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Liver diseases represent a significant global health challenge, affecting millions of
lives annually. The advent of nanoparticle (NP) technologies has introduced
promising therapeutic strategies for addressing liver diseases. Given the liver’s
pivotal role in detoxification and the inherent ability to interact with circulating
NPs, it emerges as an ideal target for NP-mediated therapies. Upon systemic
administration, NPs predominantly accumulate within the liver, where they are
uptaken and internalized by hepatic macrophages, sinusoidal endothelial cells,
and hepatocytes. This natural tropism of NPs toward the liver highlights their
potential for targeted liver disease management. This review describes the
physiological conditions of the hepatic sinusoids and elucidates the
interactions between various hepatic cells and NPs. A thorough understanding
of these physiological mechanisms is essential for optimizing liver-targeted NP
delivery systems, thereby improving NP accumulation at pathological sites. The
development of liver-targeted NPs technologies holds immense promise for
both the diagnosis and treatment of liver diseases.
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1 Introduction

Liver diseases are widely prevalent all over the world, affecting individuals in both
low-income countries and high-income countries (Gines et al., 2021; Adebayo et al.,
2019). Annually, approximately two million lives are lost due to liver related diseases, one
million attributed to cirrhosis, and one million attributed to viral hepatitis and
hepatocellular carcinoma (HCC) (Yeo et al., 2024; Do et al., 2024). The spectrum of
liver diseases encompasses acute liver failure, various forms of hepatitis (viral, alcoholic,
fatty, metabolic), cirrhosis, and HCC (Targher et al., 2024). These conditions not only
inflict direct damage upon the liver parenchyma but also disrupt hepatic metabolism of
carbohydrates, lipids, and proteins, leading to systemic metabolic derangements
characteristic of liver disease patients (Walradt and Jirapinyo, 2024). Consequently,
the impaired hepatic function significantly hampers the uptake and utilization of
numerous drugs, posing substantial challenges to the development of effective liver-
targeted therapies (Ngo et al., 2022).

In recent years, nanoparticle (NP) technologies have emerged as a groundbreaking
frontier in medical research, demonstrating remarkable progress across diverse therapeutic
domains (Lan et al., 2024; Li S. et al., 2024). NPs delivery systems hold the potential to
revolutionize drug distribution within the body by prolonging systemic circulation times
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and facilitating targeted delivery to pathological sites (Yang L. et al.,
2024). NPs encompasses five groups based on the nanoconstructs,
including inorganic metal NPs, carbon-based NPs, lipid NPs,
polymeric NPs, and nucleic acid NPs (Zhang JA. et al., 2024).
Through strategic modifications, these NPs can be tailored for
organ-specific targeting, thereby enhancing therapeutic efficacy
while minimizing off-target effects. The escalating demand for
advanced therapies has propelled several NP formulations into
clinical trials, heralding a new era in precision medicine (Mitchell
et al., 2021; Sayour et al., 2024).

NPs hepatic uptake is achieved through passive or active
means. Passive uptake is non-specific, primarily mediated by
the mononuclear phagocyte system (MPS) capturing
unmodified particles. Active targeting enhances specificity by
decorating nanomaterials with targeting moieties (e.g.,
antibodies, peptides) that bind to unique receptors on particular
liver cells, such as hepatocytes, reducing off-target sequestration
and improving delivery efficiency (Bottger et al., 2020). However, a
significant limitation of NP-based therapies lies in their rapid
clearance by MPS, which constitutes a major barrier to effective
drug delivery (Hulugalla et al., 2024). The MPS, primarily
composed of macrophages residing in the liver (Kupffer cells)
and spleen, functions as the body’s filtration system, actively
sequestering and internalizing circulating NPs (Zelepukin et al.,
2024). Studies indicate that nearly 85% of liver macrophages and
25% of splenic macrophages will accumulate NPs, underscoring
the liver’s pivotal role in NP biodistribution (Tsoi et al., 2016).
Meanwhile, this phenomenon also positions the liver as an optimal
target organ for nanotherapeutics, given its inherent capacity to
accumulate NPs. By integrating passive hepatic uptake
mechanisms with active targeting strategies, the therapeutic
potential of NPs in managing liver diseases can be substantially
augmented (Liu et al., 2024).

This review aims to provide a comprehensive overview of NP-
mediated targeting strategies and their applications in the
treatment of liver diseases. We commence by elucidating the
microanatomical features of the liver and the implications of
hepatic sinusoidal architecture on NP accumulation and
clearance. Subsequently, we delve into the impact of NP
characteristics on their biodistribution and liver-targeting
efficiency. Lastly, we highlight the therapeutic prospects of NPs
in addressing acute liver failure (ALF), non-alcoholic fatty liver
disease (NAFLD), liver fibrosis, and HCC, emphasizing the
transformative potential of nanotechnology in advancing liver
disease management.

2 The accumulation of NPs in the liver

2.1 Hepatic sinusoidal architecture makes
liver an ideal organ for NPs accumulation

The liver, being one of the most vital organs in the human body,
plays a crucial role in metabolic processes, detoxification, and
protein synthesis. Liver receives a substantial blood supply,
accounting for approximately 1.5 L per minute, which is among
the highest perfusion rates in the body (Kan et al., 2008; Seifalian
et al., 1991). This blood is delivered through two primary vessels: the
hepatic artery and the portal vein, contributing 30% and 70% of the
total hepatic blood flow, respectively (Abdel-Misih and Bloomston,
2010). The hepatic artery supplies oxygenated blood, while the
portal vein delivers nutrient-rich blood from the gastrointestinal
tract. Within the hepatic sinusoids, blood from these vessels mixes,
undergoes metabolic exchange, and is subsequently drained via the
central veins. Notably, despite the rapid flow in the afferent vessels,
the blood velocity within the sinusoids dramatically decreases to 1/
1000th that of the portal vein, creating a low-velocity environment
conducive to NP adhesion and retention (Tsoi et al., 2016).

At the cellular level, the liver comprises parenchymal cells
(hepatocytes, constituting 60% of all liver cells) and non-
parenchymal cells (40% of all liver cells), including liver
sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs),
and Kupffer cells (KCs) (Figure 1) (Feng and Gao, 2021).
Hepatocytes are organized in single-cell cords towards the center
of the lobule, making contact with the sinusoidal blood vessels (Gao,
2016). LSECs and hepatocytes are separated by a region known as
the space of Disse. These spaces facilitate the exchange of small
molecules and nutrients between blood and hepatocytes. LSECs
form a fenestrated barrier with pores ranging from 50 nm to 200 nm
in diameter, functioning akin to a selective filter that promotes
efficient uptake of substances by hepatocytes (Gao, 2016). HSCs,
rich in lipid droplets and vitamin A, contribute to the extracellular
matrix formation. KCs, dispersed among LSECs, act as the liver’s
resident macrophages, engulfing foreign particles and debris from
the bloodstream (Wang et al., 2021).

WhenNPs enter the hepatic sinusoids, their interaction with this
intricate microenvironment significantly influences their
biodistribution and fate. Due to the slow blood flow, a
substantial portion of NPs adheres to the LSECs, facilitating their
uptake by KCs (Lankveld et al., 2010). However, not all NPs are
cleared in this manner; a fraction evades phagocytic surveillance and
is internalized by LSECs. NPs larger than 200 nm are shunted into
the systemic circulation and eventually sequestered by the spleen,
whereas smaller NPs (<200 nm) penetrate deeper into the liver
parenchyma, interacting directly with hepatocytes and HSCs
(Lankveld et al., 2010; Boey and Ho, 2020).

2.2 Route of NPs administration promotes
the accumulation of NPs in the liver

The route of administration plays a crucial role in determining
the biodistribution and accumulation of NPs within the body, with
the liver being a primary target organ for NPs accumulation due to
its extensive blood supply and unique sinusoidal architecture (Xu

Abbreviations: ALF, acute liver failure; AM, amlodipine; ApoE, apolipoprotein
E; ASGPR, asialoglycoprotein receptor; AuNPs, gold nanoparticles; CBT,
calcium-based thermal-sensitive enhancer; CK, ginsenoside compound K;
DCR3, decoy receptor 3; EGFR-2, endothelial growth factor receptor-2;
GalNAc, N-acetylgalactosamine; HCC, hepatocellular carcinoma; HER2,
epidermal growth factor receptor-2; HSCM, hepatic stellate cell
membranes; HSCs, hepatic stellate cells; IFN-γ, interferon-gamma; IL-2,
interleukin-2; IL-4, interleukin-4; IL-10, interleukin-10; KCs, Kupffer cells;
KMD, ketalized maltodextrin; LNP, Lipid-based NPs; LPS, lipopolyscharide;
LSECs, sinusoidal endothelial cells; MPS, mononuclear phagocyte system;
NAFLD, non-alcoholic fatty liver disease; NP, nanoparticles; PEG,
polyethylene glycol; ROS, reactive oxygen species; SR-A, scavenger
receptor-A.
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et al., 2023). The most common routes of administration in clinical
practice and animal models include oral, intravenous,
intramuscular, and intraperitoneal injections (Bitounis et al.,
2024). Each route has distinct advantages and challenges that
influence the efficiency of NPs delivery and subsequent hepatic
accumulation.

Oral administration is often preferred due to its convenience and
high patient compliance. However, this route presents significant
challenges as NPs must navigate the complex gastrointestinal
environment (Shen et al., 2024; Ramire et al., 2024). Gastric
juices, pancreatic enzymes, intestinal fluids, and bile can all
contribute to the unexpected loss of NPs (Barros et al., 2024).
Additionally, the penetrability of NPs through the mucus layer
and intestinal epithelium is vital for their absorption and
bioavailability (Xu et al., 2024). Furthermore, the gastrointestinal
tract is rich in macrophages and dendritic cells capable of clearing
substantial quantities of NPs (Tranah et al., 2021; Pabst et al., 2023).
Despite these obstacles, an adequate dose of NPs can evade these
defenses and enter systemic circulation.

In contrast, intravenous, intramuscular, and intraperitoneal
injections bypass the digestive tract, thereby overcoming some of
the barriers associated with oral administration and potentially
enhancing bioavailability. Intravenous injection provides the most
direct and highest initial hepatic exposure, as NPs enter the systemic
circulation directly, bypassing other absorption barriers and

allowing immediate interaction with liver sinusoids and Kupffer
cells. However, these routes may suffer from reduced practicality due
to factors such as invasiveness, potential for localized side effects,
and the need for specialized administration procedures (Wang
et al., 2023).

Regardless of the administration route, NPs ultimately enter
systemic circulation. Venous blood from the head, neck, and
upper limbs returns to the heart before entering the portal
system. Blood from the lower limbs enters the systemic
circulation via the inferior vena cava (Wang et al., 2023;
Kulchar et al., 2023). Given the liver’s rich blood supply, NPs
inevitably pass through the liver where they undergo metabolism.
This physiological process highlights the liver’s central role in NP
clearance and underscores the importance of understanding how
different administration routes impact NP biodistribution and
hepatic accumulation.

2.3 The interactions of NPs with various
hepatic cells in the liver disease

The innovative NPs are designed to interact specifically with the
diverse cellular populations of the liver—including KCs, HSCs,
LSECs, and hepatocytes—each playing distinct roles in disease
progression and treatment response. Several NPs-based

FIGURE 1
Schematic illustration showing the hepatic lobule and hepatic sinusoid. The hepatic lobule represents the smallest structural and functional unit of
the liver. Within the hepatic lobule, blood from the hepatic artery and portal vein mixes in the sinusoids before draining into the central vein. LSECs lining
the sinusoids are closely arranged along the inner vessel wall, with intercellular gaps ranging from50 nm to 200 nm.NPs smaller than 200 nmcan traverse
these endothelial gaps to interact with HSCs and hepatocytes within the liver sinusoids (Feng and Gao, 2021). Created in https://BioRender.com.
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formulations have already progressed to clinical trials,
demonstrating promising potential for enhancing drug delivery,
improving therapeutic efficacy, and reducing systemic side effects
(Table 1). This section summarizes the mechanisms through which
NPs interact with different hepatic cell types in both healthy and
diseased microenvironments, with particular emphasis on those

systems that have reached clinical-stage development, thereby
bridging foundational research with translational applications.

Upon entering the hepatic sinusoids, NPs first encounter KCs,
which constitute a vital component of the MPS, accounting for
approximately 80% of the body’s macrophages (Barreby et al., 2022).
KCs play an essential role in liver immune regulation and

TABLE 1 Nanoparticle systems for liver disease in clinical trials or commercialized.

Nanoparticle systems NPs formulation Delivered drugs Stage References

Lipid-based NPs VA-liposomes Imatinib Phase Ⅱ Krischer et al. (2017)

Lipid-based NPs VA-liposomes Valsartan Phase Ⅱ Easa et al. (2019)

Lipid-based NPs pPB-modified liposomes Recombinant human TRAIL Phase Ⅲ Li et al. (2019)

Polymer-based NPs Cationic nanohydrogel particles siRNA Phase Ⅲ Duran-Lobato et al. (2021)

Polymer-based NPs Ketal cross-linked cationic nanohydrogel Anti-col1α1 siRNA Phase Ⅱ Leber et al. (2017)

Polymer-based NPs PLGA phyllanthin Phase Ⅱ Zhang et al. (2018)

Polymer-based NPs PEG-PLGA/PLGA NPs sorafenib Phase Ⅱ Lin et al. (2016)

Inorganic NPs Mesoporous silica NPs siTnC Phase Ⅲ He et al. (2010)

Inorganic NPs PEG-AuNPs hesperetin Phase Ⅱ Vivero-Escoto et al. (2019)

Inorganic NPs AuNPs and SiNPs NO donors Phase Ⅱ Krishnan et al. (2017)

Inorganic NPs PtNPs Curcumin Phase Ⅱ Das et al. (2010)

Inorganic NPs Calcium phosphate NPs (CaP@BSA NPs) TSG-6 Phase Ⅱ Wang et al. (2020)

FIGURE 2
Schematic illustration showing the NPs targeting themacrophages to alleviate liver diseases. In the context of liver disease, KCs polarize towards the
M1 phenotype, exacerbating hepatic inflammation through the secretion of pro-inflammatory cytokines. Following NP treatment, there is a shift in KC
polarization towards the M2 phenotype, which alleviates inflammation by secreting anti-inflammatory cytokines. This transition ultimately contributes to
the amelioration of liver disease (Zhang W. et al., 2024; Hu Y. et al., 2024). Created in https://BioRender.com.
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maintaining immunological homeostasis. KCs are categorized into
two distinct subpopulations based on their functional roles and
secretion profiles: M1 and M2 macrophages (Wang Y. et al., 2024).
M1 macrophages, activated by lipopolyscharide (LPS) and
interferon-gamma (IFN-γ), secrete high levels of interleukin-2
(IL-2) and lower levels of interleukin-10 (IL-10), primarily
promoting inflammation, bactericidal activity, and phagocytosis
(Wang R. et al., 2024). Conversely, M2 macrophages, activated
by interleukin-4 (IL-4), predominantly secrete anti-inflammatory
cytokines such as IL-10, thereby suppressing local inflammatory
responses (Hou et al., 2024). Numerous studies have demonstrated
that NPs can facilitate the conversion of M1 to M2 macrophages
through drug delivery, mitigating macrophage-driven inflammatory
responses and thus alleviating liver disease (Figure 2) (Jain et al.,
2024; Zhang W. et al., 2024; Hu Y. et al., 2024). Additionally, KCs
express high levels of pattern recognition receptors, such as
mannose receptors. NPs modified with ligands targeting these
receptors can achieve specific localization to KCs, enhancing
their therapeutic efficacy (Ergen et al., 2017).

HSCs primarily function in lipid and retinol storage. In healthy
livers, HSCs remain quiescent. However, under pathological
conditions, various inflammatory insults can activate HSCs,
leading to their differentiation into fibroblasts (Taru et al., 2024).
Prolonged chronic injury results in the activation and proliferation
of HSCs, which fill the Disse space, causing hepatic fibrosis (Horn
and Tacke, 2024; Che et al., 2023). This pathological process
significantly impedes the entry of NPs into the liver parenchyma.
Therefore, mitigating HSCs activation to alleviate fibrosis represents
an effective therapeutic strategy. Studies have utilized HSCs
membrane-derived biofilms to encapsulate drugs into uniform
NPs. By leveraging the principle of homologous targeting, these
NPs deliver drugs specifically to HSCs, thereby addressing hepatic
fibrosis (Cheng et al., 2024). Another approach involves modifying
NPs with vitamin A, capitalizing on the characteristic ability of
HSCs to store vitamin A to target drug delivery directly to these cells
(Niu et al., 2023).

LSECs, uniquely positioned at the interface of blood and
hepatocytes, play a pivotal role in regulating the passage of
substances into the liver parenchyma (Mcconnell et al., 2023).
Central to understanding NP-LSEC interactions is the concept of
liver fenestrations. The diameter of these fenestrations imposes
physical constraints on the entry of NPs into the liver,
necessitating meticulous consideration of NP size during the
design phase (Gage et al., 2020). By tailoring NP dimensions to
align with the specific fenestration sizes of target species or patient
populations, researchers can optimize liver targeting efficiency,
thereby enhancing therapeutic outcomes. Beyond their role in
filtration, LSECs serve as crucial antigen-presenting cells, actively
participating in immune surveillance within the liver (Hammoutene
and Rautou, 2019). Their high expression of mannose receptors
underscores their potential as targets for immunomodulatory
strategies (Greuter et al., 2022). NPs engineered to specifically
bind mannose receptors on LSECs could facilitate targeted
delivery of therapeutic agents, thereby enhancing localized
treatment effects while minimizing systemic side effects. Recent
studies have illuminated the charge-selective properties of LSECs,
revealing a preferential uptake of negatively charged NPs compared
to their positively charged counterparts (Yap et al., 2020).

Capitalizing on this observation, researchers have designed
charge-selective NPs that exploit these preferences to achieve
heightened liver accumulation. Charge-selective NPs have been
shown to effectively suppress endothelial growth factor receptor-2
(EGFR-2) expression in LSECs, a pivotal step in inhibiting
angiogenesis and tumor progression in mouse HCC model
(Yazdi et al., 2024).

Hepatocytes, being the most abundant cell type in the liver and
central to its functional execution, are prime targets for NP-mediated
therapeutic interventions (Zhao et al., 2024). One of the prominent
strategies for targeting hepatocytes involves exploiting the high
concentration of digestive enzymes within these cells. Many studies
have demonstrated that targeting specific digestive enzyme receptors
on hepatocytes to achieve efficient delivery of therapeutic agents. This
approach leverages the natural biological processes of the liver to
enhance the specificity and effectiveness of drug delivery systems
(Zhao et al., 2024; Zhang et al., 2024c; Lu et al., 2024). Among the
various targeting ligands, N-acetylgalactosamine (GalNAc) and
apolipoprotein E (ApoE) stand out for their exceptional affinity
and functionality in hepatocyte targeting. GalNAc binds with high
specificity to the ASGPR expressed on the surface of hepatocytes (He
X. et al., 2024). This interaction facilitates the internalization of NPs,
making it an attractive strategy for delivering drugs or genes directly to
hepatocytes. By conjugating GalNAc to the surface of NPs or
therapeutic cargos, researchers can significantly enhance the uptake
efficiency and specificity towards hepatocytes, thereby improving
therapeutic outcomes (Kim et al., 2022). Similarly, ApoE, a major
apolipoprotein found in chylomicrons, plays a crucial role in lipid
metabolism and is readily taken up by hepatocytes. Anchoring ApoE
onto NP surfaces has been shown to enhance the targeting efficiency
of NPs to hepatocytes, offering another viable strategy for liver-
specific drug delivery (Lyu et al., 2024). This approach not only
improves the bioavailability of drugs at the target site but also
minimizes systemic side effects by reducing off-target accumulation
(Kim et al., 2021).

3 Factors affecting the biodistribution
of NPs

The biodistribution of NPs after intravenous, intramuscular, or
intraperitoneal injection is a critical determinant of their therapeutic
efficacy and safety. Several key physicochemical properties of NPs
significantly impact their ability to be taken up by the liver
(Figure 3). The size of NPs is a primary determinant of their fate
within the body (Zaleski et al., 2024). Larger NPs often face
difficulties in crossing the fenestrations of LSECs, whereas
smaller NPs can more readily pass through these openings.
Additionally, the shape of NPs plays a crucial role, spherical NPs
typically exhibit different uptake kinetics compared to rod-shaped
or other anisotropic forms (Yan et al., 2024). Furthermore, the
surface charge of NPs also affects their interaction with cellular
membranes and their subsequent internalization by hepatocytes
(Dykman et al., 2025). The surface modification of NPs is
another critical factor influencing their hepatic uptake.
Functional groups or ligands attached to the NP surface can
enhance or inhibit interactions with specific cell types within the
liver (Dykman et al., 2025). The surface chemistry of NPs, modified
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with specific functional groups or targeting ligands, profoundly
influences their interactions with biological systems. For instance,
the incorporation of polyethylene glycol is a common strategy to
impart “stealth” properties and prolong circulation time by reducing
opsonization and mononuclear phagocyte system uptake (Liu et al.,
2024). The material composition of NPs, including their hardness
and porosity, can also influence their absorption and distribution
within the liver. Stiffer materials may resist deformation during
passage through the narrow fenestrations of while porous NPs could
allow for better interaction with cellular components (Kent et al.,
2024). Understanding the factors that influence how NPs are taken
up and utilized by the liver is essential for optimizing their design
and application in liver-targeted therapies.

3.1 Size

The size of NPs is a critical determinant of their administration
routes and biodistribution within the body. The clearance
mechanisms in the bloodstream play a significant role in
determining the fate of NPs based on their size. Larger NPs,
typically those exceeding 500 nm in diameter, are prone to rapid
clearance by macrophages in the blood. This clearance process limits
their circulation time and availability for targeted delivery, making
them less suitable for systemic applications (Schofield et al., 2024).
In contrast, micrometer-sized NPs (>1 μm) are often utilized in
pulmonary drug delivery systems, particularly through nebulization
(Witten et al., 2024; Li X. et al., 2024). These larger particles are
generally not recommended for intravenous administration due to
their inability to navigate the intricate network of capillaries and the

risk of embolism. At the other end of the spectrum, extremely small
NPs (<50 nm) exhibit enhanced tissue penetration capabilities.
Their small size allows them to distribute throughout the body
more effectively but also increases the likelihood of uptake by
lymphatic tissues (Rong et al., 2024; Feng T. et al., 2024).
Additionally, these tiny NPs can be filtered and eliminated by the
kidneys. The glomerular endothelial cells in the kidneys have
fenestrations smaller than 10 nm, which means that NPs below
this size threshold will be rapidly cleared from the bloodstream via
renal excretion (He Y. et al., 2024; Li et al., 2025). Consequently,
ultra-small NPs have very short circulation times, often being
completely excreted within a few hours after administration.

Given these considerations, the ideal size range for NPs intended
for liver targeting falls between 50 nm and 200 nm. They are large
enough to avoid immediate renal excretion, thereby prolonging their
circulation in the bloodstream (Moghimi et al., 2023). This extended
half-life is crucial for allowing sufficient time for the NPs to
extravasate and accumulate within the liver (Bussin et al., 2025).
More specifically, the fenestrated endothelial lining of the liver
sinusoids contains pores ranging from 50 to 150 nm in diameter.
NPs under 200 nm can efficiently traverse these fenestrations,
gaining direct access to the space of Disse and subsequently to
the underlying hepatocytes. This process is fundamental for passive
targeting and enhanced permeability.

Furthermore, this size range is highly compatible with various
active targeting strategies. For instance, NPs can be functionalized
with ligands such as galactose to target the asialoglycoprotein
receptor (ASGPR) abundantly expressed on hepatocytes (Feng
et al., 2025). The 50–200 nm size ensures that these ligand-
decorated particles maintain favorable pharmacokinetics and

FIGURE 3
Schematic illustration of factors affecting the biodistribution of NPs in the body. Created in https://BioRender.com.
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biodistribution, maximizing receptor-mediated internalization
while minimizing non-specific off-target accumulation (Bai et al.,
2025). In summary, the 50–200 nm size range strikes a critical
balance between prolonged circulation, efficient hepatic penetration,
and enhanced cellular uptake, making it a cornerstone rationale in
the design of liver-targeted nanotherapeutics.

3.2 Shape

The shape of NPs significantly influences their biodistribution
and cellular uptake, particularly within the liver. Among various
shapes such as cubes, rods, spheres, and stars, spherical NPs are
particularly advantageous for cellular uptake, especially under
conditions of slow blood flow typical in hepatic sinusoids (Ko
et al., 2024). In turbulent blood flow, spherical NPs experience
distinct forces compared to other shapes. They tend to be
compressed by the walls of smaller radius vessels and
subsequently move towards larger radius vessels. This movement
facilitates their eventual internalization by endothelial or other cell
types lining these vessels (Hu G. et al., 2024). In contrast, non-
spherical NPs, such as nanorods or cubic structures, exhibit
markedly different behaviors in turbulent flow. Their anisotropic
shapes lead to complex rotational dynamics and increased
susceptibility to collisions with vascular walls. Rather than
undergoing efficient cellular uptake, these particles often enter a
sliding motion along the vessel centerline, reducing their contact
time with the endothelial surface and diminishing their likelihood of
being engulfed via endocytic pathways (Bottger et al., 2020; Lozano-
S et al., 2024). This hydrodynamic profiling underscores the
importance of shape uniformity in minimizing off-target
movement and maximizing hepatic accumulation.

Furthermore, the preference for spherical NPs is reinforced by
biological interactions at the cellular level. Their symmetrical shape
allows for more uniform ligand distribution, which is crucial for
receptor-mediated uptake mechanisms prevalent in liver cells (Kent
et al., 2024; Bartneck, 2021). The combination of favorable
hemodynamic properties and optimized surface presentation
makes spherical NPs particularly advantageous for navigating the
liver’s intricate vasculature and achieving efficient intracellular
delivery (Teng et al., 2023; Yue et al., 2023). Thus, while novel
shapes may offer unique mechanical or optical properties, spherical
nanoparticles remain the gold standard for hepatic targeting due to
their enhanced hydrodynamic performance and cellular
engagement in slow-flow systems (Arjunan et al., 2024).

This hydrodynamic effect is exacerbated in diseased states such
as hypertension and atherosclerosis, where increased turbulence and
narrowing of blood vessels are common (Tao and Salmeron, 2024;
Costantini et al., 2024). The altered blood flow patterns in these
conditions can further hinder the effective delivery and uptake of
non-spherical NPs, highlighting the importance of considering NP
shape in the design of targeted therapies.

3.3 Charge

The surface charge of NPs is another critical factor influencing
their biodistribution and tissue-specific accumulation. Here, we

explore how the presence of surface charges affects the apparent
acid dissociation constant (pKa) of NPs, which in turn influences
their aggregation properties in different tissues. Research has
demonstrated that the liver preferentially accumulates NPs with a
pKa between 6 and 7. Conversely, lungs exhibit a higher affinity for
NPs with a pKa greater than 9. NPs with a pKa less than 6 are more
readily taken up by the spleen. These findings suggest that the pKa of
NPs can be strategically manipulated to enhance their uptake by
specific organs (Pilkington et al., 2021; Cheng et al., 2020).

One sophisticated strategy to engineer NPs for improved hepatic
accumulation involves the deliberate modulation of their surface
charge through the conjugation of specific biological proteins. A
prominent example is the use of ApoE, a protein that naturally
carries a net negative charge and plays a key role in lipid metabolism
and receptor-mediated endocytosis. When ApoE is adsorbed or
covalently attached to the surface of synthetic NPs that are typically
engineered to possess an initial positive charge, it fundamentally
alters their electrostatic profile. This conjugation effectively
neutralizes the highly positive surface and confers a negatively
charged, biomimetic corona. This newly acquired negative
surface characteristic is critically important for targeting LSECs.
These resident liver cells exhibit a well-documented affinity for and
efficiently scavenge negatively charged macromolecules and
particulates from the circulation, a process driven by specialized
scavenger receptors.

Beyond merely facilitating initial LSEC recognition and
acceptance, the ApoE corona acts as a sophisticated biological
targeting ligand. It enables the NPs to hijack endogenous
metabolic pathways, particularly those involving the LDL receptor
family abundantly expressed on the surface of hepatocytes.
Consequently, ApoE-functionalized NPs benefit from a dual-
targeting mechanism: initial sequestration by LSECs due to charge
preference, followed by enhanced, receptor-mediated uptake into
hepatocytes. Empirical evidence strongly supports the efficacy of
this approach. For instance, comprehensive studies utilizing gold
nanoparticles with a diameter of approximately 80 nm—a size
optimized for traversing hepatic sinusoidal
fenestrations—demonstrate a dramatic increase in liver
accumulation when coated with ApoE. Quantitative biodistribution
analyses reveal that these bio-functionalized NPs achieve significantly
higher concentrations within liver tissue compared to their uncoated,
positively charged counterparts, which are more prone to
opsonization and clearance by the immune system or
accumulation in off-target organs (Schottler et al., 2016; Saha et al.,
2016). Thus, ApoE modification represents a powerful protein-based
strategy to leverage the liver’s inherent cellular and molecular
machinery for superior nanoparticle delivery.

One approach to designing NPs for enhanced liver uptake
involves modifying their surface charge through conjugation with
proteins. For instance, ApoE, a protein commonly associated with
negative charges, can be used to modify positively charged NPs. This
modification alters the overall charge characteristics of the NPs,
making them more attractive to LSECs, which have a preference for
negatively charged particles. Furthermore, ApoE not only facilitates
the acceptance of NPs by LSECs but also enhances their uptake by
hepatocytes. Studies have shown that gold NPs coated with ApoE
and measuring 80 nm in diameter achieve significantly higher
concentrations within the liver compared to uncoated NPs.
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TABLE 2 Applications of NPs to treat different liver diseases.

Diseases Targeted
cells

Targeting
approaches

Vector Administration
route

Animal
model

Efficiency References

ALF Macrophages Scavenger receptor-A Palmitic acid-modified
serum albumin

Intravenous Mice More than 50% NPs
are taken up in liver,
and the control group
has almost no NPs
uptake

Zhang et al.
(2023a)

ALF Hepatocyte Antioxidant
nanozyme-
hepatocyte-like cells

N-acetylcysteine-
capped gold
nanoclusters, forming
the N–Au@hydrogel

Intraperitoneal Mice The HS/N–Au@
composite group also
demonstrated the
most favorable
reductions in AST
and ALT serum levels,
effectively
suppressing by 12.32-
fold and 10.20-fold,
respectively,
compared to the
control model group

Jin et al. (2025)

ALF Hepatocyte Conjugating acid-
cleavable
hydrophobic
moieties to
maltodextrin

Ketalized maltodextrin Intravenous Mice A majority (~70%) of
drug payloads was
released at 24 h

Go et al. (2018)

ALF Macrophages Red blood cell
membrane

Mesenchymal stem
cells inspired
biomimetic
nanoframework

Intravenous Mice The final biomimetic
nanostructure had a
loading capacity of
6.98% for rhein and
7.51% for freezedried
MSC-conditioned
medium

Feng et al.
(2024b)

ALF Porous silicon,
gold NPs

Intravenous Mice More than 50% DPSi/
DAu@AcDEX are
taken up in liver, and
the control group has
almost no NPs uptake

Liu et al. (2018)

ALF Hepatocyte Bovine serum
albumin

Bilirubin and 18β-
Glycyrrhetinic acid

Intravenous Mice B/BG@N expressed
abundant luciferase
activity in
hepatocytes, while the
control group has
almost no luciferase
uptake

Yao et al. (2023)

ALF Macrophages Macrophage
membrane

PLGA NPs Intravenous Mice MVs-DiD-NPs were
observed with the
highest fluorescence
intensity in liver
tissue

Shang et al.
(2023)

ALF Macrophages Manganese
porphyrin via π-π
stacking interaction
with G-quadruplex

DNA nanoplatform Intravenous Mice TDN-siTNF-α/-G4-
MnP4 shows almost
complete liver
accumulation after
within 2 h

Wei et al. (2024a)

ALF Macrophages Phenylboronic acids PEGylated,
phenylboronic-acid-
protected L-DOPA
precursor NPs

Intravenous Mice PADN treatment
displayed obvious
efficacy in reducing
AST levels over
control group

Zhao et al. (2021)

NAFLD Hepatocyte Rubicon-specific
CRISPR-
Cas9 components

Lipid NPs Intravenous Mice ≈90% of the NPs
accumulated in the
liver, while only ≈5%
were detected in the
spleen

Bai et al. (2024a)

(Continued on following page)
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TABLE 2 (Continued) Applications of NPs to treat different liver diseases.

Diseases Targeted
cells

Targeting
approaches

Vector Administration
route

Animal
model

Efficiency References

NAFLD Hepatic stellate
cells

CD44-targeting
glycosaminoglycan
biopolymer

Hyaluronic acid-
bilirubin NPs

Intravenous Mice Higher fluorescence
signals from
HABN–Cy5.5 were
found in the liver of
mice kept on a CD-
HFD than in their
other organs

Shinn et al.
(2024)

NAFLD Hepatocyte Albumin Natural compound
ginsenoside
compound K

Intravenous Mice NabCK
supplementation
increased fecal
cholesterol and
cholestanone by
2.86 and 56.32 times,
respectively

Yue et al. (2023)

NAFLD Hepatic stellate
cells

Vitamin A Aminoethyl anisamide
coated in NPs

Intravenous Mice siRNA@Cy5.5NP-
AEAA5% exhibited
greater accumulation
in fibrotic livers
compared with
nontargeted siRNA@
Cy5.5NP

Zhang et al.
(2023b)

NAFLD TiO2, Au, and
NaYF4 NPs

Oral administrations Mice Relative Ces2h
mRNA expression of
db/db mice increased
by ~2.9–3.3 times,
depending on the
types of NPs

Cai et al. (2023)

NAFLD Hepatocyte Fluorineted
polyesters

Biodegradable acid-
activated
acidifying NPs

Intravenous Mice Rhodamine-labeled
PEFSU acNPs are
rapidly taken up in
HepG2 cells with 80%
of the HepG2 cells
possessing Rho-
acNPs within 4 h

Zeng et al. (2023)

NAFLD Macrophages Prohibitin binding
peptide

Hemin- or CoPP-
loaded poly NPs

Intravenous Mice PBP-NPs were highly
distributed in the fatty
liver of the NASH
model than what was
observed in the liver
of the T2DM model

Hong and Kim
(2022)

Liver fibrosis Hepatic stellate
cells

IL-11 scFv Lipid NPs Intravenous Mice Cy5AA3G LNP
exhibited a higher and
more specific
distribution in the
liver compared to the
nontargeted
Cy5AA3 LNP.

Zhang et al.
(2024d)

Liver fibrosis Hepatic stellate
cells

Platelet membranes
and hepatic stellate
cell membranes

Poly (lactic-co-glycolic
acid) @Melatonin

Intravenous Mice The fluorescence
intensity observed
with HSCM@PLGA@
Cy7.5 was
significantly higher
than that of PLGA@
Cy7.5, at all-time
points

Bai et al. (2024b)

Liver fibrosis Liver sinusoidal
endothelial cells
and hepatic
stellate cells

Chondroitin sulfate Vismodegib-
loaded NPs

Intravenous Mice Targeting ability of
chondroitin sulfate
and vismodegib to the
highly expressed
receptors in liver

Zhang et al.
(2024e)

(Continued on following page)
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TABLE 2 (Continued) Applications of NPs to treat different liver diseases.

Diseases Targeted
cells

Targeting
approaches

Vector Administration
route

Animal
model

Efficiency References

Liver fibrosis Hepatic stellate
cells

Ligands targeting
M6P/IGF-II
receptors

Dibenzocyclooctyne
functionalised
crosslinked micelles

Intravenous Mice The mannose-
conjugated micelles
and retinol-
conjugated micelles
exhibited consistent
trends between
in vitro and in vivo
experiments

Balaji et al.
(2023)

Liver fibrosis Macrophages Ligands targeting
RNF41

Dendrimer-
graphite NPs

Intravenous Mice An intense
fluorescence signal in
CD11b+
macrophages
corresponding to the
plasmid EGFP
reporter

Moreno-Lanceta
et al. (2023)

Liver fibrosis Self-assembling
antagonist
peptides NPs

Intravenous Mice The fluorescence of
the DiR-F-NPs was
mainly concentrated
on the liver sites

Li et al. (2023a)

Liver fibrosis Hepatic stellate
cells

CREKA (a specific
ligand of fibronectin)
and chondroitin
sulfate (CS, a major
ligand of CD44)

Lipid NPs Intravenous Mice CCR NPs showed the
highest fluorescent
signal in CCl4-
induced liver

Li et al. (2023b)

Liver fibrosis Hepatic stellate
cells

Bilirubinn PEGylated NPs Intravenous Mice Cy5.5@GBRNP
fluorescence in the
liver was 1.8-fold
greater than that in
the free Cy5.5 group
and 1.5-fold
compared to the
Cy5.5@BRNP group

Li et al. (2023c)

HCC Decoy receptor
3 antibodies

PEGylated
paramagnetic NPs

Intravenous Mice Following coupling
with the
DCR3 antibody, the
Fe NPs-DCR3 group
exhibited more
effective enrichment
at liver tumor sites
compared to the Fe
NPs group

Jia et al. (2024)

HCC Heaptocellular
carcinoma cells

FIDAS-5,
macrophage
membrane, and anti-
PD-L1

Hollow mesoporous
manganese dioxide
(MnO2) NPs

Intravenous Mice After treatment with
MF, MFM, and
MFMP, relatively
high fluorescence was
observed in the liver
while pronounced
fluorescence was only
detected in the
tumors of the MFMP
groups

Zhu et al. (2024)

HCC Heaptocellular
carcinoma cells

Calcium-based
thermosensitizer

CaCO3 NPs Intravenous Mice Compared with the
mice in the PBS group
and the IR780 group
alone, DMXAA@
CBTNps arriving at
the tumor site at 24 h
still retained more
NPs located in the
tumor

Zeng et al. (2025)

(Continued on following page)
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3.4 Surface modification

Surface modification of NPs is a common strategy for liver
targeting, serving two primary purposes: enhancing uptake by
specific cells within the liver and evading rapid clearance by the
body (Yang M. et al., 2024). One effective approach to prevent rapid
uptake and clearance of NPs is surface modification with
polyethylene glycol (PEG). PEGylation significantly increases the
hydrophobicity of NPs, preventing their recognition and subsequent
clearance by bloodmacrophages. This modification extends the half-
life of NPs in the bloodstream, thereby enhancing their circulation
time and potential for targeted delivery (Li H. et al., 2024; Zheng
et al., 2023). Another method to avoid rapid NP clearance involves
coating NPs with a biomimetic membrane. Coating nanoparticles
with biomimetic membranes—such as those derived from red blood

cells, platelets, or leukocytes—has emerged as a powerful strategy to
enhance biocompatibility and impart advanced targeting
capabilities. The use of such membranes can mimic endogenous
substances, signaling to cells that the NPs are non-threatening and
thus less likely to be cleared by immune responses. This
biomembrane coating provides a form of immunological
camouflage, facilitating longer systemic circulation of NPs
(Mizuta et al., 2024; Lin et al., 2024). Conjugating antibodies to
the NP surface is another effective strategy for promoting targeted
delivery. For instance, synthesizing an antibody targeting epidermal
growth factor receptor-2 (HER2) and anchoring it to NPs allows for
specific targeting of HER2-positive tumor cells. This targeted
approach enhances the selective accumulation of NPs at the
desired site, improving therapeutic efficacy while minimizing off-
target effects (Guo et al., 2024; Ma et al., 2022).

TABLE 2 (Continued) Applications of NPs to treat different liver diseases.

Diseases Targeted
cells

Targeting
approaches

Vector Administration
route

Animal
model

Efficiency References

HCC Heaptocellular
carcinoma cells

Ultrasound-
magnified
multienzyme-
mimicking properties

Ultrasmall
Bi2Sn2O7 nanozyme
NPs

Intratumoral and
Intravenous injection

Mice Control group and
BSO group
maintained normal
cell tissue
morphology, whereas
both intravenous and
intratumoral injection
of BSO + US group
resulted in evident
histopathological
damage

Wei et al. (2024b)

HCC Heaptocellular
carcinoma cells

Man-DSPE-mPEG2K

modified with
mannose

DOTAP, DOPE, Cho,
DSPE-mPEG2K, and
HMME form
liposomes

Intravenous Mice The maximum
accumulation level in
the MLipCy5-siBcl-
2 group was
significantly higher
than that in the
LipCy5-siBcl-2 group,
indicating good in
vivo targeting of
MLipCy5-siBcl-2

Wang et al.
(2024c)

HCC CD8+ T cells PD1 proteins Calcium
phosphate NPs

Intravenous Mice siPDL1-CaP@PD1-
NVs exhibited
significantly higher
fluorescent intensity
in tumor than that of
siPDL1-CaP@NVs
without PD1-
expressing on the cell
membrane, indicating
an efficient tumor
targeting ability of
siPDL1-CaP@
PD1-NVs

Sun et al. (2024)

HCC Heaptocellular
carcinoma cells

Cationic poly
(l-lysine) complexing
anti-MFAP-5 siRNA

Polypept(o)ide-based
polyion complex
micelles

Intravenous Mice At 24 h post-
administration,
Cy5.5 signal from
siCy5.5 PICMs and
siCy5.5/DES PICMs
was mainly located in
the liver region, while
the signal of siCy5.5-
loaded in LNPs began
to fade and was less
localized in the liver
region

Schneider et al.
(2024)
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4 Applications of NPs in liver diseases

The accumulation characteristics of NPs within the liver and
their interactions with various hepatic cells have been extensively

studied, highlighting the potential applications of NPs in liver
diseases. Given that each liver disease has a distinct pathogenesis,
the design and targeting strategies for NPs vary significantly across
different liver disorders. This section will summarize the

FIGURE 4
Schematic illustration of applications of NPs in diverse liver diseases and hepatic cells. Created in https://BioRender.com.
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pathological mechanisms of common liver diseases and discuss the
applications of NPs in these conditions (Table 2). Figure 4 illustrates
the diverse applications of NPs across various liver diseases and liver
cell types.

4.1 Applications of NPs in acute ALF

ALF is a critical condition characterized by the sudden and
severe impairment of liver function in individuals with no pre-
existing liver disease. The hallmark features of ALF include
coagulopathy and hepatic encephalopathy, with extensive
hepatocellular necrosis observed histologically. The pathogenesis
of ALF involves extensive hepatocyte death, leading to the rapid
decline in liver function. Viral infections, such as those caused by
hepatitis B and C viruses, can trigger an immune response that
results in hepatic inflammation and necrosis. Drug-induced liver
injury occurs when certain medications or toxins directly damage
hepatocytes or induce an immune-mediated reaction. Autoimmune
hepatitis involves the body’s immune system attacking liver cells,

causing chronic inflammation and acute deterioration. Currently,
liver transplantation remains the most effective treatment for ALF;
however, the scarcity of donor organs presents a significant
challenge. Although artificial liver support systems can mitigate
the progression of ALF to some extent, the mortality rate
remains high.

NPs offer promising platforms for targeted therapy in ALF,
especially in controlling the expressive inflammation in
macrophages and promoting the regeneration of hepatocytes. For
ALF, rapid intervention is critical, and nucleic acid-based
nanoparticles, gold nanoparticles, and Lipid Nanoparticles have
been most prevalent due to their excellent efficacy in gene
silencing, anti-oxidative stress, and rapid hepatocyte uptake
(Figure 4). One notable study involved the synthesis of SchB-PSA
NPs, which were created bymodifying palmitic acid-modified serum
albumin with scavenger receptor-A (SR-A). These SchB-PSA NPs
exhibited significant therapeutic potential by inhibiting the NF-κB
pathway in macrophages and reducing hepatocyte necrosis, thereby
lowering mortality rates in ALF mouse models (Zhang R. et al.,
2023). Another innovative approach involves the use of gold NPs

FIGURE 5
Alleviation of ALF by HS/N–Au@composite through differentiation of macrophages from M1 to M2. (A) Preparation of N–Au@hydrogel. (B)
Construction of decellularized ECM (dECM)-based hydrogel (HS@dECM). (C) Assembly of the HS/N–Au@composite. (D) In vivo treatment of acute liver
failure using the composite, showing functional liver recovery (Jin et al., 2025). Copyright from Elsevier.
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(AuNPs) within a 3D-printed hydrogel scaffold, encapsulating
NAC-modified AuNPs to form HS/N–Au@composite. This
composite targets necrotic areas in the liver, clears reactive
oxygen species (ROS) within macrophages, and promotes the
differentiation of macrophages from the M1 subtype to the
M2 subtype, offering a novel strategy for ALF treatment
(Figure 5) (Jin et al., 2025). Furthermore, ketalized maltodextrin
(KMD) NPs leverage pH-sensitive properties to release therapeutic
drugs in the acidic regions of necrotic hepatocytes. This targeted
delivery mechanism enhances ultrasound imaging capabilities and
provides an effective means for targeting ALF treatment (Go et al.,
2018). These studies collectively highlight the versatility and efficacy
of NPs in addressing the complex pathologies associated with ALF.

4.2 Applications of NPs in NAFLD

As lifestyle changes contribute to the global rise of obesity and
type 2 diabetes, the prevalence of NAFLD is significantly increasing.
NAFLD often presents with subtle symptoms but can progress
histologically to non-alcoholic steatohepatitis (NASH), which
may further develop into advanced liver disease, cirrhosis, and
hepatocellular carcinoma (Younossi, 2019). Statistics indicate that
the global incidence of NAFLD is approximately 24% (Huang et al.,
2021). Predictably, as viral hepatitis is effectively controlled, NAFLD
will impose a substantial health burden and economic cost (Powell
et al., 2021). Lifestyle modification remains the most effective and
fundamental approach to treating NAFLD, yet it is challenging to

implement (Demir et al., 2022). Given the rapid global increase in
NAFLD and NASH, developing early treatment strategies for these
conditions is of paramount importance.

Macrophages play a crucial role in the development of NAFLD,
making them a primary target for NPs-based therapies (Govaere
et al., 2022). In the context of NAFLD, which often requires long-
term management, polymeric NPs, silica nanoparticles, and
exosomes have shown great promise for their sustained drug
release profiles, high biocompatibility, and ability to modulate
chronic inflammatory pathways (Figure 4). Given the chronic
nature and long-term treatment requirements of NAFLD, oral
administration is considered the most effective route for
delivering NPs (Kulchar et al., 2023). Studies comparing the
hepatic uptake efficiency of orally administered TiO2, Au, and
NaYF4 have demonstrated that these common NPs can
effectively enter the liver. Further pathological analyses suggest
that these NPs can reduce lipid accumulation and steatosis in
hepatocytes, indicating promising applications for NPs in
NAFLD treatment (Figure 6) (Cai et al., 2023). Previous research
has implicated Rubicon in the progression of NAFLD, suggesting
that targeting this pathway could be beneficial (Tanaka et al., 2016).
Consequently, encapsulating CRISPR-Cas9 components targeting
Rubicon within NPs has emerged as a potential therapeutic strategy.
Results indicate that a single injection of NPs targeting Rubicon can
enhance lipid metabolism in hepatocytes and alleviate NAFLD (Bai
et al., 2024a). Traditional Chinese medicine has shown significant
advantages in treating chronic diseases. Researchers have developed
sustained-release NPs composed of ginsenoside compound K (CK)

FIGURE 6
Administration of TiO2, Au, and NaYF4 to treat NAFLD, (a) Schematic of oral NP administration and liver targeting. (b) Time-dependent NP cell
distribution in major organs. (c) Ti element biodistribution varying doses. (d,e) NP accumulation in liver cell types by MFI. (f) TEM images showing Kupffer
cell-to-hepatocyte NP transfer (Cai et al., 2023). Copyright from Nature.
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and albumin, known as nabCK. Animal models suggest that nabCK
can promote lipid homeostasis in hepatocytes by reducing mTOR
activation (Yue et al., 2023).

4.3 Applications of NPs in liver fibrosis

Liver cirrhosis is a stage in the progression of liver fibrosis.
Clinically, cirrhosis is classified into compensated and
decompensated phases. Once patients enter the decompensated
phase, they exhibit symptoms of liver failure and portal
hypertension, significantly impacting their quality of life
(Caligiuri et al., 2021). Over the past few decades, viral hepatitis-
induced cirrhosis has been somewhat controlled etiologically.
However, once cirrhosis develops, it remains an irreversible
progression towards liver failure or HCC (Lai and Afdhal, 2019).
Mechanistically, cirrhosis primarily results from inflammation

promoting the activation of hepatic stellate cells, driving the
deposition of extracellular matrix into fibrotic tissue. Therefore,
inhibiting macrophage inflammation, reducing the recruitment of
bone marrow mononuclear cells, or controlling the activation of
stellate cells could potentially mitigate liver fibrosis (Kisseleva and
Brenner, 2021).

For Liver Fibrosis, silver nanoparticles for their anti-
inflammatory properties, nucleic acid-based NPs for gene
therapy, and Lipid Nanoparticles have been the most widely
investigated (Figure 4). Fibrotic livers exhibit elevated expression
of IL-11 (Zhang C. et al., 2023). Studies have developed antibodies
targeting IL-11 and encapsulated their mRNA within AA3G NPs
(mIL11-scFv@AA3G). In vivo imaging in mice demonstrated the
high accumulation of mIL11-scFv@AA3G in the liver. Pathological
results indicated a significant reduction in fibrosis levels in mice
treated with mIL11-scFv@AA3G (Zhang C. et al., 2024). Oxidative
stress damage to hepatocytes is also a crucial factor in fibrosis

FIGURE 7
Mechanism of the vicious cycle-breaking system promoting liver fibrosis reversal. (A) Preparation of CS-NPs/VDG and GA-NPs/SIB; (B) The
treatment initiates a virtuous loop: normalized LSECs inactivate HSCs via NO signaling; quiescent HSCs degrade ECM; repaired hepatocytes secrete VEGF
to maintain LSEC fenestration, collectively restoring liver homeostasis. The application of CS-NPs/VDG and GA-NPs/SIB are able to break the vicious
cycle and maintain the function of hepatocyte (Zhang et al., 2024e). Copyright from Wiley.
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progression (Gallego-Duran et al., 2024). Researchers loaded
melatonin into poly (lactic-co-glycolic acid) (PLGA) and coated
it with platelet membranes (PM) and activated hepatic stellate cell
membranes (HSCM), creating PM@PLGA@Melatonin and
HSCM@PLGA@Melatonin, respectively. Experimental results
showed that PM@PLGA@Melatonin and HSCM@PLGA@
Melatonin could alleviate oxidative stress and endoplasmic
reticulum stress in hepatic stellate cells, thereby reducing fibrosis
levels (Bai et al., 2024b). Another study aimed to break the vicious
cycle of liver fibrosis formation. The authors constructed
chondroitin sulfate-modified and vismodegib-loaded NPs (CS
NPs/VDG) to restore HSC homeostasis. Additionally, they
prepared glycyrrhetinic acid-modified and silybin-loaded NPs
(GA NPs/SIB) to mitigate oxidative stress in hepatocytes. The
combined application of these two types of NPs was successfully
practiced in a mouse model of liver fibrosis (Figure 7) (Zhang
et al., 2024e).

4.4 Applications of NPs in HCC

Hepatic tumors represent the final stage of various liver
diseases, with HCC being the most common primary liver

malignancy (Vogel et al., 2022). HCC exhibits significant
heterogeneity at both cellular and molecular levels. Currently,
surgical resection and radiofrequency ablation are viable
treatment options for early-stage HCC. For advanced HCC,
chemotherapy and immunotherapy are employed (Llovet
et al., 2022). However, due to the immune-privileged nature of
the liver, many chemotherapeutic agents fail to reach the tumor
site effectively, severely impacting treatment efficacy and
increasing side effects (Llovet et al., 2022; Llovet et al., 2021).
This scenario presents a unique opportunity for targeted NPs
therapies. NPs offer promising tools for overcoming the
challenges associated with liver immunoprivilege and
enhancing the delivery of therapeutic agents to the tumor site
(Chen L. et al., 2024). By leveraging their unique properties for
targeted delivery and imaging, NPs can provide promising
treatment strategies.

For HCC, the need for both therapy and imaging has made
multifunctional platforms like silver nanoparticles (theranostics),
silica nanoparticles (drug delivery), and polymeric NPs (versatile
functionalization) the most extensively applied strategies
(Figure 4). Recent advances have led to the development of a
dual-responsive, magnetism-controlled drug delivery system based
on PEGylated paramagnetic NPs coupled with decoy receptor 3

FIGURE 8
Remodeling the immunosuppressive TME post-iRFA via a polydopamine-based nanomodulator. The platform delivers GW4869 and amlodipine
(AM) to suppress exosome biogenesis/secretion and degrade PD-L1. This strategy rejuvenates cytotoxic T cells andNK cells, reduces immunosuppressive
cells, and inhibits HCC progression and metastasis (Zhu et al., 2024). Copyright from American Chemical Society.
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(DCR3). Upon entry into the body, these NPs move along
DCR3 gradients to specifically target sites of HCC. They anchor
at regions with the highest concentration of DCR3 and inhibit
tumor progression (Jia et al., 2024). Given that the function of
immune cells such as CD8+ T cells is often suppressed in the tumor
microenvironment (Llovet et al., 2022), leading to tumor
proliferation and metastasis, another study combined
GW4869 and amlodipine (AM) using polydopamine
nanomodulators to synthesize NPs. This synergistic effect
enhances the functionality of intratumoral CD8+ T cells and
natural killer cells, effectively inhibiting tumor growth
(Figure 8) (Zhu et al., 2024). Additionally, leveraging the local
temperature differences within tumors (Chen Y. et al., 2024),
researchers employed a calcium-based thermal-sensitive
enhancer (CBT) for targeted therapy. The chemotherapeutic
agent DMXAA was encapsulated within a CaCO3 shell and
surface-modified with PEG to create DMXAA@CBTNps.
Experimental results confirmed that DMXAA@CBTNps release
drugs around the tumor, simultaneously increasing local
temperature and releasing CO2, thereby achieving the goals of
occluding tumor blood vessels and reducing tumor oxygen supply
(Zeng et al., 2025).

5 Perspectives and conclusion

This review has elucidated the targeted strategies mediated by
NPs and their applications in liver disease treatment. In contrast to
the previous reviews of NPs technologies for liver targeting, the
present review adopts a broader and more systematic approach.
First, we provide a detailed synthesis of the liver’s unique anatomy
and the principles governing the biological distribution of
nanomaterials within it, serving as a foundational framework.
Second, we extend the discussion beyond lipidic systems to
include a side-by-side analysis of diverse nanomaterial classes,
such as polymeric nanoparticles, metallic nanoparticles, and
nucleic acid-based nanostructures, comparing their properties,
applications, and targeting efficiencies. Finally, we systematically
catalog their advanced applications across a spectrum of liver
diseases, including ALF, NAFLD, liver fibrosis, and HCC,
emphasizing the transformative potential of nanotechnology in
advancing liver disease management.

The ability to tailor NP properties for enhanced hepatic
uptake holds promise for improving the efficacy of treatments
for liver diseases such as hepatitis, fibrosis, and cancer. However,
several challenges must be addressed to fully harness the
potential of NPs in this context. The size of NPs is a primary
determinant of their biodistribution and cellular uptake.
Development of precise synthesis methods that yield
monodisperse NPs populations could enhance consistency and
predictability of hepatic uptake (Bocca et al., 2020). Additionally,
real-time monitoring techniques will aid in fine-tuning NPs size
distributions for specific applications. Advanced fabrication
techniques, such as those used in semiconductor
manufacturing, could enable the production of well-defined
shapes at the nanoscale (Malik et al., 2023). Despite passive
and active targeting strategies, achieving high enough
specificity to diseased hepatic cells remains a significant

challenge. Concerns regarding the biodegradation pathways,
chronic toxicity, and eventual clearance of NPs and their
components, especially for inorganic materials, need to be
thoroughly addressed. Exploring shape-dependent effects
systematically will provide deeper insights into optimizing
hepatic delivery. Innovative surface modifications using
zwitterionic polymers or hydrophilic coatings might balance
between enhancing uptake and minimizing toxicity (Mu
et al., 2023).

Advancements in continuous flow reactors and automated
synthesis platforms could improve scalability and reproducibility.
Implementing rigorous quality control measures during production
will ensure consistent performance across different batches (Zhang
Q. et al., 2023). Furthermore, exploring biomimetic approaches
where NP surfaces mimic natural ligands can improve specificity
and reduce off-target effects. Developing more sophisticated in vitro
liver models, such as organoids or microfluidic devices, could bridge
the gap between simple cell cultures and whole organisms (Hao
et al., 2020). These models would allow for high-throughput
screening and better prediction of clinical outcomes.

Another significant challenge is the biocompatibility and long-
term toxicity of NPs. While many NP formulations have shown
efficacy in pre-clinical models, concerns persist regarding their
potential to induce immune responses or accumulate in off-target
organs over time (Stalder et al., 2022). Development of novel ligands
with higher affinity and specificity for markers uniquely
overexpressed in specific liver diseases and cell types. Future
studies must prioritize rigorous safety assessments to ensure that
NPs can be used safely in clinical settings.

Looking ahead, the integration of multifunctional NPs that
combine targeting ligands, therapeutic agents, and imaging
probes holds great promise for theranostic applications. Such
systems could enable real-time monitoring of treatment response
and facilitate adaptive therapies tailored to evolving disease states.
Additionally, exploring novel NPmaterials and surface coatings that
enhance stability, reduce immunogenicity, and improve targeting
specificity will be pivotal areas of research.

In conclusion, while NPs present a transformative opportunity
in liver disease management, overcoming the aforementioned
challenges through interdisciplinary collaboration and innovative
research methodologies will be key to unlocking their full
therapeutic potential and bringing them from bench to bedside.
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