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Background: Foot and ankle diseases significantly impact quality of life, with
regenerative medicine emerging as a promising approach. A comprehensive
evaluation of both efficacy and safety is paramount for its clinical translation.
Methods: A comprehensive literature search was conducted in PubMed using
keywords “regenerative medicine” and “foot and ankle” (as of 31 December 2024).
Studies were categorized by technology and disease.

Results: PRP and HA showed short-term efficacy in talar cartilage repair; stem
cells enhanced functional recovery in ankle osteoarthritis. 3D printing enabled
personalized implants. Exosomes and Al were identified as future directions.
However, the reporting of safety data was often sporadic and non-
standardized, highlighting the need for more systematic monitoring in
future studies.

Conclusion: Regenerative therapies demonstrate potential but require further
validation through robust trials that prioritize standardized safety reporting
alongside efficacy outcomes. Gaps in exosome isolation, long-term safety,
and clinical translation need addressing.

KEYWORDS

regenerative medicine, foot and ankle diseases, platelet-rich plasma, stem cells, 3D
bioprinting

1 Introduction

Foot and ankle disorders, stemming from their complex anatomy and weight-
bearing function (Riddick et al., 2019; Brockett and Chapman, 2016), represent a
significant clinical challenge worldwide (Lin et al., 2006). Current foot and ankle
treatments include surgical and conservative options, with the latter often offering
lower risk and cost alongside better structural preservation (Donken et al., 2012;
Kerkhoffs et al., 2007; Ramelli et al., 2024; Lan et al., 2021a). Therefore, exploring more
effective treatment methods, such as regenerative medicine, is crucial for improving
patient outcomes and quality of life.

Regenerative medicine focuses on structural and functional restoration primarily
through pharmacological activation of endogenous repair, cell-based replacement
therapies, and bioengineered tissue constructs (Bajaj et al., 2014). This review performs
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a scoping analysis of several key approaches (e.g., stem cells
(Golchin, 2022), PRP (Everts et al, 2020),3D printing, (Tack
2022)) and their
translational applications in foot and ankle pathology.

et al, 2016),and exosomes (Lai et al,

Despite rapid advancements, the evidence for these

regenerative applications remains fragmented. A

comprehensive synthesis that maps the current landscape,
evaluates the efficacy and safety of different technologies
across specific pathologies, and identifies
directions is required. Consequently, this scoping review

critically

key future

aims to explore the applications of bone
foot ankle. We

systematically categorize and evaluate the evidence for key

regenerative medicine in the and

technologies—including stem cells, platelet-rich plasma,
hyaluronic acid, hypertonic glucose, placental tissues, 3D
printing, exosomes, and AI—in managing major conditions
such as talar osteochondral lesions, ankle osteoarthritis,
Achilles tendon injuries, plantar fasciitis, and ligament
injuries. This review seeks to provide a clear overview of the
state of the art, discuss translational challenges, and inform

future clinical research and practice.

2 Materials

This scoping review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews (PRISMA-ScR) guidelines and followed the
methodological framework proposed by Arksey and O’Malley. The
protocol was registered in advance. The methodology comprised five
key stages: (1) identifying the research questions, (2) identifying relevant
studies, (3) study selection, (4) charting the data, and (5) collating,
summarizing, and reporting the results.

Step 1: Identifying the Research Questions
The primary objectives of this scoping review were as follows:

1. To map the key regenerative medicine technologies (e.g., stem
cells, platelet-rich plasma, 3D printing) used in the treatment
of common foot and ankle diseases.

2. To examine and describe the application and scope of these
technologies in specific foot and ankle disorders, including
talar cartilage injuries, ankle osteoarthritis, Achilles tendon
injuries, plantar fasciitis, and ligament injuries.

3. To synthesize and report the main research outcomes and
findings of various regenerative therapies in clinical
applications.

4. To identify emerging technological trends (e.g., exosomes,
artificial intelligence) and research gaps in the current

literature, and to suggest directions for future research.

Step 2: Identifying Relevant Studies

A comprehensive literature search was performed in PubMed
from inception to 31 December 2024. The search strategy combined
Medical Subject Headings (MeSH) and free-text terms related to
regenerative medicine and foot and ankle pathologies. The search
terms included but were not limited to: “regenerative medicine,”
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“stem cells,” “platelet-rich plasma,” “PRP,” “3D printing,”

“biomaterials,” “exosomes,” “growth factors,” “talus cartilage

» «

injuries,” “ankle osteoarthritis,” “Achilles tendon injury,” “plantar
fasciitis,” and “ligament injury.” The full search strategy for PubMed
is illustrated in Table 1. The search was limited to English-language
publications. Additionally, the reference lists of included studies
were manually screened to identify any potentially relevant articles.

The PICOS framework (Population, Intervention, Comparison,
Outcome, Study Design) was applied to define eligibility criteria, as
detailed in Table 2.

Studies were excluded if they were: (1) non-English publications; (2)
non-peer-reviewed articles (e.g., editorials, commentaries, conference
abstracts); (3) protocols or studies with unavailable full text; or (4)
irrelevant to regenerative medicine or foot and ankle diseases.

Step 3: Study Selection

The study selection process involved two phases. First, two
reviewers independently screened titles and abstracts against the
eligibility criteria. Second, the full texts of potentially eligible studies
were retrieved and assessed independently by the same reviewers.
Any disagreements were resolved through discussion or by a third
reviewer. The study selection process is summarized in a PRISMA
flow diagram, which outlines the number of records identified,
included, and excluded at each stage.

Step 4: Charting the Data

A standardized data extraction form was developed and
piloted to document key information from included studies.
Data were extracted by one reviewer and verified by another.
The extracted items included: first author, publication year,
study design, sample size, patient/model characteristics,
details (type, preparation, dosage, etc.),
comparator, follow-up duration, and main outcomes/findings,
as shown in Table 3.

intervention

Step 5: Collating, Summarizing, and Reporting Results

The extracted data were summarized quantitatively (e.g.,
frequency analysis) and qualitatively (narrative synthesis). The
analysis aimed to describe the characteristics, scope, and trends
of regenerative therapies in foot and ankle disorders. Results were
presented in tables and narrative form.

Consistent with the purpose of a scoping review, no formal
quality assessment of included studies was conducted, as the goal
was to map the evidence rather than evaluate intervention efficacy.

3 Results

A systematic search of the PubMed database yielded
308 records for initial screening. Following the removal of
duplicates, 265 records remained for title and abstract
screening. During this stage, 154 records were excluded as
they were deemed irrelevant to the focus on foot and ankle
diseases. Subsequently, 111 full-text articles were assessed for
eligibility. Of these, 43 articles were excluded for not meeting
the regenerative medicine intervention criteria, and 34 articles
were excluded due to unavailability of full text or being non-
peer-reviewed publications. Ultimately, a total of 77 studies
were included in the qualitative synthesis and descriptive
analysis presented in this scoping review (see flow diagram in
Figure 1). The included studies were further categorized
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TABLE 1 Search strategy for PubMed.

10.3389/fbioe.2025.1653964

#1 Regenerative medicine [Mesh]

#2 Regenerative therap[Title/Abstract] OR tissue engineering[Title/Abstract] OR stem cell[ Title/ Abstract] OR

platelet-rich plasma[Title/Abstract] OR PRP[Title/Abstract] OR biomaterial[Title/Abstract] OR 3D print|[Title/
Abstract] OR exosome|[Title/Abstract] OR “growth factor”[Title/Abstract]

#3 #1 OR #2

#4 Talus [Mesh] OR Ankle Joint [Mesh] OR Achilles Tendon [Mesh] OR Plantar Fasciitis [Mesh] OR Ankle Injuries

[Mesh] OR Ligaments, Articular [Mesh]

#5 Talus Cartilage Injury[Title/Abstract] OR osteochondral lesion of talus[Title/Abstract] OR OLT][Title/Abstract]

ankle”[Title/Abstract]

#6 #4 OR #5

OR ankle osteoarthr([Title/Abstract] OR ankle OA[Title/Abstract] OR Achilles tendinopath[Title/Abstract] OR
Achilles rupture[Title/Abstract] OR plantar fasciitis[Title/ Abstract] OR heel spur[Title/Abstract] OR ankle sprain
[Title/ Abstract] OR ligament injury[Title/Abstract] OR lateral ankle instability[Title/Abstract] OR “foot and

#7 #3 AND #6

TABLE 2 PICOS framework for inclusion criteria.

Category Criteria

Population
injury) or corresponding animal models.

Intervention

Patients diagnosed with foot and ankle disorders (e.g., talar cartilage injury, ankle osteoarthritis, Achilles tendon injury, plantar fasciitis, ligament

Treatment involving at least one regenerative therapy (e.g., stem cells, PRP, hyaluronic acid, 3D-printed scaffolds, exosomes).

Comparison

Outcomes
cartilage repair).

Study Design

Any comparator (e.g., placebo, conventional treatment, no treatment).

Clinical, functional, radiological, or histological outcomes related to foot and ankle diseases (e.g., VAS pain score, AOFAS score, tendon healing,

Clinical studies (RCTs, non-RCTs, cohort studies, case series) and preclinical basic studies.

and mapped based on the specific regenerative technology and
foot/ankle disorder investigated (see study classification
in Figure 2).

3.1 Applications in disease management

The
postoperative assessment of foot and ankle diseases and their

standardized scoring tools commonly used for
clinical characteristics are summarized in Table 4. These tools
multiple of evaluation, including pain,

function, and imaging. Among them, the MOCART score

cover dimensions
provides a quantitative basis for evaluating cartilage repair
efficacy through objective imaging parameters, while the VISA-A
and Tegner scores focus on longitudinal monitoring of functional
recovery in sports activities.

3.1.1 Talus cartilage injuries

Osteochondral lesions of the talus (OLT) refer to localized
damage to the articular cartilage and its underlying subchondral
bone, including cartilage tears, subchondral bone fractures, bone
marrow edema, and subchondral cysts. These injuries are of
significant concern in ankle joint pathology, commonly occurring
following sprains, dislocations, or fractures (Cheng and Wang,
2024). Studies report that approximately 40% of patients with
ankle sprains experience long-term instability and recurrent
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sprains, which can further lead to cartilage damage. (Wang et al,,
2020). Treatment largely depends on clinical symptoms, the location
of the lesions, and imaging findings. For lesions located medially or
laterally with no radiological evidence of cartilage fragment
detachment, conservative treatment may be considered.
Conservative options include rest, casting or bracing, weight-
bearing restrictions, and the use of nonsteroidal anti-
inflammatory drugs. Surgical treatments encompass arthroscopic
stimulation or microfracture,

debridement, bone

osteochondral autograft transplantation, autologous chondrocyte

marrow

implantation, and allograft osteochondral transplantation, among
other techniques (Bruns et al., 2021). Among these, microfracture
has traditionally been considered the “gold standard” for initial
treatment as it promotes the formation of fibrocartilage at cartilage
defects (Nguyen et al., 2024). According to the German Society for
Orthopedics and Trauma Surgery, BMS is recommended for lesions
with an area smaller than 1.5 cm” and a depth less than 5 mm
(Walther et al., 2024).

3.1.11PRP

Intra-articular injection of PRP has been used in the treatment of
talus cartilage lesions and has shown a significant reduction in pain
scores, with functional improvement lasting for at least 6 months
(Mei-Dan et al, 2012). When combined with arthroscopic
microfracture surgery, PRP further enhances functional scores for
mid-stage osteochondral lesions (Guney et al., 2015). Moreover,
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TABLE 3 Preliminary standardized data extraction items.

10.3389/fbioe.2025.1653964

Category Specific data items for extraction

First Author
Publication Year
Article Title
Journal/Source

1. Publication content

Study Type (e.g., RCT, Cohort, Case Series, Preclinical Study)

Funding Source

2. Participant characteristics
Sample Size (n)
Mean Age
Sex Ratio (Male/Female)

Population/Model (e.g., Patients with OLT, Rat model of ankle OA)

Disease Severity or Classification (e.g., Lesion size, Kellgren-Lawrence grade)

3. Intervention details

Type of Regenerative Technology(e.g., PRP, BMAC, ADSCs, HA, Hypertonic Glucose, Placental Tissue, 3D-printed scaffold, Exosomes)

Specific Preparation Protocol(e.g., PRP centrifugation method, Cell source and dosage, Scaffold material)
Intervention Protocol(Dose, Concentration, Number of injections, Frequency, Follow-up time)
Combination Therapies(e.g., Used alongside microfracture, debridement, etc.)

4. Comparison details

5. Outcome measures

Type of Comparison (e.g., Placebo, No treatment, Conventional therapy, Other active treatment)
Specific Details of the Comparator Intervention

Primary Outcomes: Pain scores (e.g., VAS), Functional scores (e.g., AOFAS, VISA-A), Imaging scores (e.g., MOCART)

Secondary Outcomes: Histological results, Return-to-sport time, Adverse events, Patient satisfaction

Key Findings and Author’s Conclusions

6. Methodology and limitations

Main Study Limitations as reported by authors

Authors’ Recommendations for Future Research

PRP is increasingly considered a primary adjunctive treatment after
OCL surgery (Gormeli et al., 2015).

3.11.2 HA
Hyaluronic acid (HA), a nonsulfated linear polysaccharide
comprising repeating disaccharides, exhibits tissue-specific

molecular weight variations and high hydration in vivo
(Prestwich, 2011). Its physicochemical properties are tunable via
crosslinking/degradation, facilitating angiogenesis, osteointegration,
and cellular homeostasis (Allison and Grande-Allen, 2006). Intra-
articular injection of HA is another effective treatment for talus
cartilage lesions, significantly reducing pain scores and improving
functional status for at least 6 months (Mei-Dan et al., 2012). HA has
also shown superior healing effects when used as an adjunct to
arthroscopic microfracture surgery for osteochondral lesions (Shang
et al, 2016), contributing to better outcomes in cartilage healing

(Doral et al., 2012), and joint function recovery.

3.1.1.3 BMAC

Bone marrow aspirate concentrate (BMAC) transplantationhas
proven to be an effective regenerative technique for talus cartilage
defects (Buda et al., 2015; Desando et al., 2017), with clinical
outcomes slightly better than those of autologous chondrocyte
2015). BMAC, when wused in
combination with microfracture surgery, significantly reduces the

implantation (Buda et al,

recurrence rate of osteochondral lesions (Murphy et al, 2019).
BMAC surgery
provides better functional improvement in the medium term.
When combined with HA and fibrin, BMAC significantly
enhances ankle joint cartilage function (Abas et al, 2022).

combined with arthroscopic microfracture

However, not all combination therapies yield favorable clinical
results, as seen in studies combining extracellular matrix
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allografts with ¢cBMA (Mercer et al, 2022) or ¢BMA with
autologous bone tissue grafts, which showed no significant
benefits (Shimozono et al., 2019).

3.1.1.4 Adipose-derived MSCs and stromal vascular fraction

Adipose-derived mesenchymal stem cells have shown promising
results in treating talus cartilage lesions and have been shown to be
safe in the treatment of ankle osteoarthritis pain (Natali et al., 2021).
In patients with ankle osteoarthritis undergoing subtalar medial
oblique osteotomy or calcaneal sliding osteotomy, additional
mesenchymal stem cells (MSCs) injection combined with bone
marrow stimulation significantly improved VAS and AOFAS
scores in the short-term follow-up (Kim et al, 2016; Kim and
Koh, 2016). In combination therapies, MSCs have been widely
applied. Kim et al. (2014a) compared the effects of bone marrow
stimulation alone with bone marrow stimulation combined with
MSC-containing stromal vascular fraction injections. The results
indicated that the combined therapy of MSC-SVF and bone marrow
stimulation significantly improved VAS, AOFAS, Tegner, and
MOCART scores compared to bone marrow stimulation alone.
Kim et al. (2013) found that combined treatment with MSCs had
better results in the treatment of OLT in patients over 50 years of age
by comparing MSC injection plus arthroscopic bone marrow
stimulation versus arthroscopic bone marrow stimulation alone
for the treatment of OLT in elderly patients.

The main information of Talus Cartilage Injuries included
literature is shown in Table 5.

3.1.2 Ankle osteoarthritis

Ankle osteoarthritis (OA) is less common than knee and hip
OA, with 75%-80% of clinical cases being trauma-related, typically
resulting from ligament or bone injuries to the ankle. Conservative

frontiersin.org
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review

-

FIGURE 1

Literature search diagram.

treatment for ankle OA currently focuses on pain relief, while
surgical treatments for end-stage ankle OA are primarily centered
around ankle arthrodesis and total ankle replacement (Anastasio
et al., 2024).

3.1.2.1 PRP

PRP injection therapy has been shown to improve the function
and activity of ankle OA and has significant analgesic effects (Evans
etal,, 2020; Xiong et al., 2023), with particularly notable results in the
short term (Laohajaroensombat et al., 2023). However, in long-term
treatments (26 weeks (Paget et al., 2021) and 52 weeks (Paget et al.,
2023)), the effects
improvements.

therapeutic do not show significant

3.1.2.2 HA

HA injections improve the function of patients with ankle OA
(Karatosun et al., 2008), but require long-term administration. A
single intra-articular injection of low-molecular-weight, non-
crosslinked hyaluronic acid does not show significant functional
improvements (DeGroot et al., 2012). For long-term injections, a
regimen of 25 mg sodium hyaluronate injected intra-articularly over
5 consecutive weeks can alleviate the signs and symptoms of ankle

Frontiers in Bioengineering and Biotechnology

OA (Mei-Dan et al, 2010). Weekly intra-articular injections of
sodium hyaluronate for 5 weeks also show good results (Salk
et al,, 2005). Injections of sodium hyaluronate with a molecular
weight of 500-730 kDa are well tolerated (Salk et al., 2006), and
studies suggest that clinical benefits can be observed as early as
1 week, potentially lasting for 6 months or longer (Sun et al., 2006).
Additionally, injecting hyaluronic acid three times per week also
provides excellent clinical outcomes (Sun et al., 2011).

included

The main information of Ankle Osteoarthritis

literature is shown in Table 6.

3.1.3 Achilles tendon injury

Achilles tendon rupture (ATR) is the most common type of
tendon rupture, accounting for 10.7% of all tendon and ligament
injuries. In North America and Europe, the annual incidence of ATR
ranges from 2.5 to 47 per 100,000 people (Briggs-Price et al., 2024).
60.1% of cases are secondary to sports-related mechanisms.
Basketball is the most common sport-related mechanism,
accounting for 36.6% of cases (Lyons et al., 2024). Heterotopic
ossification (HO) occurs relatively frequently following Achilles
tendon rupture. A clinical study indicated that nearly 20% of
patients who underwent surgical repair of Achilles tendon
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General
Introduction

1

General
Introduction
2

FIGURE 2

Plantar
fasciitis
20

Number of references in each section of this paper regarding the application of regenerative medicine to diseases.

TABLE 4 Scoring tools for postoperative assessment of foot and ankle diseases.

Scoring tool

Description

References

AOFAS (American Orthopedic Foot and Ankle Society) 0-100 Assesses foot and ankle function, pain, and alignment, commonly used for Vosoughi et al.
Score conditions like plantar fasciitis. (2018)
FHSQ (Foot Health Status Questionnaire) Variable Assesses foot health and quality of life, including pain, function, and daily Riskowski et al.
activities. (2011)
VAS (Visual Analog Scale) 0-10 A subjective pain assessment tool where patients mark their pain intensity. =~ Hawker et al. (2011)
MOCART (Magnetic Resonance Observation of Variable Uses MRI to evaluate tissue quality and recovery after cartilage repair. Schreiner et al.
Cartilage Repair Tissue) Score (2021)
VISA-A (Victorian Institute of Sports Assessment - 0-100 Assesses function and symptom severity in patients with Achilles Gatz et al. (2020)
Achilles) Score tendinopathy.
EQ-VAS (EuroQol Visual Analog Scale) 0-100 Assesses overall health status, where patients rate their current health Lin et al. (2023)
experience.
Tegner Score 0-10 Assesses activity level and functional status, suitable for knee and ankle = Briggs et al. (2009)
joint rehabilitation.
FAAM (Foot and Ankle Ability Measure) 0-100 Assesses foot and ankle function and quality of life, particularly in chronic = Martin et al. (2005)
conditions.
AHFS (Ankle-Hindfoot Scale) 0-100 Evaluates ankle joint function recovery, commonly used in postoperative Nijmeijer et al.
rehabilitation. (2023)
FADI (Foot and Ankle Disability Index) 0-100 Assesses the degree of foot and ankle disability, suitable for various foot and Omeragic et al.
ankle conditions. (2023)
MOXFQ (Manchester-Oxford Foot Questionnaire) 0-100 Assesses the impact of foot diseases on quality of life, used before and after = Dawson etal. (2011)
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TABLE 5 Summary of papers on talus cartilage injuries.

References

Sample
size

Method

Scoring system

10.3389/fbioe.2025.1653964

Conclusion

Mei-Dan et al. 30 15 PRP, 15 HA, 3intra- AQFAS, AHFS, VAS VAS: Significant decrease (P < Intra-articular PRP and HA
(2012) articular injections for 0.001), lowest at 12 weeks (P < significantly reduced pain and
28 weeks 0.001), slight increase at 24 weeks | improved function for at least
6 months.
Guney et al. (2015) | 35 16 control, 19 PRP + AOFAS, FAAM, VAS AOFAS: 89.2 + 3.9 (PRP) vs. PRP as an adjunct to microfracture
microfracture, 71.0 + 10.2 (control) improved functional scores in the
16.2 months follow-up mid-term.

Gormeli et al. 40 13 PRP, 14 HA, 13 saline, = AOFAS, VAS AOFAS: PRP group significantly | PRP should be considered as the

(2015) 15.3 months follow-up higher than HA and control, VAS | primary adjunctive therapy for
significantly lower osteochondral lesion surgery.

Shang et al. (2016) | 35 17 control, 18 HA MRI, AOFAS, VAS MRI: Injection group better Intra-articular HA injections may

injections thickness and T2 index (P < 0.01), = provide better functional recovery
higher improvement in AOFAS when combined with microfracture.
and VAS (P < 0.05).
Doral et al. (2012) | 57 16 control, 41 HA Freiburg, AOFAS Injection group significantly Intra-articular HA injections are
injections improved compared to non- effective as an adjunct to
injection group microfracture for osteochondral
lesions.

Buda et al. (2015) 80 40 ACI, 40BMDCT AOQOFAS, MRI MOCART, T2 = AOFAS: BMDCT 94.7, ACI 93.9, = Both ACI and BMDCT are effective
both groups similar in MOCART | for treating osteochondral lesions,
and T2 with BMDCT showing potentially

superior outcomes.

Desando et al. 22 7 mACI, 15 mBMAC AOFAS, histologic and AOFAS: mACI 92.4, mBMAC mACI and mBMAC both showed

(2017) immunohistochemical 84.22 at 36 months (P < 0.05), effectiveness, with mACI yielding

assessments mACI superior superior results.

Murphy et al. 101 52 microfracture alone, Revision rate: Microfracture Microfracture combined with

(2019) 49 microfracture + 28.8%, microfracture + BMAC reduces revision rates for

BMAC, 36-month BMAC 12.2% osteochondral lesions.
follow-up

Hannon et al. 34 34BMS, 22BMAC + BMS | FAOS, SF-12 Significant improvement in BMAC combined with bone

(2016) BMAC group (P < 0.01), higher | marrow stimulation results in better
T2 relaxation in BMAC/BMS functional outcomes.
group (P = 0.030 and P < 0.001)

Abas et al. (2022) 94 BMC + HA + fibrin MOXFQ Significant improvement at BMC combined with HA and fibrin
12 months showed good safety and tolerance.

Mercer et al. (2022) | 60 26 AOT + EMCA/BMAC, = MRI MOCART Both groups significantly Both AOT + EMCA and AOT +

34 AOT/CBMA improved, no difference between | CBMA showed significant
AOT + EMCA and AOT + improvement, with no notable
CBMA difference between treatments.

Shimozono et al. 54 28 AOT + CBMA, FAOS, SF-12 FAOS:AOT + CBMA: Pre-op AOT treatment is effective,

(2019) 26 AOT 52.3, Post-op 75.5; AOT 40.7, combined with CBMA treatment
Post-op 69.6 effect enhancement is not

significant

Natali et al. (2021) | 31 5 mL autologous microfat | AOFAS, FADI, VAS Significant improvement at 6, 12, | Autologous microfragmented

graft and 24 months adipose tissue is effective for the
treatment of osteoarthritis pain in
the ankle joints

Kim et al. (2016) 64 33 SMO + BMS, 31 SMO | VAS, AOFAS, TAS, TT, TLs, = VAS: preoperative 7.2 + 1.1 Bone marrow stimulation is

+ MSC + BMS ICRS (group 1) vs. 7.2 + 0.8 (group 2) | effective in patients with inversion
final follow-up 4.9 + 1.3 vs. 3.7 £ | ankle osteoarthritis undergoing
1.5.AOFAS score: preoperative SMO, and is better in combination
62.3 + 6.1 vs. 61.0 + 5.8 final with MSC injections
follow-up 81.2 + 6.2 vs. 85.2 +
5.2TAS

Kim and Koh 49 23BMS, 26 MSC + BMS VAS, AOFAS, ICRS Mean VAS scores improved from = Bone marrow stimulation is

(2016) 7.3 £0.9 to 3.9 £ 1.2 in group effective in patients with inversion

landfrom7.4+0.8t03.1+1.5in
group 2 (P < 0.001 for both

ankle osteoarthritis undergoing
lateral sliding osteotomy of the heel
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Results Conclusion

groups) Mean AOFAS scores also
improved from 64.4 +4.1t079.6 £
7.7 in group 1 and from 63.5 +
4.2 t0 84.2 + 7.9 in group 2 (P <
0.001 for both groups) ICRS
scores were higher in Group 2

bone, and combined with MSC is
more effective

Kim et al. (2014a) | 50 26 BMS, 24 MSC + BMS VAS, AOFAS, MRI Mean VAS score, AOFAS Bone marrow stimulation is
MOCART, Tegner score +1.2, 68.5 + 5.6, and 3.4 + effective in the treatment of

improved from 7.1 1.2, 68.5, and | cartilaginous lesions of the talus,
3.4 to0 0.6 + 0.8, 78.3 + 4.9, and and co-injection of MSC-
3.5 + 0.8, respectively, in the containing SVF is more effective
conventional group and from
7.1 +0.8,67.7 +47,and 34 +
0.5 to 3.2 + 0.8, 83.3 + 7.0, and
3.9 + 0.7 in the MSC
group. 7.0 and 3.9 + 0.7 in the
MSC group.

Kim et al. (2013) 68 37BMS, 31 MSC + BMS VAS, AODAS, Regner VAS score improved significantly | Bone marrow stimulation is

from 7.2 + 1.1 t0 4.0 + 1.1 in group
Aandfrom7.1+1.0t03.2+0.9in
group B. AOFAS score improved
from 68.0 £ 5.5 to 77.2 + 4.8 in
group A and from 68.1 £ 5.6 to
82.6 + 6.4 in group B. AOFAS

effective for talar chondral lesions
in patients over 50 years of age, and
combined with MSCs is more
effective, especially if the lesion is
greater than 109 mm ooh the
presence of subchondral cysts

rupture exhibited some degree of HO within the healing tendon
(Sullivan et al, 2021). HO can lead to pain and functional
impairment (Sullivan et al, 2021); however, it cannot be
prevented through early rehabilitation (Guyton, 2020).

There is some evidence supporting the efficacy of a single
PRP injection in treating chronic Achilles tendinopathy (AT).
Monto (2012) treated 30 patients with chronic AT, who had
failed 6 months of conservative treatment, with a single
ultrasound-guided PRP Three post-
treatment, the average AOFAS score improved from 34 to 92,

injection. months
with 88 points remaining at 24 months. Imaging showed
resolution of Achilles tendon abnormalities in 27 of the
29 patients after 6 months. Clinical success was achieved in
28 of 30 patients. Krogh et al. (2016) studied 24 patients with a
median disease duration of 33 months and treated them with
blinded PRP (n = 12) or saline (n = 12). There were no
differences in the VISA-A scores, but the PRP group showed
tendon thickening. Boesen et al. (2017) indicated that PRP
combined with eccentric training could reduce pain, improve
activity levels, and reduce tendon thickness.

Regarding the long-term efficacy of PRP, repeated PRP
injections After three bi-weekly
ultrasound-guided injections, the VISA-A score increased from
baseline 49.9 + 18.1 to 62.9 + 19.8 at 2 months (Filardo et al., 2014).

However, the application of PRP in ATR patients shows limited

show Dbetter outcomes.

effectiveness (Boesen et al., 2020; Schepull et al., 2011; Keene et al.,

2022), and in non-insertional Achilles tendinopathy, the

Frontiers in Bioengineering and Biotechnology

scores improved from 68.0 £ 5.5 to
77.2 + 4.8 in group A and from
68.1 + 5.6 to 82.6 * 6.4 in group B.
Tegner Activity Scale scores
improved significantly in group B

combination of endoscopic debridement with PRP shows limited
results (Thermann et al., 2023).

3.1.4 Plantar fasciitis

Plantar fasciitis is a common musculoskeletal injury, especially
among runners, affecting approximately 17.4% of runners (Rhim
et al, 2021). Risk factors include restricted ankle dorsiflexion,
increased body mass index, and prolonged standing. Treatment
should begin with stretching the plantar fascia, icing, and
nonsteroidal anti-inflammatory drugs. Refractory plantar fasciitis
may require injections, extracorporeal shock wave therapy, or
surgical intervention (Trojian and Tucker, 2019).

3.1.41PRP

PRP injections are widely used in the treatment of plantar
fasciitis, with studies assessing pain relief and reduction in fascia
thickness using VAS, FADI, and AOFAS scores. Compared to
corticosteroids, PRP treatment is more effective in relieving pain
and restoring function, with longer-lasting effects (Shetty et al.,
2019). For specific populations such as athletes, PRP injections can
also accelerate functional recovery (Alessio-Mazzola et al., 2023).

3142 HA

HA is used as a non-surgical treatment for knee OA and
persistent shoulder pain, and its anti-inflammatory effects hold
promise for treating plantar fasciitis. Studies suggest that HA
injections are a safe and effective conservative treatment option
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Paget et al. (2021) 100 100 patients randomly assigned | AOFAS The PRP group showed a 10- = In ankle OA patients, intra-
(1:1) to receive 2 intra-articular point increase in the American | articular PRP injections did not
PRP injections (n = 48) or Orthopaedic Foot and Ankle significantly improve ankle pain
placebo (saline; n = 52). Society (AOFAS) score (from symptoms over 26 weeks.

63 to 73 [95% CI, 6-14]; P <
0.001). The placebo group
showed an 11-point increase

Paget et al. (2023) 100 100 ankle OA patients AOQOFAS The unadjusted group PRP injections did not improve
randomly assigned to PRP or difference in AOFAS scores at | ankle pain symptoms over
placebo (saline) groups, 52 weeks was 4 points (95% 52 weeks in ankle OA patients.
receiving 2 intra-articular CI, -7 to —1; P = 0.02), favoring
injections. the placebo group.

Karatosun et al. 43 | 43 ankle OA patients, with AOFAS Both groups showed HA injections improve function

(2008) 30 randomly assigned to improvement in AOFAS scores. | in ankle OA.

3 intra-articular HA injections HA group: from 61.6 + 16.8 to
and 13 to weekly or exercise 90.1 + 9.7, exercise group: from
therapy for 6 weeks. 72.1 + 16.6 to 87.5 + 17.5.

DeGroot et al. 56 = 56 ankle OA patients, AOQOFAS AOQFAS scores: HA group Single intra-articular injection of

(2012) randomized to single intra- improved by 4.9 points at 6 and | low-molecular-weight, non-
articular injection of 2.5 mL 12 weeks; placebo group crosslinked HA does not
low-molecular-weight, non- worsened by 0.4 points at significantly improve function in
crosslinked HA or saline 6 weeks, then improved by ankle OA.
solution. 5.4 points at 12 weeks.

Mei-Dan et al. 16 | 16 arthritis ankle patients Visual Analog Scale and Range of motion improved by | Sodium hyaluronate injections

(2010) receiving 25 mg sodium Ankle-Hindfoot Score 20%, pain significantly reduced. | alleviate the signs and symptoms
hyaluronate injections for of ankle OA.

5 consecutive weeks.

Salk et al. (2005) 17 | Weekly intra-articular Sodium hyaluronate intra-
injections of sodium articular injections provide
hyaluronate for 5 sessions. sustained pain relief and

functional improvement in
ankle OA.

Salk et al. (2006) 20 = 5weekly intra-articular Ankle OA Score In the sodium hyaluronate Weekly intra-articular injections
injections of 1 mL sodium group, 5 out of 9 patients of sodium hyaluronate
hyaluronate (10 mg/mL) or showed a >30 mm (500-730 kDa) provide good
saline solution. improvement in their scores. tolerance, sustained pain relief,

and improved ankle OA
function.

Sun et al. (2006) 75 | 75 patients receiving 5 weekly | AOS, AOFAS, ROM AOS pain score: decreased from | Intra-articular HA injections
intra-articular HA injections. 48 + 1.7 cm to 2.8 + 2.0 cm alleviate pain and improve

(1 week), 2.1 + 1.7 cm function in ankle OA.
(1 month), and 2.1 + 1.6 cm

(3 months) (P < 0.001). AOFAS

score increased from 64 + 17 to

75 £ 15 (1 week), 78 £ 16

(1 month), and 78 + 14

(3 months).

Sun et al. (2011) 46 | 46 patients receiving 3 weekly | AOFAS AOQFAS scores improved from | Weekly 3 injections of sodium
intra-articular sodium 60.5 at baseline to 73.5 hyaluronate improve pain in
hyaluronate injections. (1 month), 75.5 (3 months), patients with unilateral

and 76.7 (6 months) ankle OA.

for plantar fasciitis, significantly alleviating pain and improving
function, with no severe adverse events; mild injection site reactions
resolve spontaneously (Kumai et al, 2014; Kumai et al., 2018).
However, other studies have pointed out that HA is less effective
than corticosteroids for short-term treatment of plantar fasciitis
(Raeissadat et al., 2020). Regarding the choice between PRP and
corticosteroids, Breton et al. (2022) and others suggest that the
treatment method should be based on initial fascia thickness. For
patients with an initial fascia thickness greater than 7 mm,

Frontiers in Bioengineering and Biotechnology

corticosteroids are recommended. Tabrizi et al. (2020) suggest
that for obese patients with a BMI >30 kg/m’ corticosteroids
should be preferred.

3.1.4.3 Hypertonic glucose

Hypertonic glucose injections mediate tissue repair through
local initiation of wound healing phases (formation,
inflammation, remodeling) and extracellular matrix synthesis
(Kesikburun et al., 2022). Proposed mechanisms include VEGF
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Shetty et al. (2019) | 90 90 patients randomized into PRP (n = = VAS, RM The PRP group showed better PRP is more effective than CS for
30), CS (n = 30), and placebo (n = 30) long-term outcomes, with the long-term treatment of chronic
groups. Follow-up at 1 week, 3 weeks, significant improvements in VAS | plantar fasciitis, with better pain
and 3, 6, 12, and 18 months. (PRP: 8.2 to 2.1; CS: 8.8 to 3.6; relief, functional outcomes, and

placebo: 8.1 to 5.4) and RM scores = lower need for further injections or
(PRP: 1.7 to 3.7; CS: 1.2 to 3.1; surgery.
placebo: 1.2-2.0).

Alessio-Mazzola 55 24 athletes among 55 subjects, all VAS, FFI PRP group recovered faster PRP may offer advantages over

et al. (2023) completed treatment. PRP group (average 3.1 months, ESWT ESWT, especially for athletes, by
received 3 injections, ESW group 5.9 months, p = 0.044) and had a  reducing recurrence and
received at least 3 treatments. lower overall recurrence rate (0% = promoting faster recovery of

vs. 11.1%). physical activity.

Kumai et al. (2014) | 16 16 patients received up to 2.5 mL HA =~ VAS VAS score change for plantar HA provides safe pain relief for

injection. fasciitis patients was —2.38 + plantar fasciitis with no severe
2.61 cm. adverse events; minor injection site
reactions resolved spontaneously.

Kumai et al. (2018) | 168 Three groups of 56 patients each, VAS, Roles , H-HA group showed significant =~ HA injection is a safe and effective
receiving weekly injections of 2.5 mL =~ Maudsley , ADLs | improvement in VAS (-3.3 + conservative treatment for plantar
1% HA (H-HA), 0.8 mL 1% HA 0.3 cm) compared to control fasciitis, significantly relieving pain
(L-HA), or 2.5 mL 0.01% HA (control) (-2.4 £ 0.3 cm, P = 0.029). Roles, = and improving function.
for 5 weeks. Maudsley scores, and ADLs

improved, especially in H-HA
group, with no severe adverse
events.

Raeissadat et al. 75 38 patients received high-molecular VAS, FAAI,PPT, | Both groups showed significant HA is not more effective than

(2020) weight HA (1 mL HA20 mg + 1 mL  FFI, PFT improvements in all parameters corticosteroids for short-term
lidocaine 2%) or CS injection (1 mL (P < 0.001). At 6 weeks, CS group = treatment of plantar fasciitis.
methylprednisolone 40 mg + 1 mL showed more significant
lidocaine 2%) under ultrasound reduction in PFT and increased
guidance. PPT (P = 0.004 and P = 0.011,

respectively).

Breton et al. (2022) | 38 PRP group (20) received 2 mL VAS, FFI, tendon | CS group showed moderate PRP is effective regardless of fascia
injections in tendons, CS group (18)  thickness correlation between fascia thickness, while corticosteroids
received 1.5 mL injections around the thickness and pain intensity work best in patients with greater
tendon. (VAS), and total FFI score. PRP  fascia thickness.

was effective regardless of fascia
thickness.

Tabrizi et al. (2020) | 31 16 obese patients received single CS VAS, FFI At 24 weeks, CS group showed Corticosteroid injections are more
injection, 15 received weekly PRP greater pain relief and effective than PRP for relieving
injections. improvement in FFI pain and improving function in

obese plantar fasciitis patients.

Kesikburun et al. 29 ESWT group (n = 15) or prolotherapy =~ VAS, FFI, RMS Both treatment groups showed ESWT and prolotherapy are

(2022) group (n = 14). significant improvement in VAS, = equally effective for plantar

RMS, and FFI scores at 6 and fasciitis treatment.
12 weeks. No significant group
differences at each time point.

Ersen (2018) 50 Prolotherapy group (n = 26) received = VAS, FAOS, FFI | Prolotherapy group showed Prolotherapy is an effective
3 injections every 21 days, control better VAS, FAOS, and FFI scores = adjunctive treatment for chronic
group (n = 24) received stretching at 42, 90, and 360 days compared  plantar fasciitis.
exercises for 3 months. to control group.

Kim et al. (2014b) 20 PRP group (n = 9) received 2 injections ~ FFI PRP improved total FFI by 30.4%, = Both PRP and prolotherapy are
of autologous PRP, DP group (n = 11) compared to 15.1% for DP. effective for chronic recalcitrant
received 2 injections of 15% glucose/ plantar fasciitis.
lidocaine solution.

Raissi et al. (2023) 40 20 patients received a single injection =~ NRS, FAAM-A, CS group showed significantly Both glucose prolotherapy and CS
of 40 mg methylprednisolone, FAAM-S better NRS and FAAM-S scores  injections are effective for treating
20 patients received 20% glucose compared to glucose plantar fasciitis, but CS injections
injection. prolotherapy at 2 weeks. may be more effective in the early

stages.
(Continued on following page)
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Ugurlar et al. (2018) | 158 ESWT group (n = 39), prolotherapy VAS, FFI-R Prolotherapy and PRP groups ESWT and prolotherapy have
group (n = 40), PRP group (n = 39), CS showed significant VAS score similar long-term outcomes, with
group (n = 40). reduction (p < 0.05) from 3 to PRP showing sustained effects;

12 months. CS showed early corticosteroids are most effective
effectiveness, but no significant in the first 3 months.
differences at 36 months.

Asheghan et al. 59 ESWT group (n = 29) and glucose VAS, FAAM Both groups showed significant Glucose prolotherapy is as

(2021) injection group (n = 30) received pain reduction at 6 and 12 weeks = effective as ESWT in relieving pain
treatments under ultrasound guidance. compared to baseline. and improving daily function in

plantar fasciitis patients.

Sun et al. (2018) 1 A 53-year-old patient with chronic NRS-11 Patient returned to full-time work = Human placenta membrane can be
plantar fasciitis received cryopreserved with minimal symptoms at 12and = an adjunctive treatment for
human placenta membrane (vCPM) 24 months of follow-up. recalcitrant plantar fasciitis.
after conservative treatment failed.

Werber (2015) 44 ZimmerWave radial pulse treatment VAS Significant pain reduction Cryopreserved amniotic
with ultrasound-guided injection of reported at 4 weeks post- membrane can be successfully
PalinGen SportFLOW and lidocaine. treatment, with average pain used for treating chronic plantar

reduced to level 2 by week 12. fasciitis and Achilles tendonitis.

Zelen et al. (2013) 45 Control group (15) received standard = AOFAS, mDHACM group showed mDHACM is a feasible treatment
care with 2 injections of Marcaine and =~ Wong-Baker significant improvement in for refractory plantar fasciitis.
saline, mDHACM group received FACES, SF-36v3 AOQFAS, pain scores, and physical
2 injections with mDHACM. component scores compared to

control.

Hanselman et al. 23 14 patients randomly received VAS, FHSQ At 6 weeks, corticosteroids Cryopreserved hAM injections are

(2015) corticosteroid injections, 9 received showed better foot health scores, = comparable to corticosteroid
c-hAM injections. while c-hAM showed greater foot  injections in treating plantar

pain relief at 18 weeks. fasciitis.

Nakagawa et al. 31 UGPF group (n = 15) received surgery, = VAS UGPF + AM group showed AM injection combined with

(2022) UGPF + AM group (n = 16) received better short-term pain relief, but =~ UGPF offers better short-term
surgery plus AM injection. no significant differences at pain relief, with similar long-term

52 weeks. outcomes.

pathway activation and cytokine modulation, though precise
proliferative actions require further elucidation (Chutumstid
et al.,, 2023).

Hypertonic glucose injection therapy is highly effective in
treating plantar fasciitis (Kesikburun et al., 2022; Ersen, 2018;
Kim et al, 2014b; Raissi et al, 2023; Ugurlar et al, 2018;
Asheghan et al, 2021). Glucose prolotherapy has comparable
efficacy to radial shock wave therapy in alleviating pain,
improving daily function, and reducing plantar fascia thickness
in plantar fasciitis patients (Kesikburun et al, 2022; Asheghan
et al, 2021), although its effect is less pronounced than
corticosteroid injection in the early stages (Raissi et al., 2023;
Ugurlar et al., 2018).

3.1.4.4 Placenta

In the treatment of plantar fasciitis, Sun XP et al. found that
human placenta membrane, cryopreserved and intact, could serve as
an adjunctive treatment and significantly relieve pain (Sun et al,
2018). Amnion is a component of the human placenta membrane.
Werber (2015) found that a single injection of human amniotic
tissue-amniotic fluid significantly alleviated pain caused by plantar
fasciitis. Zelen et al. (2013) observed that micro-powdered
dehydrated human amniotic membrane improved symptoms and
function in chronic plantar fasciitis after 8 weeks. Hanselman et al.
(2015) compared cryopreserved human amniotic membrane
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injections with corticosteroid treatment for plantar fasciitis. After
12 weeks of follow-up, both groups showed similar results on the
Foot Health Status Questionnaire and VAS scores. Nakagawa et al.
(2022) found that combining amniotic membrane allograft
injections with ultrasound-guided percutaneous plantar fascia
release resulted in better early pain relief.

The main information of Plantar Fasciitis included literature is
shown in Table 7.

3.1.5 Ligament injury
Acute injuries among the
musculoskeletal injuries and are often accompanied by intra-

ankle are most common
articular damage (Bsoul et al, 2024). Ankle sprains typically
cause pain, leading to missed work and/or restricted daily
activities, and may result in ankle instability and other functional
impairments (Kemler et al., 2011). The ankle complex consists of the
ankle joint (subtalar joint), the tibiofibular joint (talus), and the
transverse tarsal joint (ankle joint). The Achilles tendon attaches to
the calcaneus and provides stability to the tibiofibular joint through
the interosseous tibiofibular ligament, lateral collateral ligament,
anterior talofibular ligament, and the tibionavicular ligament of the
deltoid ligament (Lp et al., 2023). For ligament injuries, conservative
treatment can also be effective. Compared to conservative treatment,
surgical intervention has not shown clear advantages in the repair of

these ligaments, particularly in recovery time and complication
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rates, thus surgery is not recommended (Lim et al.,, 2019). PRP
treatment has proven effective in alleviating pain and promoting
functional recovery during the healing process of ankle injuries
(Zhang et al., 2022). For grade II lateral ankle sprain patients, PRP
treatment significantly reduced pain and promoted functional
recovery at 8 weeks (Blanco-Rivera et al.,, 2020). In athletes with
high-grade ankle sprains, PRP helps stabilize the syndesmosis joint
and reduce long-term residual pain (Laver et al., 2015). For chronic
ankle sprains, especially in chronic lateral ankle instability patients,
PRP also shows significant efficacy, effectively improving symptoms
and function (Medina-Porqueres et al., 2024), and two consecutive
PRP injections may yield better outcomes (Zhang et al., 2022).
However, the effectiveness of PRP for treating ankle injuries remains
debated. Rowden et al. (2015) noted that PRP did not show
significant efficacy in treating acute ankle sprains. Similarly,
Sabaghzadeh et al. (2023) found that PRP did not significantly
improve function when used post-MBG surgery.

3.2 Key technological platforms in
regenerative medicine

This the
underpinning regenerative medicine applications in the foot and

section outlines key technological platforms
ankle, ranging from established cell-based therapies to emerging

engineering and computational approaches.

3.2.1 Stem cell-based therapies

Stem cells form a cornerstone of regenerative medicine due to
their defining capacities for self-renewal and multi-lineage
differentiation. These cells are broadly categorized by their
developmental potential: pluripotent stem cells (including
embryonic and induced pluripotent stem cells), multipotent stem
cells, and unipotent stem cells (Kimbrel and Lanza, 2020). While
embryonic stem cells represent a source of natural pluripotency,
their clinical application is constrained by ethical considerations and
risks of immune rejection (Liu et al., 2020). Induced pluripotent
stem cells, generated by reprogramming somatic cells, offer a
patient-specific alternative but face challenges such as a bias
toward fetal-state differentiation and incompletely defined
molecular mechanisms.

In clinical practice for foot and ankle disorders, MSCs are the
most widely utilized adult stem cell type. MSCs demonstrate the
ability to differentiate into osteogenic, chondrogenic, and
adipogenic lineages (Qin et al,, 2023), and their therapeutic effect
is further enhanced through the secretion of paracrine factors that
modulate the local microenvironment (Pittenger et al, 1999).
Common clinical sources of MSCs include:Bone Marrow: BMAC
contains a heterogeneous mixture of cellular components, including
platelets, monocytes, and MSCs, providing a rich regenerative milieu
(Lan et al.,, 2021b). Adipose Tissue: Adipose-derived mesenchymal
stem cells (ADSCs) possess multi-lineage differentiation potential
and robust regenerative capabilities. Compared to bone marrow-
derived MSCs, ADSCs offer advantages of higher accessibility,
greater abundance, and lower donor site morbidity (Yuan et al,
2024). Placental and Amniotic Tissues: The human amniotic
membrane (hAM) is considered an important source of stem

cells (Igura et al, 2004; Hu et al,, 2023) and contains multiple
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bioactive factors that synergistically promote tissue repair and
regeneration (Parolini et al., 2009).

3.2.2 3D printing

3D printing technology constructs objects layer by layer based
on digital models and has been widely adopted in the biomedical
field, particularly in personalized medicine. In the treatment of ankle
disorders, its value is primarily demonstrated in: (1) fabricating
customized implants for bone repair, such as talar prostheses
(Giannotti et al., 2023; Gatz et al., 2020; Hannon et al., 2016); (2)
producing physical anatomical models for preoperative planning of
complex surgeries [72,147,148]; and (3) manufacturing patient-
matched surgical guides and orthotic devices (Gormeli et al,
2015; Sun et al,, 2018; Briggs et al., 2009) (e.g., AFOs). However,
it must be noted that most existing studies supporting these
applications are relatively small in scale, and many conclusions
regarding the functional advantages of “personalized implants” are
derived from case reports or small case series. Therefore, such claims
should be interpreted with caution, and their clinical benefits require
further validation. The general challenges facing the technology
mainly involve printing accuracy and biomimeticity, material
biocompatibility and regulatory compliance, as well as
performance limitations of bioinks (Li et al., 2022). Specifically,
in applications such as surgical guides, additional constraints
include limited material options, suboptimal cost and time
efficiency, insufficient long-term clinical evidence, and a lack of

industry standards and regulations (Meng et al., 2022).

3.2.3 Exosomes

Exosomes are nanoscale extracellular vesicles actively secreted
by cells, with a diameter of 30-150 nm, encased in a lipid bilayer
membrane, containing proteins, nucleic acids, and other active
molecules. The production process involves cell endocytosis,
forming early endosomes, which mature into multivesicular
bodies under the action of endosomal sorting complexes,
eventually being released extracellularly. Exosomes play a
critical role in intercellular communication, substance transport,
immune regulation, tumor development, and tissue repair and
regeneration (Doyle and Wang, 2019; Zhang et al, 2015).
Although exosomes theoretically offer numerous benefits,
research on exosomes remains confined to laboratory animal
models. Exosome-based therapies for ankle show
their

osteogenesis, angiogenesis, and chondrogenesis. For instance,

repair
immense promise, leveraging ability to promote
exosomes derived from mesenchymal stem cells (MSCs) and
other sources enhance tissue repair by delivering key regulatory
molecules (e.g., miR-126, miR-140-5p) (Yu et al., 2021; Jiang et al.,
2020; Behera et al., 2021). (Wu et al,, 2019; Liu et al., 2018; Zhang
et al., 2018). However, the transition from promising research to
clinical application faces significant hurdles. Key challenges
include the lack of standardized methods for exosome isolation,
quantification, and drug loading, which impacts batch-to-batch
consistency and therapeutic reproducibility (Rezaie et al., 2022;
Tian et al., 2023). Furthermore, critical translational barriers must
be addressed, such as establishing clear regulatory pathways (e.g.,
FDA/EMA classification as a biologic or drug product),
implementing Good Manufacturing Practice (GMP) compliance

for production, ensuring quality control, and navigating ethical
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requirements for informed consent and long-term patient follow-
up in clinical trials.

3.2.4 Artificial intelligence

AT has emerged as a pivotal enabler in the advancement of
Central to this
learning—which identifies patterns from datasets—and deep

regenerative medicine. role are machine
learning—which excels at processing complex, high-dimensional
data. Together, these methodologies constitute the analytical
Al

transforming the field across several critical fronts: it significantly

foundation of predictive regenerative medicine. is
enhances the discovery, development, and manufacturing of
biotherapeutics, including cell and gene therapies, while also
providing robust decision support in clinical trial design, patient
stratification, and dynamic treatment assessment. These advances
collectively contribute to improved diagnostic accuracy, research
and development (R&D) efficiency, and therapeutic outcomes.
However, the predictive performance and generalizability of Al
the

comprehensiveness of the training data. Consequently, the

models are heavily contingent upon quality and

successful implementation of such approaches necessitates

of
consistency in multi-source clinical data—encompassing genomic

unprecedented levels accuracy, standardization, and
profiles, medical histories, and imaging data—obtained from
collaborative research and clinical centers. Inadequate data
governance and quality control remain significant impediments
to the widespread adoption of this research paradigm (Garmany

and Terzic, 2024).

4 Discussion

This scoping review synthesizes regenerative medicine
advancements for five major foot/ankle pathologies: ligament
injuries, talar cartilage defects, ankle osteoarthritis, Achilles
tendinopathy, —and plantar fasciitis. ~ Although significant

methodological variations and ongoing debates regarding efficacy
exist, current evidence indicates a trend toward the clinical potential
of regenerative therapies in areas such as pain relief, functional recovery,
and tissue repair. Nonetheless, the observed heterogeneity among
studies highlights the need for further rigorously designed trials.

PRP is an autologous blood-derived product processed to
concentrate platelets and related growth factors (Carr, 2022). PRP
therapy is based on platelet-derived growth factors that support the
three stages of wound healing and repair: inflammation, proliferation,
and remodeling (Everts et al., 2020). PRP contains a large number of
growth factors and cytokines that promote tissue regeneration,
accelerate wound healing, and reduce inflammation. Due to its
theoretical potential to repair tissues with poor healing capabilities,
PRP is increasingly used in the treatment of various musculoskeletal
diseases (Martinez-Martinez et al., 2018). In addition to PRP, platelet
derivatives such as platelet-rich fibrin (PRF) and concentrated growth
factors (CGF) have different clinical effects (Giannotti et al.,, 2023).
However, the translation of this strong theoretical foundation into
consistent clinical evidence faces significant challenges. Current
evidence on PRP therapy in the foot and ankle field indicates that
the methodological quality of randomized controlled trials is generally
low to moderate (Bennell et al, 2017), with limitations such as
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inadequate blinding and small sample sizes. Therefore, conclusions
from any single study should be interpreted with caution. The core issue
has shifted from “whether PRP is effective” to “how to define and
standardize PRP to enable meaningful comparisons and optimization”
(Kieb et al., 2017). Considerable variations exist across studies regarding
the number and timing of injections. Some researchers adopt repeated
injection protocols based on the rationale of sustaining growth factor
release to enhance efficacy (Filardo et al, 2014). Such fundamental
discrepancies in treatment protocols lead to inconsistent conclusions
and pose challenges for evidence synthesis. Moreover, the efficacy of
PRP is influenced by multiple factors. First, platelet concentration has
an “optimal window”: insufficient concentration may fail to deliver
adequate growth factors (e.g, TGF-fl, PDGF), while excessive
concentration may trigger exaggerated inflammatory responses and
impair healing (Sanchez-Gonzélez et al,, 2012). Second, leukocytes
exhibit a complex dual role in PRP. On one hand, they help remove
necrotic tissue and secrete specific cytokines to initiate repair; on the
other hand, excessive activation may release pro-inflammatory
mediators, aggravating local inflammation and potentially leading to
adverse outcomes (Dohan FEhrenfest et al., 2012). Furthermore,
leukocyte content affects the release kinetics of growth factors: high-
leukocyte PRP tends to form more stable fibrin scaffolds enabling
sustained release, which may be more suitable for chronic injuries;
whereas low-leukocyte PRP is characterized by a rapid, burst-like
release of growth factors (Calciolari et al, 2025). Finally, the
preparation technique (e.g, centrifugation conditions) profoundly
influences the structure of the fibrin matrix and the release kinetics
of growth factors, thereby modulating the overall biological effects of
PRP (Giannotti et al., 2023). Even the use of activators (e.g., Ca®*) is not
merely for accelerating activation but also regulates the release pattern
of growth factors (Steller et al., 2019). Therefore, there is currently no
universally accepted standardized protocol for PRP. Its definition
remains ambiguous, encompassing a range of unresolved variables
such as platelet and leukocyte concentrations, activation methods and
agents, anticoagulant use, and final product form (Anitua et al,, 2022).
In the treatment of foot and ankle disorders (such as Achilles
tendinopathy, ligament injuries, and osteoarthritis),PRP represents
an emerging biological therapy. However, it must be clearly
recognized that PRP is not a single, standardized “drug.” Therefore,
in the absence of specific clinical practice guidelines for PRP,
management should adhere to existing general guidelines. We
anticipate that more standardized, high-quality studies will emerge
in the future to refine its treatment protocols and provide more
definitive and reliable conclusions for clinical practice.

HO is an aberrant regenerative process characterized by the
pathological deposition of bone tissue within soft tissues where it
does not normally occur, such as tendon regions following Achilles
tendon rupture (Lin et al., 2010; Lui et al., 2009). The precise
mechanisms underlying its formation remain incompletely
elucidated; it is generally regarded as a pathological wound
healing response subsequent to musculoskeletal trauma, involving
both local and systemic inflammatory processes (Kraft et al., 2016).
This process is potentially associated with the differentiation of stem
or tendon cells into chondrocytes, followed by chondral
hypertrophy and calcification, ultimately leading to osteogenesis
(Lui et al., 2009). Li and Tuan (2020) proposed that muscle injury-
induced upregulation of local BMP-7 levels, combined with a
systemic downregulation of TGF-B1 caused by glucocorticoid
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excess, may represent a critical pathogenic mechanism in traumatic
HO (tHO) formation. Current management of traumatic HO remains
predominantly prophylactic. Conventional strategies include
nonsteroidal anti-inflammatory drugs (NSAIDs, e.g., celecoxib,
which has been demonstrated to inhibit HO formation in rat
models (Zhang et al, 2013) and glucocorticoids. However,
celecoxib is ineffective against the progression of already initiated
HO (Li et al, 2019). Recent investigations have revealed that a
synergistic strategy combining engineered exosomes with 3D-
scaffolds approach
primarily entails (Xu et al,, 2025): (1) pre-treating the cell source
with a BMP signaling pathway inhibitor (e.g., LDN-193189) to endow

the secreted exosomes with intrinsic “anti-osteogenic” activity; (2)

printed shows significant promise. This

engineering the exosomal membrane (e.g., by incorporating RGD
peptides) to enhance its targeting capability and retention at the injury
site; and (3) loading the modified exosomes onto a biodegradable 3D-
printed sustained-release scaffold, which provides structural support
while enabling the long-term controlled release of bioactive molecules.
In rigorous animal models, this strategy not only significantly
promoted tendon-like tissue regeneration and the restoration of
biomechanical function but also, more importantly, effectively
inhibited heterotopic ossification formation as confirmed by
micro-CT and histological analyses.

The clinical translation of stem cells faces several challenges,
including the need to optimize cell sources, differentiation protocols,
and delivery methods to ensure treatment safety, efficacy, and
reproducibility. Furthermore, post-transplant immune rejection
responses and other potential adverse events require rigorous

evaluation and long-term monitoring (Rahimi Darehbagh
et al.,, 2024).
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