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Introduction: Emotional and stress-related disorders pose a growing threat to
global mental health, emphasizing the critical need for accurate, robust, and
interpretable emotion recognition systems. Despite advances in affective
computing, existing models often lack generalizability across diverse
physiological and behavioral datasets, limiting their practical deployment.
Methods: This study presents a dual deep learning-based framework for mental
health monitoring and activity monitoring. The first approach introduces a
framework for stress classification based on a 1D-CNN trained on the WESAD
dataset. This model is then fine-tuned using the ScientISST-MOVE dataset to
detect daily life activities based on motion signals, and it is used as transfer
learning for a downstream task. An explainable AI technique is used to interpret
the model’s predictions, while class imbalance is addressed using focal loss and
class weighting. The second approach employs a temporal conformer
architecture combining CNN and transformer components to model temporal
dependencies in continuous affective ratings of emotional states based on
valence, arousal, and dominance (VAD) using the DREAMER dataset. This
method incorporates feature engineering techniques and models temporal
dependencies in ECG signals.
Results: The deep learning classifier trained on WESAD biosignal data achieved
98% accuracy across three classes, demonstrating highly reliable stress
classification. The transfer learning model, evaluated on the ScientISST-
MOVE dataset, achieved an overall accuracy of 82% across four activity
states, with good precision and recall for high-support classes. However, the
explanations produced by Grad-CAM appear uninformative and do not clearly
indicate which parts of the signals influence the prediction. The conformer
model achieved an R2 score of 0.78 and a rounded accuracy of 87.59% across all
three dimensions, highlighting its robustness in multi-dimensional emotion
prediction.
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Discussion: The framework demonstrates strong performance, interpretability, and
real-time applicability in personalized affective computing.
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1 Introduction

Emotions are deeply intertwined with human cognition,
perception, and behavior, influencing decision-making, social
interactions, and mental wellbeing (Geng et al., 2025). As
artificial intelligence becomes increasingly embedded in our daily
lives, there is growing interest in developing systems capable of
understanding and responding to human emotions (Kukhilava et al.,
2025). This has led to the rise of affective computing, an
interdisciplinary field combining insights from computer science,
psychology, neuroscience, and engineering (Bravo et al., 2025).
Among various modalities, Electroencephalography (EEG) and
other physiological signals have proven to be especially valuable
for emotion recognition due to their direct reflection of internal
affective states, which are less prone to cultural bias or conscious
control (Shah et al., 2025).

In recent years, deep learning (DL) models have demonstrated
remarkable capabilities in decoding complex patterns from biosignals
such as EEG, electrodermal activity (EDA), and heart rate variability
(HRV) (Gkintoni et al., 2025). Unlike traditional machine learning
methods that rely on handcrafted features, deep neural networks
automatically learn hierarchical representations, enabling more
accurate and robust emotion classification (Prabowo et al., 2023).
Architectures such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and hybrid models have
achieved state-of-the-art performance across various benchmarks
(Gudikandula et al., 2024). In this study, we focus on emotion
classification using deep learning models applied to two widely used
and diverse datasets: DREAMER andWESAD. The DREAMER dataset
includes EEG signals and is designed for analyzing valence, arousal, and
dominance dimensions of emotion,making it suitable for understanding
affective brain responses.1 In contrast, the WESAD dataset provides
multimodal physiological data, including EDA, ECG, and respiration,
from wearable sensors, enabling emotion detection in more realistic,
everyday settings.2 By leveraging both datasets, we aim to explore the
effectiveness of deep learning techniques across different signal
modalities and emotional representations.

Despite growing interest and success, the field faces challenges
such as signal variability, limited dataset sizes, inconsistent
preprocessing techniques, and a lack of standardized evaluation
protocols (Vafaei and Hosseini, 2025). This work addresses these
gaps by systematically applying and comparing deep learning
models on both EEG and physiology-based emotion recognition
tasks. Our goal is to contribute to the development of more
generalizable and interpretable emotion-aware systems that can

support applications in mental health monitoring, adaptive
human-computer interaction, and real-time affective feedback.

The key contributions of this study are as follows:

• Proposed a dual deep learning-based framework comprising a
model for stress classification and transfer learning for activity
state recognition and a Temporal Conformer architecture for
continuous emotion prediction using physiological signals.

• Developed a pipeline using the WESAD dataset, where a 1D-
CNN was trained and then fine-tuned on another ScientISST-
MOVE dataset via transfer learning to enhance cross-domain
generalization.

• Introduced a temporal conformer architecture utilizing the
DREAMER dataset to predict continuous emotional states
through valence, arousal, and dominance (VAD) scores,
capturing temporal dependencies in affective signals.

• Integrated explainable AI techniques: Grad-CAM, Integrated
Gradients, and attention visualization to interpret and validate
model decisions, increasing transparency and trustworthiness.

• The proposed unified deep learning framework combining 1D-
CNN classifiers with transfer learning and a temporal conformer
architecture (CNN + Transformer) was evaluated on theWESAD
(stress), ScientISST-MOVEdataset (activity state recognition), and
DREAMER (emotion) datasets, achieving accuracies of 98%, 82%,
and 87.59%, respectively.

This research paper presents a comprehensive investigation of a
hybrid framework for emotion and stress recognition using
physiological signal data. The related work Section 2 examines prior
work in emotion recognition and physiological signal analysis,
highlighting existing deep learning and machine learning methods
and their limitations in interpretability. The proposed framework
Section 3 outlines the dual proposed approaches, also elaborates on
data preprocessing, feature extraction, model architecture, and
techniques for handling class imbalance. The results and discussion
Section 4 presents a comparative analysis of model performance using
standard evaluation metrics, supported by interpretability visualizations
from XAI methods such as Grad-CAM and Integrated Gradients.
Section 5 demonstrates future work and limitations. Finally, the
conclusion Section 6 summarizes the key contributions and outlines
future directions to enhance the framework’s real-world applicability in
affective computing and mental health monitoring.

2 Related work

This section highlights recent studies that have applied advanced
machine learning (ML), deep learning (DL), and Explainable AI
(XAI) techniques to emotion recognition using physiological signals.
These efforts focus on enhancing classification performance,
interpretability, and real-time monitoring of emotional states.

1 https://www.kaggle.com/datasets/phhasian0710/dreamer

2 https://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+

affect+detection

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Almadhor et al. 10.3389/fbioe.2025.1659002

https://www.kaggle.com/datasets/phhasian0710/dreamer
https://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+affect+detection
https://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+affect+detection
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1659002


Electrodermal Activity (EDA), which reflects the skin’s electrical
properties in response to psychological arousal, has emerged as a
central biosignal for stress detection. InMedikonda andRai (2024), six
time-domain features were extracted from EDA signals, and K-means
clustering was used to categorize the data into three stress states: low,
moderate, and high. Several classifiers were then applied to evaluate
the accuracy of these labeled stress levels, with Decision Tree
achieving the best precision, and Random Forest and Naive Bayes
reaching up to 93% accuracy, followed by Support Vector Machine at
86%. Recent studies have shifted towards personalized deep learning
approaches for emotion classification using physiological signals.
Authors in Li et al. (2024) utilized the WESAD dataset and
demonstrated that a personalized model significantly outperforms
generalized models in classifying three emotional states: neutral,
stress, and amusement. The customized model achieved 95.06%
accuracy and an F1-score of 91.71%, while participant-inclusive
and participant-exclusive generalized models lagged with accuracies
around 67% and lower F1-scores. These results underscore the
effectiveness of individual-specific model tuning in capturing subtle
physiological variations related to emotional states.

In addition to model performance, data privacy is a growing
concern in biosignal-based stress detection. To mitigate these
concerns (Tanwar et al., 2022), proposed a federated learning-based
framework that enables decentralized model training on edge devices
without requiring the transmission of user data to a central server.
Using a deep neural network and the WESAD dataset, the study
achieved an accuracy of 89.69%, successfully balancing model
performance with data confidentiality. Experiments across multiple
communication rounds with five simulated clients revealed the
robustness and privacy-preserving nature of this distributed learning
strategy. Meanwhile (Warrier et al., 2024), explored the feasibility of
stress detection using low-resolution EDA signals from consumer-
grade wearables. A statistical analysis comparing user-dependent and
user-independent models indicated that user-dependent approaches
are statistically more accurate. Interestingly, using low-resolution EDA
signals did not significantly degrade performance compared to high-
resolution data, highlighting the potential of affordable, scalable stress-
monitoring systems for everyday use.

Another promising direction involves hybrid deep learning
architectures. In Ninh et al. (2021), a CNN-LSTM model was
proposed for classifying stress into three categories: baseline, stress,
and amusement. The approach integrated multiple physiological
signals, including ECG, EMG, respiration, temperature, and EDA,
demonstrating an improved classification accuracy of 90.20%. The
model’s ability to learn spatial and temporal features from
multimodal biosignals suggests its applicability across diverse real-
world scenarios, including office environments, driving conditions,
and personal health monitoring. Authors in Bansal et al. (2025)
employed the WESAD dataset, comprising data from 15 subjects, to
classify stress levels based on physiological signals and accompanying
questionnaires. A novel method, StressNet-GAF, was proposed that
utilizes Gramian Angular Field (GAF) image generation and the pre-
trained VGG-16 model via transfer learning. This approach achieved
91% accuracy across three stress categories. Future directions include
exploring data augmentation techniques to improve generalization and
reduce overfitting during model training.

Recent advancements in emotion recognition have highlighted the
potential of multimodal biosignal data, particularly EEG and ECG, for

accurately detecting human emotional states. Authors in Ye et al. (2024)
conducted a comparative analysis of variousmachine learning classifiers
using the DREAMER dataset. Emotions were classified through
different schemes: binary, PNN (positive-neutral-negative), 2D
valence-arousal, and 3D VAD (valence-arousal-dominance). The
ensemble of SVM and Random Forest achieved approximately 80%
accuracy for binary emotions. At the same time, Multinomial Logistic
Regression and Random Forest consistently maintained 80%–90%
accuracy across both binary and non-binary settings, outperforming
the dataset’s original benchmarks. Multimodal fusion models,
particularly deep canonical correlation analysis (DCCA) and bimodal
deep autoencoder (BDAE), have shown superior performance in
integrating heterogeneous physiological features. Authors in Liu et al.
(2021) extended DCCA with weighted and attention-based fusion
strategies and evaluated these models on five datasets, including
SEED, SEED-IV, DEAP, SEED-V, and DREAMER. DCCA
consistently outperformed alternatives, achieving recognition rates of
up to 94.6% (SEED) and 90.7% (DREAMER), while demonstrating
resilience to noise in EEG channels, highlighting its robustness and
discriminative feature-learning capabilities.

The author in Abdelfattah et al. (2025) utilized theWESAD dataset,
comprising physiological signals from 15 subjects, including ACC, ECG,
BVP, TEMP, RESP, EMG, and EDA, to classify four states: baseline,
stress, amusement, and meditation. Seven traditional machine learning
models (e.g., Random Forest, XGBoost) and three deep learning models
(DNN, CNN, RNN) were evaluated in two experimental phases. Results
showed that RNN achieved a 93% F1 score when tested across subjects,
while Random Forest, Extra Trees, and XGB classifiers reached 99%
F1 scores in subject-specific evaluations. Chest sensor data yielded better
performance in subject-dependent setups, whereas wrist data performed
better in cross-subject scenarios. Authors in Topic and Russo (2021)
introduced a novel emotion recognition approach using topographic
(TOPO-FM) and holographic (HOLO-FM) feature maps of EEG
signals. Deep learning was employed for feature extraction and
subsequent fusion, followed by classification. Experiments on DEAP,
SEED, DREAMER, and AMIGOS datasets demonstrated that TOPO-
FM and HOLO-FM representations enhanced emotion classification in
the two-dimensional emotional space, surpassing existing EEG-based
recognition models. A deep forest model for EEG-based emotion
recognition was proposed in Cheng et al. (2020), emphasizing
spatial-temporal dynamics through 2D frame sequences and baseline
signal removal. Unlike traditional methods, this approach required no
manual feature engineering and proved highly effective. On the
DREAMER dataset, it achieved impressive accuracies of 89.03%
(valence), 90.41% (arousal), and 89.89% (dominance), outperforming
state-of-the-art techniques and demonstrating adaptability to EEG
signal variability.

Authors in Singh and Singh (2023) explored subject-dependent
and subject-independent evaluation perspectives using a DCNN-
based feature extractor combined with multiple classifiers across
three emotion labeling schemes, binary, quad, and octal, on DEAP
and DREAMER datasets. Subject-independent models exhibited
more robust performance, particularly with the DCNN+NN and
DCNN+SVM pipelines, suggesting that arousal and dominance are
more influential than valence in emotion recognition, contrary to
prior findings. Authors in Gokalp et al. (2024) introduced
hyperparameter-tuned deep learning architectures, specifically the
Special Convolutional Model (SCM) and 2D LSTM, for enhanced
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EEG-based emotion recognition. On the DREAMER dataset,
optimization boosted accuracy from 28% (using WEKA) to 44%,
while SCM achieved 64.35% on SEED-IV. These findings
demonstrate the crucial role of hyperparameter tuning,
particularly with optimizers such as RMSprop, in improving deep
learning performance for emotion detection.

Table 1 summarizes state-of-the-art approaches reported in the
literature, outlining the datasets used, model architectures, and key
findings relevant to affective computing and mental health analysis.

3 Proposed framework

This section presents a proposed hybrid framework for stress
classification and transfer learning for activity-state recognition, as
well as a Temporal Conformer architecture for continuous emotion
prediction using physiological signals. The framework is divided into
two distinct yet complementary approaches designed to enhance both
performance and interpretability. The first approach is a pipeline based
on transfer learning, where a 1D-CNN model is pretrained on the
WESAD dataset and fine-tuned using a ScientISST-MOVE dataset.
This path incorporates advanced signal preprocessing, feature
engineering, and attribution-based XAI techniques such as Grad-
CAM and Integrated Gradients. The second approach uses a

Temporal Conformer model that combines CNN and Transformer
modules to predict continuous emotional dimensions, such as valence,
arousal, and dominance (VAD), on the DREAMER dataset. Together,
these approaches form a comprehensive framework that addresses
cross-domain adaptability, class imbalance, and explainability. An
overview of the complete architecture is illustrated in Figure 1.

3.1 WESAD dataset and preprocessing

The Wearable Stress and Affect Detection (WESAD) is a
publicly available dataset designed to support research in
emotion recognition and stress detection using physiological
signals (Schmidt et al., 2018). The data were collected from
15 participants who underwent a series of controlled experiments
designed to induce different emotional states, including Class 0-
baseline (neutral), Class 1- stress, and Class 2-amusement. The chest
sensor recorded signals from eight channels: electrocardiogram
(ECG), electrodermal activity (EDA), electromyogram (EMG),
respiration, skin temperature, and three-axis acceleration (Acc_X,
Acc_Y, Acc_Z), all sampled at 700 Hz. These signals provide rich
temporal data suitable for time-series analysis and for developing
machine learning models for affective computing. Each data file
includes multiple columns corresponding to these sensor signals,

TABLE 1 Summary of the literature review.

References Dataset Model/technique Key findings

Bansal et al. (2025) WESAD (15 subjects) StressNet-GAF (GAF image generation +
VGG-16 with transfer learning)

Achieved 91% accuracy in classifying stress into three categories. The
proposed model is effective for early stress detection. Future work
includes applying data augmentation to reduce overfitting.

Abdelfattah et al.
(2025)

WESAD (15 subjects) Traditional ML (RF, XGBoost, etc.) and DL
models (DNN, CNN, RNN)

RNN achieved 93% F1 score in cross-subject classification. Chest
data performed better in subject-dependent setups; wrist data in
cross-subject scenarios.

Medikonda and Rai
(2024)

Custom EDA Dataset K-means clustering + DT, RF, NB, SVM
classifiers

Decision Tree gave best precision; RF and NB achieved up to 93%
accuracy in stress level classification.

Li et al. (2024) WESAD Personalized ML model vs. generalized
models

Personalized model significantly outperformed generalized ones
with 95.06% accuracy and 91.71% F1-score.

Tanwar et al. (2022) WESAD Federated learning with CNN on edge devices Achieved 89.69% accuracy; ensured privacy by training without
central data transmission.

Warrier et al. (2024) Consumer-grade EDA
(Low-res)

Statistical analysis on user-dependent and
independent models

User-dependent models showed higher accuracy; low-res EDA
signals performed comparably to high-res data.

Ninh et al. (2021) Not specified CNN-LSTM using multiple signals (ECG,
EMG, Respiration, Temp, EDA)

Classified stress into three categories with 90.20% accuracy,
leveraging spatial and temporal features.

Ye et al. (2024) DREAMER Ensemble (SVM + RF), MLR, RF Ensemble and SVM achieved 80% for binary emotions; MLR and RF
achieved 80%–90% for all VAD-based schemes.

Liu et al. (2021) SEED, SEED-IV, DEAP,
SEED-V, DREAMER

Deep Canonical Correlation Analysis
(DCCA), BDAE, attention-based fusion

DCCA achieved up to 94.6% (SEED) and 90.7% (DREAMER);
robust to noise; best multimodal fusion model.

Topic and Russo
(2021)

DEAP, SEED, DREAMER,
AMIGOS

TOPO-FM and HOLO-FM + deep learning
feature fusion

Proposed feature maps improved emotion recognition in 2D space
across multiple datasets.

Cheng et al. (2020) DEAP, DREAMER Deep Forest with 2D frame sequences and
baseline removal

No feature extraction required; achieved 90.41% (arousal), 89.89%
(dominance) on DREAMER.

Singh and Singh
(2023)

DEAP, DREAMER DCNN + multiple classifiers (NN, SVM, etc.) Subject-independent models were more robust; DCNN+SVM
performed well for multi-class emotion labeling.

Gokalp et al. (2024) SEED-IV, DREAMER SCM and 2D LSTM + RMSprop optimization SCM achieved 64.35% (SEED-IV); DREAMER accuracy improved
from 28% to 44% post optimization.
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along with associated labels indicating the emotional state during
recording. Overall, the dataset comprises several million rows,
making it highly valuable for training deep learning models and
evaluating real-time stress recognition systems.

Data preprocessing is a crucial step in machine learning,
transforming raw data into a clean, usable format for model
training and development. In this study, several preprocessing
techniques were applied sequentially, including the removal of
irrelevant columns, label extraction, Z-score normalization, and
the creation of training, validation, and testing sets.

Irrelevant Column Removal: In many datasets, not all columns are
useful for model training. Somemay be identifiers or contain metadata
that do not help in classification or prediction tasks. Removing these
helps reduce noise and improve model performance. We dropped
non-feature columns such as ‘subject id,’ ‘condition,’ ‘SSSQ class,’
‘SSSQ Label,’ and ‘condition label’ to isolate the relevant physiological
signals and HRV features for classification.

Z-score Normalization: Z-score normalization, also known as
standardization, is a technique used to scale features so that they
have a mean of 0 and a standard deviation of 1 (Fei et al., 2021). This
helps ensure that all features contribute equally to the learning
process, particularly for models that are sensitive to feature scaling.
The transformation is done using Equation 1.

z � X − μ( )

σ
(1)

where X is the original feature value, μ is the mean of the feature, and
σ is the standard deviation. In this study, we applied the standard

scaler scaling method to standardize the feature values before
feeding them into the model.

Train-Validation-Test Split: Splitting the dataset into
training, validation, and testing subsets is essential for model
development and evaluation. The training set is used for
learning, the validation set for tuning hyperparameters, and
the testing set for evaluating the final model’s performance. In
this study, we first split the data into 70% training (94955, 62)
and 30% temporary data. Then, we split the temporary data
equally into 15% validation (20347, 62) and 15% test sets (20348,
62), using stratify = labels to maintain label distribution
across splits.

3.1.1 1D-CNN architecture
To perform multi-class classification on the given dataset, we

implemented a deep learning model based on a one-dimensional
Convolutional Neural Network (1D-CNN). The model was
specifically designed to handle time-series or sequential data with
an imbalanced class distribution. Initially, the input features were
reshaped into a three-dimensional format (samples, timesteps, 1) to
meet the requirements of 1D-CNN, enabling convolutional filters to
extract temporal patterns.

Model Architecture: The model architecture comprises two
convolutional blocks: the first includes a Conv1D layer with
64 filters (kernel size 3, ReLU activation, L2 regularization),
followed by batch normalization, max pooling, and dropout (0.4);
the second block similarly uses 128 filters with identical supporting
layers (Figure 2). A GlobalAveragePooling1D layer follows, leading

FIGURE 1
Proposed framework for stress and emotion detection.
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to a dense layer with 64 units and a final softmax layer for class
probability outputs. The model was compiled using the Adam
optimizer (learning rate 0.001) and trained with the sparse_
categorical_crossentropy loss function. Training employed early
stopping and learning rate reduction strategies based on
validation loss trends, with a maximum of 50 epochs and a
batch size of 128. To address class imbalance in the dataset,
class weights were computed and passed during training. This
helps ensure minority classes are not overlooked during the
optimization process. The developed 1D-CNN model
effectively learned complex representations from the WESAD-
Chest dataset. Its trained weights were saved for transfer learning,
enabling knowledge reuse across tasks involving multimodal
biosignal data.

Algorithm 1 outlines the construction and training process of a
1D Convolutional Neural Network (1D-CNN) model designed for
stress classification.

Algorithm 1 outlines the construction and training process of a
1D Convolutional Neural Network (1D-CNN) model designed for
stress classification.

1: Input: Preprocessed signal X ∈ Rn × t × c

2: Output: Class prediction ŷ

3: Initialize: CNN model with L2 − regularization

4: Add Conv1D (64 filters, ReLU, kernel size = 3)

5: BatchNorm, MaxPooling1D, Dropout (0.4)

6: Add Conv1D (128 filters, ReLU, kernel size = 3)

7: BatchNorm, MaxPooling1D, Dropout (0.4)

8: GlobalAveragePooling1D

9: Dense layer (64 units, ReLU), Dropout (0.4)

10: Dense Softmax layer (number of classes)

11: Train: Use Adam optimizer, sparse categorical

crossentropy

12: Apply EarlyStopping and

ReduceLROnPlateau callbacks

13: Use class weights to mitigate imbalance

14: Predict: ŷ � argmax(Softmax(Model(X)))

Algorithm 1. 1D-CNN Deep Learning Model for Stress Classification.

3.2 ScientISST-MOVE dataset and
preprocessing

The ScientISST-MOVE dataset consists of multimodal
biosignals (e.g., ECG, EMG, RESP, GSR) recorded from wearable
sensors using the ScientISST Move platform for activity recognition.
These signals were stored in European Data Format (EDF) and
segmented into fixed-length windows of 5 s with a stride of 2 s for
analysis. Each segment was standardized using z-score
normalization and labeled by subject identity for model
pretraining. Due to institutional privacy constraints, the dataset is
not publicly accessible; however, it conforms to standardized
biosignal acquisition protocols. In the SCIENTISST-MOVE
dataset, this dataset has 14 activity classes, but we utilized
4 activity classes (run, walk_after, baseline, and walk_before_
downstairs) because other classes have very low samples.

3.2.1 Fine-tuned transfer learning
Transfer learning is a powerful deep learning technique that

enables the adaptation of a pre-trained model from one domain to a
related task, facilitating faster training and improved performance,
particularly when working with limited data. In the context of
biosignal analysis, it allows the reuse of learned representations
from physiological data such as that collected via wearable sensors.
In this study, a 1D Convolutional Neural Network (1D-CNN),
initially trained on the WESAD-Chest dataset, was leveraged for
transfer learning by applying its pretrained weights to a new
classification task involving the Scientist Move Annotated
Wearable Multimodal Biosignals dataset (Saraiva et al., 2024).

Model Architecture: The architecture begins with an input layer
followed by a convolutional block consisting of a Conv1D layer with
64 filters (kernel size 3), ReLU activation, L2 regularization, batch
normalization, max pooling, and dropout to reduce overfitting. A
second convolutional block follows, expanding to 128 filters with
similar processing layers. Feature maps are then condensed using a
GlobalAveragePooling1D layer. This is followed by a fully connected
dense layer with 64 neurons, ReLU activation, and dropout,
culminating in a final softmax output layer for multi-class
classification. The model was initialized with pre-trained weights
to transfer previously learned temporal features and fine-tuned

FIGURE 2
1D-CNN architecture.
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using domain-specific biosignal data. It was compiled using the
Adam optimizer with a learning rate of 0.0001 and trained with class
weighting, early stopping, and learning rate scheduling to ensure
robust and efficient convergence.

3.2.2 t-distributed stochastic neighbor
embedding (t-SNE)

To gain insights into the internal feature representations learned
by the transfer learning model, a t-distributed Stochastic Neighbor
Embedding (t-SNE) visualization was employed. This technique was
applied to the high-dimensional feature vectors extracted from the
test dataset using the trained convolutional neural network (CNN).
Specifically, the output of the GlobalAveragePooling1D layer,
representing the condensed, abstracted features, was used as
input to the t-SNE algorithm. This layer captures the essential
patterns and class-specific attributes that the model learns during
training, making it ideal for evaluating feature separability. t-SNE is
a powerful nonlinear dimensionality reduction technique that
projects high-dimensional data into a two-dimensional space
while preserving local similarities and relationships among data
points. In this study, the t-SNE algorithm was configured with a
perplexity of 30 and applied to the extracted features to generate a

two-dimensional representation of the test data. Figure 3 shows
the resulting 2D feature embeddings, where each point
corresponds to a test sample and is color-coded by its ground-
truth class label. This visualization provides qualitative evidence
regarding the discriminative capability of the learned features.
Well-separated, tightly clustered groups indicate that the model
has effectively learned class-specific representations, whereas
overlapping or dispersed clusters may suggest ambiguity or
class confusion.

Algorithm 2 describes the proposed framework developed for
Activity Detection using biosignal data. The process begins with
preprocessing raw biosignals (in CSV or EDF format), where
Z-score normalization and signal filtering (e.g., Butterworth and
Notch filters) are applied to enhance data quality. In the second step,
a 1D-CNN model is pretrained on HRV (Heart Rate Variability)
features from the WESAD dataset, and the learned weights are
stored. The third step involves transfer learning, where these
pretrained weights are loaded into a new model that is fine-tuned
on a different target dataset (ScientISST-MOVE), incorporating
class-balancing techniques to address any data imbalance. The
fourth step includes model evaluation using standard
classification metrics such as accuracy and F1-score. Finally, the
framework integrates explainable AI techniques, such as Grad-CAM
and Integrated Gradients, to provide interpretability for the model’s

FIGURE 3
t-SNE of CNN feature embedding.
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predictions, ensuring transparency and trust in the stress
classification outcomes.

1: Input: Raw data (CSV/EDF)

2: Output: Activity Detection with explainability

3: Step 1: Preprocessing

4: Normalize signals using z-score

5: Apply filtering (Butterworth, Notch)

6: Step 2: Pretraining (WESAD)

7: Train 1D-CNN on HRV features

8: Save weights for reuse

9: Step 3: Transfer Learning

10: Load weights into new model

11: Fine-tune on the target dataset with

class balancing

12: Step 4: Prediction & Evaluation

13: Evaluate on test set using Accuracy, F1-score

14: Step 5: Explainability

15: Apply Grad-CAM and Integrated Gradients for

interpretability

Algorithm 2. Proposed Framework for Biosignal-Based Activity Detection.

3.2.3 Explainable AI (XAI)
XAI refers to a suite of techniques designed to make the decision-

making processes of complex machine learning models more
transparent and interpretable. In the context of deep learning, XAI
methods help reveal which parts of the input data most influenced the
model’s predictions, thereby increasing trust, accountability, and
understanding in critical domains such as healthcare and
neuroscience. In this study, we employed Gradient-weighted Class
Activation Mapping (Grad-CAM) to visualize the internal decision
process of our models. Specifically, we implemented both single- and
multi-channel Grad-CAM visualizations to highlight the regions of
the biosignal data that contributed most to the predicted stress or
emotional states. These visualizations aid in understanding not only
model behavior but also physiological relevance, enhancing model
interpretability for clinical and research applications.

3.3 DREAMER dataset and preprocessing

The DREAMER dataset is an open-access multimodal dataset
designed for emotion recognition research (Ahangaran et al., 2024).
It includes electroencephalogram (EEG) and peripheral
physiological signals, such as ECG and EMG, recorded from
23 participants (14 male, 9 female) while watching 18 selected
video stimuli designed to elicit a range of emotional states. After
each video, participants self-reported their valence, arousal, and
dominance levels using the Self-Assessment Manikin (SAM) model
on a 1–5 scale. A rule-based diagnostic interpretation was applied to
the normalized regression outputs, mapping combinations of
arousal, valence, and dominance to six interpretable emotional
states: Happy/Excited, Fatigued, Stressed, Relaxed, Passive, and
Neutral. The dataset supports emotion classification and
regression tasks, allowing researchers to explore the relationship
between physiological signals and emotional states. It is often used to
train and evaluate machine learning and deep learning models for

predicting affective states. Preprocessing physiological signals,
particularly ECG data, is essential to ensure that the input fed into
machine learning models is clean, structured, and informative. In this
study, we employed a systematic preprocessing pipeline on the
DREAMER dataset, structured into two key stages as follows:

3.3.1 Signal extraction and standardization
The first phase focuses on extracting and preparing the raw ECG

signals for analysis.
Extracting ECG Signals: The DREAMER dataset is stored in

MATLAB.mat format, which contains structured arrays with nested
fields. We began navigating its hierarchical structure to extract the
ECG signal from each subject’s trial. Specifically, we accessed the
Data field and retrieved the ECG signal from the stimuli subfield.
Due to nested object arrays, we implemented an iterative
unwrapping process to access raw numerical values. These signals
were then converted to NumPy arrays and reshaped into a one-
dimensional format for further processing.

Label Extraction: Each trial in the DREAMER dataset includes
self-assessed emotional ratings for valence (pleasure), arousal
(activation), and dominance (control). These three continuous
values were extracted per trial and stored as label vectors, serving
as the target outputs.

Z-Score Normalization: To ensure consistency and reduce the
influence of individual signal magnitude variations, we applied
Z-score normalization to each ECG signal using scikit-learn’s
StandardScaler. This transformation centers each signal around a
mean of zero and scales it to have a standard deviation of 1.
Normalization also improves model convergence and ensures
uniformity across all subjects and trials.

3.3.2 Segmentation, labeling, and aggregation
The second phase involves transforming the continuous ECG

signals into a structured dataset suitable for machine learning.
Signal Segmentation: The normalized ECG signals were divided

into fixed-length windows of 5 s (640 samples at 128 Hz) with 50%
overlap, yielding a step size of 2.5 s. This segmentation captures
meaningful temporal patterns while increasing the amount of
training data through overlapping samples.

LabelAssignment to Segments: Each segment inherited the emotional
labels (valence, arousal, dominance) of its parent trial. This ensured all
windows within a trial were consistently aligned with the correct
emotional state, enabling supervised learning on segment-level data.

Final Aggregation: After segmenting and labeling all trials across
subjects, the data were compiled into two final NumPy arrays: X for
the input features (ECG segments) and y for the corresponding
emotional labels. These arrays formed the final dataset used for
training and evaluating emotion recognition models.

3.3.3 Feature engineering
Feature engineering is the process of transforming raw data into

informative, meaningful features that enhance the predictive
performance of machine learning models. In this study, we
applied a combination of statistical, time-frequency, and wavelet-
based techniques to extract discriminative features from segmented
ECG signals derived from the DREAMER dataset.

Statistical Feature Extraction: Each ECG segment was analyzed
to extract a set of handcrafted statistical features. These included
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central tendency (mean, median), dispersion (standard deviation,
interquartile range), shape (skewness, kurtosis), and range-based
metrics (minimum, maximum). Additionally, we computed the
segment’s root mean square (RMS) to capture signal energy and
Shannon entropy from a normalized histogram to quantify the
signal’s complexity or disorder. These features help describe the
overall distribution and variability within the ECG waveform.

Wavelet Transform-Based Features: To capture both the
frequency and time-localized characteristics of the ECG signals, we
applied the DiscreteWavelet Transform (DWT) using the Daubechies
4 (db4) wavelet up to level 3. From each wavelet sub-band
(approximation and detail coefficients), we extracted the mean,
standard deviation, and RMS energy. These features are handy for
identifying transient changes and non-stationary patterns in ECG
signals, which are often associated with emotional states.

Short-Time Fourier Transform (STFT) Features: To further
analyze frequency-domain characteristics over short time
windows, we applied the Short-Time Fourier Transform (STFT)
with a segment size of 64 samples. From the STFT magnitude
spectrum, we computed the mean power across the first ten
frequency bands. This set of features captures the temporal and
spectral power distributions of ECG signals, enabling better
modeling of dynamic emotional responses.

Feature Vector Construction: All extracted features from the three
domains, statistical, wavelet, and STFT, were concatenated to form a
unified feature vector for each ECG segment. The resulting feature
matrix, X_features, has a shape of (7291, 33), indicating that a total
of 7,291 ECG segments were generated across all subjects and trials, with
each segment represented by 33 extracted features. These features include
11 statistical features, 12 wavelet-based features, and 10 STFT-derived
frequency domain features. The corresponding label matrix, y, has a
shape of (7291, 3, 18, 1), where 3 denotes the emotional dimensions
(arousal, valence, dominance), and the additional dimensions pertain to
subject-wise and trial-wise structural organization. This transformed
dataset serves as the input to the subsequent classification models.

3.3.4 Temporal conformer model
A hybrid deep learning architecture, Temporal Conformer, was

developed by integrating 1D convolutional layers with Transformer-
based self-attention mechanisms to capture both local feature
patterns and long-range temporal dependencies in time-series
data. The model is specifically designed to enhance temporal
modeling capabilities in multivariate biosignal prediction tasks.
The model’s input consisted of 33-dimensional feature vectors,
which were first processed by a series of one-dimensional
convolutional layers. These convolutional layers act as local
feature extractors, capturing spatially correlated patterns across
the input feature space. The convolutional stack comprises two
sequential layers: the first applies 32 filters, followed by a ReLU
activation and dropout for regularization. In contrast, the second
layer employs 64 filters with the same activation and dropout
configurations as the first layer. The convolutional module’s
output is then flattened and projected into a higher-dimensional
representation using a fully connected layer, creating a richer
embedding space suitable for downstream attention mechanisms.

After the convolutional layers, the model reshapes the output
and passes it through a Transformer Encoder. This part of the model
features multiple layers that utilize self-attention to focus on key

aspects of the input and enhance understanding of relationships
over time. A custom Transformer was used to extract attention
weights, which help understand what the model is focusing on. Each
layer also includes shortcuts (residual connections), normalization,
and dropout to stabilize the model and prevent overfitting. The
Transformer output is normalized again and passed through a
dropout layer before being fed to the final fully connected layer,
which produces the model’s three output values. For training, we
used the Smooth L1 loss (also known as Huber loss), which is
effective at handling outliers. The Adam optimizer was used in
conjunction with a scheduler that reduced the learning rate when the
validation performance stopped improving.

3.3.5 Emotional state diagnostics and
interpretation

Following the prediction of emotional dimensions (arousal, valence,
and dominance) using the Temporal Conformer model, a post-
processing stage was conducted to interpret these continuous values
into more descriptive emotional states, as represented in Table 5.

Rule-Based Emotional Interpretation: A refined set of diagnostic
rules was developed to map predicted VAD values to interpretable
emotional states, including “Happy/Excited,” “Relaxed,” “Fatigued,”
“Stressed,” “Passive,” and “Neutral.” These rules were crafted based
on thresholds applied to the arousal and valence dimensions, with
dominance considered in cases indicating passivity. For example, high
arousal and high valence suggested a happy or excited state, while low
arousal and low valence indicated fatigue. This rule-based classification
provides intuitive labels that enhance the interpretability of the model’s
outputs, especially in affective computing applications.

Fatigue and Motion Quality Indices: To further extract
meaningful behavioral insights, two auxiliary metrics were
computed. The Fatigue Index is defined as the inverse of the
normalized arousal score. This index serves as an estimate of user
fatigue, with higher values indicating greater fatigue. On the other
hand, the Motion Quality Score is calculated as the product of valence
and dominance, providing a measure of how positively and assertively
a user interacts or engages with a task. Higher motion quality values
suggest a more engaged and confident state, while lower values may
indicate reduced interaction quality or passive behavior. These indices
provide scalar representations that can be tracked over time or used
for downstream decision-making tasks, such as alert systems or
adaptive feedback loops in interactive systems.

Unsupervised Clustering of Emotional States: To complement
rule-based interpretations, an unsupervised clustering method
(K-Means) was applied to the normalized VAD features to group
samples into distinct emotional categories based on inherent
distribution patterns. Four clusters were chosen empirically,
though this parameter can be tuned for specific applications.

Algorithm 3 outlines the proposed Temporal Conformer
framework developed for continuous emotion recognition based on
Valence, Arousal, and Dominance (VAD) dimensions using raw
physiological signals from the DREAMER dataset. The process
begins with signal preprocessing, where EEG, ECG, and GSR signals
are normalized using z-score and segmented into fixed-length windows
aligned with corresponding emotional labels. In the modeling phase, a
hybrid architecture is constructed by integrating CNN layers for local
feature extraction and Transformer layers for capturing temporal
dependencies, forming the Temporal Conformer model. This model
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is trained to regress continuous VAD values from the sequential signal
data. To profile emotional states more comprehensively, unsupervised
clustering is applied in the predicted VAD space, followed by the
integration of rule-based emotional labeling that incorporates fatigue
and motion causality. The model’s performance is evaluated using root
mean square error (RMSE) and Pearson’s correlation coefficient,
ensuring accurate VAD prediction.

4 Result analysis and discussion

This section presents a detailed evaluation of the proposed dual-
approach framework for emotion and stress recognition using
physiological signals. The performance of deep learning, transfer
learning, and the temporal conformer was assessed using a variety of
classification and regression metrics, including accuracy, precision,
recall, F1-score, confusion matrices, and RMSE, depending on the
task. This comprehensive evaluation supports a robust comparison
of model performance, interpretability, and generalization across
datasets and emotional state categories.

1: Input: Raw physiological signals from

DREAMER dataset

2: Output: Continuous emotional prediction

(Valence, Arousal, Dominance) with

interpretability

3: Step 1: Signal Preprocessing

4: Normalize EEG, ECG, and GSR signals using z-score

5: Segment signals into fixed-length windows

with labels

6: Step 2: Temporal Conformer Modeling

7: Construct Temporal Conformer with CNN +

Transformer layers

8: Train model to regress VAD values from

signal sequences

9: Step 3: Emotional State Profiling

10: Apply unsupervised clustering on predicted

VAD space

11: Integrate rule-based emotional labeling and

fatigue-motion causality

12: Step 4: Evaluation

13: Use RMSE and Pearson correlation for VAD

prediction assessment

Algorithm 3. Proposed Temporal Conformer Framework for VAD-Based

Emotion Recognition.

4.1 Results of deep learning model
(WESAD dataset)

Table 2 presents the classification report for the deep learning
model, demonstrating strong performance across all three classes
using key evaluation metrics: precision, recall, F1-score, and
support. For class 0, the model achieved a perfect precision of
1.00, a recall of 0.97, and an F1-score of 0.98 across
10,746 instances, indicating highly accurate predictions with few
false positives. Class 1, comprising 3,460 instances, demonstrated a

precision of 0.93, a recall of 0.99, and an F1-score of 0.96, indicating
the model’s effectiveness in identifying the class, despite slightly
lower precision. For Class 2, the model achieved a precision of 0.98, a
recall of 1.00, and an F1-score of 0.99 across 6,142 samples,
demonstrating near-perfect performance. The model’s overall
accuracy on the test set was 98%, confirming its general
reliability. Additionally, the macro average precision, recall, and
F1-score were 0.97, 0.99, and 0.98, respectively. The weighted
averages, which account for class imbalance, were consistently
0.98 across all three metrics.

Figure 4 presents the graphical visualization of the deep learning
model. It includes three graphs; the first one is the model accuracy
graph. The blue line represents the model’s training accuracy, and
the dotted green line shows its validation accuracy. The x-axis
represents the epoch value, which ranges from 0 to 40, and the
y-axis represents accuracy, ranging from 65.0% to 95%. The training
accuracy starts at a 0.65% value at the 0th epoch and increases to
0.93% at the 40th epoch. The validation accuracy starts at 0.76% at
the 0th epoch. After some fluctuations in increases and decreases,
validation accuracy stops at the 40th epoch at 87%. The second graph
shows the model’s loss (training and validation). The y-axis shows
loss values starting from 0.1 to 0.8. The model’s training loss begins
at 0.79 in the 0th epoch and decreases to 0.21 in the 40th epoch. The
model’s validation loss starts at 0.55 in the 0th epoch and, after some
fluctuations, stabilizes at 0.34 in the 40th epoch.

The third graph shows the Learning Rate Over Epochs,
illustrating the dynamic adjustment of the learning rate
throughout the deep learning model’s training. It is defined by
the red solid, and the y-axis shows the learning rate range from 10−5

to 10−3. Initially, the learning rate is set at 10−3 and remains constant
for the early epochs, allowing the model to learn rapidly in the initial
stages. As training progresses and the validation loss plateaus, the
learning rate is reduced in steps. This behavior results from the
ReduceLROnPlateau callback, which monitors the validation loss
and reduces the learning rate by a factor of 0.5 when no
improvement is observed for a predefined number of epochs.
This adaptive scheduling continues, with the learning rate
progressively decreasing to values as low as 10−6, enabling the
model to make more refined weight updates in the later stages
of training.

Figure 5 presents a confusion matrix that visually shows the
classification performance of the deep learning model across three
classes (Class 0, Class 1, and Class 2). Each cell in the matrix
indicates the number of model predictions that match the actual
labels. This graph reveals that the model exhibits high classification

TABLE 2 Classification report of deep learning model.

Class Precision Recall F1-score Support

0 1.00 0.97 0.98 10,746

1 0.93 0.99 0.96 3,460

2 0.98 1.00 0.99 6,142

Accuracy 0.98

Macro Avg 0.97 0.99 0.98 20,348

Weighted Avg 0.98 0.98 0.98 20,348
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accuracy across all classes. For Class 0, out of 10,746 actual instances,
the model correctly predicted 10,401, misclassified 247 as Class
1 and 98 as Class 2. For Class 1, 3,438 out of 3,460 instances were
correctly classified, with only 21 instances misclassified as Class
0 and 1 instance misclassified as Class 2. Similarly, for Class 2, the
model correctly identified 6,116 out of 6,142 instances,
misclassifying 18 as Class 0 and 8 as Class 1.

4.2 Results of transfer learning model
(ScientiSST MOVE dataset)

Table 3 presents the performance evaluation of the transfer-
learning-based deep learning model across 16 classes. The table

includes key performance metrics, such as precision, recall, F1-score,
and support (i.e., the number of instances) for each class. The model
demonstrates strong performance for several classes, particularly
Class 0 (run), where precision values are close to 1.00 and recall
values are close to 0.9, indicating highly accurate and consistent
predictions. However, the performance varies across other classes.
For instance, Class 1, Class 2 and Class 3 exhibit relatively lower
precision (0.39, 0.40 and 0.14, respectively), suggesting a higher rate
of false positives for these categories. Despite this, recall for these
classes remains relatively high, particularly for Class 3 (0.94),
indicating that most actual instances were correctly identified.
The model’s average accuracy across the entire test dataset
(13,936 samples) is 82%, with a macro average F1-score of
0.54 and a weighted average F1-score of 0.85.

FIGURE 4
Graphical visualization of deep learning model.

FIGURE 5
Confusion matrix of 1D-CNN model.
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Figure 6 presents the confusion matrix heatmap that provides
a comprehensive visual representation of the performance of the
transfer learning model across 4 distinct classes (labeled by class
name). In this matrix, the true labels are plotted along the vertical
axis, and the predicted labels along the horizontal axis. The
intensity of the blue color in each cell reflects the number of
instances; darker shades indicate a higher count of predictions.
Ideally, accurate predictions are located along the diagonal of the
matrix, where the predicted labels match the true labels. The
model shows strong classification performance for several
classes. Notably, Class run stands out with 10235 correct
predictions, indicating excellent accuracy and minimal

confusion with other classes. Similarly, Classes walk_after,
baseline, and walk_before_downstairs also exhibit high
accuracy, with most of their predictions concentrated along
the diagonal.

4.2.1 Grad-CAM with single channel
To improve the interpretability of the deep learning model,

we employed Gradient-weighted Class Activation Mapping
(Grad-CAM), a widely used XAI technique. Initially, Grad-
CAM was applied to a single input channel to visualize the
temporal regions contributing most to the model’s decision.
Specifically, gradients of the predicted class were
backpropagated to the final 1D convolutional layer, generating
a class-discriminative heatmap. One representative test sample
was selected, and the resulting activation map was upsampled
and overlaid on the original signal, as shown in Figure 7. This
figure suggests that this method is not providing meaningful
localization. The flat response is likely due to a mismatch between
the features the model learned on the stress dataset and the
patterns in the activity recognition dataset. As a result, the model
does not focus on specific temporal regions, which limits the
interpretability of the explanation.

4.2.2 Grad-CAM with multiple channels
To gain a broader understanding of the model’s attention across

all sensor modalities, we extended Grad-CAM to the multichannel
setting. This approach computed weighted gradients from the final

TABLE 3 Classification report of transfer learning model.

Class Precision Recall F1-
score

Support

Run 0.99 0.84 0.91 12137

walk_after 0.39 0.60 0.47 969

baseline 0.40 0.71 0.52 699

walk_before_downstairs 0.14 0.94 0.25 131

Accuracy 0.82

Macro Avg 0.48 0.77 0.54 13936

Weighted Avg 0.91 0.82 0.85 13936

FIGURE 6
Confusion matrix graph of transfer learning model.
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convolutional layer across all input channels. The aggregated heatmap
was then aligned with the time axis of the input data and normalized
across channels. Figure 8 shows the overlay of the Grad-CAM
heatmap on multichannel signal traces, highlighting both temporal
and sensor-specific relevance. This comprehensive interpretation
revealed which modalities and time windows carried the most
predictive information, thus offering actionable insights into the
model’s reasoning and enhancing its transparency in decision-
making. Similar to the first figure, the Grad-CAM response
becomes flat and fails to align with signal variations. The constant
activation indicates that the model is relying on broad, global patterns
rather than channel- or time-specific features. This again reflects that
the model was pre-trained on stress-related signals and then
transferred to activity recognition, potentially leading to misaligned
learned features. Consequently, the explanations produced by Grad-
CAM appear uninformative and do not clearly indicate which parts of
the signals influence the prediction.

4.3 Results of temporal conformer model
(DREAMER dataset)

Table 4 summarizes the performance of the proposed Temporal
Conformer model across multiple evaluation metrics. The model
achieved a Mean Absolute Error (MAE) of 0.2400 and a Root mean
square error (RMSE) of 0.3330, indicating a low average prediction
error and good overall accuracy. The R2 score of 0.7826 further
demonstrates that the model explains a significant portion of the
variance in the target variables, reflecting strong predictive
capability. In terms of classification reliability, the rounded
accuracy across all output dimensions was 87.59%, i.e., the
percentage of samples for which all predicted values matched the
true values exactly after rounding. When evaluating each output
dimension individually, the model achieved 85.06% accuracy for
dimension 1, 91.09% for dimension 2, and 86.63% for dimension 3.
These results suggest that the model performs consistently well

FIGURE 7
GradCam visualization on single channel.

FIGURE 8
GradCam visualization on multiple channel.
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across all target variables, with particularly high precision in the
second dimension.

Figure 9 presents the training and validation loss of the
Temporal Conformer model over 100 training epochs using the
Smooth L1 Loss (Huber Loss) as the evaluation metric. The blue line

represents the training loss, while the orange line shows the
validation loss. The training loss starts at a value of about 0.14 at
the 0th epoch and decreases to 0.02 at the 40th epoch. The validation
loss starts at 0.05 in the 0th epoch and decreases to 0.01 in the
40th epoch.

Figure 10 compares the actual values (True) and the predicted
values (Predicted) of the dataset for valence, which is likely a
measure related to emotional tone or sentiment. The x-axis
represents a sequence of data points, possibly corresponding to
time or to a specific sample index. At the same time, the y-axis
ranges from 0 to 1.2, indicating the scale of the valence scores. The
blue line represents the true values, and the orange line shows the
predicted values. The two sets of values exhibit significant overlap
across much of the data range, suggesting that the model’s
predictions closely match the actual values. Then there are
noticeable discrepancies, particularly where the predicted values
(orange) frequently extend both above and below the true values
(blue), indicating fluctuating performance by the predictive model.
It also reveals extreme spikes and a few instances where the

TABLE 4 Evaluation metrics summary for temporal conformer model.

Metric Value

Mean Absolute Error (MAE) 0.2400

Root mean square error (RMSE) 0.3330

R2 Score 0.7826

Rounded Accuracy (All Dimensions) 87.59%

Accuracy: Dimension 1 85.06%

Accuracy: Dimension 2 91.09%

Accuracy: Dimension 3 86.63%

FIGURE 9
Training and validation loss of temporal conformer model.

FIGURE 10
Valence prediction.
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predicted values markedly deviate from the true values, indicating
periods of increased prediction error.

Table 5 diagnostic output examples (Rule-Based and Clustered
Emotional States). The clustering results provide an alternative
categorization of emotional states that does not rely on
predefined rules, thereby capturing latent patterns in the data.

Figure 11 illustrates two key diagnostic trends in a single
view: the top plot shows how Fatigue Index and Motion Quality
Score fluctuate over time, reflecting variations in user
engagement and tiredness; the bottom scatter plot compares
rule-based emotional states with cluster-based groupings,

revealing the consistency and divergence between the two
classification approaches across samples.

4.4 Comparison with existing work

Table 6 presents a comparative analysis of the proposed
framework against existing state-of-the-art approaches using
various emotion and stress recognition datasets. It shows that
existing models such as VGG-16 and RNNs achieved 91% and
93% accuracy, respectively, on theWESAD dataset. Other studies on

TABLE 5 Diagnostic output examples (rule-based and clustered emotional States).

Sample Arousal Valence Dominance Rule-based state Cluster Fatigue index Motion quality

0 0.54 0.56 0.38 Neutral 2 0.46 0.21

1 0.34 0.02 0.33 Passive 3 0.66 0.01

2 0.33 0.06 0.62 Neutral 3 0.67 0.04

3 0.66 0.63 0.37 Neutral 0 0.34 0.23

4 0.31 0.54 0.99 Neutral 1 0.69 0.54

5 0.36 0.57 0.38 Passive 2 0.64 0.21

6 0.09 0.93 0.38 Relaxed 1 0.91 0.35

7 0.34 0.08 0.66 Neutral 3 0.66 0.05

8 0.37 0.47 0.04 Passive 2 0.63 0.02

9 0.63 0.09 0.04 Stressed 0 0.37 0.00

FIGURE 11
Graphical visualization of emotional state diagnostics.
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the DREAMER dataset reported ranges of 80%–90% using ensemble
models, while some methods showed very low performance, such as
28%–44%. In contrast, our proposed framework achieved 98%
accuracy with the deep learning classifier, 82% accuracy using
transfer learning on the complex ScientISST-MOVE dataset, and
87.59% rounded accuracy using the temporal conformer on the
DREAMER dataset. These results not only exceed prior benchmarks
but also demonstrate superior generalization on more challenging,
realistic datasets. Our models combine high accuracy with
interpretability, robustness, and cross-domain adaptability,
making them more suitable for real-time mental health
monitoring applications.

4.5 Discussion and limitation

This study has several implications that are both significant in terms
of research and in the practical fields. The suggested cross-domain deep
learning architecture demonstrates that physiological measurements
from diverse datasets can be effectively used to identify stress,
distinguish activity conditions, and estimate emotional dimensions
using a standard architecture. This inter-dataset flexibility highlights
the promise of transfer learning and time-based attention systems in
overcoming dataset dependency–a long-standing weakness in affective
computing. Given its high performance on the WESAD, ScientISST-
MOVE, and DREAMER datasets, the framework provides a scalable
foundation for multimodal affect recognition systems that generalize
across a single data source. Medically, this work is one of the resources
that can be used to develop smart, non-invasive systems to track
emotional and stress reactions continuously. These may be
incorporated into wearable or mobile health technologies to detect
stress-related disorders at earlier stages, monitor mental health in the
workplace, and provide customized interventions for wellbeing.
Combining explainable AI, such as Grad-CAM, Integrated Gradients,
and attention visualization, can further improve interpretability and build
user trust, which is important for clinical and consumer acceptance ofAI-
based physiological monitoring.

On a larger scale, the research provides insight into the
significance of transfer learning and temporal modeling in the
creation of emotionally intelligent systems. The provided
framework could serve as a model for future studies on
multimodal affect analysis, enabling reproducible, extendable
research using a wide range of physiological data. Furthermore,
the contributions to methodology, particularly the application of a
temporal conformer to continuous emotion prediction, offer

opportunities to incorporate affective state prediction into
adaptive interfaces, human-computer interaction, and stress
management systems. Comprehensively, the implications extend
beyond emotion recognition to the architecture of trustful, cross-
domain, and context-aware health monitoring systems that can be
deployed in the real world. Although the proposed framework
achieved excellent, robust results across various datasets, several
factors may affect its generalizability. The datasets used, although
rather varied, are not very large and were gathered in controlled
conditions, which may not be very representative of the variability in
physiological or emotional reactions in real-world settings.
Moreover, the interpretability of the models is not the final
research problem, because visualization methods, such as Grad-
CAM, provide only a partial understanding of decision patterns.
Finally, the present implementation was optimized for experimental
testing and not for resource-constrained systems; consequently,
future modifications to wearable or real-time systems may
require additional optimization.

5 Future work and limitations

The suggested framework is shown to be performing well with
high adaptability to various physiological collections, which
indicates a possibility of scalable and effective affective-state
recognition. However, several avenues could be pursued to
extend and enhance this research. Future research can also
investigate a broader range of data and sensor sources to confirm
the framework across different demographic, environmental, and
hardware factors. This would enable a more detailed consideration
of the generalizability without sacrificing the methodological
premise created in this work. The transfer learning approach that
is used in this case has demonstrated significant cross-domain
adaptation potential. Following this achievement, a follow-up
study can explore domain generalization or self-supervised
pretraining methods to enhance further the ability to adapt to
heterogeneous or unseen data distributions. The strategies would
be an addition to the existing methodology and not a replacement.
Interpretability is another field of interest in affective computing
that is continuously growing. Although Grad-CAM helped visualize
explanations, other explainability methods, such as SHAP or
Integrated Gradients, may be included in future studies to
provide a more physiological explanation of what the learned
representations mean. This would deepen the transparency
without changing the fundamentals made in this paper.

TABLE 6 Result comparison with existing approaches.

References Model Dataset Accuracy

Bansal et al. (2025) VGG-16 with transfer learning WESAD Dataset 91%

Abdelfattah et al.
(2025)

RNN WESAD Dataset 93%

Ye et al. (2024) Ensemble (SVM + RF), MLR, RF DREAMER Dataset 80%–90%

Proposed Framework Deep Learning Classifier (1D-CNN), + Transfer Learning) +
Temporal Conformer (CNN + Transformer)

WESAD Dataset (Stress), ScientISST-MOVE Dataset
(Activity), DREAMER Dataset (Emotion)

98%, 82%,
87.59%
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Even though this piece of work employedwell-controlled benchmark
data, including WESAD and DREAMER, to guarantee reproducibility
and comparability, the same structuremay be successfully applied to real-
world or longitudinal data collected with wearable sensors. It would be
valuable to evaluate the model’s real-time and environmental
performance in naturalistic environments using the current
architecture. Lastly, although computational requirements in this
study were satisfactorily handled, the architecture can be further
streamlined for edge or mobile deployment in future applications.
Small systems such as model compression, effective feature extraction,
or hardware-sensitive tuning would be helpful for integration with
wearable or continuous monitoring systems. The suggested
framework, in general, provides a solid basis for physiological
emotion and stress detection. The directions listed here are its logical
extensions, developed from its proven usefulness, opening the path to a
wider scope of application, greater interpretability, and practical
deployment.

6 Conclusion

This study presents a comprehensive dual-approach framework for
emotion and stress recognition using physiological signals,
demonstrating significant advancements enabled by XAI integration.
The first proposed approach introduces a framework that utilizes deep
learning-based transfer learning by pretraining a 1D-CNN on the
WESAD dataset and fine-tuning it on the ScientISST-MOVE dataset,
improving cross-domain adaptability for stress and activity classification.
The second approach uses a Temporal Conformer architecture on the
DREAMER dataset to continuously predict emotional dimensions,
including VAD, thereby capturing the temporal dynamics of affective
states. Both pipelines incorporate advanced preprocessing, feature
extraction, and techniques for handling class imbalance to enhance
model robustness and generalization. Achieving classification accuracy
rates exceeding 98%, the proposed framework holds strong potential for
real-time, interpretable, and personalized mental health monitoring.
Specifically, the deep learning classifier on biosignal data achieved
98% accuracy and a macro F1-score of 0.98 across three classes. The
transfer learning model, fine-tuned on the ScientISST-MOVE dataset,
textcolorblueattained 82% accuracy across classes with
strong performance across major categories. However, explanations
produced by Grad-CAM appear uninformative and do not clearly
indicate which parts of the signals influence the prediction.
Meanwhile, the temporal conformer model applied to the DREAMER
dataset achieved an R2 score of 0.78 and a rounded accuracy of 87.59%
across valence, arousal, and dominance detection. Future research will
aim to expand the framework’s applicability across diverse biosignal
domains, incorporate real-world deployment scenarios, and explore
scalability for broader applications in affective computing.
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