to the excited state and, in turn, a return to the ground state with the radiation of a portion of the energy in the form of the appropriate wavelength. The developed hydrogel is made resistant to luminescence through the incorporation of persistent luminescent materials and an immunoadjuvant (R837) into the Ca<sup>2+</sup> alginate hydrogel, allowing for multiple loading of photodynamic cancer immunotherapy. The presented hydrogel showed high biocompatibility and allowed easy injection. The study confirmed a strong immune response and a synergistic effect of photodynamic immunotherapy to inhibit tumorigenesis (Shu et al., 2021).

A hydrogel comprising sodium alginate and catalase, labelled with the radioisotope <sup>131</sup>I, was developed to alleviate hypoxia at the tumour site and destroy cancer cells using low doses of radioactivity

(Chao et al., 2018). Using an injection, sodium alginate transformed into a hydrogel while binding the radioisotope and catalase at the tumour site.

Detailed information on the studies included in the text can be found in Table 2.

# 2.2 Alginate in chemotherapy

In oncological treatment, alginate microparticles combined with paclitaxel have been used as a carrier of cytostatic drugs (Alipour et al., 2010). Researchers used calcium alginate as a mucoadhesive polymer, and its microparticles stick to the mucosa for a long time and are therefore used as vehicles for specific drug delivery to mucosal tissues. The conducted *in vitro* studies showed that exposure of cells to the paclitaxel alginian carrier and pure paclitaxel inhibited cell growth in a similar way, which depended on concentration and time.

The innovative use of alginate in another study resulted in the release of immunoadjuvants during multiple sessions of chemotherapy/radiotherapy (Sun L. et al., 2021). The component of this hydrogel was sodium alginate, which was conjugated to an ATP-specific aptamer that simultaneously hybridizes to the immunoadjuvant CpG oligonucleotide. After injection, an alginate hydrogel is formed at the tumour site. Its premise was that low doses of oxaliplatin or X-rays would induce immunogenic tumour cell death, which would trigger the release of ATP, which would bind to the ATP-specific aptamer, and this would lead to the release of CpG.

Using the properties of alginate as a carrier, which has the ability to control the release of substances contained in it, Liu Q. et al. (2024) created a type of "in situ vaccine." The researchers injected a hydrogel that formed near the tumour. It allowed the controlled release of nanoparticle paclitaxel bound to albumin, which shows better efficiency than paclitaxel itself and does not cause allergic conditions, and can also be enriched at the tumour site. Additionally, the hydrogel was attached to the immunostimulant agent R837 – Imiquimod, a TLR9 receptor agonist that promotes dendritic cell maturation, as well as migration, antigen presentation and induction of tumour-specific T lymphocytes. Elements of the immune system such as chemokines and receptors were also significantly involved. Injecting alginate near the tumour allows for a reduced dose of the drug and fewer injections, which reduces toxicity to healthy cells and tissue (Liu Q. et al., 2024).

Carriers for chemotherapeutic drugs can be created using proven and innovative 3D printing technology. Mahdizadeh et al. (2024) used niosome technology, nanocarriers consisting of cholesterol-based vesicles and non-ionic surfactants forming bilayer structures. Their main advantage is low toxicity due to the non-ionic properties of the surfactants (Mahdizadeh et al., 2024).

Detailed information on the studies included in the text can be found in Table 2.

# 3 Chitosan in oncological treatment

Chitosan is a linear polysaccharide that occurs naturally in the shells of crustaceans, insects and the cell walls of some fungi. It is obtained in the process of deacetylation of chitin. As a biomaterial, it has antibacterial, antifungal and gelling properties (Tymińska et al., 2024). Due to its cationic nature, it is used with negatively charged groups found in proteins, enzymes and other polymers (Li et al., 2020; Sharkawy et al., 2020).

Chitosan, due to its mechanical properties, has been used in the treatment of wounds exposed to radiation as a dressing in the form of a film. In combination with keratin, which has the properties of rapid hemostasis, peripheral nerve repair and supports wound healing, but poor mechanical properties, it resulted in the creation of a product that is easy to use and has high mechanical strength. Studies on a rat model showed an improved healing marker, and a biopsy of the wound site after 7 and 14 days confirmed increased angiogenesis and collagen production (Wang et al., 2025).

# 3.1 Chitosan in radiotherapy

The current treatment of wounds resulting from radiotherapy involves biological agents such as the administration of epidermal growth factor, synthetic drugs, including corticosteroids, statins, and vitamins. Their use is expensive for the patient and is burdened with side effects. This type of therapy is not precise. Wang et al. (2023) proposed a type of injectable hydrogel based on chitosan and gelatin, among others, to which epigallocatechin gallate, which captures hydroxyl radicals, was added. In cell studies and those conducted on an animal model, the hydrogel constructed in this way demonstrated an angiogenesis-promoting and anti-inflammatory effect (Wang et al., 2023).

In the field of oncology, Su et al. (2021) developed hydrogel, which is near-infrared light-responsive and applicable to peri-tumour injection. This could be used for photothermal therapy, particularly in tongue tumours. Photothermal therapy involves the use of compounds, photothermal agents and local heating of the tissue (Figure 4). The photothermal agent absorbs the laser light, resulting in the excitation of electrons and their transition from the ground state to a higher level. The energy thus supplied is given off in the form of heat instead of by photon emission. This method is characterized by high efficiency and stability, and high stability in time and space. Su et al. used biomaterial, which had a good biocompatibility and strong photothermal effect because of the formed network by negatively charged proteins, chitosan molecules and Ag<sub>3</sub>AuS<sub>2</sub> nanoparticles. The researchers, through the mouse model of tongue cancer used, demonstrated that sublingual cancer cells were eliminated during a single photothermal therapy. The hydrogel system used, thanks to its low immunogenicity, reduced direct biotoxicity and improved therapeutic effects. One of the unique properties of chitosan is that it is a linear polymer with a positive charge. Combination with negatively charged carboxymethylcellulose results in the formation of a polyelectrolyte complex, in which the obtained hydrogel controls the release of substances placed in it. Zhou et al. (2025) presented a hydrogel based on these substrates with the addition of cannabidiol, the effect of which reduces oxidative stress. Studies conducted on mice confirmed and an increase in collagen synthesis.

The addition of exosomes, which have properties that promote angiogenesis in ischemic tissues and improve the activity of keratinocytes, fibroblasts, endothelial cells and components of the

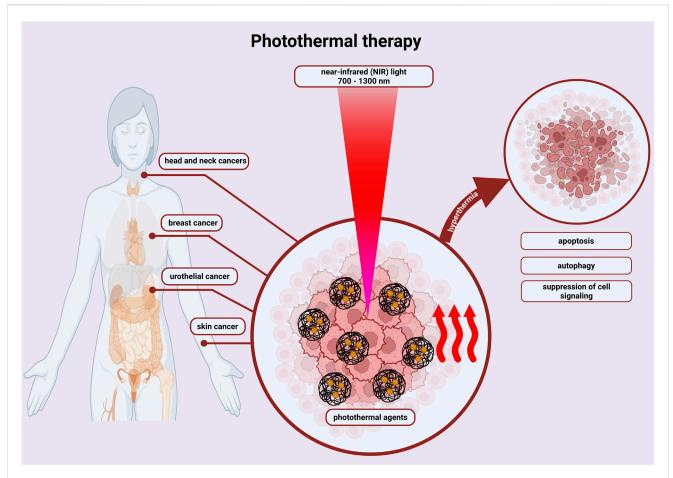
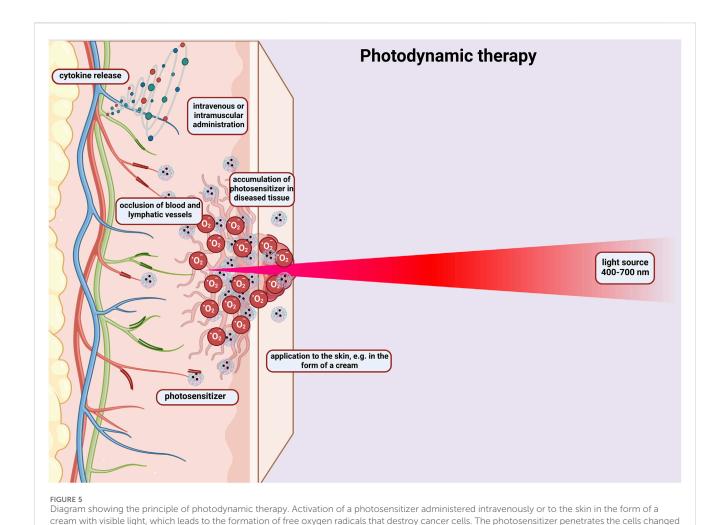



FIGURE 4
By irradiating photothermal agents with near infrared (NIR) light, hyperthermia is induced, which destroys cancer cells through energy transfer - increasing temperature. Photothermal therapy activates apoptosis, autophagy or suppresses cell signalling, inducing cancer cell death. This is done with a shorter treatment time, reduced pain and fewer side effects. Created with BioRender.com.

immune system, and their introduction into a hydrogel may bring the desired effects in the case of treatment of radiation injuries. The team of Peng et al. (2024) undertook this task and created a hydrogel based on quaternized chitosan and oxidized sodium alginate with exosomes enclosed in them, which was applied superficially to the wound to obtain a protective barrier. The synthesized hydrogel showed protective properties against microorganisms, promoted rapid re-epithelialization, angiogenesis and collagen deposition (Peng et al., 2024).


The team of Parès et al. (2024) presented a different point of view regarding chitosan hydrogel. Their area of interest was glioblastoma multiforme stage IV. In this aggressive form of cancer, healthy cells surrounding brain tissue are attacked - in them, cancer cells multiply. New reports speak of the attraction and accumulation of glioblastoma multiforme cells in a hydrogel introduced to the site of tumour resection, and then a high dose of radiotherapy is administered. The researchers prepared a macroporous hydrogel consisting of chitosan, sodium alginate, cross-linked with genipin and calcium chloride. Studies conducted on the F98 mCherry cell model distributed, accumulated and were retained throughout the gel volume (Parès et al., 2024).

Detailed information on the studies included in the text can be found in Table 2.

## 3.2 Chitosan in chemotherapy

Chitosan hydrogels may provide a drug delivery platform for altering antitumor immunity to enhance immunotherapy. Seo et al. (2024) developed a hydrogel based on methacrylated chitosan glycol and a complex of DNA-a sodium salt extracted from salmon testes and doxorubicin. With this combination, controlled release of the DNA/DOX complex was proven to protect against tumour recurrence and metastasis and induce an antitumor response (Seo et al., 2024).

5-Fluorouracil is the most commonly prescribed drug in the treatment of solid tumours. Due to its rapid metabolism by dihydropyrimidine dehydrogenase and short half-life, limited bioavailability and high systemic toxicity, new methods are sought to target it and improve therapeutic efficacy. Chitosan as a nanocarrier has the advantage of creating a uniform particle size distribution, and the release of the substance contained in it is pH dependent. It is important to know that the pH range occurring in tumour tissues differ from the pH range in healthy tissue. Researchers have developed various methods of cross-linking chitosan so that it optimally releases the chemotherapeutic agent contained in it (Wan et al., 2024).



by the cancer. The therapy causes occlusion of blood and lymphatic vessels and the release of cytokines. Created with BioRender.com.

Reducing the side effects of chemotherapeutics is a primary concern in the design of modern drug delivery systems. Bin Jumah et al. (2024) designed a biocomposite with improved physicochemical and biological properties, consisting of a zinc-phosphate/hydroxyapatite hybrid form in core-shell nanostructure and functionalized with both chitosan and  $\beta$ -cyclodextrin as a 5-fluorouracil carrier. Studies on the colon cancer cell line confirmed the antitumor activity and the

The idea of creating an injectable drug delivery nanosystem that would allow for better bioavailability of the target drug used in chemotherapy allowed the development of the concept by the team of Haider et al. (2024). Erlotinib is ideally suited for this type of system because it has difficulties in dissolving in water, gastrointestinal absorption and low bioavailability. *In vivo* studies have confirmed that intratumorally injection of the preparation causes a slowdown in tumour growth (Haider et al., 2024).

controlled release profile of 5-fluorouracil (Bin Jumah et al., 2024).

Similar conclusions were used by Daneshmehr et al. (2024), who studied the attachment of 5-fluorouracil and schionine to hydrogel nanoparticles of chitosan and pectin. They were prepared by two methods: mixing and coating. The studies carried out on cell lines for the treatment of colon cancer indicated that the mixing method showed the appropriate loading power (Daneshmehr et al., 2024).

Hydrogel based on chitosan and tannic acid was created as an antioxidant crosslinker whose goal was to control the activity of photodynamic therapy used in the treatment of cancer (Azadikhah et al., 2021). In this method, it should be mentioned that photosensitizers cause the formation of reactive oxygen species during photochemical reactions. This results in oxidative damage to cancer cells (Figure 5). The research showed that chitosan with the addition of tannic acid formed a three-dimensional structure that had good mechanical strength and antioxidant activity. The designed hydrogel effectively inhibited tumour growth and protected the dental pulp stem cells from phototoxicity.

Newly developed hydrogels containing N-carboxyethylchitosan has a pH-sensitive property, which were presented as carriers for doxorubicin (Qu et al., 2017). Analyses showed that the pH-sensitive hydrogels released more doxorubicin around/inside the tumour than in normal healthy tissue. With such carriers, it is possible to have a more effective, targeted delivery site for the anti-tumour drug, reduce side effects and protect healthy tissue not occupied by the tumour.

What's more a biomimetic, thermosensitive hydrogel had ability to incorporate heterodimers of tegafur, protoporphyrin IX (Zhang Z. et al., 2021). The action was to combine chemotherapy with photodynamic therapy. Due to the laser effect, the concentration of

reactive oxygen species increased in the tumour, and this phenomenon was important for the release of the drug. The drug injected, and released only with the laser action, reduced the disorderly effects. The researchers opted for chitosan and silk sericin. The thermosensitive properties exhibited by chitosan played an essential role in the choice of carrier.

A related case of the use of chitosan in oncology is chitosan-based hydrogel that contained albumin beads, which as a carrier are characterized by accumulation near cancer cells, and aloe vera juice, which is characterized by antibacterial and anti-inflammatory properties (Kudłacik-Kramarczyk et al., 2021). The hydrogel constructed in this way was to be used for the treatment of skin cancer or burn wounds resulting from radiation therapy. Analyses showed that the tested hydrogels were non-toxic to L929 mouse fibroblasts, and albumin beads, which are a component of the hydrogel.

A hydrogel incorporating chitosan and conjugated with porphyrins was developed to enhance the application of photodynamic therapy (Belali et al., 2018). The hydrogel designed in this way caused the excitation energy to be transferred to the porphyrin unit, and this resulted in an improved release of singlet oxygen. Cytotoxicity and phototoxicity studies of chitosan-based hydrogels highlighted the property to selectively kill cancer cells and protect healthy body cells.

Patients undergoing oncological treatment face various side effects of this therapy, one of them is ulceration of the mucous membranes. Choi et al. (2016) prepared two-layer electrospun fiber sheets that consisted of Eudraugite, chitosan and human growth hormone. Fiber sheets containing growth hormone resulted in better proliferation of human fibroblasts. Studies on an animal model proved that this type of dressing could improve the healing of mucosal ulcers.

Detailed information on the studies included in the text can be found in Table 2.

# 4 Hyaluronic acid in oncological treatment

Hyaluronic acid (HA) is a linear mucopolysaccharide composed of repeating units of  $\beta$ -1,4-D-glucuronic acid and  $\beta$ -1,3-N-acetylglucosamine. The alternating  $\beta$ -1,3 bonds are responsible for the high elasticity and solubility of hyaluronic acid polymers. It is the main component of the extracellular matrix (Gupta et al., 2019; Buckley et al., 2022; Valachová et al., 2024; Encyclopedia, 2025). HA has some disadvantages, it plays a role in tumour physiology, increased hyaluronan level mostly is associated with poor prognosis. HA and hyaluronidase have both: pro- and antitumor effect, which is concentration and origin dependent (Salwowska et al., 2016). HA has also poor mechanical properties and rapid degradation *in vivo*, but chemical modification and crosslinking can overcome disadvantages (Chircov et al., 2018).

### 4.1 Hyaluronic acid in radiotherapy

An example of creating hydrogel dressings using HA is the work of Xia et al. (2025), in which they presented a dressing that protected against radiation and at the same time had antioxidant properties.

Additionally, the structure of the patch contained epidermal growth factor (EGF), which supported skin healing. The dressing designed by the researchers uses the property of releasing large amounts of free radicals, then the bonds in the structure of the dressing can be oxidized and transformed into a hydrophilic sulfone. The consequence of this action is the stretching of the hydrogel network and the release of the encapsulated EGF (Xia et al., 2025).

The use of HA cream in patients experiencing radiation dermatitis (RD) shows promise in alleviating symptoms. Preliminary data presented by Gracy et al. (2004) suggest that topical application of HA protected cultured fibroblasts from radiation damage. Chan et al. (2014) advocate for the additional use of HA to provide symptomatic relief, among other topical agents, as *in vivo* studies have not yet definitively established its benefits in preventing the development of RD.

Another example of using a scheme in which the primary element is the elimination of free radicals formed in wounds during radiotherapy is the creation by Shen et al. (2025) of an injectable hydrogel with Pluronic F127 diacrylate and hyaluronic acid methacryloyl, and nanoparticles of Prussian blue and resveratrol placed in them. It was proven that the hydrogel promoted the migration of fibroblasts to the site of oxidative stress A subsequent exampleis placing proteins and stem cells in hydrogels. Jin et al. (2015) created a hyaluronic acid-based hydrogel loaded with rat mesenchymal stem cells and bone morphogenetic protein-2 (BMP-2). The biomaterial was designed to affect bone healing in osteoradionecrosis of the rat mandible. Anchoring the hydrogel with stem cells and BMP-2 increased bone mineral density and bone volume.

An important aspect is the inhibition of the growth of cancer cells. Tang et al. (2019) developed a hydrogel that included hyaluronic acid, cytarabine and tyramine in its formulation. Combination therapy with radiotherapy significantly reduced 18F-FDG uptake, triggered increased apoptosis and histone H2AX phosphorylation, cell cycle arrest in the G2/M phase, and reduced the proliferation rate in tumour cells compared to monotherapy.

To mitigate the damage caused by radiotherapy, Fang et al. (2023) designed a hydrogel that included cross-linked carbohydrazide-modified gelatin and oxidized HA, polydopamine nanoparticles, and extracellular vesicles secreted by mesenchymal stem cells. *In vitro* studies showed enhanced cell viability, as evidenced by stimulation of proliferation and migration. Proteomic studies proved that the hydrogel alleviated the radiation-related wound microenvironment by regulating adipocyte and hypoxia-related pathways.

The advantage of hyaluronic acid as a biomaterial is that it can combine with collagen and fibronectin, i.e., matrix structures in tissues, creating a temporary scaffold. Such an organization of materials can effectively promote cell adhesion, migration and proliferation, collagen synthesis. However, its disadvantages are also noticed: poor durability in an aqueous environment, sensitivity to hyaluronidase or free radicals. Therefore, Wang et al. (2024) created a hydrogel based on hyaluronic acid and a self-assembling peptide with attached cordycipin. Hyaluronic acid was to strengthen non-covalent interactions with the peptide. The scaffold skeleton created in this way supported cell adhesion and proliferation.

Detailed information on the studies included in the text can be found in Table 2.

# 4.2 Hyaluronic acid in chemotherapy

Hyaluronic acid has high affinity for the CD44 receptor, which is overexpressed in cancer cells. Liu et al. (2023) used this property and designed micelles in which modified hyaluronic acid served as a carrier to bind to CD44. *In vivo* and *in vitro* studies confirmed inhibition of tumour growth. And the drug delivery vehicle itself was nontoxic.

A very valuable technological achievement is the placement of drugs in hydrogel carriers. In studies by Wang et al. (2021), HA-tyramine was utilized to create a carrier for endostatin, which could be locally injected. The hydrogel prepared in this way showed longer half-life, less systemic toxic side effects. ES/HA-Tyr revealed better anti-angiogenic effect tested on cellular model and anti-tumour effect with radiotherapy tested on animal model. Intra-tumour administration allowed the drug to increase its concentration locally, thereby reducing serum endostatin levels.

Similarly, Li et al. (2016) developed redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels to deliver cytochrome c to xenografted MCF-7 breast tumours in mice. The study confirmed that the production of the hyaluronic acid nanogel had high specificity. The prepared nanogel allows rapid targeting of tumour cells and rapid release of therapeutic proteins under cytoplasmic reduction conditions while providing potent anti-tumour activity. By exhibiting intrinsic fluorescence, potential use for *in vivo* tumour monitoring is possible.

Detailed information on the studies included in the text can be found in Table 2.

# 5 Peptide hydrogels in oncological treatment

Peptide hydrogels are a soft material platform that uses amino acids and peptides as building blocks that can retain water or transform into a hydrogel under physiological conditions. Peptides enable the formation of hydrogels and nanoparticles through self-assembly, which is formed similarly to the beta-arc and alpha-helical structures in peptide networks and globular protein structures (Fu et al., 2021; Mitrovic et al., 2023; Nizam et al., 2025).

### 5.1 Peptide hydrogels in radiotherapy

Skin changes after radiotherapy are a serious problem that occurs in patients undergoing this therapy. Hao et al. (2023) created a hydrogel with antioxidant properties, which included a heparinomimetic peptide. The created system was intended to be used in the process of repairing skin damage caused by radiation. The researchers used the K16 peptide, which had the ability to self-assemble into a hydrogel that formed a 3D mesh and thus created an environment resembling the extracellular matrix. Studies showed that this peptide also supported cell proliferation, migration, angiogenesis, well as protecting cell DNA against radiation-induced damage. The hydrogel dressing prepared in this way promoted collagen deposition and inhibited early wound degradation.

Researchers have also drawn attention to the problem of radiation-induced ototoxicity. This occurs in head and neck

cancers. The mechanism of this phenomenon is not fully understood, probably radiolysis of water, which is induced by radiation, is the hotspot of cochlear cell destruction. Liu J. et al. (2024) proposed an injectable peptide hydrogel based on RADA with attached dexamethasone. Additionally, the developed peptide hydrogel reactivated the mTOR signalling pathway, which allowed protection of neuronal cells. During radiotherapy, this signalling pathway is suppressed and neuronal cells in the cochlea are destroyed.

The property of peptide hydrogels is to prolong drug retention by spatial restriction. Zhu et al. (2023) constructed a nonapeptide hydrogel with doxorubicin that responds to changing pH in the environment. The developed nonapeptide called P1 belongs to the type of self-assembling peptides, similar to surfactants. The proposed model had high efficiency of doxorubicin encapsulation, retained sensitivity in an acidic environment. Detailed information on the studies included in the text can be found in Table 2.

## 5.2 Peptide hydrogels in chemotherapy

The team of Ye et al. (2024) had a similar assumption. In their work, they presented the IEIIIK peptide, which had the ability to surround doxorubicin and self-assemble into a hydrogel under physiological conditions, and after injection into the acidic environment of the tumour, was able to release doxorubicin and allowed its accumulation within the tumour cells.

An important challenge is to create effective peptide hydrogels as carriers of cytostatic drugs, which, thanks to their properties, can influence the change of the microenvironment inside the tumour. Jin et al. (2018) created a of melittin-RADA $_{32}$  hybrid peptide hydrogel, which was loaded with doxorubicin. It was designed to affect the immunosuppressive tumour microenvironments in melanoma.

This biomaterial has been shown to have the property of controlled drug release and to affect immune cells. As for subcutaneous and metastatic tumours, this hydrogel showed strong anti-tumour efficacy in their case. Raza et al. (2019) developed a FER-8 peptide hydrogel loaded with paclitaxel, which was also pH-sensitive. Analyses in an animal model showed that the peptide hydrogel, as a carrier for paclitaxel, significantly increased the amount of drug in tumour tissues, and by direct injection into the tumour, showed prolonged retention at the injection site. Due to the drug's release property in the presence of acidic pH, prolonged delivery of the drug and thus increased tumour inhibition was possible.

In an attempt to overcome the reduced efficacy when administering combination therapy, when two or more drugs are used that would reach the target at the same time, Liu et al. (2022) were designing carriers that could release the active substances at the same time. The study showed that the peptide carrier for both drugs, when injected into the tumour site, results in a prolonged and concentrated release -gemcitabine, which is hydrophilic in nature, is released in large amounts, while paclitaxel, which is hydrophobic in nature, is released slowly, allowing for prolonged drug action and increased efficacy.

Detailed information on the studies included in the text can be found in Table 2.

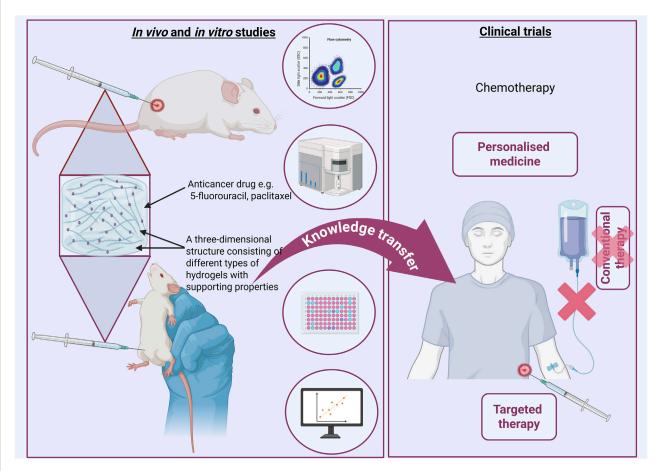



FIGURE 6
Intensive research in basic sciences is a real foundation for using their achievements in clinical trials. Perhaps in the near future it will be possible to use these achievements in practice. Created with BioRender.com.

# 6 Limitations of hydrogels in oncology therapies

Although hydrogels are a promising strategy for therapeutic applications in oncology, they also have certain limitations (Omidian et al., 2024). The first is the detailed replication of the mechanical properties of natural tissues. In practice, tissues are characterized by significantly more complex mechanics, and simple parameters such as Young's modulus are not sufficient to achieve a biomimetic environment (Roth et al., 2023; Fatima and Almeida, 2024). Another aspect to consider when designing hydrogels is the excessively rapid degradation of the carrier (Zhu et al., 2025). This can result in a lack of control over the release of the active substance, thus leading to a failure to achieve the intended therapeutic effects (Segneanu et al., 2025). There is also the possibility of uneven distribution of the hydrogel at the site of administration, which can lead to unpredictable body reactions (Almawash et al., 2022). Technological limitations are another obstacle to the use of hydrogels in oncological therapies. The challenge is the reproducible synthesis of hydrogels with specific mechanical and biological properties. It should be noted that there is little data on the long-term effects of hydrogels in oncological therapies. Most reports and publications refer to studies on animals and cell lines. Translating these findings into the human body could yield

completely different results. This could result in the termination of promising studies. It should be noted that there is little data on the long-term effects of using hydrogels in cancer therapies. One important factor is financial considerations. Developing high-quality hydrogels on a large scale is expensive. Clinical registration and eventual commercialization of the product are a separate issue. The process can take several years and involve significant costs. Various regulatory aspects, including legal and scientific requirements, must also be considered (Almawash et al., 2022; Roth et al., 2023; Fatima and Almeida, 2024; Omidian et al., 2024).

# 7 Future perspectives

Hydrogels represent a highly promising class of materials for clinical applications. Future research is expected to focus on the development of intelligent, stimuli-responsive systems (e.g., triggered by enzymes, pH or light/laser stimulation), enabling controlled and localized drug release within tumor tissues. Another important direction involves exploring the role of hydrogels in inhibiting metastatic spread by serving as antiadhesion and protective barriers. Hybrid hydrogels incorporating functional particles such as liposomes or exosomes, hold great

potential for enhancing the targeted delivery of therapeutic agents. Moreover, the integration of mRNA into hydrogel systems opens opportunities for advancing personalized cancer therapies. Efforts should also be directed toward the design of fully biodegradable and immunologically safe hydrogels to ensure clinical safety and efficacy. Finally the incorporation of artificial intelligence, and 3D printing technologies into hydrogel development is likely to accelerate the creation of patient-specific solutions, advancing both regenerative medicine and oncology.

### 8 Conclusion

Hydrogels based on natural components such as alginate, chitosan, hyaluronic acid or self-assembling peptide hydrogels show great potential in oncological treatment. Thanks to their unique properties such as biocompatibility and biodegradability, the ability to absorb large amounts of water and create 3D structures, they are becoming modern, desirable solutions in the field of drug carriers and dressings (Zielińska et al., 2023; Satchanska et al., 2024; Arif, 2025). Translating the results and innovative solutions from basic research into clinical trials is very tedious. This is evidenced by the number of clinical trials using hydrogels in oncology therapies that have been completed. Only two types of hydrogels have been used in research: alginate and hyaluronic acid. The patient's wellbeing must be taken into account, because the body is in a weaker condition due to the fight against cancer, additional side effects such as the appearance of wounds and ulcers, and consequently disfigurement, negatively affect the further treatment process. The formation of radiation-induced wounds causes the accumulation of ROS (Liu C. et al., 2024). This phenomenon disrupts the redox balance and triggers an inflammatory response, thus increasing the production of proinflammatory cytokines and activating signalling pathways that lead to cell damage (Pizzino et al., 2017). This causes cell cycle arrest and the production of aging-related factors. Hydrogels and their modifications can act as free radical scavengers and reduce oxidative damage in healthy tissues (Joorabloo and Liu, 2024). The cited studies confirm the healing-promoting properties in the treatment of wounds during radiotherapy treatment. Drugs used in chemotherapy have low specificity, limited solubility and bioavailability, and when taken in large doses, they have a toxic effect on the body (Zhang et al., 2022; Prieložná et al., 2024). It has been proven that hydrogels as drug carriers cause prolonged drug retention at the tumour site, while limiting diffusion to surrounding tissues (Ma et al., 2022; Mikhail et al., 2023; Lu et al., 2024). This action allows for minimizing systemic toxicity and drug access even to poorly vascularized tumour areas.

The last two decades have seen significant advances beyond oncology therapies, including surgical techniques for tumor resection. A milestone was the introduction of robotics (Chatterjee et al., 2024) and the use of techniques to assess tissue perfusion using indocyanine green (Cassinotti et al., 2023). However, the progress that has been made has not significantly changed the problem of leakage in the digestive tract, which is 3%–30% (Chiarello et al., 2022). Research is currently underway into the use of hydrogels as an adjunct method in gastrointestinal anastomoses, although their use is currently experimental. The

additional use of hydrogels would benefit from reducing the rate of leaks at the anastomosis site. However, one of the drawbacks of using hydrogels is the difficulty in maintaining this type of preparation at the anastomosis site, which should be applied externally to the anastomosis, where the outer layer is smooth serosa.

The development of hydrogels in oncology in the coming years will dynamically evolve towards personalized therapy and intelligent therapeutic systems (Lee et al., 2025; Liu et al., 2025) (Figure 6). Their further development towards modification may change the perspective on cancer treatment methods. It is important to support interdisciplinary research, especially combining basic science with practical knowledge transfer in clinical practice.

# **Author contributions**

KC: Visualization, Writing – original draft, Writing – review and editing, Supervision. WS: Writing – original draft. MP: Conceptualization, Funding acquisition, Project administration, Supervision, Writing – original draft.

# Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by the National Science Centre—Poland [grant number 2019/33/B/NZ7/02676 granted to MP].

### Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

#### Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

### Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

### References

Ahmed, Md., Shahriar, S. Y., Kim, H.-Y., Ko, S., Islam, M., and Nam, K.-W. (2025). Hydrogels and microgels: driving revolutionary innovations in targeted drug delivery, strengthening infection management, and advancing tissue repair and regeneration. *Gels* 11, 179. doi:10.3390/gels11030179

Akhtar, M. F., Hanif, M., and Ranjha, N. M. (2016). Methods of synthesis of hydrogels A review. Saudi Pharm. J. 24, 554–559. doi:10.1016/j.jsps.2015.03.022

Alavarse, A. C., Frachini, E. C. G., da Silva, R. L. C. G., Lima, V. H., Shavandi, A., and Petri, D. F. S. (2022). Crosslinkers for polysaccharides and proteins: synthesis conditions, mechanisms, and crosslinking efficiency, a review. *Int. J. Biol. Macromol.* 202, 558–596. doi:10.1016/j.ijbiomac.2022.01.029

Alinezhad, V., Ghodsi, R., Bagheri, H., Beram, F. M., Zeighami, H., Kalantari-Hesari, A., et al. (2024). Antioxidant, hemostatic, and injectable hydrogels with photothermal antibacterial activity to accelerate full-thickness wound regeneration. *New J. Chem.* 48, 7761–7778. doi:10.1039/D3NJ05871A

Alipour, S., Montaseri, H., and Tafaghodi, M. (2010). Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. *Colloids Surf. B Biointerfaces* 81, 521–529. doi:10.1016/j. colsurfb.2010.07.050

Almawash, S., Osman, S. K., Mustafa, G., and El Hamd, M. A. (2022). Current and future prospective of injectable hydrogels—design challenges and limitations. *Pharmaceuticals* 15, 371. doi:10.3390/ph15030371

Amjad, M. T., Chidharla, A., and Kasi, A. (2025). "Cancer chemotherapy," in *StatPearls* (Treasure Island, FL: StatPearls Publishing). Available online at: http://www.ncbi.nlm.nih.gov/books/NBK564367/(Accessed May 13, 2025).

Arif, Z. U. (2025). The role of polysaccharide-based biodegradable soft polymers in the healthcare sector. *Adv. Industrial Eng. Polym. Res.* 8, 132–156. doi:10.1016/j.aiepr. 2024.05.001

Azadikhah, F., Karimi, A. R., Yousefi, G. H., and Hadizadeh, M. (2021). Dual antioxidant-photosensitizing hydrogel system: cross-linking of chitosan with tannic acid for enhanced photodynamic efficacy. *Int. J. Biol. Macromol.* 188, 114–125. doi:10. 1016/j.ijbiomac.2021.08.006

Barazzuol, L., Coppes, R. P., and van Luijk, P. (2020). Prevention and treatment of radiotherapy-induced side effects. *Mol. Oncol.* 14, 1538–1554. doi:10.1002/1878-0261.

Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., et al. (2020). Fundamental concepts of hydrogels: synthesis, properties, and their applications. *Polymers* 12, 2702. doi:10.3390/polym12112702

Belali, S., Karimi, A. R., and Hadizadeh, M. (2018). Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. *Int. J. Biol. Macromol.* 110, 437–448. doi:10.1016/j.ijbiomac. 2017.12.169

Bin Jumah, M. N., Al Othman, S. I., Alomari, A. A., Allam, A. A., Bellucci, S., and Abukhadra, M. R. (2024). Insight into the integration effect of chitosan and  $\beta$ -cyclodextrin on the properties of zinc-phosphate/hydroxyapatite hybrid as delivery structures for 5-fluorouracil: loading and release profiles. *Front. Chem.* 12, 1456057. doi:10.3389/fchem.2024.1456057

Bonomo, P., Desideri, I., Loi, M., Ciccone, L. P., Lo Russo, M., Becherini, C., et al. (2019). Management of severe bio-radiation dermatitis induced by radiotherapy and cetuximab in patients with head and neck cancer: emphasizing the role of calcium alginate dressings. *Support Care Cancer* 27, 2957–2967. doi:10.1007/s00520-018-4606-2

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA A Cancer J. Clin.* 74, 229–263. doi:10. 3322/caac.21834

Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., and Pienta, K. J. (2023). Updating the definition of cancer. *Mol. Cancer Res.* 21, 1142–1147. doi:10.1158/1541-7786.MCR-23-0411

Buckley, C., Murphy, E. J., Montgomery, T. R., and Major, I. (2022). Hyaluronic acid: a review of the drug delivery capabilities of this naturally occurring polysaccharide. *Polym. (Basel)* 14, 3442. doi:10.3390/polym14173442

Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Palomino, K., Magaña, H., and Bucio, E. (2021). Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. *Gels* 7, 182. doi:10.3390/gels7040182

Cao, L., Zhu, Y., Wang, W., Wang, G., Zhang, S., and Cheng, H. (2021). Emerging nano-based strategies against drug resistance in tumor chemotherapy. *Front. Bioeng. Biotechnol.* 9, 798882. doi:10.3389/fbioe.2021.798882

Cao, Y., Zhu, C., Zhu, H., Chen, X., and Luo, H. (2024). Observation of the therapeutic effect of hydrogel combined with alginate dressings for a patient with grade 4 acute radiation dermatitis: a case report. *Adv. Skin. Wound Care* 37, 1–5. doi:10.1097/ASW. 0000000000000198

Cassinotti, E., Al-Taher, M., Antoniou, S. A., Arezzo, A., Baldari, L., Boni, L., et al. (2023). European association for endoscopic surgery (EAES) consensus on indocyanine

green (ICG) fluorescence-guided surgery. Surg. Endosc. 37, 1629-1648. doi:10.1007/s00464-023-09928-5

Chan, R. J., Webster, J., Chung, B., Marquart, L., Ahmed, M., and Garantziotis, S. (2014). Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. *BMC Cancer* 14, 53. doi:10.1186/1471-2407-14-53

Chao, Y., Xu, L., Liang, C., Feng, L., Xu, J., Dong, Z., et al. (2018). Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. *Nat. Biomed. Eng.* 2, 611–621. doi:10.1038/s41551-018-0262-6

Chatterjee, S., Das, S., Ganguly, K., and Mandal, D. (2024). Advancements in robotic surgery: innovations, challenges and future prospects. *J. Robot. Surg.* 18, 28. doi:10.1007/s11701-023-01801-w

Chen, S., Cao, Z., Prettner, K., Kuhn, M., Yang, J., Jiao, L., et al. (2023). Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. *JAMA Oncol.* 9, 465–472. doi:10.1001/jamaoncol.2022.7826

Chiarello, M. M., Fransvea, P., Cariati, M., Adams, N. J., Bianchi, V., and Brisinda, G. (2022). Anastomotic leakage in colorectal cancer surgery. *Surg. Oncol.* 40, 101708. doi:10.1016/j.suronc.2022.101708

Chircov, C., Grumezescu, A. M., and Bejenaru, L. E. (2018). Hyaluronic acid-based scaffolds for tissue engineering. *Rom. J. Morphol. Embryol.* 59, 71–76.

Choi, J. S., Han, S.-H., Hyun, C., and Yoo, H. S. (2016). Buccal adhesive nanofibers containing human growth hormone for oral mucositis. *J. Biomed. Mater Res. B Appl. Biomater.* 104, 1396–1406. doi:10.1002/jbm.b.33487

Collatuzzo, G., and Boffetta, P. (2023). Cancers attributable to modifiable risk factors: a road map for prevention. *Annu. Rev. Public Health* 44,279-300. doi:10.1146/annurev-publhealth-052220-124030

Daneshmehr, M., Pazhang, M., Mollaei, S., Ebadi, M., and Pazhang, Y. (2024). Targeted delivery of 5-fluorouracil and shikonin by blended and coated chitosan/pectin nanoparticles for treatment of colon cancer. *Int. J. Biol. Macromol.* 270, 132413. doi:10.1016/j.ijbiomac.2024.132413

Dodda, J. M., Deshmukh, K., Bezuidenhout, D., and Yeh, Y.-C. (2023). Hydrogels: definition, history, classifications, formation, constitutive characteristics, and applications. 1, 25. doi:10.1039/BK9781837670055-00001

Encyclopedia (2025). Design challenges and limitations of injectable hydrogels. Available online at: https://encyclopedia.pub/entry/21456 (Accessed September 4, 2025).

Fang, Z., Lv, Y., Zhang, H., He, Y., Gao, H., Chen, C., et al. (2023). A multifunctional hydrogel loaded with two nanoagents improves the pathological microenvironment associated with radiation combined with skin wounds. *Acta Biomater*. 159, 111–127. doi:10.1016/j.actbio.2023.01.052

Fatima, R., and Almeida, B. (2024). Methods to achieve tissue-mimetic physicochemical properties in hydrogels for regenerative medicine and tissue engineering. *J. Mater. Chem. B* 12, 8505–8522. doi:10.1039/D4TB00716F

Fu, K., Wu, H., and Su, Z. (2021). Self-assembling peptide-based hydrogels: fabrication, properties, and applications. *Biotechnol. Adv.* 49, 107752. doi:10.1016/j.biotechadv.2021.107752

Gianfaldoni, S., Gianfaldoni, R., Wollina, U., Lotti, J., Tchernev, G., and Lotti, T. (2017). An overview on radiotherapy: from its history to its current applications in dermatology. *Open Access Maced. J. Med. Sci.* 5, 521–525. doi:10.3889/oamjms.2017.122

Gollins, S., Gaffney, C., Slade, S., and Swindell, R. (2008). RCT on gentian violet versus a hydrogel dressing for radiotherapy-induced moist skin desquamation. *J. Wound Care* 17, 268–275. doi:10.12968/jowc.2008.17.6.29589

Gracy, R., Lloyd, K., and Phelps, J. (2004). RadiaPlexRx gel protects cultured skin cells from oxidative free radical damage induced by hydrogen peroxide and by irradiation: a pilot study.

Gupta, R. C., Lall, R., Srivastava, A., and Sinha, A. (2019). Hyaluronic acid: molecular mechanisms and therapeutic trajectory. *Front. Vet. Sci.* 6, 192. doi:10.3389/fvets.2019. 00192

Haider, M., Jagal, J., Ali Alghamdi, M., Haider, Y., Hassan, H. A. F. M., Najm, M. B., et al. (2024). Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer. *Int. J. Pharm.* 666, 124825. doi:10.1016/j.ijpharm.2024.124825

Hao, J., Sun, M., Li, D., Zhang, T., Li, J., and Zhou, D. (2022). An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. *J. Nanobiotechnology* 20, 288. doi:10.1186/s12951-022-01466-x

Hao, Y., Li, H., Guo, J., Wang, D., Zhang, J., Liu, J., et al. (2023). Bio-inspired antioxidant heparin-mimetic peptide hydrogel for radiation-induced skin injury repair. *Adv. Healthc. Mater* 12, e2203387. doi:10.1002/adhm.202203387

Hasnain, M. S., Jameel, E., Mohanta, B., Dhara, A. K., Alkahtani, S., and Nayak, A. K. (2020). "Chapter 1 - alginates: sources, structure, and properties," in *Alginates in drug delivery*. Editors A. K. Nayak and M. S. Hasnain (Academic Press), 1–17. doi:10.1016/B978-0-12-817640-5.00001-7

- Ho, T.-C., Chang, C.-C., Chan, H.-P., Chung, T.-W., Shu, C.-W., Chuang, K.-P., et al. (2022). Hydrogels: properties and applications in biomedicine. *Molecules* 27, 2902. doi:10.3390/molecules27092902
- Hu, W., Wang, Z., Xiao, Y., Zhang, S., and Wang, J. (2019). Advances in crosslinking strategies of biomedical hydrogels. *Biomater. Sci.* 7, 843–855. doi:10.1039/C8BM01246F
- Iacovelli, N. A., Torrente, Y., Ciuffreda, A., Guardamagna, V. A., Gentili, M., Giacomelli, L., et al. (2020). Topical treatment of radiation-induced dermatitis: current issues and potential solutions. *Drugs Context* 9, 1–13. doi:10.7573/dic.2020-4-7
- Jin, I. G., Kim, J. H., Wu, H.-G., Kim, S. K., Park, Y., and Hwang, S. J. (2015). Effect of bone marrow-derived stem cells and bone morphogenetic protein-2 on treatment of osteoradionecrosis in a rat model. *J. Craniomaxillofac Surg.* 43, 1478–1486. doi:10.1016/j.icms.2015.06.035
- Jin, H., Wan, C., Zou, Z., Zhao, G., Zhang, L., Geng, Y., et al. (2018). Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. *ACS Nano* 12, 3295–3310. doi:10.1021/acsnano.7b08148
- Joorabloo, A., and Liu, T. (2024). Recent advances in reactive oxygen species scavenging nanomaterials for wound healing. *Exploration* 4, 20230066. doi:10.1002/EXP.20230066
- Katta, B., Vijayakumar, C., Dutta, S., Dubashi, B., and Nelamangala Ramakrishnaiah, V. P. (2023). The incidence and severity of patient-reported side effects of chemotherapy in routine clinical care: a prospective observational study. *Cureus* 15, e38301. doi:10.7759/cureus.38301
- Khan, M. U. A., Aslam, M. A., Abdullah, M. F. B., Al-Arjan, W. S., Stojanovic, G. M., and Hasan, A. (2024). Hydrogels: classifications, fundamental properties, applications, and scopes in recent advances in tissue engineering and regenerative medicine a comprehensive review. *Arabian J. Chem.* 17, 105968. doi:10.1016/j.arabjc.2024.105968
- Kodous, A. S., Abdel-Maksoud, M. A., El-Tayeb, M. A., Al-Sherif, D. A., Mohamed, S. S. A., Ghobashy, M. M., et al. (2024). Hesperidin loaded PVA/alginate hydrogel: targeting NFκB/iNOS/COX-2/TNF- $\alpha$  inflammatory signaling pathway. Front. Immunol. 15, 1347420. doi:10.3389/fimmu.2024.1347420
- Kudłacik-Kramarczyk, S., Głąb, M., Drabczyk, A., Kordyka, A., Godzierz, M., Wróbel, P. S., et al. (2021). Physicochemical characteristics of chitosan-based hydrogels containing albumin particles and aloe vera juice as transdermal systems functionalized in the viewpoint of potential biomedical applications. *Mater. (Basel)* 14, 5832. doi:10.3390/ma14195832
- Lee, K. Z., Jeon, J., Jiang, B., Subramani, S. V., Li, J., and Zhang, F. (2023). Protein-based hydrogels and their biomedical applications. *Molecules* 28, 4988. doi:10.3390/molecules28134988
- Lee, K. K., Go, K., Lee, E., Kim, H., Kim, S., Kim, J.-H., et al. (2025). Multifunctional hydrogels for advanced cancer treatment: diagnostic imaging and therapeutic modalities. *Gels* 11, 426. doi:10.3390/gels11060426
- Li, S., Zhang, J., Deng, C., Meng, F., Yu, L., and Zhong, Z. (2016). Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels for traceable and targeted delivery of cytochrome c to breast tumor in mice. ACS Appl. Mater Interfaces 8, 21155–21162. doi:10.1021/acsami.6b05775
- Li, B., Elango, J., and Wu, W. (2020). Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. *Appl. Sci.* 10, 4719. doi:10.3390/app10144719
- Li, Y., Liu, H., Ding, Y., Li, W., Zhang, Y., Luo, S., et al. (2023). The use of hydrogel-based materials for radioprotection. Gels~9,~301.~doi:10.3390/gels9040301
- Liu, Y., Ran, Y., Ge, Y., Raza, F., Li, S., Zafar, H., et al. (2022). pH-sensitive peptide hydrogels as a combination drug delivery system for cancer treatment. *Pharmaceutics* 14, 652. doi:10.3390/pharmaceutics14030652
- Liu, Z., Chen, X., Jin, Q., Li, M., Zhu, S., Zhang, Y., et al. (2023). Dual functionalized hyaluronic acid micelles loading paclitaxel for the therapy of breast cancer. *Front. Bioeng. Biotechnol.* 11, 1230585. doi:10.3389/fbioe.2023.1230585
- Liu, C., Wei, J., Wang, X., Zhao, Q., Lv, J., Tan, Z., et al. (2024a). Radiation-induced skin reactions: oxidative damage mechanism and antioxidant protection. *Front. Cell Dev. Biol.* 12, 1480571. doi:10.3389/fcell.2024.1480571
- Liu, J., Zhu, L., Bao, Y., Du, Z., Shi, L., Hong, X., et al. (2024b). Injectable dexamethasone-loaded peptide hydrogel for therapy of radiation-induced ototoxicity by regulating the mTOR signaling pathway. *J. Control. Release* 365, 729–743. doi:10. 1016/j.jconrel.2023.12.004
- Liu, Q., Xu, R., Shen, J., Tao, Y., Shao, J., Ke, Y., et al. (2024c). *In situ* chemoimmunotherapy hydrogel elicits immunogenic cell death and evokes efficient antitumor immune response. *J. Transl. Med.* 22, 341. doi:10.1186/s12967-024-05102-0
- Liu, X., Zhou, Q., Yang, Y., Wu, X., Chen, J., Wang, R., et al. (2025). Hydrogels in cancer treatment: mapping the future of precision drug delivery. *Front. Immunol.* 16, 1607240. doi:10.3389/fimmu.2025.1607240
- Lu, P., Ruan, D., Huang, M., Tian, M., Zhu, K., Gan, Z., et al. (2024). Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. *Sig Transduct. Target Ther.* 9, 166. doi:10.1038/s41392-024-01852-x
- Ma, J., Wang, B., Shao, H., Zhang, S., Chen, X., Li, F., et al. (2022). Hydrogels for localized chemotherapy of liver cancer: a possible strategy for improved and safe liver cancer treatment. *Drug Deliv.* 29, 1457–1476. doi:10.1080/10717544.2022.2070299

Mahdizadeh, N., Khorshid Shabestari, M., Tafvizi, F., and Khodarahmi, P. (2024). Delivery of letrozole-encapsulated niosomes via a 3D bioprinting gelatin-alginate scaffold for potential breast cancer treatment. *Cancer Nanotechnol.* 15, 33. doi:10. 1186/s12645-024-00271-5

- Maria, O. M., Eliopoulos, N., and Muanza, T. (2017). Radiation-induced oral mucositis. Front. Oncol. 7, 89. doi:10.3389/fonc.2017.00089
- Mee, T., Kirkby, N. F., Defourny, N. N., Kirkby, K. J., and Burnet, N. G. (2023). The use of radiotherapy, surgery and chemotherapy in the curative treatment of cancer: results from the FORTY (Favourable Outcomes from RadioTherapY) project. *Br. J. Radiology* 96, 20230334. doi:10.1259/bjr.20230334
- Mikhail, A. S., Morhard, R., Mauda-Havakuk, M., Kassin, M., Arrichiello, A., and Wood, B. J. (2023). Hydrogel drug delivery systems for minimally invasive local immunotherapy of cancer. *Adv. Drug Deliv. Rev.* 202, 115083. doi:10.1016/j.addr. 2023.115083
- Mitrovic, J., Richey, G., Kim, S., and Guler, M. O. (2023). Peptide hydrogels and nanostructures controlling biological machinery. *Langmuir* 39, 11935–11945. doi:10. 1021/acs.langmuir.3c01269
- Nizam, A. A. K., Masri, S., Fadilah, N. I. M., Maarof, M., and Fauzi, M. B. (2025). Current insight of peptide-based hydrogels for chronic wound healing applications: a concise review. *Pharmaceuticals* 18, 58. doi:10.3390/ph18010058
- Norouzi, M., Nazari, B., and Miller, D. W. (2016). Injectable hydrogel-based drug delivery systems for local cancer therapy. *Drug Discov. Today* 21, 1835–1849. doi:10. 1016/i.drudis.2016.07.006
- Omidian, H., Chowdhury, S. D., and Wilson, R. L. (2024). Advancements and challenges in hydrogel engineering for regenerative medicine. Gels 10, 238. doi:10. 3390/gels10040238
- Op 't Veld, R. C., Walboomers, X. F., Jansen, J. A., and Wagener, F. A. D. T. G. (2020). Design considerations for hydrogel wound dressings: strategic and molecular advances. *Tissue Eng. Part B Rev.* 26, 230–248. doi:10.1089/ten.TEB.2019.0281
- Parès, L., Naasri, S., Delattre, L., Therriault, H., Liberelle, B., Crescenzo, G. D., et al. (2024). Macroporous chitosan/alginate hydrogels crosslinked with genipin accumulate and retain glioblastoma cancer cells. *RSC Adv.* 14, 35286–35304. doi:10.1039/D4RA06197G
- Peng, G., Hu, J., Guo, J., Dong, J., Zhao, Y., Ye, T., et al. (2024). Injectable exosome-loaded quaternized chitosan/oxidized sodium alginate hydrogel with self-healing, bioadhesive, and antibacterial properties for treating combined radiation-wound injury. *Chem. Eng. J.* 494, 152933. doi:10.1016/j.cej. 2024.152933
- Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al. (2017). Oxidative stress: harms and benefits for human health. *Oxidative Med. Cell. Longev.* 2017, 8416763. doi:10.1155/2017/8416763
- Prieložná, J., Mikušová, V., and Mikuš, P. (2024). Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. *Int. J. Pharm.* 8, 100281. doi:10.1016/j.ijpx.2024.100281
- Priya, A. S., Premanand, R., Ragupathi, I., Bhaviripudi, V. R., Aepuru, R., Kannan, K., et al. (2024). Comprehensive review of hydrogel synthesis, characterization, and emerging applications. *J. Compos. Sci.* 8, 457. doi:10.3390/jcs8110457
- Qu, J., Zhao, X., Ma, P. X., and Guo, B. (2017). pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. *Acta Biomater.* 58, 168–180. doi:10.1016/j.actbio.2017.06.001
- Rao, D., Behzadi, F., Le, R. T., Dagan, R., and Fiester, P. (2021). Radiation induced mucositis: what the radiologist needs to know. *Curr. Problems Diagnostic Radiology* 50, 899–904. doi:10.1067/j.cpradiol.2020.10.006
- Raza, F., Zhu, Y., Chen, L., You, X., Zhang, J., Khan, A., et al. (2019). Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. *Biomater. Sci.* 7, 2023–2036. doi:10.1039/C9BM00139E
- Rosen, R. D., and Sapra, A. (2025). "TNM classification," in *StatPearls*, (Treasure Island, FL: StatPearls Publishing). Available online at: http://www.ncbi.nlm.nih.gov/books/NBK553187/(Accessed July 17, 2025).
- Roth, J. G., Huang, M. S., Navarro, R. S., Akram, J. T., LeSavage, B. L., and Heilshorn, S. C. (2023). Tunable hydrogel viscoelasticity modulates human neural maturation. *Sci. Adv.* 9, eadh8313. doi:10.1126/sciadv.adh8313
- Salwowska, N. M., Bebenek, K. A., Żądło, D. A., and Wcisło-Dziadecka, D. L. (2016). Physiochemical properties and application of hyaluronic acid: a systematic review. J. Cosmet. Dermatol 15, 520–526. doi:10.1111/jocd.12237
- Satchanska, G., Davidova, S., and Petrov, P. D. (2024). Natural and synthetic polymers for biomedical and environmental applications. *Polymers* 16, 1159. doi:10.3390/polym16081159
- Segneanu, A.-E., Bejenaru, L. E., Bejenaru, C., Blendea, A., Mogosanu, G. D., Biţă, A., et al. (2025). Advancements in hydrogels: a comprehensive review of natural and synthetic innovations for biomedical applications. *Polymers* 17, 2026. doi:10.3390/polym17152026
- Senapati, S., Mahanta, A. K., Kumar, S., and Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. *Sig Transduct. Target Ther.* 3, 7–19. doi:10.1038/s41392-017-0004-3

Seo, H. S., Han, J.-H., Lim, J., Bae, G.-H., Byun, M. J., Wang, C.-P. J., et al. (2024). Enhanced postsurgical cancer treatment using methacrylated glycol chitosan hydrogel for sustained DNA/doxorubicin delivery and immunotherapy. *Biomater. Res.* 28, 0008. doi:10.34133/bmr.0008

- Shao, H., Liu, M., Jiang, H., and Zhang, Y. (2025). Polysaccharide-based drug delivery targeted approach for colon cancer treatment: a comprehensive review. *Int. J. Biol. Macromol.* 302, 139177. doi:10.1016/j.ijbiomac.2024.139177
- Sharkawy, A., Barreiro, M. F., and Rodrigues, A. E. (2020). Chitosan-based Pickering emulsions and their applications: a review. *Carbohydr. Polym.* 250, 116885. doi:10.1016/j.carbpol.2020.116885
- Shen, J., Jiao, W., Yang, J., Zhuang, B., Du, S., Wu, Y., et al. (2025). *In situ* photocrosslinkable hydrogel treats radiation-induced skin injury by ROS elimination and inflammation regulation. *Biomaterials* 314, 122891. doi:10.1016/j.biomaterials. 2024 122891
- Shin, M. H., Oh, E., Kim, Y., Nam, D.-H., Jeon, S. Y., Yu, J. H., et al. (2023). Recent advances in CAR-based solid tumor immunotherapy. *Cells* 12, 1606. doi:10.3390/cells12121606
- Shu, G., Zhu, W., Jiang, Y., Li, X., Pan, J., Zhang, X., et al. (2021). Persistent luminescence immune hydrogel for photodynamic-immunotherapy of tumors *in vivo. Adv. Funct. Mater.* 31, 2104472. doi:10.1002/adfm.202104472
- Singh, M., Alavi, A., Wong, R., and Akita, S. (2016). Radiodermatitis: a review of our current understanding. *Am. J. Clin. Dermatol* 17, 277–292. doi:10.1007/s40257-016-0186-4
- Su, J., Lu, S., Jiang, S., Li, B., Liu, B., Sun, Q., et al. (2021). Engineered protein photothermal hydrogels for outstanding *in situ* tongue cancer therapy. *Adv. Mater* 33, e2100619. doi:10.1002/adma.202100619
- Sun, L., Shen, F., Tian, L., Tao, H., Xiong, Z., Xu, J., et al. (2021a). ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity. *Adv. Mater* 33, e2007910. doi:10.1002/adma.202007910
- Sun, Y., Liu, Y., Ma, X., and Hu, H. (2021b). The influence of cell cycle regulation on chemotherapy. *Int. J. Mol. Sci.* 22, 6923. doi:10.3390/ijms22136923
- Sun, X., Zhao, P., Lin, J., Chen, K., and Shen, J. (2023). Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. *Cancer Drug Resist* 6, 390–415. doi:10.20517/cdr.2023.16
- Tang, J., Wang, N., Wu, J., Ren, P., Li, J., Yang, L., et al. (2019). Synergistic effect and reduced toxicity by intratumoral injection of cytarabine-loaded hyaluronic acid hydrogel conjugates combined with radiotherapy on lung cancer. *Invest New Drugs* 37, 1146–1157. doi:10.1007/s10637-019-00740-4
- Tumilaar, S. G., Hardianto, A., Dohi, H., and Kurnia, D. (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. *J. Chem.* 2024, 1–21. doi:10.1155/2024/5594386
- Tymińska, A., Karska, N., Skoniecka, A., Zawrzykraj, M., Banach-Kopeć, A., Mania, S., et al. (2024). A novel chitosan-peptide system for cartilage tissue engineering with adipose-derived stromal cells. *Biomed. Pharmacother.* 181, 117683. doi:10.1016/j.biopha.2024.117683
- Valachová, K., Hassan, M. E., and Šoltés, L. (2024). Hyaluronan: sources, structure, features and applications. *Molecules* 29, 739. doi:10.3390/molecules29030739
- Vineis, P., and Wild, C. P. (2014). Global cancer patterns: causes and prevention. *Lancet* 383, 549–557. doi:10.1016/S0140-6736(13)62224-2
- Wan, T., Zhang, Q., Jin, G., and Xu, S. (2024). Controlled delivery of 5-fluorouracil from monodisperse chitosan microspheres prepared by emulsion crosslinking. *RSC Adv.* 14, 11311–11321. doi:10.1039/D4RA01377H
- Wang, N., Gao, Q., Tang, J., Jiang, Y., Yang, L., Shi, X., et al. (2021). Anti-tumor effect of local injectable hydrogel-loaded endostatin alone and in combination with radiotherapy for lung cancer. *Drug Deliv.* 28, 183–194. doi:10.1080/10717544.2020. 1869864

- Wang, J., Gao, L., Song, J., and Li, S. (2023). Study of EGCG composite hydrogel for the treatment of radiation-induced skin injuries. *J. Appl. Biomaterials and Funct. Mater.* 21, 22808000231218996. doi:10.1177/22808000231218996
- Wang, H., Mu, G., Cai, X., Zhang, X., Mao, R., Jia, H., et al. (2024). Glucopeptide superstructure hydrogel promotes surgical wound healing following neoadjuvant radiotherapy by producing NO and anticellular senescence. *Adv. Healthc. Mater.* 13, 2400406. doi:10.1002/adhm.202400406
- Wang, Y., Xin, T., Deng, H., Chen, J., Tang, S., Liu, L., et al. (2025). Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury. *J. Mater Sci. Mater Med.* 36, 15. doi:10.1007/s10856-025-06860-z
- Xia, Y., Gui, H., Li, X., Wu, Y., Liu, J., and Liu, J. (2025). X-Ray responsive antioxidant drug-free hydrogel for treatment of radiation skin injury. *ACS Appl. Mater. Interfaces* 17, 5671–5683. doi:10.1021/acsami.4c16810
- Xu, X., Peng, Q., Jiang, X., Tan, S., Yang, Y., Yang, W., et al. (2023). Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. *Exp. Mol. Med.* 55, 1357–1370. doi:10.1038/s12276-023-01020-1
- Yadav, P., Ambudkar, S. V., and Rajendra Prasad, N. (2022). Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. *J. Nanobiotechnology* 20, 423. doi:10.1186/s12951-022-01626-z
- Ye, G., Luo, S., Zafar, H., Ge, H., Liu, B., Wang, N., et al. (2024). pH-sensitive supramolecular self-assembled peptide hydrogel for the treatment of esophageal cancer. *Front. Pharmacol.* 15, 1453422. doi:10.3389/fphar.2024.1453422
- Yin, X., Geng, X., Li, W., Che, T., Yan, L., Yuan, B., et al. (2025). Advance of the application of seaweed polysaccharides on antitumor drug delivery systems. *Int. J. Pharm.* 675, 125502. doi:10.1016/j.ijpharm.2025.125502
- Zhang, C., Xu, C., Gao, X., and Yao, Q. (2022). Platinum-based drugs for cancer therapy and anti-tumor strategies. *Theranostics* 12, 2115–2132. doi:10.7150/thno.69424
- Zhang, J., Zhu, Y., Zhang, Y., Lin, W., Ke, J., Liu, J., et al. (2021). A balanced charged hydrogel with anti-biofouling and antioxidant properties for treatment of irradiation-induced skin injury. *Mater Sci. Eng. C Mater Biol. Appl.* 131, 112538. doi:10.1016/j.msec. 2021.112538
- Zhang Z., Z., Li, A., Min, X., Zhang, Q., Yang, J., Chen, G., et al. (2021). An ROS-sensitive tegafur-PpIX-heterodimer-loaded *in situ* injectable thermosensitive hydrogel for photodynamic therapy combined with chemotherapy to enhance the tegafur-based treatment of breast cancer. *Biomater. Sci.* 9, 221–237. doi:10.1039/D0BM01519A
- Zhao, L., Zhou, Y., Zhang, J., Liang, H., Chen, X., and Tan, H. (2023). Natural polymer-based hydrogels: from polymer to biomedical applications. *Pharmaceutics* 15, 2514. doi:10.3390/pharmaceutics15102514
- Zhou, W., Lei, S., Liu, M., Li, D., Huang, Y., Hu, X., et al. (2022). Injectable and photocurable CAR-T cell formulation enhances the anti-tumor activity to melanoma in mice. *Biomaterials* 291, 121872. doi:10.1016/j.biomaterials.2022.121872
- Zhou, W., Zhu, L., Zu, X., Ma, Y., Shen, P., Hu, Y., et al. (2025). A novel antioxidant and anti-inflammatory carboxymethylcellulose/chitosan hydrogel loaded with cannabidiol promotes the healing of radiation-combined wound skin injury in the 60Co  $\gamma$ -irradiated mice. *Phytomedicine* 142, 156790. doi:10.1016/j.phymed.2025.156790
- Zhu, J., Gao, R., Wang, Z., Cheng, Z., Xu, Z., Liu, Z., et al. (2023). Sustained and targeted delivery of self-assembled doxorubicin nonapeptides using pH-responsive hydrogels for osteosarcoma chemotherapy. *Pharmaceutics* 15, 668. doi:10.3390/pharmaceutics15020668
- Zhu, C., Ke, L., Ao, X., Chen, Y., Cheng, H., Xin, H., et al. (2024). Injectable supramolecular hydrogels for *in situ* programming of car-T cells toward solid tumor immunotherapy. *Adv. Mater* 36, e2310078. doi:10.1002/adma.202310078
- Zhu, B., Chen, Y., Yang, X., Zhu, Y., Zhao, Y., Liu, Q., et al. (2025). Succinamide ester-containing adhesive hydrogels with controllable degradation for biomedical applications. *Cell Biomater.*, 100176. doi:10.1016/j.celbio.2025.100176
- Zielińska, A., Karczewski, J., Eder, P., Kolanowski, T., Szalata, M., Wielgus, K., et al. (2023). Scaffolds for drug delivery and tissue engineering: the role of genetics. *J. Control. Release* 359, 207–223. doi:10.1016/j.jconrel.2023.05.042