

OPEN ACCESS

EDITED AND REVIEWED BY Ranieri Cancedda. Independent Researcher, Genova, Italy

J. M. García-Aznar,

RECEIVED 21 July 2025 ACCEPTED 01 September 2025 PUBLISHED 19 September 2025

García-Aznar JM, McEvoy E, Verbruggen SW and Van Liedekerke P (2025) Editorial: Integrating computational modeling and organoid technology for enhanced biological research. Front. Bioeng. Biotechnol. 13:1670630. doi: 10.3389/fbioe.2025.1670630

COPYRIGHT

© 2025 García-Aznar, McEvoy, Verbruggen and Van Liedekerke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use. distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these

Editorial: Integrating computational modeling and organoid technology for enhanced biological research

J. M. García-Aznar^{1,2}*, E. McEvoy^{3,4}, S. W. Verbruggen⁵ and P. Van Liedekerke⁶

¹Aragon Institute of Engineering Research (I3A), Multiscale in Mechanical and Biological Engineering (M2BE), Universidad de Zaragoza, Zaragoza, Spain, ²School of Engineering and Architecture (EINA), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain, ³Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland, ⁴CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland, ⁵Centre for Bioengineering and Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom, ⁶Department of Data Analysis and Mathematical modeling, Ghent University, Ghent, Belgium

organoids, in vitro models, computational models, mathematical tools, Bayesian calibration methods, numerical simulations

Editorial on the Research Topic

Integrating computational modeling and organoid technology for enhanced biological research

Organoids are self-organized 3D cell-based in vitro models that replicate the key functional, structural and biological complexities of organs (Zhao et al., 2022). Depending on the application, organoids can be derived from either pluripotent or tissue-resident stem (embryonic or adult) or progenitor or differentiated cells from healthy or diseased tissues, such as tumors (Zhao et al., 2022; Kim et al., 2020). Therefore, organoid technology is a novel approach to study pathologies and their treatment, providing a personalized strategy. Despite their potential applicability, organoids exhibit a high level of complexity that requires advanced mathematical and computational models for comprehensive understanding, being mathematical and computational models an adequate strategy as it has been shown in recent works (Camacho-Gomez et al., 2023; McEvoy et al., 2020; Van Liedekerke et al., 2019).

Since organoids are relatively small systems with a potentially high spatial variability in both biophysical parameters as well as genetic parameters, we can advocate the use of spatio-temporal models such as continuum-based approaches (McEvoy et al., 2020) and agent-based approaches (Van Liedekerke et al., 2019), allowing a description of the local cell-specific biophysical variables in space and time. Agent-based models are a bottom-up approach that allows for simulations of emergent behavior in multi-cellular systems from extensive cell-cell interactions. These include intracellular models that describe the cell state and decision mechanisms for each individual cell, and are typically highly-dimensional with regard to the chemical species and their reactions involved. To alleviate the high complexity and computational burdens, concepts from machine learning techniques can be introduced.

García-Aznar et al. 10.3389/fbioe.2025.1670630

For example, in (Camacho-Gomez et al., 2023), a hybrid agent-based approach with a trained neural network as intracellular state decision model was proposed.

However, despite such advances there remains a gap in validating and integrating these computational tools with experimental research to achieve a more quantitative and predictive understanding of organoid dynamics and physiology. Combining numerical simulations results with experimental data requires rigorous model verification, calibration and validation. Mathematical tools such as global sensitivity analysis, Bayesian calibration methods and cross-validation methods can provide a path to more consistent model development (Lima et al., 2021; Hervas-Raluy et al., 2023).

The goal of leveraging various numerical and mathematical approaches is to advance the understanding of organoid technology, from their morphogenesis and development to their functionality. This Editorial contributes to how numerical tools can improve our understanding of *in vitro* experiments. We believe that this Research Topic will lead to new strategies and methodologies for understanding the role and functionality of organoids as well as a more rapid utilization in medicine. Yet, specific research questions still need to be addressed. Organoids are systems with a high complexity and variety, entailing processes operating at different scales and requiring different state-of-the-art modelling techniques. Which different modeling techniques are most suitable to characterise a specific organoid, and which experimental data are most informative for a given option? It is becoming increasingly clear that hybrid mechanistic data-driven approaches of techniques (such as mentioned before) represent a promising strategy.

Author contributions

JG-A: Writing – original draft, Writing – review and editing. EM: Writing – original draft, Writing – review and editing. SV: Writing – original draft, Writing – review and editing. PV: Writing – original draft, Writing – review and editing.

References

Camacho-Gomez, D., Sorzabal-Bellido, I., Ortiz-de-Solorzano, C., Garcia-Aznar, J. M., and Gomez-Benito, M. J. (2023). A hybrid physics-based and data-driven framework for cellular biological systems: A hybrid physics-based and data-driven framework for cellular biological systems: Application to the morphogenesis of organoidspplication to the morphogenesis of organoids. *Iscience* 26, 107164. doi:10.1016/j.isci.2023.107164

Hervas-Raluy, S., Wirthl, B., Guerrero, P. E., Rei, G. R., Nitzler, J., Coronado, E., et al. (2023). Tumour growth: Tumour growth: An approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironmentn approach to calibrate parameters of a multiphase porous media model based on *in vitro* observations of Neuroblastoma spheroid growth in a hydrogel microenvironment. *Comput. Biol. Med.* 159, 106895. doi:10.1016/j.compbiomed.2023.106895

Kim, J., Koo, B. K., and Knoblich, J. A. (2020). Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584. doi:10.1038/s41580-020-0259-3

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Lima, E. A. B. F., Faghihi, D., Philley, R., Yang, J., Virostko, J., Phillips, C. M., et al. (2021). Bayesian calibration of a stochastic, multiscale agent-based model for predicting *in vitro* tumor growth. *PLoS Comput. Biol.* 17 (11), e1008845.

McEvoy, E., Han, Y. L., Guo, M., and Shenoy, V. B. (2020). Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. *Nat. Commun.* 11 (1), 6148. doi:10.1038/s41467-020-19904-5

Van Liedekerke, P., Neitsch, J., Johann, T., Alessandri, K., Nassoy, P., and Drasdo, D. (2019). Quantitative cell-based model predicts mechanical stress response of growing tumor spheroids over various growth conditions and cell lines. *PLoS Comput. Biol.* 15 (3), e1006273. doi:10.1371/journal.pcbi.1006273

Zhao, Z., Chen, X., Dowbaj, A. M., Sljukic, A., Bratlie, K., Lin, L., et al. (2022). Organoids. Nat. Rev. Methods Prim. 2, 94. doi:10.1038/s43586-022-00174-y