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Purpose: This study aimed to address the limitations of synthetic meshes in
incisional hernia repair by developing a bioactive composite mesh combining
poly(lactic-co-glycolic acid) (PLGA), type I collagen, and bone marrow
mesenchymal stem cells (BMSCs).
Methods: The PLGA scaffolds, fabricated via freeze-drying, were modified with
collagen to enhance biocompatibility and loaded with BMSCs to promote tissue
regeneration. In vitro and in vivo evaluations in a rat ventral herniamodel assessed
biomechanical properties, anti-adhesion efficacy, and tissue integration.
Results: The PLGA-Collagen I-BMSCs mesh exhibited superior anti-adhesion
performance, reduced inflammatory cell infiltration by 73.3%, and enhanced
neovascularization compared to commercial meshes (Sepramesh™ and
Parietex™). BMSCs modulated TGF-β1/Smad3 signaling to mitigate fibrosis,
while collagen alignment improved mechanical recovery. The composite
mesh degraded at a rate matching tissue regeneration, with 10% PLGA
maintaining structural integrity for 20 weeks. Histological analysis revealed
organized collagen deposition and minimal adhesions (Nair grade 0–1 in 100%
of cases).
Conclusion: These findings highlight the potential of the PLGA-Collagen
I-BMSCs composite as an innovative intraperitoneal onlay mesh (IPOM)
solution, offering mechanical stability, anti-adhesive properties, and
regenerative bioactivity. This strategy shifts hernia repair from passive support
to active tissue regeneration, providing a foundation for next-generation hernia
repair materials.
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1 Introduction

Incisional hernia (IH) represents a pathological defect that
develops at the site of prior surgical incisions, attributed to
compromised healing of the abdominal fascia and muscle layers.
This condition leads to the protrusion of visceral organs or tissues
under intra-abdominal pressure. As a common iatrogenic
postoperative complication, IH exhibits an increasing global
incidence, with occurrence rates reported between 4% and 10%
(Sanders et al., 2023). According to the Clavien-Dindo classification
system for surgical complications, IH is classified as a Grade IIIb
complication (Dindo et al., 2004), requiring secondary surgical
intervention. This complication indicates a significant increase in
healthcare burden, alongside impaired physiological functions, and
a reduced quality of life for affected patients.

The pathogenesis of IH is attributed to the complex interplay
between biomechanical stress and dysregulated biological responses
(Omar et al., 2023). Mechanistically, surgical trauma-induced local
inflammation disrupts collagen metabolism, which is characterized
by increased activity of matrix metalloproteinases (MMP-2/MMP-
9) and decreased expression of tissue inhibitors of
metalloproteinases (TIMP-1/TIMP-2), ultimately leading to an
imbalance in extracellular matrix (ECM) synthesis and
degradation (Amro et al., 2024). Concurrently, sustained
mechanical tension in the abdominal wall activates the TGF-β1/
Smad3 signaling pathway, promoting the aberrant differentiation of
fibroblasts into myofibroblasts. This differentiation contributes to
pathological scarring and a loss of fascial elasticity (Thankam et al.,
2019). The resulting vicious cycle of “biological vulnerability” and
“biomechanical overload” leads to a failure rate exceeding 46% for
conventional suture-based repair techniques (Friedrich et al., 2008).
The failure of surgical wound closure, characterized by dehiscence or
recurrent herniation, is rarely attributable to a singular cause.
Instead, it arises from a synergistic dysfunction involving both
mechanical integrity and metabolic capacity (Omar et al., 2023;
DeAngelo and Perez, 2023). Mechanically, the persistent
physiological stress exerted by abdominal pressure imposes
repetitive strain on the repair site, potentially leading to suture
tearing, mesh dislocation, or fascia elongation. Biologically, an
imbalanced matrix metalloproteinase/tissue inhibitor of
metalloproteinase (MMP/TIMP) ratio and a transforming growth
factor-beta 1 (TGF-β1)-driven fibrotic response contribute to a
compromised local tissue environment, characterized by
structurally deficient collagen, reduced vascularization, and
impaired healing capacity. This metabolic dysfunction hinders
the wound’s ability to withstand normal mechanical forces, while
ongoing mechanical strain exacerbates the biological imbalance,
perpetuating a self-sustaining cycle that ultimately culminates in
the failure of the repair.

Current guidelines advocate for mesh reinforcement as the
standard treatment for IH, grounded in evidence-based medicine
(Hernia and Abdominal Wall Surgery Group of Chinese Society of
Surgery of Chinese Medical Association, 2025). Among the various
surgical techniques, intraperitoneal onlay mesh (IPOM) repair is
consistent with anatomical and physiological reconstruction
principles. This approach offers several advantages, including
reduced operative time, minimized tissue dissection, and
expedited postoperative recovery. Nonetheless, IPOM necessitates

direct exposure of the mesh to the intraperitoneal environment,
presenting dual challenges concerning material properties: the mesh
must possess adequate mechanical strength to withstand abdominal
wall tension (typically exceeding 32 N/cm) and feature a
biocompatible surface to mitigate intra-abdominal adhesion (Li
et al., 2022). Clinically utilized anti-adhesive meshes, such as
Sepramesh™ and Parietex™ Composite Mesh, achieve short-term
anti-adhesion effects through coatings comprising carboxymethyl
cellulose-modified hyaluronic acid (HA-CMC), polyethylene glycol
(PEG)-based gels, and collagen. In more severe cases, chronic
foreign body reactions to synthetic materials can result in dense
fibrous encapsulation, leading to mesh contraction, displacement,
and even erosion into the bowel or bladder. A 2019 cohort study
utilizing the Herniamed database, which included 9,907 cases,
reported a postoperative complication rate of 5% and a
reoperation rate of 2.1% following intraperitoneal onlay mesh
(IPOM) procedures. The incidence of postoperative
complications, including deep wound infection, bleeding, seroma,
and wound healing disorders, is low and demonstrates a significant
difference when compared to the open sublay technique, which is
closely associated with an increased need for reoperation
(Köckerling et al., 2019).

To address these challenges, this study introduces an innovative
strategy involving a functionalized composite mesh. This approach
employs biodegradable poly (lactic-co-glycolic acid) (PLGA) as the
mechanical support framework, constructs a three-dimensional
porous architecture through vacuum freeze-drying, and modifies
the surface with type I collagen (Collagen I) to enhance cellular
adhesion properties. Additionally, bone marrow mesenchymal stem
cells (BMSCs) are loaded to create bioactive interfaces. The
performance of the PLGA-Collagen I-BMSCs composite mesh in
IPOM procedures is systematically evaluated using established rat
abdominal wall incisional hernia models. The assessment
concentrates on four principal dimensions: biomechanical
properties, tissue integration efficiency, anti-adhesion efficacy,
and degradation compatibility, in order to substantiate its
potential for clinical translation. The results will furnish
theoretical foundations and technical support for the
development of innovative hernia repair materials that
incorporate mechanical adaptability, bioactivity, and sustain anti-
adhesion functionality.

2 Materials and methods

2.1 Fabrication of PLGA-Collagen I-BMSCs
composite mesh

Poly (lactic-co-glycolic acid) (PLGA) with a lactic acid to
glycolic acid molar ratio of 70:30 (molecular weight = 150 kDa,
sourced from Sigma-Aldrich) underwent vacuum drying to
eliminate residual moisture. Accurately measured aliquots of 5.0,
10.0, and 15.0 g were dissolved in 100 mL of dioxane
(chromatographic grade, provided by Aladdin) to achieve
homogeneous solutions with concentrations of 5%, 10%, and
15% (w/v), respectively. Complete dissolution of the polymer was
facilitated by magnetic stirring at 800 rpm and 25 °C, in conjunction
with ultrasonication at 40 kHz and 200 W for 15 min. The resulting
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solutions were cast into custom-fabricated polytetrafluoroethylene
(PTFE) molds with dimensions of 4 × 4 × 0.1 cm3. These were
rapidly quenched in liquid nitrogen at −196 °C for 30 s to induce
instantaneous nucleation, followed by deep-freezing at −80 °C for
24 h to stabilize the ice crystal structure. Subsequently, primary
drying at −50 °C and 50 Pa for 48 h, and secondary drying at 25 °C
and 10 Pa for 24 h, were performed using a vacuum freeze-dryer (SP
Scientific, VirTis AD2.0 EL) to produce porous PLGA scaffolds.

Type I collagen derived from bovine sources (Macklin, 3 mg/
mL) was dissolved in pre-cooled 0.6% acetic acid (v/v) and
subsequently infused into molds containing PLGA scaffolds. A
negative pressure of −0.08 MPa was applied for a duration of 2 h
to ensure uniform infiltration of collagen into the pore channels. A
gradient drying process was employed, consisting of hot-air drying
at 40 °C with 30% humidity for 4 h, followed by vacuum drying at
25 °C and 5 Pa for 24 h, resulting in the formation of stable PLGA-
Collagen I composite structures.

Structural stability was further enhanced through
glutaraldehyde vapor crosslinking. Samples were placed in
sealed containers with a 0.25% glutaraldehyde solution (pH 7.4)
in the upper crystallizing dishes. After 6 h of crosslinking at 37 °C,
the reactions were terminated using a 0.1 M glycine solution.
Residual glutaraldehyde levels were quantified using the Nash
reagent method (ISO 10993), confirming concentrations of less
than 0.2 μg/cm2. Ethylene oxide sterilization was conducted at
55 °C with 60% humidity in a 6-h cycle, and sterility was
validated through sterile culture tests involving a 14-day
incubation in TSB medium (Monaco et al., 2017; Wie et al.,
2009; Krug et al., 2023).

Based on preliminary research and related studies, a seeding
density of 1 × 106 cells/cm2 is deemed appropriate (Hendrawan et al.,
2024a; Zhang et al., 2017; Zhang, 2018). Passage 3 rat BMSCs
(Procell), with a purity exceeding 98% (CD90+/CD44+/CD34-as
determined by flow cytometry), were seeded onto the meshes at a
density of 1 × 106 cells/cm2. Following a 12-h incubation period at
37 °C with 5% CO2, PLGA-Collagen I-BMSCs composites were
successfully obtained.

2.2 Surface characteristics of PLGA meshes

To investigate the microarchitecture of poly(lactic-co-
glycolic acid) (PLGA) meshes with varying concentrations
(5%, 10%, and 15%), the prepared specimens were sectioned
into 5 mm × 5 mm squares and affixed onto scanning electron
microscope (SEM) stubs using double-sided conductive tape,
ensuring a flush contact between the sample surfaces and the
stub substrates. Subsequently, the mounted specimens were
subjected to gold/platinum (Au/Pt) alloy sputter-coating
within a vacuum deposition system, with the coating thickness
meticulously controlled to 10–20 nm to enhance electrical
conductivity and mitigate charging artifacts. Following
metallization, the specimen stubs were loaded into the SEM
chamber and secured with mechanical clamps. The chamber
was then sealed and evacuated to achieve an optimal operating
vacuum (<5 × 10−3 Pa). The SEM was initiated with operational
parameters set at an accelerating voltage of 5–20 kV. Systematic
observation commenced at a low magnification (500×) for the

identification of regions of interest, followed by incremental
increases in magnification up to 5,000× or higher for detailed
ultrastructural characterization. Digital micrographs were
obtained at various magnifications, with comprehensive
annotations detailing polymer concentration, magnification
factors, and accelerating voltage embedded within the
metadata to support subsequent morphometric analysis.

2.3 Degradation profile of PLGA meshes

To assess the degradation kinetics of poly(lactic-co-glycolic
acid) (PLGA) meshes with varying concentrations (5%, 10%,
15%) and their collagen-crosslinked variants, pre-weighed
samples were immersed in phosphate-buffered saline (PBS,
pH 7.4) under controlled conditions at 37 °C. Specifically, PLGA
meshes, both with and without type I collagen crosslinking, were cut
into geometrically uniform squares measuring 10 × 10 × 0.1 mm3.
Initial dry weights (W0) were obtained using a microbalance
(Mettler Toledo XP6, with a resolution of ±0.01 mg). Each
specimen was individually immersed in PBS (10 mL per sample)
with sufficient spatial separation to prevent interfacial interactions,
followed by incubation at 37 °C in a thermostatic shaker set at
80 rpm. On a weekly basis, the meshes were removed, rinsed three
times with deionized water (18.2 MΩ cm) to remove ionic residues,
and then dried to a constant weight in a vacuum oven at 60 °C
(≤100 Pa, for 24 h). Post-desiccation weights (Wt) were measured
using the same microbalance. The degradation profile was
quantified using:

RemainedWeightt %( ) � Wt

W0
× 100

Where W0 = initial dry weight, Wt = weight at time t.

2.4 Biocompatibility of PLGA meshes

Cell viability was assessed in real-time utilizing the Calcein-AM/
PI Double Stain Kit (Solarbio CA1630). Composites of PLGA-
Collagen I-BMSCs, 24 h post-seeding, were immersed in
phosphate-buffered saline (PBS) containing 2 μM Calcein-AM
and 1.5 μM propidium iodide (PI), followed by a 30-min
incubation at 37 °C in the absence of light. Imaging was
conducted using an inverted fluorescence microscope (Zeiss Axio
Observer A1) with excitation wavelengths of 490 nm for Calcein-
AM (green fluorescence) and 545 nm for PI (red fluorescence).

The CCK-8 assay (Fudebio-tech FD3788) was performed in
accordance with ISO 10993-5 standards. Samples were collected
at 1, 2, 3, 4 and 5 days post-seeding and were immersed in a low-
serum medium (2% fetal bovine serum) containing 10% CCK-8
reagent, followed by a 2-h incubation at 37 °C. Subsequently,
100 μL of the supernatant was transferred to a 96-well plate, and
the absorbance (optical density value) at 450 nm was measured
using a microplate reader (SpectraMax iD5). A blank scaffold
group (cell-free) served as background control, while the
control group consisted of cells directly seeded onto a
culture dish.
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2.5 Mesh implantation in a rat incisional
hernia repair model

Male Sprague Dawley rats (SPF grade, aged 8 weeks, with a body
weight of 350 ± 20 g) were procured from the Laboratory Animal
Center of Hangzhou Medical College. The animals were maintained
under controlled environmental conditions, specifically at a
temperature range of 22 °C–26 °C, a humidity level of 45%–65%,
and a 12-h light/dark cycle, with unrestricted access to food and
water. All experimental procedures adhered to the Guide for the
Care and Use of Laboratory Animals.

Anesthesia was administered via intraperitoneal injection of
sodium pentobarbital at a dosage of 40 mg/kg. Following the
shaving and disinfection of the surgical site, a 2 cm midline
longitudinal incision was made through the skin and
subcutaneous tissue. Blunt dissection was conducted between the
left external and internal oblique muscles to establish a 3 × 3 cm2

operative field. The external oblique muscle was incised
longitudinally at a distance of 0.5 cm from the midline, ensuring
the preservation of the rectus sheath integrity. Subsequently, a full-
thickness resection of the abdominal wall tissues, including the
external oblique, transversalis fascia, and peritoneum, was
performed to create a 1 × 1 cm2 defect. Closure of the layers was
accomplished using 5-0 PGA sutures (Ethicon VCP392H).
Postoperative analgesia was administered using ibuprofen
suspension at a dosage of 20 mg/kg/day, and infection
prophylaxis was provided with cefazolin at 50 mg/kg/day
subcutaneously for a duration of three consecutive days. The
formation of the hernia sac was confirmed through palpation in
the second week. Ultrasound imaging (LOGIQ E10, 12L linear
probe) was employed to demonstrate a defect diameter
of ≥0.8 cm, indicating successful modeling with a success
rate of 93.2%.

Two weeks after the modeling surgery, the successfully modeled
rats were then randomized into four groups (n = 6 per group):
Control, Sepramesh™, Parietex™, PLGA-Collagen I, and PLGA-
Collagen I-BMSCs. Under general anesthesia, the original incision
was reopened, and adhesions were bluntly dissected to expose the
hernia ring. Meshes were trimmed to dimensions of 2 × 2 cm2 and
secured using non-absorbable polypropylene sutures (Ethicon
PROLENE 8668H) with a four-corner suspension fixation
technique (3 mm from the mesh edge, penetrating the full
thickness of the abdominal wall). A tension-free coverage with a
mesh overlap of ≥0.5 cm was ensured prior to the layered closure of
the abdomen. The protocol for the control group mirrored that of
the previously described experimental group, with the only

distinction being the absence of mesh application. Multimodal
evaluations conducted at postoperative week 12 included
adhesion grading according to the Nair scoring system (Nair
et al., 1974) (Table 1), assessment of inflammatory infiltration via
H&E staining, and collagen evaluation through Masson’s
trichrome staining.

3 Results

3.1 Surface characteristics of PLGA

The application of freeze-drying technology effectively
facilitated the construction of PLGA scaffolds characterized by
three-dimensional interconnected porous networks, as depicted in
Figure 1A. Scanning Electron Microscopy (SEM) analysis
demonstrated that all scaffold groups possessed highly
interconnected honeycomb-like pore structures. A significant
reduction in porosity was observed with increasing
concentrations of PLGA (Figure 1B): the 5% group exhibited a
porosity of 74.0% ± 2.6%, the 10% group 57.6% ± 4.3%, and the 15%
group 50.0% ± 2.8%, with statistical significance (p < 0.0001)
confirmed by one-way ANOVA. Similarly, the pore size
distribution followed a comparable trend (Figure 1C): 28 ±
3.3 μm for the 5% group, 18 ± 2.5 μm for the 10% group, and
9.7 ± 2.1 μm for the 15% group (p < 0.0001, one-way ANOVA). This
porous architecture not only facilitated cell adhesion and
proliferation (Walczak et al., 2017) but also provided enhanced
spatial accommodation and binding sites conducive to type I
collagen crosslinking. These characteristics contributed to
improved collagen stability and distribution on the mesh surface,
thereby promoting tissue repair and regeneration.

3.2 Degradation characteristics of PLGA

The PLGA-Collagen I composite mesh demonstrated distinct
biphasic degradation kinetics characterized by concentration-
dependent gradients, as illustrated in Figure 2. Under PBS-
simulated physiological conditions, all concentration groups
exhibited minimal mass loss (<5%) during the initial phase
(0–4 weeks). However, degradation rates increased over time,
particularly in groups with higher PLGA concentrations, which
showed more significant mass reduction. Specifically, the 5%
PLGA mesh experienced a slow degradation process, retaining
over 95% of its mass until rapid degradation began at week 12.

TABLE 1 The status of intra-abdominal adhesion was assessed according to the scoring system of Nair et al.

Grade Description of adhesive bands

0 Complete absence of adhesion

1 Single band of adhesion, between viscera or from viscera to abdominal wall

2 Twobands, either from viscera to abdominal wall

3 More than two bands, between viscera or viscera to abdominal wall

4 Viscera directly adherent to abdominal wall, irrespective of number and extent of adhesive bands
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In contrast, the 10% and 15% PLGA meshes entered accelerated
degradation phases earlier, with substantial mass loss commencing
at weeks 10 and 8, respectively. This pattern indicates that higher
PLGA concentrations are associated with enhanced solubility and
accelerated degradation rates. Overall, PLGA degradation exhibited
a concentration-dependent behavior: lower concentrations (5%)
offered prolonged stability, whereas higher concentrations (10%
and 15%) degraded more quickly. These findings suggest that
PLGA concentration plays a critical role in modulating both the
degradation rate and long-term in vivo stability of the composite
mesh. These observations provide essential insights for the
customization of mesh designs, indicating that the adjustment of
PLGA concentrations can enhance tissue repair outcomes in
accordance with clinical needs. Statistical analysis demonstrated
no significant correlation between Collagen I crosslinking and

PLGA degradation rates (p > 0.05), thereby confirming that the
degradation pathways of these two components are independent.
The study underscores two regulatory dimensions: the precise
modulation of PLGA degradation through concentration
adjustments and the crosslinking of Collagen I to modulate
bioactivity, both of which facilitate the optimization of functional
composite mesh performance.

3.3 Biocompatibility of PLGA mesh

Calcein-AM/PI dual fluorescence staining indicated a uniform
distribution of dense green fluorescence signals (Calcein-AM+ viable
cells) on the surface of the PLGA-Collagen I composite mesh at 24 h
post-seeding, with a cell viability coverage of 92.4% ± 3.8%

FIGURE 1
(A) Top view, side view, and SEM images of meshes fabricated using 5%, 10%, and 15% PLGA solutions via vacuum freeze-drying; (B) Porosity of
meshes prepared with the three PLGA concentrations; (C) Pore size distribution of meshes corresponding to the three PLGA concentrations.
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(Figure 3A). High-resolution imaging revealed that BMSCs adopted
spindle or stellate morphologies along the porous scaffold, extending
pseudopodia up to 48.7 ± 7.2 μm in length and establishing
intercellular contacts with neighboring cells. CCK-8 assays
demonstrated a sigmoidal proliferation curve for the composite
mesh group (Figure 3B), with OD450 values of 0.05 ± 0.03 on
day 1, entering the logarithmic growth phase (0.74 ± 0.04) by day 3,
and reaching the plateau phase (3.08 ± 0.04) by day 5, showing no
significant difference compared to the control group (P = 0.0766).
Collectively, these findings confirm the excellent biocompatibility of
PLGA, in accordance with ISO 10993-5 Grade 0 cytotoxicity criteria.

3.4 Mesh implantation in a rat incisional
hernia repair model

At 12 weeks post-operation, gross examination revealed that the
PLGA-Collagen I-BMSCs mesh exhibited excellent integration with
the abdominal wall tissues. Semi-transparent neo-fascial tissue
enveloped the mesh margins (Figures 4A,B), and adhesion
grading, assessed using the Nair scale, was significantly better
than that of the control groups: Grade 0 adhesions were observed
in 50.0% (3/6) of cases, Grade 1 in 50.0% (3/6), with no instances of
Grade 2 or 3 adhesions. In contrast, the Parietex™ group
demonstrated Grade 3 adhesions in 33.3% (2/6) of cases, while
the Sepramesh™ group exhibited localized edge curling and dense
fibrotic adhesions to intestinal tissues, with Grade ≥2 adhesions in
83.3% of cases. Ultrasound imaging confirmed the absence of hernia
recurrence across all groups.

Histological analysis indicated that the PLGA-Collagen
I-BMSCs group experienced a 73.30% reduction in inflammatory
cell infiltration density (11 ± 4.2 cells/HPF) compared to the
Sepramesh™ group (42.8 ± 5.2 cells/HPF, p < 0.001), with

significantly lower values than the other groups (Parietex™
group: 30.8 ± 5.5 cells/HPF, 64.29% reduction, p < 0.001)
(Figure 4C). The PLGA-Collagen I-BMSCs group demonstrated a
significant reduction in inflammation by 79.13% compared to the
BMSC-free PLGA-Collagen I group, with inflammatory cell counts
of 52.7 ± 6.8 cells/HPF (p < 0.001). This group exhibited focal
inflammatory foci measuring less than 0.1 mm2 per lesion, as
opposed to the diffuse infiltration exceeding 0.5 mm2 observed in
the control group. Masson’s trichrome staining indicated the
presence of organized, dense, bundle-like collagen fibers with a
highly aligned orientation in the PLGA-Collagen I-BMSCs
group. Conversely, commercial meshes were characterized by
disorganized collagen networks, featuring loose reticular
structures and localized fiber fragmentation. The density of
neovascularization at the interface between the mesh and host
tissue was significantly elevated in the PLGA-Collagen I-BMSCs
group, with 15.6 ± 2.7 vessels/HPF, representing a 2.2-fold increase
over the PLGA-Collagen I group (7.0 ± 2.9 vessels/HPF, p < 0.001)
and exceeding the values observed in commercial meshes
(Sepramesh™: 6.6 ± 3.2; Parietex™: 7.4 ± 2.3 vessels/HPF, p <
0.001) (Figure 4D).

The data indicate that the loading of BMSCs not only alleviates
foreign body reactions through immunomodulatory effects but also
enhances functional extracellular matrix remodeling and
neovascularization via paracrine mechanisms, ultimately
achieving a synergistic restoration of anatomical structure and
mechanical properties (Zou et al., 2023).

4 Discussion

This study systematically validated the comprehensive
performance advantages of PLGA-Collagen I-BMSCs composite

FIGURE 2
Degradation profiles of PLGA meshes (5%, 10%, 15%) and their collagen type I-crosslinked counterparts in PBS solution at 37 °C.
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meshes in IPOM repair for abdominal incisional hernias,
demonstrating their innovative value in terms of biomechanical
compatibility, tissue integration efficiency, anti-adhesion
mechanisms and full degradable. In comparison to traditional
synthetic meshes, this composite mesh effectively addressed the
challenge of balancing anti-adhesion efficacy with tissue
regeneration capability through biomimetic multi-level structural
design and active bio-interface engineering.

The hydrolysis process of poly(lactic-co-glycolic acid) (PLGA)
can be delineated into two distinct stages. During the initial stage,
the molecular weight of PLGA consistently decreases as degradation
progresses, yet there is negligible weight loss. As the process
transitions into the second stage, the molecular weight declines
to a lower threshold and remains relatively stable despite further
degradation. This behavior is characteristic of the hydrolysis of
aliphatic polyesters, wherein weight loss is observed only after the
molecular weight diminishes to a critical point at which the polymer
becomes soluble in water. Additionally, the hydrolysis rate of PLGA
porous scaffolds exhibits an inverse relationship with porosity. Prior
research has demonstrated that non-porous PLGA (50/50) degrades
more rapidly than foamed materials with porosities of 33% and 75%,
corroborating the findings of this study (Athanasiou et al., 1998;

Annaji et al., 2024; Elenskaya et al., 2024; Ghosh et al., 2023). This
phenomenon is primarily ascribed to the autocatalytic effect induced
by the accumulation of acidic degradation products within the
polymer matrix. Scaffolds with lower porosity or larger pore sizes
possess thicker pore walls and reduced specific surface areas, which
inhibit the diffusion of acidic degradation products and exacerbate
the local acidic environment (Wu and Ding, 2005). To achieve an
optimal balance between degradation rate and mechanical strength,
we selected the 10% PLGA group for subsequent investigation.

Importantly, the concentration gradient-dependent degradation
behavior of PLGA allowed for precise regulation of the dynamic
equilibrium between mechanical support and tissue regeneration
within the mesh. In the 10% PLGA group, 61.95% of the initial mass
was retained at 20 weeks, with the degradation rate closely aligning
with the regeneration pace of the abdominal wall fascia. This
alignment prevented both premature mechanical failure and
chronic stimulation due to late-stage material residue.
Furthermore, the formation of a peritoneum-like mesothelium on
the surface of the mesh significantly reduced the incidence of severe
intra-abdominal adhesions (Nair grade 3) from 33.3% in the
Sepramesh™ group to 0%. This reduction was achieved through
the dual mechanisms of physical barriers and bioactive factors

FIGURE 3
(A) Calcein-AM/PI fluorescence microscopy images of BMSCs seeded on PLGA-Collagen I meshes (incomplete dye removal due to porous
structure); (B) CCK-8 assay quantifying BMSC proliferation on PLGA-Collagen I meshes (n = 5, ns (P > 0.05)).
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(Wang et al., 2022), surpassing the limited efficacy duration of
existing oxidized regenerated cellulose coatings.

Drawing upon the existing body of literature, it is reasonable to
hypothesize that the PLGA-Collagen I-BMSCs composite mesh
exerts a multifaceted synergistic effect in facilitating the repair
process: The three-dimensional interconnected porous mesh not
only provided physical pathways for cell migration (Ellermann et al.,
2023; Kotlarz et al., 2023; Prakoso et al., 2023) and
neovascularization (Huang et al., 2022) but also significantly
enhanced the directional differentiation and functional expression
of BMSCs (Liu et al., 2022) due to its high compatibility with the
natural extracellular matrix (Alhosseini et al., 2012). More critically,
the incorporation of BMSCs enhanced the reparative
microenvironment via dual mechanisms. Firstly, BMSCs secreted
anti-inflammatory factors, including interleukin-10 (IL-10) and
transforming growth factor-beta 3 (TGF-β3), which significantly
inhibited the polarization of macrophages towards the
M1 phenotype (Cortés-Morales et al., 2023; Hu et al., 2021; Chen
et al., 2022; Liu et al., 2024). This shift altered the foreign body
response from a chronic inflammatory state to a pro-repair
phenotype. Secondly, BMSCs directly mitigated the excessive
activation of the TGF-β1/Smad3 signaling pathway in fibroblasts

(Kim et al., 2018) by delivering regulatory molecules such as miR-
29b and miR-210 via exosomes (Zhang et al., 2017; Zheng et al.,
2022; Guo et al., 2024), thereby reducing pathological scar formation
(Feng et al., 2022; Xu et al., 2022). This synergistic effect of immune
regulation and paracrine signaling was evidenced by Masson’s
trichrome staining, which revealed an orderly collagen
arrangement aligned with the mechanical conduction direction of
the abdominal wall muscles (Zhang et al., 2024). This alignment
potentially decreases the risk of mechanical tearing at the mesh edge
through stress-shielding effects. BMSCs facilitated capillary
formation via paracrine mechanisms, including the secretion of
platelet-derived growth factor-C, vascular endothelial growth factor,
and angiopoietin-like protein 4 (Zhou et al., 2023; Aquino et al.,
2021), in addition to direct contact mechanisms (Chen et al., 2021;
Méndez-Barbero et al., 2021). This dual approach enhanced the
microenvironment by supplying essential oxygen, nutrients, specific
hormones, and growth factors necessary for tissue repair (Li et al.,
2020). The biofunctionalization of mesh materials represents a
prominent area of contemporary research. The study conducted
by Siufui Hendrawan and colleagues illustrates that approaches such
as the incorporation of human umbilical cord mesenchymal stem
cells (hUC-MSCs) into prosthetic meshes or their exposure to

FIGURE 4
Comparative analysis at 12 weeks post-operation among groups: Control (nomesh), Sepramesh™, Parietex™, 10%PLGA-Collagen I, and 10%PLGA-
Collagen I-BMSCs (n = 6). (A) Macroscopic abdominal wall morphology and H&E/Masson’s trichrome-stained histological sections; (B) Nair adhesion
scores; (C) Inflammatory cell density; (D) Neovascularization density.
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bioactive treatments can significantly enhance tissue healing and
regeneration following hernia repair (Hendrawan et al., 2024a;
Hendrawan et al., 2024b), thereby demonstrating considerable
potential for practical application.

While this study used commercially sourced rats for consistency
and reproducibility, effectively translating the PLGA-Collagen I-MSCs
composite meshes for human use requires careful selection of the best
cell source. MSCs are primarily sourced from adipose tissue (via
liposuction or lipectomy), umbilical cord tissue (especially Wharton’s
jelly and blood vessels), and bone marrow (usually from the iliac bone
and crest). The twomain strategies are autologous (patient-derived) and
allogeneic (donor-derived) MSCs, each with distinct benefits, logistical
challenges, and regulatory considerations (At de et al., 2024).
Autologous MSCs offer perfect immunocompatibility, eliminating
rejection risks and allowing long-term engraftment without
immunosuppression. However, their clinical use faces challenges: a,
A 3–6 weeks delay for isolation and preparation, unsuitable for urgent
hernia repairs; b. Reduced potency in elderly, diabetic, or obese patients,
who are more prone to hernias; c. High costs and infrastructure needs
due to GMP compliance, limiting accessibility (Cunnane et al., 2018).
Allogeneic MSCs from young, healthy donors provide a practical
solution for large-scale clinical use. Clinical evidence shows that
these cells, with low MHC-II expression and lacking co-stimulatory
molecules, have strong immunomodulatory properties and low
immunogenicity, rarely facing rejection. They evade immune
detection through mechanisms like IDO secretion, Treg induction,
and HLA-G expression. Allogeneic MSCs offer consistent potency,
immediate availability, and lower costs due to scalable production (Fan
et al., 2020). For MSCs used to modulate inflammation and promote
regeneration, allogeneic MSCs are a more viable short-term clinical
option due to their transient presence.

Nonetheless, this study presents several limitations: firstly, the intra-
abdominal pressure in rat models, ranging from 0 to 5 mmHg, is
considerably lower than that in humans, potentially leading to an
overestimation of the mesh’s long-term mechanical stability. As the
PLGA degrades, it undergoes changes in mechanical strength,
complicating the assessment of its dynamic variations during the
repair process. Secondly, the paracrine lineage of BMSCs and their
interaction mechanisms with host immune cells necessitate further
investigation through single-cell sequencing and other omics
technologies. Furthermore, this applied research did not directly
quantify or verify the differentiation capacity or functional expression
of BMSCs when seeded onto 3D PLGA scaffolds through in vitro
experiments. Thirdly, the local pH fluctuations resulting from mesh
degradation products have not been quantitatively evaluated for their
impact on peritoneal integrity. Future research should focus on
developing large animal models, such as those involving pigs, with
abdominal wall defects and conducting multicenter randomized
controlled trials to assess the clinical translation potential of thismaterial.

In conclusion, the PLGA-Collagen I-BMSCs composite mesh
presents an innovative approach to the anatomical and functional
dual repair of abdominal incisional hernias through an integrated
design strategy characterized by “structural biomimicry-functional
activation-degradation adaptation.” The primary contribution of
this study lies in its shift from a passive repair paradigm to an active
regenerative medicine approach, thereby establishing both
theoretical and practical foundations for the development of
next-generation intelligent hernia repair materials.
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