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Background: Denosumab is a widely used pharmacological treatment for
osteoporosis-related bone fragility; however, its discontinuation is followed by
a rapid drop in bone density.
Methods: We investigate proposed mechanistic hypotheses from literature for
this rapid bone loss using a computational micro-multiphysics agent-based
model validated against clinical data. Using a representative selection of iliac
crest patient biopsies scanned with micro-computed tomography, this model
generates digital twin simulations of denosumab discontinuation after various
treatment periods, with ceteris paribus implementations of each mechanistic
hypothesis.
Results:Our mixed effects linear regression analysis suggests that only the gate-
blocking effect (p=0.014) and osteomorphs recycling (p=0.007) explain the rapid
bone loss post denosumab discontinuation. In silico cell and cytokine dynamics
emphasize that fusion of osteomorphs is more rapid than osteoclast precursor
differentiation in the short-term.
Conclusion: These findings highlight potential targets for managing fracture risk
when discontinuing denosumab and emphasize the importance of personalized
treatment strategies based on high-resolution imaging in addition to bone
turnover marker measurements.
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Introduction

Global life expectancy increased from 64.9 years in 1995 to 73.3 years in 2024 (World
population prospects, 2024). This has led to a rise in the prevalence of age-related
osteoporosis, which is associated with an increased risk of bone fracture (Bouxsein
et al., 2010). As a direct result of such hip or spine fragility fractures, an estimated
250,000 deaths occurred in the European Union, Switzerland and the United Kingdom in
2019 (Kanis et al., 2018), and at least 400,000 deaths worldwide (Shen et al., 2022).

International clinical guidelines recommend regular evaluations of bone mineral
density (BMD) in women over the age of 65, men over the age of 70, individuals with
prior fragility fractures, individuals over the age of 50 with risk factors to assess fracture risk
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and prescribe treatments for individuals at high risk of fracture with
pharmacologic agents (Shoback et al., 2020; Lim et al., 2009; ACOG
Committee on Clinical Practice Guidelines–Gynecology, 2021, 2022;
Viswanathan et al., 2018). Such treatments include: anti-catabolic
treatments, namely bisphosphonates, denosumab, and selective
estrogen receptor modulators (SERMs); the dual-action drug
romosozumab; and anabolic PTH analogs (LeBoff et al., 2022).
The most widely used pharmacological treatment option remains
bisphosphonates but these have only been demonstrated to build
bone for up to 3 years of treatment (Sanderson et al., 2016). The
RANKL-antibody denosumab is the only pharmacological option
that has been shown to lead to a continuous increase in BMD for as
long as 10 years (Dempster et al., 2018); however, the longer patients
are treated with denosumab the higher the risk of atypical femoral
fractures or osteonecrosis of the jaw and the larger the drop in bone
density after discontinuation of denosumab.

A major concern with denosumab therapy is the rapid and large
drop in BMD upon discontinuation of treatment (Bone Bolognese
et al., 2011). The approved dosage for denosumab is a subcutaneous
injection of 60 mg every 6 months. Unless denosumab is followed by
another treatment option, a large increase in bone turnover markers
(BTMs) is observed approximately 6–8 months after the last dose of
denosumab. Specifically, bone resorption markers (e.g., CTX, NTX)
become significantly higher relative to baseline than bone formation
markers (P1NP) (Miller et al., 2008). This imbalance results in a
decrease in BMD to below baseline levels. This rapid drop in BMD is
associated with increased risk of fracture in an already at-risk
population (Cummings et al., 2018). Moreover, the elevated bone
turnover and steep rate of bone loss result in a return to pre-
treatment BMD levels approximately 18 months after the last
denosumab dose (Zanchetta et al., 2018; Venkataraman et al.,
2017; McClung et al., 2017).

To improve clinical outcomes for patients with osteoporosis,
more clinical trials in the past decade than ever before have focused
on drug sequencing (Miller et al., 2008; Guañabens et al., 2019;
Takeda et al., 2012; Bone et al., 2018), combining drugs (Leder,
2018; Schafer et al., 2012; Finkelstein et al., 2010; Hejdova et al.,
2005) and improving patient adherence (compliance) to a drug
regimen (Inderjeeth et al., 2014). However, phase 3 clinical trials
cost on average 30 million USD over the course of 1–4 years (May,
2019); this cost increases by an estimated 671,000 USD with each
additional month (Martin et al., 2017), meaning that trials on
osteoporosis medication lasting up to 10 years are particularly
expensive. Recently, in silico simulations have been developed that
can provide fast, inexpensive and ethical alternatives to years of
costly experimentation on animals and humans (Tourolle David
Dempster et al., 2021; Martínez-Reina and Pivonka, 2019;
Martínez-Reina et al., 2021a; Martínez-Reina et al., 2021b;
Martínez-Reina et al., 2009; Buenzli et al., 2012; Kendall et al.,
2023; Boaretti et al., 2023). These in silico models aim to become
tools to test hypotheses on bone remodeling, for informing bone
health clinical trial design, and for reflecting performance of
osteoporosis drugs when patients are not adherent to prescribed
doses. As of 2024, patient compliance with the approved treatment
options remains the biggest detriment to treatment outcomes
(McCloskey et al., 2021) and there are no new drugs for
osteoporosis on the horizon because treatment regimens have
failed to get past phase 2 clinical trials (Recker et al., 2020).

Existing in silico models have been developed to study bone
remodeling, its dysregulation during metabolic bone diseases and
the effect of therapeutic- and exercise-based interventions. Within
the varied spectrum of in silicomodelling techniques, only bone cell
population dynamics models and micro-multiphysics agent-based
(micro-MPA) models explicitly incorporate the complex cellular
and molecular mechanisms linked to metabolic bone diseases and
the pathways involved in their treatments. To date, only micro-MPA
models have the spatial resolution to predict the effect of the
complex cell-cytokine pathways on the bone microarchitecture
(Ledoux et al., 2022; Boaretti et al., 2022). Micro-MPA models
represent cells as independent agents that sense their local
environment and are able to modify it, leading to the emergence
of complex patterns at the local and global level as observed in
clinical patient data.

Given the complexities of cell-cytokine interactions during bone
remodeling and their response to treatment, probing the cellular
mechanistic hypotheses responsible for the rapid bone loss after
denosumab discontinuation utilizing a micro-MPA model may
provide valuable insight into future clinical trials targeting the
development of new treatments and drug sequencing strategies.
To date, four mechanistic hypotheses (see Figures 1A–D) have been
proposed to explain the rapid drop in BMD upon denosumab
discontinuation: accumulation of osteoclast precursors due to
blocked differentiation to osteoclasts (McClung et al., 2017),
osteoclast recycling via osteomorphs (McDonald et al., 2021), a
lowering of OPG levels during treatment with denosumab due to
clast-blast coupling (Lacey et al., 2012; Azizieh et al., 2019; LaCroix
et al., 2013; El-Masri et al., 2024) and finally conventional
mechanosensitive signaling by osteocytes whereby faster
evacuation of denosumab would be the only difference to
bisphosphonates (Mulvihill et al., 2008). Identifying the relative
contribution of each mechanism is key to creating a physiological
model of denosumab treatment and discontinuation. Such a
physiological model could then be used to identify therapeutic
targets to prevent or mitigate bone loss as well as predict the
optimal follow-up therapy for each patient (Zanchetta et al., 2018).

This study builds on a previously validated micro-MPA model
simulating osteoporosis and treatment in micro-computed
tomography (µCT) scans of iliac crest biopsies simulating
10 years of bone volume fraction data, as well as dynamic
morphometric parameters from the FREEDOM trial (Tourolle
David Dempster et al., 2021). In the current work we extend this
in silico model to simulate denosumab discontinuation and use a
mixed effects linear model analysis to investigate the relative
contributions of the four mechanistic hypotheses outlined above
to the bone mass accrual (treatment) and the subsequent rapid bone
loss (discontinuation). Furthermore, we investigate the role in silico
modeling and image-based sample-dependent biomarkers can have
on assessing individualized patient response to both denosumab
treatment and its discontinuation.

This study had two main goals: firstly, to update an existing
model of denosumab treatment to accurately reflect the trends in
denosumab discontinuation, and secondly, to investigate which of
several literature-proposed mechanistic hypotheses contribute to the
rapid bone loss after denosumab discontinuation. Micro-MPA
model refinement was performed utilizing data from a systematic
review of clinical trial literature (Ledoux et al., 2022) to ensure our
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FIGURE 1
Schematics of the major cell types and biochemical signaling pathways involved in four mechanistic hypotheses for rapid bone loss following
denosumab discontinuation, and a simulation workflow diagram of the micro-multiphysics agent-based model. (A) Gate-blocking effect: Denosumab
lowers RANKL levels, blocking the differentiation of osteoclast precursors and leading to their accumulation. Upon discontinuation, this reservoir
differentiates en masse into osteoclasts, triggering rapid bone loss. (B) Osteomorph recycling: During treatment, osteoclasts fission into
osteomorphs, allowing them to persist in the marrow under low RANKL conditions. After drug clearance, rising RANKL levels drive their re-fusion into
osteoclasts and reseeding onto the bone surface, leading to a spike in bone resorption. (C) Clast-blast coupling: Reduced osteoclast activity during
treatment impairs clast-blast coupling, decreasing osteoblast numbers and OPG production. The resulting imbalance in the RANKL/OPG pathway
enhances resorption after discontinuation. (D) Mechanostat effect: Osteocytes, sensitive to mechanical cues, increase sclerostin production after

(Continued )
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simulations emulate the physiological responses of post-menopausal
osteoporosis, denosumab treatment, and its discontinuation. The
model was deemed to be stable and effective based on the robustness
of the match in BMD trends between clinical trials and in silico
simulations with different input geometries, the ability of all cell
numbers and cytokine concentrations to stay within ranges reported
in literature for thousands of cell behaviour and reaction diffusion
iterations, and the dynamic morphometric parameters in silico
matching rates of bone formation and resorption that are well
documented for placebo and denosumab in the FREEDOM trial.
Cell-seeding, cytokine initial concentrations and cytokine dynamics
were individually verified using in vivo cell and cytokine dynamic
data pulled from clinical trial literature (Ledoux et al., 2022).
Subsequently, the verified model was used to generate digital
twin simulations across various denosumab treatment durations,
applying ceteris paribus conditions to four proposed mechanistic
hypotheses for the rapid bone loss. A mixed-effects linear regression
analysis of the simulated bone mineral content (BMC) over
treatment and discontinuation was conducted to quantify the
contribution of each mechanistic hypothesis to the rapid bone
loss following denosumab discontinuation. Lastly, with the
validated exploratory model, sequencing was performed to
further delineate contributions of each mechanism to treatment
sequences not available in the literature.

Results

Osteoclast precursor accumulation and
osteomorphs recycling are the most
significant contributors to the rapid bone
loss following denosumab discontinuation

The micro-MPA model, first described in (Tourolle, 2019), was
used to simulate trabecular bone remodeling during 2 years of
denosumab treatment with a two-year placebo follow-up. This
in-house model is based on iterative updates to three distinct
physical processes: 1) reaction-diffusion of signaling molecules
and binding sites, 2) cell behavior (including resorption and
formation, production of signaling molecules by cells, cell
apoptosis, proliferation and motion) and 3) calculation of strain
distribution based on the newly remodeled microstructure. The
initialization and iterative multiphysics simulation steps are
depicted in Figures 1E,F. The micro-MPA model was set up

using in vivo cell and cytokine data from the literature (Ledoux
et al., 2022).

A mixed effects linear model, the details of which can be found
in the methods section at the end of this manuscript, was used to
quantify the contribution of each of the four possible mechanistic
hypotheses for the rapid bone loss following denosumab
discontinuation. As input to the mixed effects linear model, the
configurations of the model α to π in Table 1 were run
corresponding to on-off activations of the four mechanistic
hypotheses leading to a total of 16 configurations of the model
run on seven input biopsies each for a total of 112 simulations. The
bone mineral content (BMC) output of each simulation was
compared with clinical data from literature (Bone Bolognese
et al., 2011) using the sum of squares of the difference between
average relative changes in simulation output (N = 7 (placebo) and
N = 7 (denosumab)) and average relative changes in clinical total hip
BMD measurements at the eight timepoints at which BMD was
measured in the clinical population [includes participants enrolled
in the off-treatment phase with observed values at month 0 and the
time point of interest, N = 110–128 (placebo) and N =
109–128 (denosumab)].

Coefficient of determination R2 is reported for each simulation
in Table 1, reflecting the degree to which the percent change in BMC
in the simulation predicts in vivo percent change in BMD from
baseline to the completion of the study (R2

all), during the treatment
phase (R2

dmab), immediately following discontinuation (R2
dis), and at

late stage discontinuation (R2
end). To evaluate model performance,

we computed not only the coefficient of determination (R2) but also
the Mean Arctangent Absolute Percentage Error in degrees
(MAAPE°) between simulated percentage change in BMC and
clinical percentage change in BMD. MAAPE° provides a robust
notion of relative error that remains bounded and stable when
percentage changes approach zero, complementing R2 in settings
with low variance or skewed trends (Kim and Kim, 2016). While
BMD showed consistently low MAAPE° (<30°) and high R2 (>0.8)
across most configurations, CTX and P1NP displayed higher relative
error and variability. Over all time periods, the coefficient of
determination is highest for model configurations with both the
gate-blocking effect and osteomorphs recycling activated. If these
are activated, the model performs well regardless of whether clast-
blast coupling and the mechanostat effect are activated. The
regression analysis over all configurations α to π of the model
over all time periods confirms that the gate-blocking effect (p =
0.014) and osteomorphs recycling (p = 0.007) are significant

FIGURE 1 (Continued)

denosumab withdrawal in an attempt to restore structural mechanics to pretreatment conditions, thereby accelerating bone turnover. (E,F)
Simulation workflow diagram: 3D visualizations of virtual biopsies at key steps of model initialization and simulation. These steps include: input micro-CT
scans of iliac crest biopsies; (E) initialization of cell populations and cytokine fields displaying on the left one of the iliac crest biopsy µCT scans that serves
as input to the model with a threshold applied to display the trabecular bone, in the middle the same scan with the initial distribution of osteoclasts,
osteoblasts and lining cells on the bone surface and MSCs and HSCs in the marrow, and on the right the same scan but displaying the initial RANKL
concentration at each voxel in pM alongwith the range of values for RANKL concentrationmeasured in postmenopausal women reported in the literature
with the associated reference for each value; and (F) iterative updates of the three multiphysics processes–cytokine reaction-diffusion-decay, cell
behavior (based on mechanistic hypotheses A–D), and tissue mechanics. Boundary conditions for the micro-FE simulation: A uniaxial compressive
displacement of 1% strain was applied to the top surface of the VOI, with the bottom surface fixed and lateral surfaces traction-free. This loading
approximates physiological compression in trabecular bone under body weight. Cell types: HSC–haematopoietic stem cell, pre-OCL–surface unfused
preosteoclast, osteoclasts, osteomorphs, MSC–mesenchymal stem cell, OBL–osteoblast, LC–lining cell, osteocytes. Signaling molecules:
Dmab–Denosumab, OPG–osteoprotegerin, RANKL–receptor activator of nuclear factor κB ligand, TGF-β–Transforming Growth Factor β, sclerostin.
Red T-bars represent inhibition, green arrows indicate activation, and black arrows display cell behaviour steps. Figures (A–D) created with BioRender.
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contributors to the clinically observed changes in bone mineral
during treatment and discontinuation.

All four mechanistic hypotheses in isolation
qualitatively follow clinical changes in bone
density, formation and resorption during
treatment and discontinuation

Relative changes in bone mineral content (BMC) from
simulation runs β to ε qualitatively matched clinical trends in
bone mineral density (BMD), as shown in Figure 2A. These runs
represent isolated implementations of the gate-blocking effect,
osteomorph recycling, clast-blast coupling, and mechanostat
regulation with each being selected as the best-fitting version of
their respective mechanistic hypothesis. In all four cases, BMC
increases during the denosumab treatment period and then
declines rapidly, with onset between 6 and 9 months after the
final injection. While average BMC falls below baseline in all
cases, only in the osteomorph recycling scenario does it decline

below the placebo curve. Among the four, the mechanostat model
displays the most divergent behavior from the clinical data, with a
too rapid initial rise in BMD and a relative plateau between 6 and
18 months during treatment. This is because achieving rapid post-
treatment bone loss in this scenario (so high BRR from months
24–36) is very difficult and requires a prolonged period during
which osteocytes are stimulated to produce sclerostin. This leads to
bone resorption returning to baseline levels after denosumab
discontinuation, while bone formation remains suppressed.

Relative changes in bone resorption rate (BRR) and bone formation
rate (BFR) for simulation runs β to ε are shown in Figures 2B,C,
respectively, alongside corresponding clinical data derived from BTMs,
specifically serum C-terminal telopeptide of type I collagen (CTX) for
resorption and procollagen type I N-terminal propeptide (P1NP) for
formation. Each simulation represented an isolated mechanistic
hypothesis, including the gate-blocking effect, osteomorph recycling,
clast-blast coupling, andmechanostat regulation. Temporal remodeling
dynamics demonstrated a qualitatively close alignment with clinical
BTM trends. In both the clinical trial data and the iliac crestmicro-MPA
simulations, BRR increases sharply around 6 months after the final

TABLE 1 Mixed linear effects model runs and correlations to clinical BMD tends. Overview of simulations for the mixed effects linear model study over 2
years of treatment followed by 2 years of discontinuation. For each simulation, theme an arctangent absolute percentage error in degrees (MAAPE°) and the
coefficient of determination R2 are reported for the percent change in bonemineral content (BMC) compared to the percent change in clinical bonemineral
density (BMD).

Model Gate-
blocking
effect

Osteomorph
recycling

Clast-blast
coupling

Mechanostat
effect

MAAPE° R2
all R2

dmab R2
dis R2

end

Run α 0 0 0 0 42.8

Run β 1 0 0 0 33.3

Run γ 0 1 0 0 31.7

Run δ 0 0 1 0 30.4

Run ε 0 0 0 1 30.1

Run ζ 1 1 0 0 18.7

Run η 1 0 1 0 28.0

Run θ 1 0 0 1 33.4

Run ι 0 1 1 0 15.7

Run κ 0 1 0 1 27.0

Run λ 0 0 1 1 35.1

Run μ 1 1 1 0 15.6

Run ν 1 1 0 1 17.9

Run ξ 1 0 1 1 38.5

Run o 0 1 1 1 37.7

Run π 1 1 1 1 11.2

p-value mixed
effects model

0.014 0.007 0.159 0.090

R2
all: entire timeline from baseline to month 48. R2

dmab: treatment phase from baseline to month 24. R2
dis: phase immediately following discontinuation from month 24 to month 36. R2

post:

progressive stabilization in the post-discontinuation phase from month 36 to month 48. Bold values indicates statistical significance (p<0.05).
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denosumab injection, marking the onset of rebound bone loss. This
resorptive peak is followed by a gradual stabilization of both BRR and
BFR to levels below baseline, though still elevated relative to the placebo
group by month 48. These findings suggest that the mechanisms
modeled in simulation runs β to ε successfully reproduce not only
the short-term rebound phase but also the longer-term remodeling
behavior observed clinically after denosumab discontinuation.

The micro-MPA model facilitates a visual
and quantitative analysis of the cells and
signaling molecules involved in
each mechanism

The simulated outcomes of the four mechanistic hypotheses
proposed to explain rapid bone loss following denosumab
discontinuation are illustrated through 3D visualizations (Figure 3A)
and quantitative trends in cell numbers and signaling molecule
concentrations (Figures 3B–F). Each simulation outcome shown in
Figures 3, 4 reflects the mean behavior across seven patient-specific
virtual biopsies, and the surrounding grey shaded areas represent the
standard error, capturing inter-patient variability in bone remodeling
and treatment response. Each hypothesis is characterized by a distinct
mechanistic driver: the gate-blocking effect shows accumulation of
haematopoietic stem cells (HSCs) during treatment due to blocked

differentiation; osteomorph recycling involves an alternative fate for
osteoclasts via recycling into osteomorphs instead of apoptosis; clast-
blast coupling is driven by dynamic changes in transforming growth
factor β (TGF-β); and the mechanostat effect involves regulation by
sclerostin levels linked to strain-sensing osteocytes. Simulated osteoclast
numbers display rapid drug-induced apoptosis followed by gradual
repopulation across all hypotheses. HSCs accumulate only under the
gate-blocking mechanism, while elevated osteomorph levels are
uniquely observed in the recycling scenario. TGF-β concentrations
show a distinct decline and rebound pattern specific to clast-blast
coupling. In contrast, sclerostin levels rise sharply then decline in
the mechanostat effect, reflecting the strain sensitivity of
osteocyte signaling.

Notably, the 3D spatial visualizations of TGF-β and sclerostin in
Figure 3A emphasize key differences in spatial signaling behavior.
The TGF-β distribution closely follows zones of active resorption,
yielding a broad and diffuse elevation wherever osteoclast activity is
high. In contrast, sclerostin distribution exhibits sharper peaks and
troughs due to the non-linear strain response of osteocytes. Since
most osteocytes lie near the inflection point of the Hill curve
governing sclerostin expression, only those at the extreme low or
high ends of the strain spectrum contribute disproportionately to the
resulting spatio-temporal distribution of sclerostin as seen in the
mechanostat effect column of Figure 3A. This leads to exaggerated
spatial contrasts in sclerostin levels and highlights a mechanistic

FIGURE 2
Comparison between clinical data and virtual biopsy outcomes for four mechanistic hypotheses for the rapid bone loss following denosumab
discontinuation. (A) Percent change in clinical bone mineral density (BMD) (left) and in the bone mineral content (BMC) of virtual biopsies (right) (B)
Percent change in the bone resorption blood biomarker carboxy-terminal collagen crosslinks (CTX) (left) and in the in silico bone resorption rate (BRR)
(right) (C) Percent change in the bone formation blood biomarker procollagen type 1 propeptide (P1NP) (left) and in the in silico bone formation rate
(BFR) (right). Error bars represent standard errors. Syringes indicate the timing of subcutaneous denosumab injections. For each simulation configuration,
the clinical data are provided in the background in grey.
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FIGURE 3
3D visualizations and quantitative analysis based on cell number and signaling molecule concentration dynamics across the four mechanistic
hypotheses for the rapid bone loss following denosumab discontinuation. (A) Gate-blocking effect: accumulation of haematopoietic stem cells (HSCs,
pink) during treatment; Osteomorph recycling: osteomorphs (purple) serving as a recycling pathway for osteoclasts as an alternative to apoptosis; Clast-
blast coupling: drop and rise in the coupling signaling molecule transforming growth factor β (TGF-β); Mechanostat effect: rise and drop in the
mechanostat signaling molecule sclerostin. (B)Osteoclast numbers, showing rapid post-injection cell death and progressive recovery in the simulations.

(Continued )

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Ledoux et al. 10.3389/fbioe.2025.1652201

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1652201


distinction: TGF-β serves as a relatively uniform mediator of
coupling during resorption, whereas sclerostin acts as a more
localized and strain-sensitive modulator of bone formation.

The optimized model of denosumab
treatment and discontinuation that most
closely matches clinical trends in bone
density relies on the gate-blocking effect
and osteomorphs recycling to provide the
rapid bone drop after denosumab
discontinuation and on clast-blast coupling
to achieve a stable final phase

The optimized model of denosumab treatment and
discontinuation that most closely reproduces clinical trends in

bone density relies on a combination of three key mechanisms:
gate-blocking and osteomorph recycling to drive the rapid bone loss
after drug discontinuation, and clast-blast coupling to stabilize the
system in the post-discontinuation phase beyond month 36.
Simulated outputs show how bone cell populations and signaling
molecules evolve over time to collectively capture the observed
biphasic response to discontinuation leading to rapid bone loss
between 24 and 36 months followed by a progressive return to
baseline pre-treatment conditions over the period from month
36–48 (Figure 4).

HSCs (Figure 4E) accumulate progressively during treatment,
consistent with the gate-blocking effect, in which denosumab
suppresses osteoclast differentiation and leads to a buildup of
undifferentiated progenitors. Following treatment cessation, a
sharp decrease in osteomorph numbers (Figure 4H) corresponds
to their rapid differentiation into mature osteoclasts (Figure 4F).

FIGURE 3 (Continued)

(C) HSC numbers, highlighting the distinct accumulation seen in the gate-blocking effect. (D) Osteomorph numbers, illustrating the specific
elevation in osteomorph recycling. (E) TGF-β concentration (nM), showing a more pronounced drop and subsequent rise in clast-blast coupling. (F)
Sclerostin concentration (nM), showing a steeper initial rise in themechanostat effect scenario. Solid lines represent themean simulation results across all
digital twins (N = 7); grey shaded areas denote the standard error across patients.

FIGURE 4
Simulated responses to denosumab discontinuation showing the combined effect of bone cell populations and signaling pathways in the optimal
model. Osteoblast lineage cells: (A) Mesenchymal stem cell (MSC) number, (B) Osteoblast number, (C) Osteocyte number, (D) Lining cell number;
Osteoclast lineage cells: (E) Hematopoietic stem cell (HSC) number (F). Osteoclast number (G). Preosteoclast number (H). Osteomorph number;
Signaling molecule concentrations: (I) Estrogen concentration (J). RANKL concentration (K). OPG concentration (L) RANKL/OPG ratio (M)
Denosumab concentration (N) RANKL-denosumab complex concentration (O) RANKL-OPG complex concentration (P) Sclerostin concentration. Solid
lines represent the mean simulation results across all digital twins (N = 7); grey shaded areas denote the standard error across patients.
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This combination of a latent reservoir of HSCs and a surge of
differentiating osteomorphs generates a rapid and substantial
increase in osteoclast numbers. Osteoclasts appear first at the
locations with the highest production of RANKL by osteocytes,
which are also the locations with the lowest local effective strain.
The higher the osteoclast recovery the larger the bone resorption
rate and the drop in BMD following discontinuation. Osteoblast
numbers (Figure 4B) rise gradually in response to the increased

resorptive activity, a hallmark of clast-blast coupling. The
eventual stabilization of osteoclast populations (Figure 4F) in
the post-discontinuation phase reflects the return to a dynamic
balance in bone remodeling.

In terms of signaling pathways, the RANKL/OPG axis shows
reactivation after denosumab discontinuation, with increasing
RANKL levels and a rising RANKL/OPG ratio (Figures 4J–L),
promoting osteoclastogenesis. Denosumab and its bound

FIGURE 5
Individualized simulated responses to denosumab discontinuation showing the combined effect of changes in bone mineral content (BMC), bone
formation and bone resorption, and their patient-specific relations to baseline morphometric parameters in the optimal model. (A) Simulated percent
change in bone mineral content (BMC) across all patients (average and standard error). (B) Simulated patient-specific percent change in BMC. (C) 3D
visualisations of bone formation and bone resorption for each individual iliac crest biopsy simulation. Correlation between static morphometric
parameters at baseline (bone volume fraction (BV/TV), specific bone surface (BS/BV) and structural model index (SMI)) and simulated clinically relevant
outcomes including: (D) maximum relative change in BMC; (E) final relative change in BMC; (F) minimum bone resorption rate (BRR) as a percent of
baseline BRR prior to the first injection; (G)maximum BRR relative to baseline as a result of treatment discontinuation; (H)minimum bone formation rate
(BFR) as a percent of baseline BFR prior to the first injection; and (I)maximum BFR relative to baseline as a result of treatment discontinuation. Significant
correlations are displayed with black trendlines with their equations and coefficient of determination.
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complexes (Figures 4M,N) decline as expected following
treatment cessation, releasing RANKL to act on available
precursors. The RANKL–OPG complex (Figure 4O) serves as
a reversible binding sink, sequestering free RANKL and thereby
modulating its availability to promote osteoclast formation.
This complex is not assigned any additional biological
activity beyond its role in buffering RANKL levels.
Meanwhile, sclerostin levels (Figure 4P) confirm that the
mechanostat remains responsive to strain, but its
comparatively modest variation suggests a limited role in
driving the discontinuation dynamics in this scenario.

Overall, the model demonstrates that the best fit to clinical data
involves a synergistic mechanism: gate-blocking primes the system
by storing resorptive potential during treatment (Figure 4E),
osteomorph recycling provides a rapid trigger for osteoclast
resurgence after drug withdrawal (Figure 4H), and clast-blast
coupling ensures long-term stabilization of bone remodeling
(Figures 4B,F).

The best predictor of individual iliac crest
biopsies’ response to treatment with and
discontinuation of denosumab is the
structural model index

Figure 5 presents the outcomes of the optimized model which
most closely replicates clinical bone density trends following
denosumab treatment and discontinuation. Virtual patients were
simulated under a two-year denosumab treatment followed by a
two-year placebo phase, and the results show how changes in bone
mineral content (BMC), remodeling dynamics, and baseline
trabecular structure interact in this context.

The average percent change in BMC over time across all virtual
biopsies is shown in Figure 5A, with standard error shading to reflect
inter-individual variability. The corresponding individual BMC
responses for each of the seven biopsies are shown in Figure 5B,
alongside their baseline bone volume fractions (BV/TV). These
results highlight the range of responses captured by the model
when run on structurally diverse bone volumes.

To visualize this structural variability, Figure 5C provides 3D
renderings of each biopsy’s trabecular architecture, annotated with
baseline BV/TV and structural model index (SMI). When
correlating baseline morphometric parameters with treatment
outcomes, Figures 5D,E show that SMI is the strongest predictor
of both the maximum and final relative changes in BMC. Biopsies
with higher SMI, i.e. more rod-like structures, experience greater
bone gain during treatment and their bone density remains higher
after treatment cessation despite the resulting bone loss. This
underscores the importance of trabecular geometry in
determining skeletal vulnerability to bone loss after denosumab
discontinuation.

In contrast, Figures 5F–I examine whether baseline structural
parameters also predict the minimum and maximum bone
resorption rate (BRR) and bone formation rate (BFR) relative to
pretreatment levels. No significant correlations are found,
suggesting that while structure determines long-term BMC
outcomes, it does not directly predict short-term remodeling
activity after treatment ends.

Gate-blocking effect governs total bone loss
while osteomorphs recycling explains rate of
bone loss

The accumulation of HSCs in the marrow matched in vivo
measurements more closely when osteomorphs were explicitly
included as an additional cell type in the model. Specifically, the
model predicted increases in osteoclast precursor numbers over the
course of treatment with denosumab, in accordance with clinical
data demonstrating significantly higher (p = 0.011) numbers of cells
expressing CD14+/CD11b+ in a group of 15 denosumab-treated
women (average age 81, median duration of treatment 4 years)
compared with a group of 15 age-matched controls (Schini et al.,
2024). A quantitative comparative analysis of HSC and osteomorphs
cell number trends as shown in Figures 4E,H reveals that the
accumulation of HSCs in the marrow over the entire 6 months
interval between two injections contributes approximately twice as
many resurgent osteoclasts as osteomorphs though the
differentiation of osteomorphs into osteoclasts occurs faster than
that of osteoclast precursors in the marrow to differentiated
osteoclasts on the bone surface.

Discussion

We have built on an existing in silico experimental platform
(micro-MPA) for spatiotemporal observation and prediction of
bone physiological and pathological conditions resulting from
complex intercellular signaling. In conjunction with in vivo and
in vitro experiments, in silico experiments provide a third avenue to
explore bone metabolism and may thus accelerate research.
Furthermore, we anticipate that our verified and validated micro-
MPA model will prove valuable in clinical practice, such as in
comprehensive drug assessment and formulation of effective
treatment regimens.

We applied the micro-MPA model to predict the effects of
osteoporosis, denosumab treatment and discontinuation in a cohort
of postmenopausal women and demonstrated that in silico
medication experiments provide a powerful way to assess the
effects of drugs on bone cells and morphology in clinically
relevant scenarios. Our in silico model reproduced trends in
BMD observed experimentally after discontinuation of denosumab.

We have investigated in silico four possible mechanisms for the
rapid bone loss after discontinuation of treatment with denosumab:
accumulation of osteoclast precursors or osteoclast recycling via
osteomorphs during treatment, imbalance in the RANKL/OPG ratio
due to decreased osteoblast numbers, and increased production of
sclerostin by osteocytes to reset the mechanics of the structure to
pretreatment conditions (Laroche et al., 2023).

Limitations of this study include that the performance of the
model with each mechanism implemented was evaluated based on a
direct comparison between percentage changes in clinical BMD and
percentage changes in in silico BMC, without applying a conversion
between these quantities. As this approach is novel, it remains
unclear whether a standardized conversion is needed. This
challenge stems from the broader difficulty in validating
mechanistic in silico models with human clinical data,
particularly when longitudinal HR-pQCT scans of the same
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patients are unavailable. While BMC and BMD are strongly
correlated, further work is required to determine whether direct
comparison is appropriate across modalities or whether a
regression-derived mapping function or simulation-specific
calibration is necessary. Establishing such a framework would
improve the reliability of model evaluation and facilitate its
future use in clinical contexts.

Despite strong agreement for BMD trajectories, model
predictions of BTMs (CTX, P1NP) deviated from clinical
observations, especially during the rebound phase post-
denosumab. This discrepancy may result from oversimplified
assumptions regarding cytokine clearance and production, or the
use of population-averaged initial conditions that may not capture
transient peaks and dips in BTMs. Furthermore, while BMD
integrates long-term structural adaptation, BTMs fluctuate
rapidly with cell activity and systemic influences, making them
inherently more variable and harder to fit. It is important to note
that the 7 samples used to initialize the in silico study are from a
different patient population than the population used for the clinical
comparison, hence the aim to approximately predict trends rather
than match results exactly.

Another important limitation of this study is the comparison
between site-specific in silico remodeling (based on iliac crest
biopsies) and systemic BTMs such as CTX and P1NP. This
assumes that the iliac crest reflects average systemic trabecular
remodeling activity - a common assumption in clinical research
due to its accessibility and trabecular-rich nature. However, skeletal
site heterogeneity is well-documented, and treatment effects may
vary across sites such as the spine, femur, and tibia. Consequently,
while general trends may be comparable, direct quantitative
matching of iliac-based remodeling with systemic BTMs must be
interpreted cautiously. Future model extensions could simulate
multiple skeletal sites or use scaling models to bridge local
remodeling and systemic outputs.

While the linear combination model helps to assess which
mechanistic features are necessary to recapitulate clinical BMC
trends, it does not fully resolve the relative strength or
dominance of each mechanism. The use of binary activation
variables assumes the presence or absence of a pathway, but not
its graded or quantitative impact. Moreover, the interplay between
mechanisms may be synergistic or antagonistic in ways that are not
fully captured by the regression model, especially under conditions
where certain pathways overpower others in their influence on
remodeling dynamics. Further validation of the magnitude of
effect associated with each pathway will require experimental
perturbation data or parameter-specific sensitivity analyses
targeting individual mechanistic axes.

In the current micro-MPA model, we focus on simulating the
behavior and interactions of bone-resorbing and bone-forming
cells in a spatially explicit environment, including
mechanotransduction and cytokine signaling. While this
framework captures key dynamics of bone remodeling under
denosumab and placebo conditions, it does not explicitly
simulate all contributors to bone mineral density (BMD)
changes. In the micro-MPA model the mineralization kinetics
were simplified such that at any timestep the new mineral
formation in a given voxel was proportional to the difference
between the osteoid and the mineral in that voxel. The duration

of the primary mineralization phase was set to 1 week so that a
voxel saturated with osteoid and empty of mineral would reach
70% mineralization within a week. This 1 week duration of the
primary mineralization phase is at the lower end of the durations
measured in vivo (Lukas et al., 2013; Bala et al., 2010; Ruffoni
et al., 2007; Roschger et al., 2008). In addition, the simplified
mineralization kinetics implemented in the micro-MPA model
are missing elements such as the mineralization lag time
implemented in other in silico studies exploring bone
mineralization kinetics in more detail (Castoldi et al., 2024).

The micro-MPA assumes a constant loading regime and does
not account for inter-individual or activity-induced variation in
mechanical stimuli. Future work incorporating subject-specific
loading profiles or time-varying loading conditions would
enhance the physiological fidelity of the model. Such studies
could then test whether the current uniaxial loading regime
scaled to achieve trabecular bone strains consistent with literature
gives results consistent with previous more complex and
computationally intensive loading approaches consisting of load
estimation of compression and shear along all principal axes,
followed by a phase of model relaxation to the loading (Tourolle
David Dempster et al., 2021).

The parallelized high-performance computing implementation
enabled us to model the entire input scan region with side length
282 × 282 × 264 voxels (voxel size 14 µm) in 8 h for 3 years of
denosumab treatment simulation. Thus the limiting factor for these
micro-MPA simulations has become the size of the biopsy rather
than the computational power requirement. Additional model
validation with longitudinal HR-pQCT scans will be key to
determining the relevance of trabecular biopsy-based simulations
to organ-level results. As the ability of SMI to quantify the rod-vs
plate-like characteristics of trabecular bone has been challenged
future work could also include investigating a variety of other
baseline morphometric parameters that could act as predictors of
response to treatment including the ellipsoid factor which better
captures the large proportions of concave and saddle curvatures
within trabecular bone (Salmon et al., 2015).

The simulations presented in this work suggest that both
accumulation of preosteoclasts and osteomorphs play a key role
in causing the rapid bone loss following denosumab discontinuation
whereas the role of clast-blast coupling and the mechanostat effect is
less critical. In all model configurations osteoblast numbers decrease
during denosumab treatment by clast-blast coupling and the mean
effective strain in the bone decreases due to bone formation at high
strain locations. In all configurations of the model, these two latter
mechanisms led to a higher RANKL/OPG ratio upon
discontinuation and higher sclerostin production by osteocytes,
respectively, but those did not match the shape of the clinical
denosumab discontinuation bone density curves. Even with
RANKL and sclerostin levels not exceeding baseline, the
osteoclast precursor accumulation and osteomorphs recycling
mechanisms were sufficient to simulate all available clinical data
on denosumab discontinuation BMD and serum marker trends.
Overall, the micro-MPA model provides a scalable, fast and
inexpensive tool to test hypotheses relating to bone
mechanobiology and osteoporosis treatment sequences and assist
in formulating in silico trials to help reduce and refine human
clinical trials.
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Materials and methods

In silico simulations of trabecular bone
remodeling using a micro-MPA model

A representative selection of 7 micro-computed tomography
(micro-CT) scans of iliac crest biopsies from postmenopausal
women matching the demographics (age: 72 ± 5 years) and BV/
TV distribution (13.1% ± 4.1%) in the FREEDOM trial for 10 years
of denosumab treatment (Dempster et al., 2018) served as input for
the baseline model structure. The criteria used to select these
biopsies have been thoroughly detailed in previous work
(Tourolle David Dempster et al., 2021).

In the micro-MPA model osteoblasts, osteoclasts, osteocytes,
MSCs, HSCs, pre-osteoclasts, pre-osteocytes, and lining cells are
represented as agents on a voxel-based lattice and are motile and
capable of producing or resorbing tissue and signaling molecules.
We refer to the model as multiphysics because it couples 1) solid
mechanics, 2) diffusion-reaction transport and 3) cell behaviour
within the same spatial lattice. Specifically, strain fields are
computed via micro-finite element (micro-FE) analysis in
ParOSol, a parallel octree solver designed for micro-FE analysis
based on micro-CT images (Flaig and Arbenz, 2011) and serve as
inputs to cell behavior rules and mechanotransduction signaling,
while the signaling molecules RANKL, RANKL-OPG, OPG,
sclerostin, TGF-β, and estrogen simultaneously undergo spatial
diffusion and biochemical reactions. The pathways linking these
cells and cytokines are depicted in Figures 1A–D. Assuming a linear
correlation between bone density and local Young’s modulus,
ParOSol determines the internal strains which serve as stimulus
for the osteocytes and osteoblasts. The micro-MPA model relies on
two sets of C++ classes, one set representing the finite element lattice
with the concentrations of mineral, osteoid and various cytokines
and another C++ superclass and classes defining the behavior and
characteristics of the cells/agents. These C++ classes are wrapped in
Python and they are called in a Python script where each simulation
is initialized and the multiphysics schedule is defined as shown in
Figures 1E,F.

Model sensitivity and parameter selection: the current model
includes a large number of biological and physical parameters,
including cytokine production and decay rates, diffusion
coefficients, activation thresholds, and cell-cell interaction rules.
Cell numbers and cytokine concentrations in the clinical
literature used to initialize the simulations are listed in Table 2
and the full list of model parameters is included in the
Supplementary Material in Supplementary Tables S1–S51. To
complement this, the initialization procedure is illustrated in
Figure 1E. To reduce overfitting, we avoided formal parameter
optimization and instead constrained parameters based on
literature where available. Where values were not available,
parameters were tuned manually within biologically plausible
ranges to ensure stable simulations and agreement with trends
observed in clinical data. We performed local sensitivity checks
by varying individual parameters (e.g., RANKL half-life, osteoblast
seeding thresholds) and observing the resulting changes in bone
mineral content (BMC) and turnover markers. These checks
revealed the model to be particularly sensitive to the dynamics of
RANKL and OPG, consistent with the known centrality of the
RANK-RANKL-OPG axis in bone remodeling.

Mechanical loading conditions: to simulate mechanical stimuli,
micro-finite element (micro-FE) analysis was performed using
ParOSol on each baseline micro-CT scan. All model parameters
related to the mechanics are listed in supplementary content
Supplementary Table S5. The loading conditions in previous
simulations of 10 years of denosumab (Tourolle David Dempster
et al., 2021) were simplified. An axial compressive force was applied
to the superior surface, while the inferior surface was fixed. This
compressive force was scaled to achieve physiologic strain levels
with an effective strain distribution that peaks at 2.5k microstrain in
trabecular regions as reported in literature (Al Nazer et al., 2012).
The internal strains are computed using a hexahedral FE mesh and
assuming a linear correlation between bone density and local
Young’s modulus (see Supplementary Table S5). The local
internal stresses in the trabecular bone in our simulations were
consistent with stresses measured within the cancellous bone in the
pelvis (Dalstra and Huiskes, 1995). The local strain fields were used

TABLE 2 Clinical data on cytokine concentrations and cell numbers used to initialize micro-MPA simulations [from (Ledoux et al., 2022)].

Cytokine/cell type Value Source, from Ledoux et al. (2022)

RANKL 0.6 pM Blood serum value

OPG 12.3 pM Blood serum value

RANKL-OPG 400 pM Blood serum value

Sclerostin 50 pM Blood serum value

TGF-β 200 pM Blood serum value

Estrogen 27.5 pM Blood serum value for 72 years-old women

Osteoblasts 6.6/mm2 Stained 5 µm histology slice

Osteoclasts 0.65/mm2 with on average 5 nuclei per osteoclast TRAP stained 5 µm histology slice

Osteocytes 18,500/mm3 BV Synchrotron analysis of iliac crest biopsy

MSCs 8,000/mm3 marrow Bone marrow supernatant fluid single cell sorting

HSCs 6,000/mm3 marrow Bone marrow supernatant fluid single cell sorting
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to initialize cell seeding and determine strain-driven signaling (e.g.,
sclerostin, RANKL/OPG) throughout the simulation.

The center panel in Figure 1E illustrates the initial cell distribution
on the trabecular bone surface. To obtain remodelling behavior, the
entirety of the 282 × 282 × 264 voxel biopsy scans of isotropic 14 µm
voxel resolution were divided into 1000 subregions. Within each of
these subregions, if surface voxels were present, the average effective
strain on the surface was determined and osteoclasts were seeded at
locations on the surface with more than the average effective strain and
osteoclasts at locations on the surface with less than the average effective
strain if and only if this process resulted in seeding between 6 and
40 osteoblasts and between 4 and 40 osteoclasts within a given
subregion. To obtain modelling behavior, osteoblasts and osteoclasts
were seeded based on absolute thresholds of effective strain. Osteoblasts
were seeded at surface locations where the effective strain was higher
than 4000 microstrain and osteoclasts were seeded at surface locations
where the effective strain was lower than 200 microstrain. These
thresholds were set based on literature reporting physiological loads
as 2-3k microstrain, pathological overload above 4k microstrain and
rapid bone removal below 200microstrain (Al Nazer et al., 2012). These
thresholds were also used for the strain-dependent production by
osteocytes of the signaling molecules sclerostin, RANKL and OPG
governing the activation-resorption-formation-quiescence cycle
in silico.

The final panel in Figure 1E shows the voxel-wise initialization
of RANKL concentrations in the example virtual biopsy along with
in black the full range of RANKL concentration values reported in
literature annotated with their respective references and in the
colored bar the range of concentrations of RANKL
concentrations over the full course of the simulation.

In the current micro-MPA model, we focus on simulating the
behavior and interactions of bone-resorbing and bone-forming cells
in a spatially explicit environment, including mechanotransduction
and cytokine signaling. While this framework captures key
dynamics of bone remodeling under denosumab and placebo
conditions, it does not explicitly simulate all contributors to bone
mineral density (BMD) changes. For instance, mineralization
kinetics are simplified, the amount of new mineral formed added
within a voxel over a given timestep is proportional to the difference
between the osteoid and the mineral level in that voxel at the start of
the timestep and the proportionality factor is such that a voxel
saturated with osteoid and containing no mineral will reach 70%
mineralization over 1 week. This setup aims to mimic the primary
and secondary mineralization patters seen in vivo (Lukas et al., 2013;
Bala et al., 2010; Ruffoni et al., 2007; Roschger et al., 2008).

Modifications to micro-MPA model for the
physiologic simulation of the biology of both
treatment and treatment discontinuation

Osteomorphs were implemented as an additional cell type with a
half-life of 6 months, residing in the marrow and moving towards
higher RANKL concentrations at an average speed of 14.4 μm/d
(McDonald et al., 2021). This cell type provides increased motility
and survival of osteoclasts and more rapid differentiation to
osteoclasts as RANKL rises. The probability of an osteoclast
fissioning to osteomorphs is inversely proportional to its RANK

binding site occupancy and the probability of osteomorphs fusing to
osteoclasts on the surface is proportional to their RANK binding site
occupancy (McDonald et al., 2021). The rate constants for the
forward and backward binding reactions of RANKL to
osteomorphs and osteoclasts were identical (McDonald et al.,
2021). The rate of fission of osteoclasts to osteomorphs when the
RANKL level was at 100 ng/mL was 0.6 osteoclasts/hour/
(100 × 100 μm2).

Upon reassessment of simulation output post inclusion of
osteomorphs, updates to the model were made to ensure that the
behavior of the system remained biofidelic. Changes were structured
around three axes: osteoclast and osteoblast seeding at simulation
baseline, the RANK/RANKL/OPG signaling pathway and the TGF-
β signaling pathway. These updates also addressed several of the
limitations of the 10-year denosumab simulations as outlined in
Tourolle David Dempster et al. (2021).

The seeding method for osteoclasts and osteoblasts was adjusted
to achieve a closer fit to the distributions of osteoclasts and
osteoblasts reported in histology data for postmenopausal
osteoporotic patients both in terms of cell numbers (Ledoux
et al., 2022) and distribution. The aim was to achieve a mix of
modelling- and remodelling-based seeding with osteoclasts at low
effective strain locations and osteoclasts at different high effective
strain locations in the modelling case and osteoclasts and osteoblasts
close together as a basic multicellular unit with more than 3 of each
cell type in the remodelling case.

Reassessment of kinetics post inclusion of osteomorphs revealed
that the rates of change in mineral density were no longer biofidelic.
The behavior of the RANK/RANKL/OPG system was adjusted to
obtain rapid bone loss after denosumab discontinuation. The
RANKL recovery following denosumab discontinuation was
increased by increasing koff for the reversible reaction denosumab

+ RANKL
kon
%
koff

RANKLD. The denosumab decay was adjusted

downwards to maintain the 26 days half-life of denosumab. The
threshold for and magnitude of the effect of RANK binding site
occupancy on HSC differentiation to osteoclast precursors on the
surface and the threshold for and magnitude of the effect of RANK
binding site occupancy on osteomorphs differentiation to
osteoclasts were adjusted to obtain a more rapid increase in
osteoclast numbers following denosumab discontinuation.

The TGF-β pathway was also updated following the explicit
inclusion of osteomorphs to ensure that the rapid bone loss
following denosumab discontinuation arrested within 2 years of
the final dose, reaching a stable rate of bone loss resembling that was
found in the treatment and treatment-naïve control groups from the
FREEDOM trial (Dempster et al., 2018). To achieve this, the rate of
release of TGF-β from the mineral matrix following resorption by
osteoclasts was increased, the diffusivity of TGF-β through the
marrow was increased and the threshold for and magnitude of
the effect of TGF-β binding site occupancy on differentiation of
MSCs to osteoblasts was increased.

The changes outlined above made it possible to obtain long term
changes in BMC with denosumab treatment similar to the BMD
changes outlined in Dempster et al. (2018) and rates of changes in
BMC following denosumab discontinuation similar to the BMD
changes outlined in Bone et al. (2018) using a model explicitly
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incorporating osteomorphs as outlined in McDonald et al. (2021).
The parameter updates are summarized in (Supplementary
Tables S1–S5).

Each change to the model was required to pass a series of checks
and balances. First each parameter change was verified against literature
when available (Ledoux et al., 2022). Second, the parameters were
required to pass cell number and cytokine concentration balances to
have a stable system at equilibrium and limit maximum concentration
and cell number rates of change to physiologic maxima for each
timestep. Taking osteoblasts as an example, the cell number balances
were defined as shown in Equation 1.

dnOB
dt

� MSC → OB( ) + lc → OB( ) + OBproliferation( )
- OB → lc( ) - OB → OCY( ) - OBapoptosis( )

(1)

Equation 1 describes the rate of change in nOB the number of
osteoblasts dnOB

dt as the net sum of the rates of differentiation of MSCs
to osteoblasts, lining cells to osteoblasts, osteoblast proliferation
minus the rate of differentiation of osteoblasts to lining cells,
osteoblasts to osteocytes and the rate of osteoblast apoptosis.
Writing each term out into its component model parameters and
state variables, the result is Equation 2.

dnOB
dt

≈ ΓMSCtoOBnMSCeSOST,MSCtoOBeTGF-β,MSCtoOB

+ΓlctoOBnlceSOST,lctoOB
+ POBnOB/7-ΓOBtolcnOBeSOST,OBtolc

-ΓOBtoOCYnOB -
AOBnOB

7
e�E,OBapop (2)

where ΓMSCtoOB is the rate of differentiation of MSCs to osteoblasts
in % per day, nMSC is the number of MSCs, eSOST,MSCtoOB is the effect
of the current average sclerostin level on the rate of differentiation of
MSCs to OBs, eTGF-β,MSCtoOB is the effect of the current average
TGF-β level on the rate of differentiation of MSCs to OBs, ΓlctoOB is
the rate of differentiation of lining cells to osteoblasts, nlc is the
number of lining cells, eSOST,lctoOB is the effect of the current average
sclerostin level on the rate of differentiation of lining cells to OBs,
POB is the proliferation rate of OBs, ΓOBtolc is the rate of
differentiation of OBs to lining cells, eSOST,OBtolc is the effect of
the current average sclerostin level on the rate of differentiation of
OBs to lining cells, ΓOBtoOCY is the rate of differentiation of OBs to
osteocytes, AOB is the rate of apoptosis of osteoblasts (per week
instead of % day) and e�E,OBapop is the effect of the current average
estrogen level on the rate of apoptosis of osteoblasts. Cell type-
dependent upper and lower limits were set on rates of change in cell
numbers at the default pre-menopausal signaling molecule
concentration levels (e.g. dnOB

dt /nOB was limited to ±5%/day in
simulations of healthy bone remodelling) (Kameo et al., 2020).

Investigating mechanisms for the rapid bone
loss following denosumab discontinuation

In silico experiments were designed to test the four mechanistic
hypotheses in Figures 1A–D individually and in combination. In all
four mechanisms being analyzed, the parameters of the pathway of

interest were varied to achieve the best fit possible to clinical data
while controlling the other pathways. The constraints on this
optimization process were that cell numbers and signaling
molecule concentrations would stay within physiologic ranges
and that the placebo branch total drop in BMC over 4 years
would be between 0.5% and 5%.

To investigate the net influence of each mechanism on bone
mineral content BMC trends over time a linear combination model
was used that predicts the independent variable, BMC, on the basis
of the active mechanisms and their interactions (PA*PB*PC*PD), a
random intercept (1| patient) and a patient-specific baseline (BL) as
shown in Equation 3.

BMC ~ PA*PB*PC*PD + 1 |patient( ) + BL (3)

The term BL represents the baseline bone mineral content
(BMC) of each patient-specific biopsy at simulation start, while
the random intercept (1|patient) accounts for individual-level
deviations in BMC trends across simulations. Both terms are
matched per biopsy and reflect consistent indexing across the
model. This combinatorial linear model, where the BMC is a
linear function of 4 categorical variables and all their
interactions, may also be written out as seen in Equation 4.

BMC � βA PA + βB PB + βC PC + βD PD + βAB PAPB

+ βAC PAPC + βADPAPD + βBC PBPC + βBDPBPD

+ βCD PCPD + βABC PAPBPC + βABD PAPBPD

+ βACD PAPCPD + βBCD PBPCPD

+ βABCD PAPBPCPD + 1 | patient( ) + BL

(4)
Equation 4 presents the fixed-effects portion of the linear mixed-

effects model used to explain simulated BMC changes across
different mechanistic configurations. In this equation, βA
through βABCD are the fixed-effect coefficients corresponding to
each main effect and interaction term between mechanisms PA, PB,
PC, and PD. Each P term is a binary indicator variable (0 or 1)
denoting whether the corresponding mechanistic pathway - gate-
blocking (A), osteomorph recycling (B), clast-blast coupling (C), or
mechanostat (D) - was activated in a given simulation. The
interaction terms (e.g., PA·PB) allow for synergy or antagonism
between mechanisms to influence the predicted BMC.

Eight clinical validation outcomeswere defined: the relative changes
in BMD at 1, 6, 12, 24, 30, 36, 42 and 48 months from baseline in the
simulations of 2 years of treatment followed by 2 years without
treatment (Fontalis et al., 2020). The linear combination model
provides an overview of which mechanisms and mechanism
combinations play a role in denosumab discontinuation.

Parallel processing for high
performance computing

Our in-house code employsMPI distributed parallelism and hybrid
MPI/OpenMP. We perform large-scale micro-FE analyses up to
25 million elements and 300 million degrees of freedom. Our bone
adaptation simulation incorporates an agent-based cell modeling
approach, with heterogeneous cell data structures implemented to
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improve distributed memory parallelism. A novel domain splitting and
cell communication method was developed to minimize the required
number of MPI operations and significantly increase the speed of the
simulations (Kendall et al., 2023; Boaretti et al., 2023). Cell behavior is
updated based on the local mechanics computed using ParOSol, a fully
parallel micro-finite element code based on an Octree and designed for
massively parallel architectures using C++, MPI, and optimized BLAS
and LAPACK libraries (Dongarra et al., 1990; Anderson et al., 1990).
ParOSol can solve problems that are one order ofmagnitude larger than
available commercial and open-source solutions as it generates meshes
directly from image data through voxel-to-element conversion, allowing
models with billions of degrees of freedom to be easily produced while
substantially reducing memory usage. I/O operations are performed by
theHierarchical Data Format (HDF5) library, such that data files can be
read or written in parallel on any architecture that supports HDF5.
Preprocessing of patient image data was carried out using scripts from
the in-house IFB Framework, containing custom Python modules for
3D image processing. Postprocessing was performed using sequential
codes and parallel visualization with ParaView on Eiger (Project s1289,
Swiss National Supercomputing Centre, Lugano, Switzerland). A typical
simulation requires 8 nodes for the micro-MPAmodel and 2 nodes for
the micro-FE analysis with ParOSol, therefore 10 nodes per analysis.
This number of nodes was chosen to optimize the trade-off between
computational time and speed-up of the code.

The micro-MPA model has been optimized by implementing
several MPI communicators in our code (mpi4py, amgcl, Boost, the
standard MPI_comm) as well as a method to pass the mpi4py
communicator to the C++ code (Dalcín et al., 2005). In this way, we
benefit from the mpi4py interface at high level for standard MPI
communications as well as for more advanced low-level
computations performed for the data storage and communication
with Boost (Siek et al., 2002; Abrahams et al., 2003). Further, the
amgcl solver (Demidov et al., 2021; Demidov, 2020; Demidov, 2019)
uses the same MPI communicator for solving the diffusion of
chemicals in the C++ code through domain splitting. As a result,
all our data are stored and computed with domain splitting. In
addition, we were able to save the data through the h5py parallel
interface, exploiting this parallel implementation (Collette, 2014).

Morphometric analysis

Simulation outputs were validated against densitometric (percent
change in BMD), static morphometric (BV/TV, Tb.N, Tb.Th, Tb.Sp)
and dynamic morphometric parameters, e.g. Mineral Apposition Rate
(MAR), Mineral Resorption Rate (MRR), Bone Formation Rate (BFR),
Bone resorption Rate (BRR), measured in clinical trials according to the
guidelines of the American Society for Bone and Mineral research
(Parfitt et al., 1987).
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