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Breast augmentation is the most prevalent aesthetic surgical procedure
worldwide. While silicone breast implants have evolved in terms of safety and
biocompatibility, they inevitably trigger a foreign body response (FBR). This
complex process can lead to fibrous encapsulation, capsular contracture, and
other complications, often necessitating invasive revision surgeries. This review
comprehensively analyzes the molecular and cellular mechanisms underlying
FBR, emphasizing the crucial role of implant surface properties. We demonstrate
how these properties, including topography, hydrophobicity, and charge, govern
the initial protein adsorption patterns, effectively establishing a "molecular
fingerprint” that dictates subsequent cellular interactions. This, in turn,
orchestrates immune cell activation, notably macrophages, which exhibit
plasticity in their polarization into pro-inflammatory (M1) and pro-fibrotic (M2)
phenotypes. The balance between these phenotypes influences the extent of
fibrosis and capsular contracture. We explored the five distinct phases of FBR:
protein adsorption, acute inflammation, chronic inflammation, foreign body giant
cell (FBGC) formation, and encapsulation. The impact of implant surface
properties on each phase was elucidated, highlighting the dynamic interplay
between macrophages, lymphocytes, and matrix. The phenomenon of
“frustrated phagocytosis,” where macrophages fail to engulf the implant,
leading to FBGC formation and chronic inflammation, is also examined.
Finally, we explore promising strategies to modulate FBR and enhance implant
biocompatibility, including biomimetic coatings, the use of decellularized
matrices, and therapies aimed at disrupting specific molecular pathways
involved in fibrosis. This review provides insights into the development of
next-generation implants that can harmoniously integrate with the body,
minimizing FBR and ensuring long-term clinical success.
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1 Introduction

Millions
augmentation, a procedure that addresses both cosmetic desires and

of women worldwide have undergone breast
reconstructive needs, by correcting breast volume and shape
abnormalities. This makes it the most prevalent aesthetic surgical
procedure globally (Major et al., 2015). Given that breast implants
are designed to reside within the body for extended periods,
understanding their complex interplay with the surrounding tissues
is paramount. While silicone implants, first introduced in 1963, have
undergone significant advancements in biocompatibility and safety
(Gonzalez et al, 2016; George et al., 2006), they inevitably elicit a
foreign body response (FBR). This intricate biological process can lead
to complications such as capsular contracture, a condition that causes
hardening and distortion of the breast, often requiring further surgery
(Tebbetts, 2002). Although research has shown that implant
modifications, like micro-texturing, can mitigate the FBR and reduce
capsular contracture (Tebbetts, 2002), unfavorable outcomes persist.
This underscores the critical need to further understand and modulate
this response to improve patient outcomes.

The body’s reaction to a silicone implant encompasses two
intertwined processes: the wound healing response triggered by
the surgical trauma, and the FBR, representing the long-term
interaction between the implant and the immune system (Major
et al., 2015; Chandorkar et al., 2018). This review delineates both
processes, dissecting their impact on potential complications, with a
particular focus on fibrosis and capsular contracture formation
(Figure 1). We further explore emerging strategies aimed at
modulating these responses to enhance implant biocompatibility
and ensure the long-term success of breast implantation, not only
for aesthetic purposes but also for crucial oncological and
reconstructive applications.

10.3389/fbioe.2025.1668930

2 Methodology

Articles used in the synthesis of this manuscript were obtained
after an electronic search on various scientific databases including
PubMed, Scopus, and Web of Science. This comprehensive search
included words such as wound healing, foreign body response,
silicone implants, adsorption, inflammation, and fibrosis. The
authors further screened the identified manuscripts to meet the
Duplicate and non-English manuscripts

inclusion criteria.

were removed.

3 Wound healing response to
tissue injury

The implantation of a silicone breast implant inevitably causes
tissue injury, initiating a wound healing response that shares key
features with the FBR (Gonzalez et al., 2016; George et al., 2006).
Both processes involve a complex interplay of cells, cytokines, and
extracellular matrix (ECM) components (Gonzalez et al., 2016;
George et al., 2006). Wound healing progresses through distinct
phases: hemostasis, inflammation, proliferation, and remodeling
(Rodrigues et al., 2019). Initially, hemostasis stems bleeding and
establishes a provisional matrix for cell migration (Furie and Furie,
2008; Skover, 1991; Schultz et al., 2011; Periayah et al., 2017; Junker
et al,, 2013; Sieggreen, 1987). Platelets are crucial, releasing growth
factors like transforming growth factor-beta (TGF-f), epidermal
growth factor (EGF), and platelet-derived growth factor (PDGF)
that stimulate subsequent phases (Senzel et al., 2009; Amable et al.,
2013). Inflammation then recruits immune cells to the injury site
(Mittal et al., 2014; Bergamini et al., 2004; Ludes et al., 2021; Soliman
and Barreda, 2022), which eliminate pathogens and orchestrate the
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FIGURE 1

Early stages of breast implant insertion and late-stage complications due to fibrosis. (A) Protein adsorption on the implant surface enables the
adhesion of cells, which triggers processes that form a provisional capsule around the implant. (B) Chronic inflammation followed by excessive synthesis
of the ECM may lead to the development of a dense, contracting capsule that impedes the integration of implant and breast tissue.

Frontiers in Bioengineering and Biotechnology

02

frontiersin.org


mailto:Image of FBIOE_fbioe-2025-1668930_wc_f1|tif
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1668930

Dzobo et al.

proliferative phase (He and Marneros, 2013; Delavary et al., 2011;
Shapouri-Moghaddam et al., 2018; Krzyszczyk et al., 2018; Novak
and Koh, 2013). During proliferation, fibroblasts synthesize new
ECM and endothelial cells form new blood vessels (Hosgood, 2006;
Strodtbeck, 2001; Johnson and Wilgus, 2014; Bainbridge, 2013; Lin
etal., 2023). Finally, remodeling leads to scar formation, marked by a
shift in collagen composition and wound contraction (Haukipuro
et al,, 1991; Darby et al., 2014; Gurtner et al., 2008; Gill et al., 2003;
Telgenhoff and Shroot, 2005). Understanding wound healing
provides a foundation for comprehending the FBR, as both share
fundamental mechanisms and involve a complex interplay of
cellular and molecular events.

3.1 Hemostasis

The wound healing process is initiated by hemostasis, a critical
step involving the rapid cessation of bleeding from damaged blood
vessels (Furie and Furie, 2008; Skover, 1991). This process is driven
by vasoconstriction, narrowing the blood vessels, and platelet
activation (Schultz et al., 2011). Platelets aggregate at the site of
injury, forming a plug in response to exposed subendothelial
collagen (Periayah et al, 2017). Activated platelets also release
factors that promote the deposition of fibrinogen, which is then
converted to insoluble fibrin strands, further reinforcing the platelet
plug (Periayah et al, 2017). This combined structure forms a
thrombus, effectively sealing the ruptured vessels and preventing
further blood loss (Junker et al., 2013; Sieggreen, 1987). Importantly,
the fibrin network also serves as a provisional matrix, providing a
scaffold for the migration of other cells crucial for subsequent stages
of wound healing (Junker et al, 2013; Sieggreen, 1987).
Furthermore, platelets embedded within the thrombus release a
variety of biomolecules, including TGF-p, EGF, and PDGF, which
stimulate and orchestrate the subsequent phases of wound healing,
including inflammation and proliferation (Senzel et al, 2009;
Amable et al., 2013). This highlights the multifaceted role of
platelets in hemostasis, extending beyond clot formation to
actively modulate the overall wound healing response.

3.2 Inflammation

The inflammatory phase of wound healing is a critical stage
orchestrated by a complex network of cellular and molecular signals.
It is initiated by the release of various mediators from injured cells,
including reactive oxygen species (ROS), damage-associated
molecular patterns (DAMPs), bioactive lipids, and cytokines/
chemokines (Mittal et al, 2014; Bergamini et al., 2004; Ludes
et al., 2021; Soliman and Barreda, 2022). These signals act as
distress beacons, alerting the immune system to tissue damage
and initiating an inflammatory response.

Resident cells, including mast cells and macrophages, are quick
to respond to these signals, becoming activated and releasing
additional inflammatory mediators that amplify the response and
recruit circulating immune cells to the injury site (He and Marneros,
2013). Neutrophils, the first line of defense, rapidly infiltrate the
wound, acting as phagocytic sentinels that engulf pathogens and
prevent infection (Delavary et al, 2011). Following neutrophil
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infiltration, monocytes infiltrate the wound and differentiate into
macrophages, further bolstering the immune response (Shapouri-
Moghaddam et al.,, 2018). Macrophages are highly versatile and
orchestrate inflammation and subsequent stages of wound healing.
They not only eliminate pathogens through phagocytosis and the
production of antimicrobial substances but also clear cellular debris
and release signaling molecules that regulate tissue repair
(Krzyszczyk et al., 2018).

Macrophages exhibit remarkable plasticity and dynamically
adapt to their phenotype
environmental cues (Novak and Koh, 2013). Early in the

and function in response to

inflammatory  phase, pro-inflammatory M1 macrophages
predominate, driving the immune response against pathogens
(Krzyszczyk et al, 2018). As the wound healing process
progresses, shift towards

M2 macrophages, which promotes tissue repair and resolution of

there is a a predominance of
inflammation (Novak and Koh, 2013). This phenotypic switch is
essential for efficient wound healing and transition to the
subsequent proliferative phase.

3.3 Proliferation

The proliferative phase marks a turning point in wound healing,
shifting the focus from defense to reconstruction (Hosgood, 2006).
This phase is characterized by a surge in cellular activity, with
various cell types playing crucial roles in rebuilding damaged tissues.
Epithelial cells such as keratinocytes proliferate, migrate, and
differentiate to restore the epidermal barrier and effectively seal
the wound (Strodtbeck, 2001). In deeper tissues, such as the dermis
and hypodermis, the activity of endothelial cells and fibroblasts is at
the central stage (Johnson and Wilgus, 2014). Endothelial cells, the
architects of blood vessels, proliferate and migrate to form new
vascular networks via angiogenesis (Bainbridge, 2013). This process
is crucial for supplying the regenerating tissue with oxygen and
nutrients, which are necessary for repair. Simultaneously, fibroblasts
within the wound, the master builders of the ECM, proliferate, and
begin synthesizing new ECM components (Bainbridge, 2013). This
new ECM provides structural support and a scaffold for tissue
regeneration.

As the proliferative phase progresses, granulation tissue
emerges, replacing the initial fibrin clot (Lin et al, 2023). This
nascent tissue, rich in collagen and newly formed blood vessels,
serves as a foundation for the final scar tissue matrix (Lin et al.,
2023). The proliferative phase, therefore, represents a critical bridge
between the initial inflammatory response and the final remodeling
stage, laying the groundwork for tissue regeneration and
scar formation.

3.4 Remodeling and scar formation

The final remodeling phase is a protracted yet essential process
that transforms the initial granulation tissue into a mature, relatively
avascular scar (Haukipuro et al., 1991; Darby et al., 2014). This phase
is characterized by extensive ECM remodeling, orchestrated
primarily by fibroblasts, the key cellular players in this stage. A
hallmark of the remodeling phase is the shift in collagen
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TABLE 1 The five key stages of FBR, the cell types, cellular interactions and molecular interactions involved.

Stage of FBR

(time course)

Cell types involved

Cellular interactions

Molecular interactions

Protein Adsorption
(seconds to minutes)

Acute Inflammation
(hours to days)

None (acellular initial phase);
sets stage for leukocytes

Neutrophils, monocytes,
macrophages, mast cells,
platelets

Rapid, non-specific binding of plasma proteins to
implant surface; Vroman effect dictates sequential
displacement

Neutrophil migration and degranulation; monocyte
differentiation to macrophages; mast cell histamine
release recruits phagocytes; platelet activation aids clot
formation and cell recruitment

Albumin, fibrinogen, fibronectin, vitronectin,
complement (e.g., C3b), y-globulin adsorb; integrins
mediate future cell adhesion; complement activation
initiates coagulation-inflammation cross-talk

Release of ROS, proteolytic enzymes, chemokines (e.g.,
CXCL4, LTB4), cytokines (TNF-a, IL-1p, IL-6, IL-8);
B2 integrins (aMp2) bind fibrinogen/fibronectin; TGE-
B, PDGF from platelets

Chronic Inflammation
(days to weeks)

FBGC Formation
(weeks to months)

Fibrous Encapsulation
(months to years)

Macrophages (M1 to M2 shift),
lymphocytes, fibroblasts (early)

Macrophages, FBGCs

Fibroblasts, myofibroblasts,
macrophages, endothelial cells

Macrophage adhesion and activation; lymphocyte-
macrophage cross-talk sustains response; frustrated
phagocytosis as cells fail to degrade implant

Macrophage fusion into multinucleated FBGCs;
persistent surface adhesion; attempted engulfment/
degradation

Fibroblast proliferation and transdifferentiation to
myofibroblasts; macrophage-fibroblast signaling;
angiogenesis for capsule vascularization; collagen
deposition isolates implant

Pro-inflammatory cytokines (TNF-a, IL-1, IL-6);
chemokines (CCL2/MCP-1, CCL3/MIP-1a); transition
to anti-inflammatory IL-10, TGF-B; B1/B2 integrins for
adhesion; MMPs regulate ECM remodeling

IL-4, IL-13 induce fusion; mannose receptor, DC-
STAMP, CD47 upregulation; ROS, acid, enzymes
released; vitronectin, osteopontin modulate process;
racl signaling

TGEF-f, PDGF drive fibroblast activation; VEGF for
angiogenesis; collagen (types I/III), fibronectin in ECM;
IL-10, TGF-P promote resolution or fibrosis

composition within the scar tissue. The initial collagen III-rich
ECM, characteristic of granulation tissue, is gradually replaced by
a more robust and organized ECM rich in collagen I (Haukipuro
et al,, 1991; Darby et al,, 2014). This transition is driven by the
increased synthesis of collagen I and the concurrent degradation of
collagen III by enzymes known as matrix metalloproteinases
(MMPs) (Gurtner et al., 2008).

The delicate balance between MMPs, responsible for ECM
degradation, and tissue inhibitors of metalloproteinases (TIMPs),
is crucial for proper scar formation (Gill et al., 2003; Telgenhoff and
Shroot, 2005). A disruption of this balance, particularly an
overabundance of MMP activity, can lead to excessive ECM
breakdown and impaired scar formation, while an imbalance
favoring TIMPs can result in excessive scar tissue formation (Gill
et al, 2003; Telgenhoff and Shroot, 2005). Myofibroblasts,
specialized contractile fibroblasts, play key roles during the
remodeling phase. These cells generate significant contractile
forces, facilitating wound closure and contributing to the overall
organization and strength of the scar tissue. However, the persistent
presence or abnormal clearance of myofibroblasts can lead to
excessive ECM deposition and contribute to pathological scarring
(Telgenhoff and Shroot, 2005). Therefore, the tightly regulated
activity of fibroblasts and myofibroblasts, coupled with the
balanced interplay between MMPs and TIMPs, is crucial for
achieving optimal scar formation and tissue regeneration.

4 Foreign body response to implants

The body’s response to a silicone breast implant mirrors many
aspects of normal wound healing, yet with distinct consequences
(Kyriakides and Bornstein, 2003). The surgical procedure itself
causes tissue damage, eliciting a wound-healing-like response
(Kyriakides and Bornstein, 2003). However, the presence of the
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implant as a foreign object triggers a unique cascade of events known
as the FBR (Noskovicova et al., 2021a). This response, while sharing
similarities with wound healing, ultimately isolate the implant from
the host tissue by encapsulating it within a fibrous capsule
(Noskovicova et al, 2021a). In some cases, this process can
dysregulated,
complications such as
et al,, 2021a).

The FBR to silicone implants typically progresses through five

become leading to excessive fibrosis and

capsular contracture (Noskovicova

key phases: 1 protein adsorption and provisional matrix
formation, 2 acute inflammation, 3 chronic inflammation,
4 foreign body giant cell formation, and 5 encapsulation
(Table 1). This complex process involves a dynamic interplay
of various cells and the extracellular matrix, ultimately shaping
the long-term fate of the implant.

4.1 Protein adsorption and provisional
matrix formation

The implantation of a silicone breast implant invariably disrupts
vascularized connective tissue, initiating a wound healing response
characterized by the adsorption of various blood plasma proteins
onto the implant surface (Rivera-Chacon et al., 2013). These
proteins, including albumin, fibrinogen, and vitronectin, exhibit
high affinity for the implant material and form a fibrin-
dominated provisional ECM 2013;
Figure 2). This nascent ECM, adhering to the implant surface as

(Rivera-Chacon et al,
a 2-5 nm layer, serves as a dynamic scaffold that influences the
subsequent FBR (Zhang et al., 2013). It provides structural support
for infiltrating cells and acts as a reservoir for various bioactive
molecules, such as mitogens, chemoattractants, cytokines, and
growth factors, which are continuously released and modulate
the FBR (Wells et al., 2017).
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The first phase of the foreign-body response is the adsorption of various ECM components and proteins (collagens, fibronectin, fibrin, etc.) onto the
surface of the implant, followed by the formation of a sparse, fibrin-rich provisional matrix around the implant.

The composition and structure of this initial protein layer are
critical, as they can significantly influence long-term outcomes. For
instance, an excessively thick protein layer or specific protein
conformations that promote cell adhesion may predispose to
excessive capsule formation and fibrosis around the implant.
Protein adsorption onto biomaterials is a dynamic process
several mechanisms, adsorption and

involving including

desorption, competitive exchange, and exchange through
transient complex formation (Darby et al., 2014; Gurtner et al.,
2008). The complexity of this process in vivo, involving numerous
proteins and dynamic interactions, remains an area of active
investigation.

The initial phase of protein adsorption is often governed by the
Vroman effect, characterized by the sequential adsorption of
proteins based on their size and mobility (Noh and Vogler,
2007). Smaller, more mobile proteins, like albumin, are initially
adsorbed but are subsequently replaced by larger and adhesive
proteins on the implant surface (Kim and Yoon, 2002; Horbett,
2018; Voskerician et al, 2000). This dynamic exchange is
particularly prominent on hydrophilic surfaces, as protein
binding is less tenacious compared to hydrophobic surfaces (Noh
and Vogler, 2007; Kim and Yoon, 2002). Ultimately, the final protein
composition on the implant surface is determined by a complex
interplay of factors, including serum protein concentrations, surface
characteristics of the implant material, and the individual protein
properties (Voskerician et al., 2000).

The specific proteins adsorbed onto the implant surface play
distinct roles in the subsequent FBR. Vitronectin and fibronectin, for

example, are critical for monocyte adhesion to the provisional
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matrix and the implant surface (Shen et al., 2004). Fibrinogen, in
addition to its role in coagulation (Gill et al., 2003), also promotes
the adhesion of platelets, neutrophils, and macrophages, thereby
influencing subsequent inflammatory phases of the FBR (Darby
et al.,, 2014; Gurtner et al., 2008). Understanding the intricacies of
protein adsorption and the dynamic interplay of adsorbed proteins
is crucial for comprehending the FBR and developing strategies to
modulate this response for improved implant biocompatibility.
For silicone implants inserted into the breast socket, protein
adsorption, governed by the Vroman Effect, occurs immediately
upon contact with blood and interstitial fluids, forming a provisional
matrix that dictates the subsequent cellular responses (Richter-
Bisson and Hedberg, 2025). The design strategies for silicone
implants should prioritize the modulation of early protein
adsorption to foster biocompatibility. Inhibiting fibrinogen
adsorption is paramount because its conformational changes
expose epitopes that trigger
proinflammatory cascades, exacerbating FBR and capsular

recruit macrophages and
contracture (Jung et al., 2003). Similarly, suppressing unfolded
immunogenic proteins such as albumin prevents denaturation-
induced inflammation and immune activation (Ballet et al,
2010). Conversely, promoting fibronectin adsorption enhances
integrin-mediated cell adhesion, facilitating extracellular matrix
remodeling and tissue integration, thereby mitigating fibrosis.
Surface modifications, such as zwitterionic coatings (for
example, poly(2-methacryloyloxyethyl phosphorylcholine)
(MPC)) or polyethylene glycol (PEG) grafting), can selectively
reduce fibrinogen binding while favoring fibronectin binding,

achieved via increased hydrophilicity and antifouling properties
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(Fischer et al,, 2018). This initial adsorption event is critically
important, as it orchestrates all downstream immune and fibrotic
responses, including macrophage fusion, cytokine release (e.g., TGF-
B), and collagen deposition, potentially leading to complications
such as contracture or implant failure. Controlling early protein
adsorption offers a foundational approach to enhance long-term
outcomes. Several studies have demonstrated the benefits of doing
so. Kang et al. (2020) demonstrated MPC-coated silicone implants
reduced protein adsorption by 55%-64%, yielding thinner capsules
and lower inflammation in porcine models (Kang et al., 2020).
Zeplin et al. (2010) showed halofuginone coatings inhibited
fibrinogen-driven fibrosis, decreasing capsule thickness and TGF-
B levels in rats (Zeplin et al., 2010). Kim et al. (2020) used PEG-
linked liposomes containing phosphatidylserine to minimize
fibrinogen and enhance fibronectin-like integration, reducing
fibrous encapsulation (Kim et al., 2020). These interventions
underscore the potential of adsorption control in improving
implant durability and patient safety.

4.1.1 Implant surface properties modulation of
protein adsorption and provisional
matrix formation

The physicochemical properties of an implant surface
significantly influence the initial protein adsorption process,
ultimately shaping the composition and structure of the
provisional matrix and the subsequent FBR (Foroushani et al,
2022; Lam et al., 2021). Surface topography, wettability, and even
tensile strength play crucial roles in determining the type and
amount of proteins adsorbed (Foroushani et al., 2022; Lam et al,,
2021). Furthermore, the plasma concentration of individual proteins
and their inherent structural characteristics also contribute to their
adsorption profiles (Wilson et al., 2005).

Interestingly, while the initial protein adsorption patterns are
critical, they do not fully predict the final composition of the
provisional matrix (Jenney and Anderson, 2000; Horbett, 1993;
Love and Jones, 2013). This highlights the dynamic and complex
nature of protein interactions at the biomaterial interface. For
instance, while increased surface roughness and hydrophilicity
generally enhance protein adsorption (Horbett, 2018; Lee and
1988; Guha 2011), the
relationship between hydrophobicity and protein adsorption is

Ruckenstein, and Subramanian,
not always straightforward. Although hydrophilic surfaces might
initially repel proteins due to the formation of a water barrier
(Wahlgren and Arnebrant, 1991; Raffaini and Ganazzoli, 2010),
some studies suggest that both hydrophilic and hydrophobic
surfaces can exhibit similar protein adsorption capacities (Fabre
et al,, 2018; Jeyachandran et al., 2009).

This complexity is further underscored by the influence of
specific polymer coatings on protein adsorption. PEG, for
example, is known to reduce protein adsorption, with its
effectiveness correlating with chain density (Malmsten et al,
1998; Sun et al, 2014). Other polymers employed for their
protein-repelling properties include oligoethylene glycol (Li et al.,
2007), polyacrylamide (Xue et al, 2012; Liu et al, 2012),
polycarboxybetaine methacrylate (Zhang et al, 2008), and
peptoids (Mahmoudi et al.,, 2017).

Beyond surface properties, protein characteristics, such as
conformation and charge, also play crucial roles in adsorption
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(Mitra, 2020; Hasan et al.,, 2018). Proteins like vitronectin exhibit
preferential binding to charged surfaces (Li et al., 2020; Banovac
et al., 1994). Moreover, surface roughness can influence protein
conformation upon adsorption, potentially altering their biological
activity and interactions with cells (Prasad et al., 2010; Lord et al.,
2010; Le et al., 2013). This effect may be attributed to the impact of
roughness on surface wettability, which in turn influences protein
interactions (Vogler, 1998; MacDonald et al., 1998).

The interplay between implant surface properties and protein
characteristics orchestrates a complex adsorption process that
ultimately shapes the provisional matrix and influences
subsequent stages of the FBR. Understanding these intricate
relationships is crucial for designing biocompatible implant
materials that can modulate the FBR and promote successful

tissue integration.

4.2 Acute inflammation

Acute inflammation is a rapid and transient response to tissue
injury and the presence of a foreign body, such as a silicone implant.
This phase, occurring within minutes to hours of implantation, is
characterized by the orchestrated recruitment of inflammatory cells
to the tissue-implant interface (Zdziennicka et al, 2021;
Kizhakkedathu and Conway, 2022; Figure 3). The initial trigger
for this acute inflammatory response is the tissue damage incurred
during the surgical implantation procedure itself (Javdani et al.,
2022; Zhou and Groth, 2018). This damage leads to the release of
various biomolecules, including lipids, ATP, and heat shock
proteins, which act as “danger signals” alerting the immune
system to the injury (Kono and Rock, 2008). These danger
signals, along with factors released from activated platelets such
as platelet factor IV, initiate the recruitment of leukocytes, primarily
neutrophils, to the implant site (Boni et al., 2019; Jhunjhunwala,
2017). Neutrophils are the first responders, rapidly migrating to the
site of injury and playing a critical role in eliminating potential
pathogens and preventing infection (Boni et al., 2019; Ellis et al.,
2018). The provisional matrix also contributes to leukocyte
activation and recruitment (Barker and Engler, 2017; Modulevsky
et al, 2016; Klopfleisch and Jung, 2017). Mast cells in the
surrounding tissue further amplify the inflammatory response by
releasing histamine and serotonin, which induce vasodilation and
facilitating  the
inflammatory cells to the implant site (Zdolsek et al., 2007). Mast

increase vascular permeability, influx  of
cells also release cytokines like IL-4 and IL-13, which play a crucial
role in recruiting monocytes and promoting their differentiation
into macrophages (Janeway and Medzhitov, 2002).

Macrophages, the central orchestrators of the FBR, become a
prominent cell population at the implant site, phagocytosing cellular
debris, damaged tissue, and potential implant degradation products
(Kenneth Ward, 2008). The activation of complement products and
the potential presence of bacteria further contribute to the
inflammatory milieu by generating chemoattractants that attract
additional leukocytes (Kyriakides and Bornstein, 2003; Noskovicova
et al., 2021a; Rivera-Chacon et al., 2013; Zhang et al., 2013; Labow
et al,, 2001; De Filippo et al., 2013).

This complex interplay of cellular and molecular events creates a
highly pro-inflammatory microenvironment at the tissue-implant

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1668930

Dzobo et al.

10.3389/fbioe.2025.1668930

uow0ies
AR X N

Implant

2
L X “\{ :
Provisional Matrix

Proteins Fibroblast
adsorption

& ™

Sy

Platelet Mastcell Fibrinogen Monocyte Neutrophil Bloodvessel Cytokine/Factors

FIGURE 3

The second phase of the foreign body response is acute inflammation, which is characterized by the dominant presence of polymorphonuclear
leukocytes, recruitment of monocytes and macrophages, and mast cell degranulation.

interface, driving further leukocyte recruitment and setting the stage
for the subsequent chronic inflammatory phase (Kanterman et al.,
2012; Wang et al, 2022). The acute inflammatory phase, while
typically transient, is crucial in shaping the overall FBR and can
the

significantly influence long-term outcome of implant

integration.

4.2.1 Implant surface properties modulation of
acute inflammation

While the acute inflammatory phase is transient, the impact of
implant surface properties on this stage can have profound
implications for the subsequent progression of the FBR. Although
research on this specific phase is limited due to its short duration,
several key factors have been identified.

The extent of tissue damage during implant insertion is a major
determinant of the severity of acute inflammation (Chang and
Merritt, 1994). Greater surgical trauma leads to increased release
of danger signals and a more robust inflammatory response.
Similarly, the amount and composition of the initial protein
adsorption layer influence the activation and recruitment of
immune cells (Chang and Merritt, 1994).

Surface properties play a role in modulating the acute
inflammatory while
potentially promoting protein adsorption, can also increase the risk

response. Increased surface roughness,
of bacterial infection, further exacerbating inflammation (Chang and
Merritt, 1994). The provisional matrix itself can modulate the
inflammatory response by acting as a physical barrier, influencing
the interactions between infiltrating immune cells (Lewis et al., 2014;
Carnicer-Lombarte et al., 2021). Furthermore, the implant surface can
directly interact with immune cells via pattern recognition receptors,
such as Toll-like receptors (TLRs). For example, TLR2 and TLR4 on
leukocytes can recognize the hydrophobic regions of implant surfaces,
triggering immune cell activation and contributing to the inflammatory

response (Carnicer-Lombarte et al., 2021).
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The interaction between the provisional matrix and immune
cells is also crucial for determining the transition from acute to
chronic inflammation (Martin and Garcia, 2021; Babensee, 2020;
Lickorish et al., 2004). Macrophages and polymorphonuclear cells
interact with the provisional matrix, and their activation state can
influence the duration and intensity of the inflammatory response.
The release of pro-inflammatory mediators such as IL-4 and IL-13
during this phase further amplifies the immune response and
contributes to the recruitment and activation of macrophages,
which are key players in chronic inflammation (Demir, 2020).

While acute inflammation is a fleeting phase, the interplay
between implant surface properties, the provisional matrix, and
immune cell activation during this stage sets the stage for the
subsequent phases of the FBR and ultimately influences the long-
term outcome of implant integration.

4.3 Chronic inflammation

Chronic inflammation represents a persistent immune response
that can significantly impact the long-term success of implant
integration. Macrophages are the central players in this phase,
orchestrating a complex network of cellular and molecular
interactions (Martin and Garcia, 2021; Sheikh et al, 2015).
Monocytes, recruited from the bone marrow and spleen, migrate
to the implant site and differentiate into macrophages (Gerhardt and
Ley, 2015; Kzhyshkowska et al., 2015; Figure 4). This recruitment is
driven by various growth factors and cytokines, including
macrophage inflammatory protein la, TGF-p, and platelet-
derived growth factor (Zhao et al., 1992; McNally et al., 1996).

Upon arrival, macrophages interact with the provisional matrix,
adhering to proteins like fibronectin and fibrinogen via integrin
receptors (Sheikh et al., 2015; Rowley et al., 2019; Hsieh et al., 2017).
This interaction is crucial for macrophage activation and
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The third phase of the foreign-body response is chronic inflammation, which is characterized by the presence of many macrophages and
lymphocytes around the implant. Over time, macrophages fuse to form foreign body giant cells (FBGC) because of unsuccessful phagocytosis (frustrated
phagocytosis) as well as the effect of IL4 and IL13 derived from mast cells. Granulation tissue formation is a result of the release of various growth factors

by macrophages and FBGC.

polarization into distinct phenotypes with specialized functions
(Sheikh et al., 2015; Rowley et al, 2019; Hsieh et al, 2017).
Macrophages contribute to the vascularization of the surrounding
tissue by secreting pro-angiogenic factors such as TGF-p, PDGF,
and vascular endothelial growth factor (VEGF) (Xu et al.,, 2013).
They also release a diverse array of chemokines, cytokines, and other
that
microenvironment and influence the progression of the FBR (Xu
et al.,, 2013).

A key factor contributing to the transition from acute to chronic

signaling  molecules modulate  the inflammatory

inflammation is the “frustrated phagocytosis” phenomenon
(Luttikhuizen et al., 2006). Macrophages attempt to engulf the
implant but are unable to do so due to its size or material
leading to their persistent activation and the
(Luttikhuizen

properties,
perpetuation of the
et al., 2006).

Chronic

inflammatory response

inflammation also involves the infiltration of
lymphocytes, which further modulates the immune response. T
lymphocytes release cytokines like IL-4 and IL-13, which promote
the polarization of macrophages from the pro-inflammatory
M1 phenotype to the pro-healing and pro-fibrotic M2 phenotype
(Major et al., 2015; Kzhyshkowska et al., 2015; Mariani et al., 2019;
Pinhal Enfield and Leibovich, 2011). M2 macrophages are key to
tissue remodeling and contribute to the formation of foreign body
giant cells (FBGCs) (Major et al., 2015; Kzhyshkowska et al., 2015;
Mariani et al., 2019; Pinhal Enfield and Leibovich, 2011).

While the M1/M2 paradigm provides a useful framework for
understanding macrophage function, it is important to recognize
that macrophages exist along a spectrum of activation states, with
various intermediate phenotypes exhibiting diverse functions
(Major et al, 2015; Szott and Horbett, 2011; Yu et al, 2015;

Mooney et al, 2014). These different macrophage phenotypes
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play distinct roles in chronic inflammation and tissue
regeneration. For example, M2 macrophages are associated with
reduced implant biointegration and increased angiogenesis (Labow
et al,, 2001; Rayahin and Gemeinhart, 2017; Jackson et al., 2023),
while M1 macrophages are crucial for eliminating pathogens and
promoting cell recruitment (Garg et al., 2013; Sridharan et al., 2015).

Further research is ongoing to fully elucidate the complex
interplay of macrophage phenotypes and their contributions to
the FBR. This knowledge is crucial for developing strategies to
modulate macrophage polarization and promote successful

implant integration.

4.3.1 Implant surface properties modulation of
chronic inflammation

The chronic inflammatory phase of the FBR is significantly
influenced by the physicochemical properties of the implant surface.
Surface roughness, as well as the type and amount of adsorbed
proteins, can modulate macrophage activation and polarization,
ultimately affecting the progression of chronic inflammation
2015; Lv et al, 2018; Hamlet et al, 2012).
Additionally, factors such as bacterial infection and implant

(Anderson,

movement within the breast pocket can exacerbate and prolong
the inflammatory response (Kyriakides and Bornstein, 2003;
Noskovicova et al., 2021a).

Macrophages, equipped with pattern recognition receptors like
TLRs, can directly sense and respond to the implant surface (Love
and Jones, 2013). This recognition triggers signaling cascades that
and cytokine
Furthermore, the surface properties of the implant can directly
affect macrophage adhesion and behavior. Hydrophobic surfaces,

influence macrophage activation production.

for example, tend to enhance macrophage attachment compared to
hydrophilic surfaces (Anderson, 2015; Lv et al., 2018; Hamlet et al.,
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Formation of foreign body giant cells. Recruited and/or local-resident monocytes are recruited to the wound or implant site. Monocytes
differentiate into M1 macrophages, polarize into M2 macrophages, and eventually fuse into foreign body giant cells (FBGCs).

2012). The presence of specific chemical groups on the implant
surface, such as amino and hydroxyl groups, can also promote
macrophage and lymphocyte infiltration, leading to a more
pronounced chronic inflammatory response (Ion et al, 2015;
Zhou et al., 2017; Jenney and Anderson, 1999).

Interestingly, the topography of the implant surface, particularly
the presence of pores, can influence macrophage recruitment and
polarization. Implants with pore sizes between 30 and 40 um have
been shown to promote macrophage recruitment and their
activation towards the M2 phenotype (Sussman et al.,, 2014; Li
etal., 2022; Ma et al., 2014; Zhu et al., 2021). These M2 macrophages
secrete anti-inflammatory cytokines and growth factors, potentially
contributing to tissue repair and resolution of inflammation.

When macrophages encounter an implant that is too large or
resistant to phagocytosis, they engage in “frustrated phagocytosis,”
adhering to the implant surface via podosomes rather than focal
contacts (Zhang et al,, 2013). This persistent interaction, coupled
with the ongoing production of inflammatory cytokines like IL-4
and IL-13 by immune cells, can lead to macrophage fusion and the
formation of FBGCs (Wells et al., 2017; Noh and Vogler, 2007; Kim
and Yoon, 2002). Chemoattractants, such as CCL2, further
contribute to this process by directing macrophages towards each
other, facilitating their fusion (Horbett, 2018).

The chronic inflammatory phase of the FBR is a dynamic process
influenced by a complex interplay of implant surface properties, protein
adsorption, and immune cell interactions. Understanding these factors
is critical for developing strategies to modulate the inflammatory
response and promote successful implant integration.

4.4 Foreign body giant cell formation

The formation of FBGCs is a hallmark of the FBR, making it
distinct from chronic inflammatory response (Bryers et al., 2012).
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These multinucleated giant cells arise from the fusion of
macrophages in an attempt to engulf the implant, a process often
triggered by “frustrated phagocytosis” when macrophages encounter
an implant too large to internalize (Zhang et al., 2013; Smetana,
1987; Ahmadzadeh et al, 2022; McNally and Anderson, 2011).
FBGCs are imposing structures, measuring several hundred
micrometers in size and containing numerous nuclei (Figure 5;
Zhang et al., 2013; Smetana, 1987). Once formed, they persist at the
implant site as long as the implant is present (Brodbeck and
Anderson, 2009). While the precise role of FBGCs in the FBR
remains an area of ongoing research, their formation is thought
to represent a mechanism to enhance phagocytic efficiency or
potentially evade apoptosis (Ahmadzadeh et al, 2022; McNally
and Anderson, 2011).

The interaction between macrophages and implants, and thus
the likelihood of FBGC formation (Figure 5), is influenced by
various factors, including the size of the implant or its fragments.
Plasma proteins adsorb onto biomaterials, forming biomaterial-
associated molecular patterns (BAMPs) that facilitate macrophage
adhesion via integrins, notably p1 and 2 subunits, which link to the
actin cytoskeleton via talin, vinculin, paxillin, and focal adhesion
kinase (FAK) (Zaveri et al, 2014). This adhesion triggers
mechanosensing and mechanotransduction, generating traction
forces via actin polymerization and myosin II, thereby promoting
haptotaxis and cell migration (Eslami-Kaliji et al., 2023). Rho-family
GTPases such as Racl and Cdc42 regulate lamellipodia and filopodia
formation, which are essential for cell protrusion and contact (Hoon
et al, 2016). Macrophages readily engulf and degrade smaller
particles through phagocytosis and intracellular lysosomal
degradation (Table 2, second column) (Bryers et al., 2012). For
larger particles (10-100 pm), macrophages fuse to form giant cells
that collectively engulf and digest the material (Table 2, third
column) (Bryers et al, 2012). However, when confronted with
even larger implants, macrophages and FBGCs resort to
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TABLE 2 Macrophage response to implants of different sizes.

Giant cell-mediated
engulfment

10.3389/fbioe.2025.1668930

Extracellular degradation

10-100 um

>100 um

Recognition

Macrophage Macrophage-mediated
response phagocytosis
Fragment size <10 um
Recognition
Recognition \\,
Recognition
Adhesion
7
Adhesion
Phagocytosis @
Phagocytosis
Digestion :
Digestion

extracellular digestion by releasing enzymes and lowering the
pH (Table 2, fourth column) (Bryers et al., 2012). The fusion of
macrophages into FBGCs is driven by a complex interplay of signals,
including cytokines released by T lymphocytes and mast cells,
particularly IL-4 and IL-13 (Van Dyken and Locksley, 2013;
McNally and Anderson, 2002).

IL-4 and IL-13 released from mast cells and T lymphocytes also
activate the JAK/STAT6 pathway to upregulate fusogens such as
dendritic cell-specific transmembrane protein (DC-STAMP),
E-cadherin, and MMP9 (Van den Bossche et al., 2012). DC-
STAMP, a seven-transmembrane protein, is indispensable for
cell-cell fusion and potentially acts in a receptor-ligand manner,
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Macrophage fusion
and adhesion

Engulfment and digestion

Macrophage fusion
and adhesion

Extracellular degradation

whereas E-cadherin enables homotypic adhesion. MMP9 is essential
for extracellular matrix remodeling during fusion. Additional
fusogens include the macrophage fusion receptor (SIRPa) and its
ligand CD47, which inhibit phagocytosis during fusion, and CD36,
which recognizes externalized phosphatidylserine (PS) on fusing
membranes (Matozaki et al., 2009). Cytokines are also involved in
the activation of macrophages from the pro-inflammatory
M1 phenotype to the anti-inflammatory M2 phenotype, which is
more prone to fusion (Shapouri-Moghaddam et al., 2018; Braga
et al,, 2015; Klopfleisch, 2016; Palmer et al., 2014). The binding of
lymphocytes to the implant surface via p-integrin receptors further
enhances this process by upregulating the expression of cell
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adhesion molecules like E-cadherin, mannose receptors, and
CD44 at macrophage fusion sites (McNally and Anderson, 1995;
Cui et al., 2006; Han et al., 2000). FBGCs, once formed, express a
variety of membrane proteins, including CD45 and CD31, and
receptors interleukins, their
participation in the immune response (Bryers et al, 2012;

for various indicating active
Anderson, 2009). They secrete a range of cytokines, including
both pro-inflammatory mediators like IL-6, IL-8, and TNF-q,
and anti-inflammatory cytokines like IL-10, TGF-p, and MCP-1
(Shin et al., 2018; Rashad et al., 2019).

Key signaling pathways involved in FBGC formation include
DAPI12/Syk, activated by M-CSF, coupled with PI3K/Akt and NF-
KB to promote M2 polarization and cytoskeletal reorganization via
FAK (Eslami-Kaliji et al., 2023). Purinergic signaling through
P2X7 receptors detects ATP, facilitating fusion pore formation,
whereas protein kinase C (PKC) isoforms f3, §, and { operate in
diacylglycerol-dependent and -independent pathways to support
cytoplasmic spreading and fusion (Lemaire et al., 2012). Podosomes
and tunneling nanotubes (TNTs), which involve M-Sec and Myosin
X, enable cell-cell communication and protein transfer prior to
fusion (Dagar et al., 2021).

While FBGC:s contribute to the isolation of the foreign material,
they can also have detrimental effects. They release ROS and other
bioreactive agents that can damage the implant and contribute to its
degradation, potentially leading to device failure (Ahmed et al,
2016; Khan et al,, 2016; Smetana et al., 2000). This degradative
activity, while beneficial for resorbable materials like sutures and
hydrogels (Rodriguez et al., 2009; Rizik et al., 2015; Amecke et al.,
1992), is undesirable for long-term implants.

FBGC formation represents a complex and dynamic aspect of
the FBR, influenced by implant characteristics, macrophage
behavior, and cytokine signaling. While their role in isolating the
foreign body is essential, their potential to contribute to implant
degradation and chronic inflammation highlights the need for
further research to fully understand their function and develop
strategies to modulate their activity.

4.4.1 Implant surface properties modulation of
FBGC formation

The formation of FBGCs is intricately linked to the
physicochemical properties of the implant surface. Macrophage
fusion, the process underlying FBGC formation, is influenced by
a complex interplay of factors, including cytokine signaling and the
presence of membrane fusion promoters (McNally and Anderson,
2011; Kloc et al., 2022). The amount and type of proteins adsorbed
onto the implant surface as well as the topographical features of the
implant play crucial roles in modulating FBGC formation (Miron
and Bosshardt, 2018; Neale and Athanasou, 1999).

Specific proteins within the provisional matrix, such as vitronectin
and fibronectin, have been shown to directly influence FBGC formation
(Collier and Anderson, 2002; Anderson et al., 1999). These proteins can
modulate macrophage adhesion, activation, and subsequent fusion.
Furthermore, the chemical composition of the implant surface can
significantly impact FBGC formation. For instance, hydrophilic and
non-ionic polyacrylic surfaces tend to reduce monocyte adhesion and
differentiation into macrophages, ultimately leading to decreased FBGC

formation compared to hydrophilic and cationic surfaces
(Anderson, 2015).
Frontiers in Bioengineering and Biotechnology
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Surface topography also exerts a significant influence on
macrophage fusion and FBGC formation (Khandwekar and Rho,
2012). Studies have revealed that smooth and flat surfaces tend to
promote FBGC formation compared with rough surfaces
(Khandwekar and Rho, 2012). This may be attributed to the
increased surface area available for macrophage adhesion and
interaction on smooth surfaces, which facilitates their fusion.

The formation of FBGCs is a complex process modulated by a
multitude of factors, including the presence of specific cytokines,
the
topographical and chemical characteristics of the implant surface.

membrane fusion promoters, adsorbed proteins, and
Understanding these intricate relationships is crucial for designing
implant materials that can effectively modulate FBR and promote

successful tissue integration.

4.5 Capsule formation and fibrosis

The ultimate goal of implantation is to achieve seamless
biointegration of the device within the host tissue, thereby
facilitating both functional restoration and tissue regeneration
(Hernandez et al, 2021). However, the chronic inflammatory
response elicited by the implant can result in the formation of a
dense, fibrous capsule, which is a hallmark of FBR (Hernandez et al.,
2021). This encapsulation process, while aimed at isolating the
foreign material, can become dysregulated, resulting in excessive
fibrosis and complications, such as capsular contracture.

M2 macrophages are key orchestrators of capsule formation and
fibrosis (Braga et al., 2015; Zhang et al., 2021). They recruit and
fibroblasts, promoting their
myofibroblasts, the primary producers of ECM components
(Klopfleisch and Jung, 2017; Le et al, 2010). The extent of
fibrosis is determined by the number of myofibroblasts and

activate differentiation  into

duration of their activation. In normal wound healing, the
resolution of inflammation triggers myofibroblast apoptosis and a
decline in collagen production, leading to scar maturation (Jun and
Lau, 2010; Ramachandran et al., 2012; Bartsch et al., 2012; Kook
etal., 2023). However, in the context of FBR, the persistent presence
of the implant sustains a pro-inflammatory and pro-fibrotic
microenvironment, preventing the resolution of fibrosis and
promoting the continuous deposition of ECM (Jun and Lau,
2010; Ramachandran et al., 2012; Bartsch et al, 2012; Kook
et al., 2023).

While the M1/M2 paradigm provides a simplified view of
macrophage function, it is crucial to recognize the spectrum of
macrophage phenotypes that exist in vivo (Spiller et al., 2015; Arnold
et al, 2007; Mirza et al, 2013). These diverse macrophage
populations contribute to fibrosis by releasing a variety of growth
factors and cytokines including VEGF, TNF-q, and IL-1p (Miyagi
et al, 2018; Snyder et al, 2016; Hamilton et al., 2010). Classic
M2 macrophages, in particular, secrete profibrotic factors like
PDGF-BB, CCL17, and CCL18, driving fibroblast activation and
ECM deposition (Tarique et al., 2015; Lewis et al., 2017; Belperio
et al, 2004). Recent research has shown that macrophage-
myofibroblast transformation (MMT) represents a pivotal cellular
in fibrotic diseases,

plasticity event wherein macrophages

transdifferentiate  into  collagen-producing  myofibroblasts,

exacerbating ECM deposition and tissue scarring (Ban et al,
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The fourth phase of the foreign-body response is the formation of a fibrous capsule around the implant. The recruitment of fibroblasts leads to the
synthesis of large quantities of extracellular matrix/fibrosis, leading to the formation of a capsule around the implant. Few macrophages or other immune

cells are present during this phase.

2024). This process is tightly regulated by multiple signaling
pathways and soluble factors. Central to MMT is the TGF-f/
Smad pathway, where TGF-B1 binds to its receptors, activating
Smad3 phosphorylation and nuclear translocation to drive
expression of myofibroblast markers like a-smooth muscle actin
(a-SMA) and collagen I (Zhong, 2024). Genetic ablation of Smad3 in
macrophages inhibits MMT and attenuates fibrosis in models of
renal and pulmonary injury (Jia et al, 2025). Complementary
pathways include Wnt/B-catenin signaling, which synergizes with
TGF-B to promote anti-apoptotic and pro-fibrotic phenotypes in
macrophages, thereby enhancing ECM synthesis (Abaricia et al.,
2020). Notch signaling, via ligands such as JAGI, also modulates
MMT by stimulating a-SMA expression, while its inhibition
mitigates fibrosis (Hong et al,, 2019). Non-canonical regulators,
such as Src tyrosine kinase activated downstream of TGF-, are
essential for MMT progression; pharmacological Src inhibition
blocks this transition in vitro and reduces lung fibrosis in vivo.
Cytokines such as IL-4 and IL-13 polarize macrophages toward an
M2 phenotype, priming them for MMT, whereas growth factors,
including PDGF and VEGF, amplify fibroblast-like functions
(Noskovicova et al, 2021a). Epigenetic modifiers such as
EZH2 further promote MMT via pathways such as DUSP23/
Smad3 in renal models.

Emerging evidence link MMT to the FBR, which often
culminates in fibrotic encapsulation and device failure
(Noskovicova et al., 2021a). Direct evidence of MMT in breast
implant capsules is limited and is analogous to other fibrotic
contexts such as renal fibrosis, suggesting that M2-polarized
macrophages transdifferentiate into myofibroblasts, contributing
to dense collagen capsules. Mechanical cues from stiff implant
surfaces exacerbate this, activating YAP/TAZ mechanotransduction
in macrophages and fibroblasts and potentially facilitating MMT-like
transitions (Tan et al., 2025).

The balance between the M1 and M2 macrophages influences
the extent of fibrosis. Elevated M1 activity is associated with reduced
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ECM deposition and heightened inflammation (Ploeger et al., 2013),
while M2 macrophages promote fibrosis by inducing fibroblasts to
express fibrosis-associated genes (Braga et al.,, 2015; Zhang et al,,
2021). Once deposited, the ECM undergoes continuous remodeling
by proteolytic enzymes secreted by macrophages, endothelial cells,
and fibroblasts (Binnebdsel et al., 2012). Studies have shown that
inhibiting MMPs, key enzymes involved in ECM degradation, can
reduce FBR and fibrosis in animal models (Jones et al., 2008; Witte
et al., 1998; Figure 6; Table 3).

Over time, the granulation tissue surrounding the implant matures
into a thick collagenous capsule, composed initially of type III collagen
and later replaced by type I collagen (Daneshgaran et al., 2023). This
dense capsule effectively isolates the implant from the surrounding
tissue, potentially hindering biointegration, and leading to implant
failure. Despite extensive research, effectively preventing or reversing
fibrous capsule formation remains a challenge. Systemic anti-
inflammatory treatments have shown limited efficacy in eliminating
capsule formation, and their potential side effects often outweigh their
benefits (Klopfleisch and Jung, 2017; Klopfleisch, 2016; Witherel et al.,
2019). Current strategies focus on local interventions, such as coating
the implant surface with biomolecules or delivering anti-fibrotic drugs
directly to the implant site (Piterina et al, 2009). While these
approaches show promise in reducing capsule formation and
inflammation, complete prevention remains elusive, and long-term
studies are needed to assess their efficacy and safety (DiEgidio
et al,, 2014).

Alternative strategies, such as promoting the local accumulation
of anti-inflammatory M2 macrophages, are also being explored as a
potential means to modulate the FBR and reduce fibrosis without the
drawbacks of systemic anti-inflammatory therapies (Ben-Mordechai
et al,, 2013). Ultimately, a deeper understanding of the complex
interplay between implant surface properties, macrophage
polarization, and the fibrotic process is crucial for developing
effective strategies to promote implant biointegration and long-
term success.
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TABLE 3 Macrophage phenotype and function within the implant microenvironment during foreign body response.

Macrophage phenotype

M1 macrophage

M2 macrophage

Cell origin —_—_ -
4 ~ A ~
/ \) / \\
\ \ \ \
,‘ () ,‘ f)
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| J )\ |
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Ty A g
Monocyte Monocyte
Inducer IFNy L4
LPS IL13
Functions ® Inflammatory response ® Activation of fibroblasts
® Phagocytosis of fragments, dead cells ® ECM deposition
® Angiogenesis initiation ® Fibrosis
® Antigen presentation ® Angiogenesis
® Anti-fibrotic activity ® Matrix remodeling
Result

The inflammatory environment around the implant

4.5.1 Implant surface properties modulation of
capsule formation

The extent of fibrous capsule formation around an implant is not
uniform and is significantly influenced by the implant’s surface
properties, particularly its topography and wettability (Kloss et al,
2011). These properties affect protein adsorption, cellular
interactions, and the overall FBR, ultimately dictating the thickness
and composition of the capsule.

Research by Glicksman et al. show that textured implants,
particularly in the presence of ongoing shearing forces, can lead to
formation of double capsules, a phenomenon associated with an
increased risk of complications (Glicksman, 2021). Further research
has revealed that variations in surface roughness and hydrophobicity
can significantly impact implant biocompatibility and integration,
potentially contributing to post-implantation complications (bin
Anwar Fadzil et al, 2022; Souza et al, 2019; Munhoz et al, 2019;
Barr et al., 2009).

The specific chemical composition of the implant surface also
plays an important role. Hydrophilic surfaces containing both
amino and hydroxyl groups have been linked to thicker capsule
formation than other surface chemistries (Kamath et al., 2008; Tang
et al, 1998). Conversely, the presence of carboxyl groups on
hydrophobic surfaces has been associated with increased fibrosis
and thicker capsules (Barbosa et al., 2006).

Strategies to minimize capsule formation often involve modifying
the implant surface with anti-inflammatory materials (DiEgidio et al,
2014). For example, coatings incorporating hyaluronic acid (HA) or
oxidized regenerated cellulose have been shown to attenuate capsule
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Fibrosis - formation of a thick capsule around the implant

formation by modulating the inflammatory response and reducing
fibroblast activity (Friedman et al.,, 2004; Lew et al,, 2010).

Surface topography, particularly the presence and arrangement of
pores, is another critical factor that influences capsule formation. Studies
have shown that specific pore sizes and intranodal distances can promote
thinner capsules and improve wound healing (Bota et al., 2010; Matlaga
et al,, 1976; Madden et al., 2010). For instance, implants with intranodal
distances of 4.4 pm and pore sizes of 30-40 pum have been associated with
reduced capsule thickness (Bota et al., 2010; Matlaga et al., 1976; Madden
et al,, 2010). Similarly, circular or ergonomically shaped implants with a
surface roughness of approximately 4 jim have been shown to induce less
fibrous capsule formation (Cui et al.,, 2006; Bota et al., 2010; Kanagaraja
et al.,, 1996; Doloff et al., 2021).

In conclusion, the surface properties of an implant, including its
topography, wettability, and chemical composition, exert a
profound influence on capsule formation and the overall FBR. By
optimizing these properties, it may be possible to modulate host
response, minimize fibrosis, and promote successful implant
integration and long-term clinical outcomes.

4.6 Summary and similarities between
wound healing and the foreign body
response: shared mechanisms in
inflammation, remodeling, and fibrosis

The foreign body response is similar to the physiological process
of wound healing, particularly in the initial phases, when both aim to
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TABLE 4 Structured comparison of stages of wound healing and foreign body response.

Wound healing stage Shared characteristics

Injury — Hemostasis (Clot formation) Protein adsorption/Fibrin matrix

Foreign body response stage

Biomaterial implantation — Protein adsorption

Inflammation — Proliferation (Granulation,

Angiogenesis) (TNF-a, IL-6)

Potential Chronic Inflammation: Persistent M1 macrophages,

Sustained cytokines

ECM Remodeling: MMPs/TIMPs, Collagen deposition

Remodeling (Collagen realignment)

restore tissue integrity and combat perceived threats (Babensee,
2020). While wound healing is an orchestrated repair mechanism
following tissue injury, FBR represent an adaptive immune-
mediated reaction to non-degradable foreign materials, often
leading to encapsulation rather than full resolution (Anderson
et al,, 2008). Both processes exhibit overlapping stages, including
acute inflammation, potential progression to chronic inflammation,
ECM remodeling, and fibrosis, underscoring their evolutionary
conservation as protective responses (Table 4).

Wound healing occurs in four overlapping phases: hemostasis,
inflammation, proliferation, and remodeling (Gonzalez et al., 2016).
Hemostasis is initiated by platelet aggregation and fibrin clot
the
inflammatory phase, neutrophils and macrophages are recruited

formation, which provides a provisional matrix. In
to clear debris and pathogens, releasing cytokines, such as TNF-a
and IL-6. The proliferation phase involves fibroblast activation,
angiogenesis, and granulation tissue formation, with ECM
deposition (primarily collagen III). Finally, remodeling replaces
collagen III with collagen I and reorganizes the matrix for tensile
strength, although excessive activity can result in hypertrophic scars.
In contrast, FBR begins with protein adsorption on the biomaterial
surface (seconds to minutes following implantation), followed by
acute inflammation (lasting hours to days) akin to wound healing,
where neutrophils and macrophages dominate and attempt
phagocytosis (Chandorkar et al, 2018). If the material persists,
this transition to chronic inflammation (lasting days to weeks)
which is characterized by macrophage fusion into foreign-body
giant cells (weeks to months) and lymphocyte infiltration. ECM
remodeling is associated with fibroblast proliferation and collagen
deposition, culminating in fibrosis via fibrous capsule formation
(months to years) and isolation of the implant. In contrast to wound
healing, FBR often lacks complete resolution and perpetuates low-
grade inflammation.

The similarities between FBR and wound healing are also
evident in their shared cellular and molecular characteristics
(Babensee, 2020). In both processes, acute inflammation recruits
innate immune cells for debris clearance, with macrophages
polarizing from pro-inflammatory (M1) to anti-inflammatory
(M2) phenotypes to facilitate repair. Chronic inflammation can
arise if resolution fails due to infection in wounds or persistent
biomaterials in FBR, which leads to sustained cytokine release and
fibroblast activation. ECM remodeling involves MMPs and TIMPs,
which balance degradation and synthesis; however, dysregulation
fibrosis

promotes in both, marked by excessive collagen

accumulation and scar formation. For instance, TGF-B drives
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Acute Inflammation: Neutrophils/Macrophages,
Phagocytosis attempt

Chronic Inflammation: Giant cells, Lymphocytes

Granulation — ECM deposition

Fibrous encapsulation (Persistent fibrosis)

myofibroblast differentiation and ECM deposition in granulation
tissue during wound proliferation and capsule formation during
FBR. These parallels (Table 4) highlight opportunities for
modulation; biomaterials mimicking native ECM can mitigate
FBR by promoting M2 polarization and reducing fibrosis, akin to
scarless fetal wound healing. However, divergences occur; wound
healing typically resolves with functional tissue, whereas FBR
chronicity can impair implant efficacy.

5 Silicone implants and complications

5.1 Silicone implant properties, foreign body
response and clinical implications

Silicone breast implants, integral to aesthetic and reconstructive
surgery, are categorized based on the average surface roughness:
smooth (minimal roughness, Ra < 10 pm), macro-textured
(aggressive roughness, Ra > 50 pm), and micro-textured
(intermediate, Ra 10-50 pm, including nanotexture variants)
(ISO 14607:2018) (ISO, 2018). These designs modulate the FBR,
a host reaction involving inflammation, macrophage recruitment,
and fibrous capsule formation, which can lead to complications such
as capsular contracture (CC), and rarely, breast implant-associated
anaplastic large cell lymphoma (BIA-ALCL). Smooth implants
feature minimal roughness (Ra <10 um) and appear irregular
under microscopy with ripples approximately 5 um wide. Smooth
implants elicit a subdued FBR, forming thin, orderly capsules with
aligned collagen fibers parallel to the surface (Capuani et al., 2022).
Smooth implants often exhibit higher CC rates (6%-21% at
5-10 years) compared to textured (2%-10%) and micro-textured
(1%-5%) implants, and this is attributed to denser, more aligned
collagen deposition fostering contracture (Shin et al., 2018; Munhoz
et al,, 2019; Filiciani et al., 2022; Coleman et al., 1991). Comparative
analyses reveal distinct patterns. For instance, a meta-analysis of
over 16,000 patients reported CC rates of 6.8% for smooth versus
2.6% for textured implants (Filiciani et al., 2022; Coleman et al.,
1991; Gorgy et al,, 2023). In animal models, smooth surfaces yield
thicker capsules (415 um at 12 weeks) and denser collagen (67.8%)
than textured variants with elevated myofibroblast infiltration
(42.8%) and TGF-B1 expression, which are drivers of fibrosis
(Jeon et al., 2022).

Textured (macrotextured) implants with Ra >50 pum and deeper
pores (150-800 pum) were developed to disrupt collagen alignment
and promote disorganized capsules to mitigate CC (Munhoz et al.,
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2019; Doloff et al, 2021). They enhance tissue integration via
increased surface area (200-300 mm?®) but intensify FBR through
heightened macrophage activation and pro-inflammatory T-cell
responses, leading to thicker scar tissue and chronic irritation
(Munhoz et al,, 2019; Doloff et al., 2021). This correlates with
elevated biofilm formation (3-fold higher infection risk) and
silicone particle release, which aggravates inflammation (Shin
et al.,, 2018). In vitro and in vivo, macrotextures show moderate
capsule thickness (261 um at 12 weeks), but persistent fibrosis (Jeon
et al., 2022). Microtextured implants (Ra 10-50 pm) balance these
traits, with ~1,800-2,200 contact points/cm2 and shallower
depressions (40-100 pm). Microtextured implants suppress FBR
more effectively, yielding thinner capsules (232 pum at 12 weeks),
lower collagen density (46.2%), and reduced TGF-P1, minimizing
inflammation while allowing guided integration (Munhoz et al.,
2019; Jeon et al, 2022). Optimal roughness (~4 pm) aligns with
cellular scales, inhibiting pro-inflammatory pathways and scarring,
as evidenced in rabbit and human studies (Doloff et al., 2021). A 30-
patient study showed that low-micro (L-Micro) surfaces reduced
myofibroblast ~activation and enhanced neovascularization
compared to smooth (highest CC) or macro-textured (Huang
et al., 2022).

Inflammation metrics further differentiate: smooth surfaces
promote M2 macrophage polarization and anti-fibrotic IL-4, yet
paradoxically higher CC due to shear forces and biofilm
susceptibility; macro-textured surfaces increase MI-driven
cytokines (TNF-a, IL-8), thickening capsules but disrupting
alignment to lower contracture; micro-textured surfaces minimize
both, with reduced FOXP3+ T-cell inhibition of fibrosis (Wells et al.,
2024). A prospective study of 1,000 augmentations confirmed that
the 1-year CC rate of smooth implants (4.5%) exceeded that of
textured implants (1.8%), which is linked to bacterial adhesion
differences (Filiciani et al., 2022). These outcomes bridge surface
properties to clinical implications by elucidating how topography
governs initial protein layers (e.g., fibronectin promotion on
microtextures) and downstream FBR. Smooth surfaces facilitate
sliding and dense fibrosis, heightening CC risk in dynamic
tissues; textured disruption via anchorage, reducing migration but
risking  ALCL in macro variants; microtextured optimized
integration, minimizing inflammation and contracture. This
mechanistic informs for nano-

insight design,

engineering for hybrid surfaces, potentially halving CC incidence

example,

and enhancing safety and longevity.

The FBR’s intensity scales with roughness: smoother surfaces
limit acute responses but risk contracture; rougher surfaces amplify
chronic inflammation, potentially via bacterial synergy and immune
dysregulation (Shin et al., 2018). This link underpins BIA-ALCL, a
T-cell lymphoma associated with textured implants. In 2019, the
FDA requested Allergan’s voluntary recall of Biocell macrotextured
implants after linking them to 481 of 573 global BIA-ALCL cases
and 33 deaths, citing a 6-fold higher risk than other textures
(McKernan, 2021; Nelson et al., 2023). This prompted worldwide
withdrawals, shifting clinical practice toward smooth and micro-
textured alternatives. Post-2019, textured implant use plummeted
with U.S. registries reporting less than 90% smooth/micro adoption
in primary augmentations, with BIA-ALCL incidence stabilizing at
approximately 1:30,000 for remaining textures (Swanson, 2023).
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5.2 Implant failure: silicone implants
versus others

Silicone breast implants exhibit significant failure rates over
time, primarily driven by the host FBR. Implant failure includes
rupture, leakage, and capsular contracture, with a cumulative
incidence escalating with implant duration. Longitudinal studies
indicate rupture rates of 6%-24% at 10 years post-implantation
(Hillard et al, 2017). For instance, a prospective MRI cohort
reported a 6.4% rupture rate for primary augmentation and 5.2%
for revision augmentation at 8 years (Hillard et al., 2017). Another
analysis of MemoryGel implants showed a 24% Kaplan-Meier
estimated rupture rate at 10 years (Paolini et al., 2023). Globally,
older implants demonstrate higher failure rates: 30% at 5 years, 50%
at 10 years, and 70% at 17 years, with an annual rate of
approximately 6% in the first 5 years (Marotta et al., 1999). A
retrospective study estimated a 15.1% incidence of rupture, with a
mean implant lifespan of 10.1 years (Paolini et al., 2023). These
statistics underscore the time-dependent degradation, which is
exacerbated by mechanical stress and material fatigue.

In rupture scenarios, silicone gel extrudes, eliciting intensified
macrophage-driven FBR, including granuloma formation and
systemic silicone migration. Gel bleed-microscopic silicone
shells further
inflammation, accelerating capsular contracture (Baker grades III-
IV) in up to 50% of cases by 10 years (Moyer et al, 2012).
Quantitative proteomics revealed that acute wound responses

diffusion through intact sustains low-grade

evolve into persistent fibrosis, contributing to device failure
(Schoberleitner et al, 2023). Thus, FBR not only precipitates
breach, but
necessitating intervention.

mechanical also  biomechanical distortion,

Revision surgery due to implant failure is common, with U.S.
FDA data indicate that 20% of women require removal within
10 years, rising to approximately 50% over 15 years, often for
rupture or contracture (Baek et al, 2014). A prospective U.S.
cohort reported revision rates of 1.6% for cosmetic implants and
11.8% for reconstructive implants, although these underrepresented
long-term failures (Lieffering et al., 2022). Globally, explantation for
objective failure (e.g., rupture) accounts for 34% of primary
augmentation and 47.6% of revisions, with 14 estimated removal
risk of 14% at 8 years (Zhang et al., 2023). In Europe, PIP implant
studies showed 21.3% ruptures per implant, leading to 35.2% patient
revisions (Quaba and Quaba, 2013). These figures highlight the
substantial burden, emphasizing the need for advanced biomaterials
to mitigate FBR and reduce revision rates.

Silicone breast implant failure, primarily rupture or capsular
contracture, exhibits a higher prevalence than other implants, with
U.S. and global rates showing 7.8% cumulative rupture at 10 years
for primary augmentation. In contrast, orthopedic implants, such as
hip replacements, demonstrate lower failure rates. U.S. and global
survivorship reaches 90%-95% at 10 years, with revision rates
of <5% at 10 years and 4.56% failure overall (Kenney et al., 2019;
Springer et al., 2009). Metal-on-metal variants show 6.2% failure at
5 years globally, but modern designs last 15-20 years with
approximately 10% failure (Park et al, 2018; Ebramzadeh et al.,
2011). Knee replacements mirror this, with U.S. revision rates of
5.66% at 5 years and 96.1% survivorship at 10 years globally,
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although poor outcomes affect 7%-20% due to infection or
loosening (Deere et al.,, 2021).

Dental implants have markedly lower failure, at 2%-4% globally
and in the US., with 96%-97% survivorship at 10 years; peri-
implantitis drives most cases (3.1%) (lacono et al, 2022;
Lombardo et al, 2023). Cardiac pacemakers exhibit the lowest
0.16%-0.6% in U.S. although
complications such as lead issues necessitate reoperation in 7.9%
of cases globally (EI-Chami, 2021).

Opverall, silicone breast implants fail more frequently (5%-50%
over 10-15 years) than orthopedic (5%-12% at 10 years), dental (2%-
5%), or cardiac (<1%) implants, highlighting softer tissue dynamics and

device malfunction, recalls,

immune responses as key differentiators in the U.S. and global contexts.

6 Targeting implant-induced foreign
body responses

Mitigating the FBR and its associated complications, such as
fibrous encapsulation and capsular contracture, is a critical goal in
optimizing the long-term success of implantable medical devices
(Carnicer-Lombarte et al, 2021; Capuani et al, 2022). Various
strategies are under investigation, targeting different stages of FBR,
from the initial protein adsorption to the chronic inflammatory and
fibrotic phases. These strategies can be broadly categorized into:
1 modification of the implant surface, 2 modulation of the systemic
immune response, and 3 control of the local immune response at the
implant site (Carnicer-Lombarte et al., 2021; Capuani et al.,, 2022).

6.1 Modification of the implant surface

This approach aims to engineer an implant surface to minimize
protein adsorption, reduce immune cell adhesion, and promote
tissue integration.

Strategies include:

Physical Modification: Altering surface roughness, topography,
and porosity influences protein adsorption and cellular interactions.

Chemical Modification: Utilizing surface coatings with specific
chemical properties to modulate protein adsorption, cell adhesion,
and inflammatory responses.

Biomimetic Modification: Emulating the natural ECM to promote
tissue integration and reduce the perception of the implant as a
foreign object.

6.2 Modulation of the systemic
immune response

This approach aims to dampen the overall immune reaction to
the implant, reducing inflammation and fibrosis. Strategies include:
Immunosuppressive Utilizing
immunosuppressants to reduce the overall immune response,

Drugs: systemic
although this approach can have significant side effects and may
impair wound healing.

Immune Tolerance Induction: Developing strategies to induce
specific immune tolerance to the implant material and minimizing
the FBR without compromising overall immune function.
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6.3 Control of the local immune response

This approach focuses on modulating the immune response
specifically at the implant site, minimizing inflammation and
fibrosis, ~ while  preserving  overall ~immune  function.
Strategies include:

Local Drug Delivery: Delivering anti-inflammatory or anti-
fibrotic drugs directly to the implant site, minimizing systemic
side effects.

Decellularized ECM: Utilizing decellularized ECM materials to
modulate the local immune response, promoting constructive
remodeling and tissue regeneration.

Cell-Based Therapies: Seeding the implant with specific cell
types, such as regulatory T cells or mesenchymal stem cells, to
actively modulate the immune response and promote tissue
regeneration.

Importantly, the fibrotic response to implants is similar to organ
fibrosis, suggesting that anti-fibrotic therapies, such as pirfenidone
and pan-v integrin inhibitors, may be promising in preventing
capsular contracture and preserving implant function (Gancedo
et al., 2008; Love and Jones, 2009). A multifaceted approach
targeting different stages of the FBR is likely required to achieve
optimal implant biocompatibility and long-term success. Ongoing
research is focused on developing and refining these strategies, with
the ultimate goal of creating implants that seamlessly integrate with
the host tissue, minimizing complications and maximizing

patient benefit.

6.4 Biomimetic coating/modification of
implants to modulate the foreign
body response

While traditional approaches to mitigate fibrosis and scar tissue
formation often rely on immunosuppressive medications with
potential adverse effects (Marcolongo et al.,, 2004; Doloff et al,
2017), biomimetic strategies offer a promising alternative (Taraballi
et al,, 2018; Noskovicova et al., 2021b). By emulating the natural
ECM, these strategies aim to render implants less “visible” to the
immune system, promoting tissue integration and reducing the FBR.

The ECM is a network of proteins and polysaccharides that
provide support and biochemical cues that regulate cellular
behavior. Biomimetic approaches leverage this knowledge by
modifying implant surfaces with ECM-derived components to
create a more biocompatible interface (Li et al, 2021; Schulz
et al, 2014). These modifications can influence all phases of the
FBR, from initial protein adsorption to chronic inflammation and
fibrous encapsulation.

ECM Protein Coatings: Coating implant surfaces with specific
ECM proteins can modulate cellular interactions and promote tissue
integration (Li et al, 2021; Schulz et al, 2014). Fibronectin, a
ubiquitous ECM glycoprotein, plays a crucial role in cell
adhesion, migration, and differentiation (Cowles et al, 1998;
Moursi et al., 1997; Pankov and Yamada, 2002). It exists in both
soluble and insoluble forms, with the soluble form found in plasma
and the insoluble form associated with cells and the ECM (Pankov
and Yamada, 2002). Research has shown that fibronectin, along with
other cell-binding proteins like collagen and laminin, can enhance
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the differentiation of various cell types in vitro (Padhi and Nain,
2020; Czyz and Wobus, 2001).

Various strategies have been employed to enhance fibronectin
deposition on implant surfaces, including direct adsorption,
covalent immobilization, and the use of protein-binding substrate
layers (Aota et al., 1994; Cutler and Garcia, 2003; Lin et al., 2015;
Ghadhab et al, 2021). For instance, fibronectin can be directly
deposited or adsorbed onto the implant surface, but this approach
may be limited by the potential for protein desorption over time
(Aota et al., 1994; Cutler and Garci’a, 2003; Lin et al., 2015). To
this, a
polydopamine, can be applied to the implant surface before

address protein-binding substrate layer, such as
adding fibronectin, enhancing its retention and stability (Cutler
and Garci'a, 2003; Ghadhab et al., 2021).

Another approach involves utilizing recombinant protein
fragments or short peptides containing specific cell-binding
motifs, such as the RGD or LDV sequences found in fibronectin
(Martino et al., 2011; Petrie et al., 2009; Garcia et al., 2002; Benoit
and Anseth, 2005; Leahy et al., 1996). These motifs interact with
integrin receptors on cell surfaces, promoting cell adhesion and
spreading. An animal study demonstrated that coating implants
with fibronectin in combination with IL-4 resulted in thinner
capsules, likely due to the promotion of M2 macrophage
polarization (Tan et al, 2020). This highlights the potential for
combining ECM protein coatings with immunomodulatory factors
to further enhance implant biocompatibility.

Glycosaminoglycan (GAG) Coatings: GAGs, another major
component of the ECM, also hold potential for modulating the
FBR. Hyaluronic acid and heparin, for example, have demonstrated
anti-inflammatory properties by activating regulatory T cells and
suppressing macrophage activation (Juhas et al., 2015; Tian et al,,
2017). Coating amino-terminated silicone with these GAGs resulted
in downregulation of the NF-kB signaling pathway, an important
pathway in the regulation of inflammation (Juhas et al., 2015; Tian
et al.,, 2017).

Gelatin, a denatured form of collagen, has also been explored as
a coating material. While gelatin coatings alone may lack long-term
stability (Burugapalli et al, 2018), combining gelatin with
hyaluronic acid can improve mechanical properties and reduce
fibrotic tissue formation (Joo et al, 2021). This combination
leverages the the
inflammatory properties of hyaluronic acid. Heparin coatings on

biocompatibility of gelatin and anti-
artificial vascular grafts have been shown to enhance angiogenesis
and promote M2 macrophage polarization (Kim et al., 2019).
Aptamers: Aptamers, small oligonucleotides that bind to specific
target molecules with high affinity, offer an intriguing alternative to
monoclonal antibodies for surface modification (Boshtam et al.,
2017).
immunogenicity, low toxicity, and cost-effective production
(Radom et al., 2013). Studies have investigated the use of ssDNA
aptamers against ECM proteins, including fibronectin, in hydrogels
to enhance cell adhesion (Galli et al., 2016; Parisi et al., 2017; Parisi
et al,, 2019; Abune et al., 2022). These aptamers bind strongly to
fibronectin, promoting
modulating the FBR.
Biomimetic strategies utilizing ECM-derived components, such

They possess several advantages, including low

cell ~attachment and potentially

as proteins, GAGs, and aptamers, hold significant promise for
improving implant biocompatibility and reducing the FBR. By
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the natural cellular microenvironment, these

approaches aim to promote tissue integration, modulate the

mimicking

immune response, and ultimately enhance the long-term success
of implantable medical devices.

6.5 Modulation of the foreign body response
with decellularized ECM

Decellularized ECM have emerged as a promising tool for
modulating the FBR and promoting implant biocompatibility. While
historically used as scaffolds for tissue reconstruction, cell delivery, and
controlled release of therapeutic molecules (Wolf et al., 2015), their role
in actively modulating the immune response is gaining increasing
recognition (Mariani et al, 2019; Liang et al, 2023). Preclinical
studies have highlighted the immunomodulatory potential of
decellularized ECM scaffolds, although the underlying mechanisms
are still being elucidated (Badylak et al., 2016; Yu et al,, 2016).

The decellularization process effectively removes cells and
the
preserving the intricate architecture and biochemical composition
of the ECM (Dzobo et al,, 2019; Badylak et al., 2009; Turner and
Badylak, 2015). This creates a biocompatible scaffold that can
support tissue regeneration and modulate the host immune
and Badylak, 2015). The of
decellularized ECM at the implant site can promote constructive

immunogenic components from native tissue while

response  (Turner presence
remodeling, influence the behavior of infiltrating immune cells like
neutrophils and macrophages, and ultimately guide the FBR towards
a more regenerative outcome (Hong et al., 2020; Qiu et al., 2018).

One of the key mechanisms by which decellularized ECM
modulates the FBR is through its influence on macrophage
polarization. Studies have shown that decellularized ECM can
an M2-like profile,
characterized by reduced inflammation and enhanced tissue
repair (Hong et al., 2020; Qiu et al., 2018). This M2 polarization
is associated with less scarring and greater constructive remodeling

shift macrophage phenotypes towards

compared to cellular scaffolds (Brown et al., 2012). Furthermore,
decellularized ECM a Th2-dominant
microenvironment, which further promotes M2 macrophage

can create immune
polarization via an IL-4-dependent pathway (Sadtler et al., 2016).
This suggests that inducing a Th2 response is a key aspect of the
immunomodulatory effects of decellularized ECM.

It is important to note that the specific decellularization method
used can influence the immunomodulatory properties of the
resulting ECM. Macrophages can recognize and respond to
denatured or damaged collagen, highlighting the importance of
optimizing decellularization protocols to preserve the native ECM
structure and ensure a favorable immune response (Gowen et al.,
2000; Veres et al., 2015). Moreover, the source of the decellularized
ECM can also influence its effects on macrophages, with different
tissue sources eliciting varying responses (Dziki et al., 2017; Keane
et al., 2017). For instance, several studies have demonstrated that
decellularized ECM from different tissues
M2 macrophage phenotype similar to that observed with IL-4
stimulation (Witherel et al., 2021; O’Brien and Spiller, 2022;
Sicari et al., 2014).

The incorporation of decellularized ECM or its derived

can induce an

components into implant design has shown promise in
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promoting implant tolerance and reducing the severity of the
inflammatory response (Badylak et al., 2009). This ability to
regulate inflammation through macrophage polarization is a
major focus of research exploring the use of decellularized ECM
in implantable medical devices (Liang et al., 2023; Aamodt and
Grainger, 2016; Dong et al, 2021). Studies have shown that
decellularized ECM can improve healing responses, characterized
by reduced Ml
M2 polarization, as confirmed by immunohistological evaluations
(Brown et al., 2009; Fishman et al., 2013).

Beyond its immunomodulatory effects, decellularized ECM can

macrophage infiltration and increased

also serve as an effective delivery vehicle for therapeutic molecules
and drugs, further enhancing its potential for promoting tissue
regeneration and modulating the FBR (Taylor et al., 2018; Zhang
et al,, 2022; Saleh et al., 2018). In conclusion, decellularized ECM
represents a versatile and promising biomaterial for modulating the
FBR and promoting implant biocompatibility. Its ability to support
tissue regeneration, modulate macrophage polarization, and serve as
a drug delivery vehicle highlights its potential for improving the
long-term success of implantable medical devices.

7 Targeting implant-associated fibrosis

Addressing fibrosis and preventing its progression is critical for
successful implant integration and long-term functionality.
Strategies aimed at suppressing myofibroblast activity or
preventing their activation are crucial for counteracting the
excessive deposition of ECM that characterizes fibrosis (Lodyga
and Hinz, 2020; Daskalopoulos et al., 2013).

Several factors contribute to fibrosis in the context of the FBR.
Aberrant M2 macrophage activity, for instance, can promote a
profibrotic environment by releasing factors that stimulate
fibroblast activation and ECM production (Major et al, 2015;
Noskovicova et al, 2021a; Kzhyshkowska et al, 2015; Mariani
et al, 2019; Tschumperlin and Lagares, 2020). Additionally,
fibroblasts possess the ability to sense and respond to mechanical
cues from their environment, including the stiffness of the implant
material (Major et al, 2015; Noskovicova et al, 2021a;
Kzhyshkowska et al, 2015; Mariani et al., 2019; Tschumperlin
and Lagares, 2020). This mechanosensing can trigger fibroblast
activation and differentiation into myofibroblasts, further
contributing to fibrosis.

Targeting specific molecular pathways involved in myofibroblast
activation and fibrosis offers promising therapeutic avenues.
Integrins, transmembrane receptors that mediate cell adhesion
and signaling, are prime targets for anti-fibrotic therapies
(Hintermann and Christen, 2019; Schnittert et al., 2018). Specific
integrins, particularly those containing the B subunit, play a crucial
role in activating latent TGF-f1, a potent profibrotic factor that
drives myofibroblast differentiation (Annes et al., 2002). Inhibiting
these integrins or blocking TGF-P1 signaling can effectively
reduce fibrosis.

Another key pathway involved in myofibroblast activation and
contraction is the Rho/ROCK signaling cascade (Martinac, 2014).
This pathway regulates actin-myosin contractility, a key driver of
myofibroblast-mediated tissue contraction and fibrosis. Inhibiting

Rho/ROCK signaling can disrupt myofibroblast function and
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attenuate fibrosis. The Hippo signaling pathway also play a
significant role in myofibroblast activation and fibrosis (Dasgupta
and McCollum, 2019; Rausch and Hansen, 2020). YAP and TAZ are
transcriptional coactivators that promote the expression of
profibrotic genes. Inhibiting upstream regulators of YAP/TAZ
signaling, such as specific G protein-coupled receptors (GPCRs),
has shown promise in blocking myofibroblast activation and fibrosis
(Haak et al., 2019).

Targeting these various mechanotransduction and signaling
pathways involved in myofibroblast activation holds great
potential for alleviating peri-implant fibrosis. Given that implants
are often perceived as stiff by surrounding cells, disrupting these
mechanosensitive pathways may be crucial for promoting implant
integration and long-term success.

Fibrosis is a complex process driven by a multitude of factors,
including macrophage activity, fibroblast mechanosensing, and
various signaling pathways. Targeting these pathways with
specific inhibitors or modulators offers promising therapeutic
strategies  for  reducing  fibrosis, improving  implant
biocompatibility, and preventing complications such as capsular
contracture.

7.1 Antifibrotic drugs

Pharmacological interventions targeting specific mediators and
pathways involved in fibrosis offer promising strategies for
mitigating capsule formation and improving implant outcomes.
Several anti-fibrotic drugs have been investigated for their
potential to modulate the FBR and reduce excessive scar
tissue formation.

Glucocorticoids: Glucocorticoids, a class of steroid hormones, are
potent anti-inflammatory agents that exert their effects by
suppressing the expression of pro-inflammatory cytokines, such
as TNF-a and IL-1f (Schleimer, 1993; Joyce et al, 1997). They
also inhibit the expression of molecules involved in leukocyte
chemotaxis and adhesion, reducing the infiltration of immune
cells to the implant site (Cain and Cidlowski, 2017). By
suppressing the inflammatory response, glucocorticoids indirectly
reduce fibroblast recruitment and activation, thereby limiting
fibrosis (Jeon et al., 2018; Kastellorizios et al., 2015). However,
their use is limited by potential side effects, including muscle
wasting and immunosuppression, particularly with long-term
administration (Oray et al., 2016). Triamcinolone, another steroid
with anti-fibrotic properties, is also used to control implant-
associated fibrosis, but its continuous use is not recommended
due to potential adverse effects.

Tranilast: Tranilast, an anti-allergic drug commonly used to
treat asthma and hypertrophic scarring, has shown promise in
reducing implant-associated fibrosis. It acts by inhibiting TGF-f
secretion and its downstream signaling cascade, -effectively
suppressing collagen synthesis and fibroblast activation
(Takahashi et al., 2018; Miyazawa et al., 1995). Studies have
demonstrated that tranilast can reduce capsule formation around
silicone implants, particularly when administered early after
implantation (Park et al., 2015).

Leukotriene Receptor Antagonists: Cysteinyl leukotrienes, lipid
mediators involved in inflammation, play a role in fibroblast
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recruitment and differentiation into myofibroblasts during the FBR
(Singh et al., 2010; Guimaraes et al., 2018; Kanaoka and Boyce, 2004;
Wahl, 1992). Montelukast and zafirlukast, leukotriene receptor
antagonists commonly used to treat asthma, have demonstrated
anti-fibrotic effects by blocking leukotriene signaling (Diamant et al.,
1999; Zhou et al., 2019). Montelukast, in particular, binds to the
CysLT1 receptor on polymorphonuclear cells and has been shown to
reduce fibroblast and myofibroblast numbers and inhibit collagen
production (Peng et al., 2017; Dong et al., 2023). Both montelukast
and zafirlukast have been shown to prevent capsule formation after
silicone breast implantation in animal models and clinical studies
(Dong et al., 2023; Moreira et al., 2009; Kang et al., 2015; Peters-
Golden and Henderson, 2007; Muraki et al., 2009; Kim et al., 2017;
Altinbas et al., 2015; Spano et al., 2008; Bastos et al., 2007).

Halofuginone: Halofuginone, another anti-fibrotic compound,
interferes with Smad3 phosphorylation, a key step in the TGF-f
signaling pathway, thereby inhibiting collagen synthesis and
fibroblast activation (Pines and Nagler, 1998; Granot et al., 1993).
While halofuginone has shown efficacy in reducing collagen levels
and capsule thickness around implants, its systemic use is limited
due to potential side effects (Zeplin et al., 2010; Jordan and Zeplin,
2012; Olbrich et al.,, 2005). Local delivery of halofuginone to the
implant site may offer a more targeted approach with reduced
systemic toxicity.

In summary, various anti-fibrotic drugs targeting different
mediators and pathways involved in fibrosis have shown promise
in preclinical and clinical studies. While challenges remain in terms
these
pharmacological interventions offer valuable tools for modulating

of efficacy, safety, and optimal delivery methods,
the FBR, reducing capsule formation, and improving the long-term

success of implantable medical devices.

8 Summary

The FBR is an unavoidable consequence of introducing any
foreign material, including silicone breast implants, into the human
body. This complex biological process, while sharing similarities
with wound healing, ultimately aims to isolate the implant from the
surrounding tissues by encapsulating it within a fibrous capsule.
While this response is intended to be protective, it can lead to
adverse outcomes, such as chronic inflammation, fibrosis, implant
failure, and even rejection. Therefore, a deeper understanding of the
cellular and molecular mechanisms driving the FBR is crucial for
improving implant biocompatibility and long-term clinical success.
The FBR is a dynamic and multifaceted process involving a complex
interplay of cell types, signaling molecules, and the ECM. The initial
interaction between the implant surface and host proteins is critical,
as the adsorbed protein layer acts as a “molecular fingerprint” that
influences subsequent cellular interactions. Immune cells,
particularly macrophages, play a central role in orchestrating the
FBR, exhibiting remarkable plasticity in their polarization into
different phenotypes with distinct functions. The balance between
pro-inflammatory and pro-healing macrophage phenotypes
significantly influences the trajectory of the FBR and the extent
of fibrosis.

Implant surface properties, including topography, chemical

composition, and mechanical properties, play a crucial role in
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modulating the FBR. These properties affect protein adsorption,

cellular adhesion, activation, and differentiation, ultimately
influencing the overall tissue response. Other factors, such as
implant design, surgical technique, and mechanical loading, also
contribute to the complex interplay of events that determine the fate
of an implant.

While our understanding of the FBR has significantly advanced,
there are still critical knowledge gaps. We are currently unable to
fully orchestrate the individual processes involved in the FBR to
create an optimal environment for implant biointegration and
achieve ideal host responses. This highlights the need for
the

underlying the FBR and develop strategies to effectively modulate

continued research to unravel intricate mechanisms

this response.

9 Future outlook

Future research should focus on several key areas to advance our
understanding and management of the FBR.

9.1 Deciphering the complex interplay of
cellular and molecular events

A more comprehensive understanding of the intricate signaling
pathways, cellular interactions, and dynamic changes in the ECM
during the FBR is needed. This includes further investigation of
macrophage polarization, the role of other immune cells, and the
interplay between inflammation and fibrosis.

9.2 Optimizing implant surface properties

Developing novel biomaterials and surface modification
strategies to minimize protein adsorption, reduce immune cell
activation, and promote tissue integration is crucial. This includes
exploring biomimetic approaches that emulate the natural ECM
and utilizing advanced surface characterization techniques to
understand the impact of surface properties on the FBR.

9.3 Developing targeted therapies

Identifying and targeting specific molecular pathways involved
in inflammation and fibrosis can lead to more effective and less
invasive treatments for FBR-related complications. This includes
exploring novel anti-inflammatory and anti-fibrotic drugs, as well as
cell-based that the
immune response.

therapies can actively modulate

9.4 Personalized medicine approaches

Investigating the role of individual patient factors, such as
genetics and immune status, in the FBR can pave the way for

personalized implant strategies and therapies tailored to

individual needs.

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1668930

Dzobo et al.

9.5 Advanced In vitro and In vivo models

Developing more sophisticated in vitro and in vivo models that
accurately recapitulate the complex dynamics of the FBR is essential
for testing novel biomaterials and therapeutic interventions. This
includes utilizing 3D tissue models, organ-on-a-chip platforms, and
humanized animal models.

10 Conclusion

The FBR is a complex and unavoidable consequence of implant
placement, posing significant challenges to achieving optimal implant
integration and long-term success. While our understanding of the FBR
has grown considerably, there is still much to learn about the intricate
interplay of cellular and molecular events that govern this response.
Future research focused on deciphering these mechanisms, optimizing
implant surface properties, developing targeted therapies, and utilizing
personalized medicine approaches holds the key to improving implant
biocompatibility and transforming the future of implantable
medical devices.
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Glossary

3D three-dimensional

ALCL anaplastic large cell lymphoma
aMp2 integrin alpha M beta-2

aVpl integrin alpha V beta-1

CCL2 chemokine C-C motif ligand 2

CD cluster of differentiation

DAMPs  damage-associated molecular patterns
E elastic modulus

ECM extracellular matrix

FBR foreign body response

FBGCS foreign body giant cells

FDA Food and Drug Administration

HA hyaluronic acid

IgG immunoglobulin G

IL Interleukin

ISO International Organization for Standardization
MCP-1 monocyte chemoattractant protein-1
MMP matrix metallopeptidase

NET neutrophil extracellular traps

PDGF platelet-derived growth factor
PDMS polydimethylsiloxane

PEG poly (ethylene glycol)

PGA poly-glycolic acid

PLA poly-lactic acid

PLGA poly-lactic-co-glycolic acid

PLL poly-l-lysine

PMAA poly (methacrylic acid)

PMNs polymorphonuclear leukocytes
qPCR quantitative polymerase chain reaction
Ra arithmetic mean height

RGD arginine—glycine-asparagine

TGF-p transforming growth factor beta
TIMP4 metalloproteinase inhibitor 4
TNF-a tumour necrosis factor a

WHO World Health Organization
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