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Hemodynamic predictions using computational fluid dynamics (CFD) simulations
can provide valuable guidance assessing aortic disease risks. However, their
reliability is hindered by the lack of patient-specific boundary conditions,
particularly measured flow rates. This study addresses this knowledge gap by
introducing a method for estimating flow division in aortic branches. The
geometry of the lesional aorta was first repaired to obtain a near-healthy
reference geometry. An iterative CFD simulation was then employed to
estimate the flow division in the branches of the diseased aorta. Specifically,
empirical boundary conditions from healthy individuals were used to predict the
outlet pressures of reference geometry, which were subsequently converted into
resistance models. These resistance models were then assigned to the outlets of
the diseased aorta to predict the inlet pressure. The discrepancy between the
predicted and target inlet pressures was iteratively minimized by adjusting the
inlet pressure of the reference model until convergence was achieved. The final
flow division in the branches of the diseased aorta was then obtained. The
performance of the proposed method was investigated in three patients with
aortic dissection or aneurysm. The proposed method predicted lower flow rates
in branches with severe stenosis, which was more consistent with physiological
expectations. Furthermore, the predicted blood pressure differed significantly
from that obtained using the traditional method and was closer to the target
values. The proposed method provides a practical solution for specifying
boundary conditions in hemodynamic studies when clinically measured flow
rates are unavailable.
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1 Introduction

Cardiovascular diseases pose a significant threat to human
health (Mensah et al., 2019). Among these, the aortic-related
diseases, such as aortic aneurysm and aortic dissection (Sterpetti
et al, 2024), usually causes a high mortality rate since the aorta
serves as a crucial bridge supplying blood from the heart to the rest
of the body. Hemodynamic investigation based on CFD can provide
more integrated guidance for disease management in patients with
aortic diseases (Tse et al., 2011; Bianchi et al., 2017; Hu et al., 2025).

Accurate hemodynamic predictions using CFD depend on
patient-specific aortic geometry and boundary conditions (Taylor
and Figueroa, 2009; Youssefi et al., 2018; Armour et al., 2022).
Advances in medical imaging technology have enabled precise
acquisition of patient-specific aortic geometry. Even minor
branches of the aorta have been successfully reconstructed in
hemodynamic studies (Stokes et al., 2023b). As for patient-
specific boundary conditions, advanced technologies like 4D Flow
MRI can capture multi-dimensional blood velocity (Azarine et al.,
2019). However, their application is typically limited to large
academic centers rather than routine clinical use (Menon et al.,
2024). Idealized or simplified boundary conditions, such as constant
pressure, empirical pulsatile pressure, empirical flowrate, Murray-
law, and 0D lumped parameter model for outflow strategy, have
been widely used (Dillon-Murphy et al., 2016; Zambrano et al., 2016;
Peng et al., 2019; Zhang et al., 2023). The Windkessel model, a type
of lumped parameter model, is particularly popular because it can
not only achieve specific downstream flow division, but also
reproduce the patient’s blood pressure at the ascending aorta
inlet (Stergiopulos et al., 1999b).

The Windkessel model analogized the target vascular system to
an electric circuit. For aortic hemodynamics investigations,
downstream arteries, arterioles, and capillaries are typically
simplified into a lumped parameter model. This model is then
coupled with the 3D aortic geometry to conduct multi-scale
simulations. In the electric circuit analogy, commonly used
components include resistors to model blood’s viscous resistance,
capacitors to model vessel wall compliance, and inductors to model
blood inertia. The commonly used three-element Windkessel model
comprises a characteristic impedance R. for resistance in large
arteries, a peripheral impedance R, for resistance in distal vessels,
and a capacitance C in parallel with R, for the total compliance of the
arterial tree (Westerhof et al., 1971).

To reproduce the ascending aorta inlet pressure and
downstream branch flow division, parameters of the three-
element Windkessel model should theoretically be estimated
using patient-specific data. Tuning strategies for these parameters
can be divided into manual “trial and error” tunning (Stergiopulos
et al., 1999a; Chung, 2005; Les et al., 2010) and automatic iterative
optimization tunning (Toorop et al., 1987; Spilker and Taylor, 20105
Ismail et al., 2013; Alimohammadi et al., 2014; Pant et al., 2014; Xiao
et al., 2014; Bonfanti et al., 2019; Arthurs et al., 2020; Li and Mao,
2023). In manual methods, resistance is estimated based on the
mean blood pressure and flow rate, while capacitance is determined
using methods such as the pulse pressure method (Stergiopulos
etal,, 1999a), the decay time method (Laskey et al., 1990), or the area
method (Liu et al., 1986). In iterative optimization methods, the
objective functions are typically formulated to minimize the
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difference between the calculated and target inlet pressure and/or
downstream flow rate. Li and Mao (Li and Mao, 2023) proposed a
fast approach to obtain the parameters using a pattern search
algorithm and an only-once steady-state CFD simulation;
notably, the flow resistance of the 3D aortic geometry was
considered in the optimization process.

The flow division in downstream branches is an essential input
in the tuning process of the parameters. Unfortunately, patient-
specific flow rates are usually unavailable in clinic settings. As a
result, empirical flow division is widely used. Tricarico et al. (2023)
proposed a method to approximate the parameters of the three-
element Windkessel model. They first calculated population-
averaged, artery-specific normalized parameters according to the
patient-specific flow rate and pressure waveforms measured in a
patient cohort. These parameters were then integrated with brachial
pressure values and mean flow rates, estimated from arterial
diameter, to determine the resistance and capacitance for new
patients. However, representative population-averaged data relies
heavily on a large patient cohort and estimating mean flow rates
based on arterial diameter encounters challenges related to accuracy
and variability, especially in patients with vessel lesions. In
Alimohammadi et al’s study (Alimohammadi et al, 2014), an
initial steady-state CFD simulation with zero-pressure outlets was
conducted to determine a flow division, which was then used to
estimate the parameters of the Windkessel model using a data
assimilation technique. However, using a zero-pressure outlet for
predictions deviates significantly from physiological reality and
results in a flow division that differs from actual values (Chnafa
et al.,, 2018).

Aortic diseases often involve abnormal dilation or stenosis of
vessels, altering downstream flow division and potentially causing
severe complications such as visceral or lower limb malperfusion.
For hemodynamic investigations, using empirical flow division from
healthy subjects will undoubtedly yield inaccurate results. Bonfanti
et al. (2019) conducted multi-scale simulations for hemodynamic
analysis of three complex type-B aortic dissection (TBAD) cases, one
of which involved left renal malperfusion, as evidenced by contrast-
enhanced CT scans. They wisely reduced blood flow rate to the left
kidney by 29% in the empirical flow division to align with the
patient’s condition. However, obtaining quantitative evidence of
malperfusion in other branch arteries remains challenging due to the
lack of reference for contrast.

Therefore, developing a method to estimate the flow division in
branches of the diseased aorta is crucial. In this study, we propose an
approach to achieve this goal and facilitate the parameter estimation
process of the Windkessel model. First, the geometry of the diseased
aorta was repaired based on established principles to obtain a near-
healthy reference geometry. Then, an iterative CFD-based
framework was designed to estimate the flow division by
performing simulations on both the reference and lesional
geometries. Specifically, empirical boundary conditions from
healthy individuals were applied to the reference geometry to
conduct CFD simulations to predict the outlet pressures. These
outlet pressures were subsequently converted into resistance models
and incorporated into the lesional model, where additional CFD
simulations were conducted to predict the inlet pressure. The
discrepancy between the predicted and target inlet pressures of
the diseased aorta was iteratively minimized by adjusting the inlet
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TABLE 1 Patient information.
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Item Patient 1 Patient 2 Patient 3
Gender Male Male Female
Age (year) 68 69 56
Disease characteristics « Type: TBAD o Type: AAA o Type: TAAD

Number of tears: 2

PET area: ~40.7 mm*
TL volume: 125.5 cm®
FL volume: 167.1 cm?®

LRA, IMA, RIIA, LIIA, LETA
Branches perfused by the FL: RRA
Branches perfused by both the TL and the FL: REIA

Brachial systolic pressure 146
(mmHg)

Brachial diastolic pressure 87
(mmHg)

Heart rate (bpm) 87

Branches perfused by the TL: BT, LCC, LSA, CT, SMA,

Number of tears: 5
PET area: ~9.6 mm®
TL volume: 163.7 cm®

Shape: fusiform
Max. diameter: ~52.32 mm
Branches with dilation: BT,

RIIA « FL volume: 185.5 cm®
« Branches with stenosis: o Branches perfused by the TL: BT, LCC, LSA,
LCC, CT, LIIA CT, SMA, IMA, LEIA, LIIA

Branches perfused by both the TL and the FL:
LRA, RRA, REIA, RITA

120 140
87 83
63 82

TBAD, type-B aortic dissection; AAA, abdominal aortic aneurysm; TAAD, type-A aortic dissection; PET, primary entry tear; TL, true lumen; FL, false lumen; BT, brachiocephalic trunk; LCC,
left common carotid; LSA, left subclavian artery; CT, celiac trunk; SMA, superior mesenteric artery; RRA, right renal artery; LRA, left renal artery; IMA, inferior mesenteric artery; REIA, right

external iliac artery; RIIA, right internal iliac artery; LEIA, left external iliac artery; LIIA, left internal iliac artery.

pressure of the reference model until convergence was achieved. At
convergence, the physiological state of the lesional model was
considered to best approximate the patient’s actual condition,
and the resulting flow division was deemed physiologically
relevant. The performance of the proposed method was evaluated
through its application to three patients with aortic dissection
or aneurysm.

2 Materials and methods
2.1 Patient information

Three patients (56-68-69-year-old, 1 female and 2 males) with
aortic diseases from the Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology were included in
this study. In addition to abdominal aneurysm or dissection, two
patients (Patients 1 and 2) exhibited arterial stenosis at the origins of
certain visceral arteries due to atherosclerosis or calcification. The
third patient (Patient 3) presented with a focal narrowing of the
descending aorta caused by aortic dissection. Patient details are
in Table 1, detailed
measurements are available in the Supplementary Material.

summarized and more anatomical

The study protocol was approved by the institutional review
board of Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology. Since the data involved in
this study is retrospective, the requirement for informed consent was

waived and anonymized data was used.

2.2 Clinical data

Computed tomography angiography (CTA) sequences of three
patients were acquired using a 3rd generation Dual-Source CT
scanner (SOMATOM Force; Siemens AG, Erlangen, Germany;
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100 kV, 250 mA s, rotation time: 0.25 s, field of view (FOV):
250 mm, slice thickness: 0.5 mm, reconstruction kernel: Bv40,
contrast agent: Jomeron 400; Bracco, Milan, Italy) with in-plane
resolution of 0.5 mm and inter-slice distance of 0.5 mm for the
reconstruction of the aorta, as shown in Supplementary Figure S1.
Pre-treatment brachial blood pressure and heart rate were also
measured and are summarized in Table 1.

2.3 Segmentation

The aorta geometries were reconstructed from CTA images
using the image-processing software DetecModeling (Boea
Wisdom, China) 2024). The
reconstructed aorta, starting from the ascending aorta and

Hangzhou, (Ding et al,
extending to the internal and external iliac arteries, was cut and
patched to form the inlet and outlet boundaries of the

computational domain.

2.4 Geometry repair

To obtain a patient-specific healthy aortic model, the lesional
aorta was manually repaired to generate a near-healthy reference
geometry. To ensure the validity of the geometric repair, all
modifications were independently performed by two experienced
technicians under the guidance of a radiologist and a vascular
surgeon. In cases of disagreement, a senior technician provided
the final judgment.

The repair process of the diseased aorta is illustrated in Figure 1.
Since the CTA scans of the diseased aorta were obtained relatively
soon after the onset of the disease, its overall structure remained
largely unaffected (Li et al., 2023; Wen et al., 2023). Therefore, the
original vascular framework was preserved during the repair
process. Furthermore, as the arterial disease had minimal impact
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FIGURE 1
Manual repair of the diseased aortic model.
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on the location and geometry of bifurcation points (Ford et al.,
2009), their anatomical structures were retained in the reference
model. For cases of aortic dissection, the intimal flap was first filled
to merge the true and false lumens. Subsequently, the merged model
underwent contraction and smoothing, as the presence of the
intimal flap and blood perfusion in the false lumen could
contribute to aortic expansion. In cases of abnormal stenosis or
dilation, the vessel diameter was adjusted based on the diameter of
unaffected segments within the same anatomical region. A
comparison between the lesional geometry and the repaired near-
healthy reference geometry is provided in Supplementary Figure S2.

2.5 Meshing

The spatial discretization of both the lesional and reference
geometries was carried out using the mesh tool integrated in
DetecFluid (Boea Wisdom, China). Given the
complex morphology of the aorta, tetrahedral elements were

Hangzhou,

employed for meshing. To ensure grid independence, three
different grid resolutions were tested (see Supplementary
Material), and a suitable configuration was selected for each
aortic model. In the final meshes, the number of cell elements
ranged from approximately 2.5-4.4 million across all patient-
specific models, providing sufficiently fine resolution to capture
the hemodynamic features. Detailed mesh statistics are provided in
Supplementary Material.

Frontiers in Bioengineering and Biotechnology

2.6 Estimation of flow division in
aortic branches

As illustrated in Figure 2, an iterative framework based on steady-
state CFD simulations was developed to estimate the flow division in the
downstream branches of diseased aortic models. Steady-state simulations
were first conducted on the repaired reference geometry to obtain inlet
and outlets pressures. The outlet pressures were subsequently converted
into distal resistance models and prescribed at the outlets of the diseased
geometry. Subsequently, steady-state simulations were performed on the
diseased model to predict the inlet pressure, which was compared against
the target value. Based on this discrepancy, the outlet resistances were
updated, and the simulations were repeated until convergence was
achieved. The boundary conditions employed in each simulation are
described in detail below.

In the steady-state CFD simulation of the reference model, the
mean systolic flow rate, derived from empirical flow waveforms
presented in Figure 2, was prescribed at the inlet, as this approach
has been shown to effective predict mean blood pressure and vascular
resistance (Li and Mao, 2023). The downstream flow division was
assigned based on widely used measurements from previous studies (Je
and Dn, 1994; Moore and Ku, 1994). Specifically, 30% of the cardiac
output was allocated to the supra-aortic branches, with further
distribution among them proportional to their cross-sectional areas.
The celiac trunk received 15.5% of the cardiac output, while the superior
mesenteric artery, the left renal artery, and the right renal artery each
accounted for 10.5%. If the inferior mesenteric artery was present, it
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FIGURE 2

Iterative framework for estimating the flow division in branches of the diseased aorta.

received 0.5% of the cardiac output. The remaining flow was equally
divided between the left and right iliac arteries, with 30% directed into
the internal iliac artery and 70% into the external iliac artery. Although
these flow division values are based on imprecise historical
measurements, they remain widely accepted in hemodynamic
studies (Bonfanti et al., 2017; Bonfanti et al., 2019). Importantly, this
does not affect the validation of the proposed method. More accurate
flow division data from healthy individuals could be incorporated into
future studies as they become available.

Based on the inlet pressure, outlet pressures, and flow rates
predicted by the steady-state CFD simulation of the reference model,
along with the empirical mean blood pressure values, the resistance
at each outlet in the resistance model can be calculated using
Equation 1:

Pmean - (Pin -
Q

Pout,i) (1)

Ri:

Where R; represents the resistance of the ith branch artery,
mmHg-sml"; Py is the empirical mean blood pressure, which
will be adjusted according to the discrepancy between the predicted
inlet pressure and the target inlet pressure of the diseased aorta; Pj,
is the predicted inlet pressure of the reference model, mmHg; Py is
the predicted pressure at the ith branch outlet of the reference
model, mmHg; and Q; is the flow rate at the ith outlet of the
reference model, ml-s™'.

Next, a steady-state CFD simulation was conducted on the diseased
aorta. The inlet boundary condition was set as a mass flow rate equal to
that of the reference model. At the outlets, the resistance model was
imposed, allowing the outlet pressure to vary dynamically with the flow
rate. This simulation provided a predicted inlet pressure for the diseased
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aorta, which was then compared to the target value. Given that only
brachial blood pressure was available for each patient, an empirical
formula was used to estimate the mean pressure at the aortic inlet, as
presented in Equations 2-4 (Stokes et al,, 2021):

Pmean,ao = 0-4Psys,ao + 0-6Pdia,ao (2)
Psys,ao = 0-83Psys,bra +0. 15Pdia,bra (3)
Pdia,ao = Pdia,bra (4)

Where Prean a0 i the mean pressure at the aortic inlet, mmHg; Py 00
is the aortic systolic pressure, mmHg; Pgi, 00 is the aortic diastolic
pressure, mmHg; Pgypr is the brachial systolic pressure, mmHg;
and Py, bra 1s the brachial diastolic pressure, mmHg.

The threshold for the discrepancy between the predicted and
target inlet pressures was set at 1%. If the difference exceeded this
threshold, the empirical mean pressure in Equation 1 was adjusted,
and the steady-state CFD simulation of the diseased model was
repeated. The iteration continued until discrepancy fell below 1%, at
which point convergence was achieved. At this stage, the outlet
resistance model was deemed representative of the patient’s
physiological condition, and the predicted flow division in the
aortic branches was considered a more patient-specific estimation.

2.7 CFD simulation for
hemodynamic analysis

Transient CFD simulations were performed for each diseased
aorta to analyze its hemodynamic characteristics. The inlet

boundary condition was prescribed using a flow rate waveform
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(Figure 2) from the literature (Gallo et al., 2016), scaled according to
patient-specific physiological data, and imposed with a plug flow
profile. At the outlets, the three-element Windkessel was
implemented, with its parameters estimated using the fast
approach proposed by Li and Mao (Li and Mao, 2023). In the
estimation process, the previously predicted patient-specific flow
division in the aortic branches was used.

Additionally, to compare and assess the performance of the
proposed method, a traditional scheme based on empirical flow
division from healthy individuals (Bonfanti et al., 2017; 2019),
specifically, the outlet flow rate used in step 1 in Figure 2, was
also employed for Windkessel parameter estimation. In the
following text, the results obtained using the previously predicted
flow rate are labeled as the “proposed method”, while the results
from the traditional scheme are labeled as the “traditional method”.

All CFD simulations were conducted by the software DetecFluid
(Boea Wisdom, Hangzhou, China). It is a highly efficient GPU-based
software for solving the equations of continuity and momentum
conservation using a finite-volume methodology (Liu et al.,, 2025).
Blood was assumed to be an incompressible Newtonian fluid with a
density of 1,060 kg m™ and a dynamic viscosity of 0.0035 Pa s. The
vessel wall was defined as rigid with a no-slip boundary condition.
Given the relatively high blood velocity and potential turbulence in the
aorta, the standard k - € model (Moukalled et al., 2016) was employed
due to its numerical stability and its demonstrated applicability in
aortic hemodynamics (Long Ko et al., 2017; Etli et al., 2021; Hohri
et al, 2021). The standard wall function was used to resolve the
viscous sublayer. A second-order scheme was used for spatial
discretization and a first-order implicit scheme for temporal
integration. The SIMPLE algorithm (Moukalled et al, 2016) was
used to couple pressure and velocity equations. The converged
residuals for all variables were 10™*. Additionally, for the transient
CFD simulation, the cardiac cycle was divided into 1,000 time-steps.
The transient simulation was performed over five cardiac cycles, and
the analysis was conducted based on the data from the final cycle.

2.8 Flow analysis

Several metrics related to blood pressure, flow patterns, and wall
shear stress were used to characterize the aortic hemodynamics. For
temporal statistical metrics, every tenth timestep from the final
cycle was used.

2.8.1 Blood pressure

Intravascular pressure is believed to play a significant role in the
progression of cardiovascular diseases. For instance, elevated static
pressure has been linked to the formation and rupture of aneurysms
(Suzuki et al., 2016; Jiang et al., 2019; Huang et al., 2020; Yi et al,,
2023). In this study, the distribution of static pressure was analyzed
across ten sections of the aortic trunk. Additionally, the transmural
pressure (TMP = Py —Pgp, where Prp and Py are the pressure in the
TL and FL, respectively) across the intimal flap was calculated and
analyzed for Patients 1 and 3.

2.8.2 Flow pattern

The flow divisions at branch outlets were calculated and
compared. Moreover, the velocity and helicity distributions
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across the same ten sections were illustrated. The helicity was
quantified using the local normalized helicity (LNH) (Gallo et al.,
2012), as shown in Equation 5.

v (Vxv)

LNH =
VIV v

(5)

Where v is the velocity vector, m-s~'.

2.8.3 Wall shear stress (WSS) related metrics

WSS-related metrics have been shown to be associated with the
progression of aortic diseases (Boyd et al., 2016; Xu et al., 2018). Four
commonly used metrics including time averaged WSS (TAWSS),
oscillatory shear index (OSI), relative residence time (RRT), and
aneurysm formation indicator (AFI) were selected and calculated by
Equations 6-9.

1 T
TAWSS = —J [ ldt )
Tl
T
v
0SI = - 1—UT°T d )
2\ [olde
RRT = . Sp— (8)
(1-2 x OSI) x TAWSS %|Iofwdt|
T
apr = T Jomdt ©)
o] mud]

Where T 'is the cardiac cycle, T, is the WSS vector. TAWSS, OSI, RRT
were calculated based on the data from the whole final cycle, while AFI
was calculated at the mid-systolic deceleration (Mantha et al., 2006).

3 Results
3.1 Flow division in aortic branches

Figure 3 illustrates the flow division in aortic branches predicted
by the traditional and proposed methods. The specific flow rate
values for each branch are provided in Supplementary Table S3. A
strong correlation was observed between the two methods in
predicting aortic branch flow division (Patient 1: r = 0.865,
Patient 2: r = 0.973, Patient 3: r = 0.991). However, noticeable
differences were found in certain branches, particularly those with
severe stenosis, such as the celiac trunk in Patients 1 and 2. The
proposed method predicted lower flow rates in these arteries, which
is considered more physiologically realistic, resembling the “steal”
phenomenon observed in patients with artery occlusions that
redistribute blood flow to meet metabolic demands (Yamashiro
et al,, 2002; Hatzidakis et al., 2015). The Bland-Altman plot further
indicates that the differences in predicted flow fractions for some
branches approach or exceed the 95% limits of agreement.

3.2 Estimated parameters of the
windkessel models

The total resistance Ryy and compliance C of the Windkessel
models estimated by the traditional and proposed methods differed,
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as shown in Figure 4. These variations in parameters are related to
the severity of the lesions and the differences in target flow rates in
each branch. In the proposed method, the flow rate in the stenotic
branches decreased and was redistributed to other branches. As a
result, the total resistance of most Windkessel models in Patients
1 and 2 decreased, while the resistance of severely stenotic branches,
such as the celiac trunk, increased. The variation in capacitance
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values of the Windkessel model was more complex, as it was
influenced by both the pressure changes due to flow rate
variations and volume changes associated with vascular lesions.
Among all branches, the greatest change in capacitance occurred in
the right renal artery of Patient 3, where it decreased from
0.577 mL mmHg™" in the traditional method to 0.022 mL mmHg
! in the proposed method.
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Inlet pressure of the diseased aorta in Patient 1, predicted by the
traditional and proposed methods. The Wilcoxon signed-rank test was
used to compare the difference.

3.3 Blood pressure

The inlet pressures of the diseased aorta in Patient 1, predicted
by the traditional and proposed methods, are compared and shown
in Figure 5. The predicted inlet pressures differed from the measured
aortic systolic and diastolic pressures. The proposed method
performed better in reproducing the inlet blood pressure. In
contrast, the traditional method assigned flow rates typical of
healthy conditions to the stenotic branches, resulting in non-
physiological pressure losses that influenced the simulation
outcomes. The predicted systolic and diastolic pressures for
Patients 2 and 3 are summarized in Supplementary Table S3. For
Patient 3, the predicted inlet pressure from both methods
significantly differed from the actual values. This discrepancy
may be related to the limitations of the tuning strategy used in
Windkessel models (Li and Mao, 2023).

The blood pressure distributions on the selected planes in
Patient 1 at five time points are shown in Figure 6. The values
predicted by the proposed method were higher than those predicted
by the traditional method, and the distribution patterns were
similar. Additionally, the blood pressure variations over time
during the cardiac cycle were comparable. Similar trends were
observed in Patients 2 and 3, as shown in Supplementary
Figures $3,54.

The TMP values for Patients 1 and 3, calculated by both
methods, are shown in Figure 7. The values predicted by the
proposed method differed from those predicted by the traditional
method, with the traditional method generally overestimating the
absolute TMP values. The difference was more pronounced and
significant (p < 0.01) in Patient 3, primarily due to two severe
stenoses in the true lumen of the descending aorta, located around
planes d and g. These stenoses had a broader impact, leading to the
observed discrepancies. Both methods predicted the same balance
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points where TMP equaled zero: for Patient 1, this balance point was
between planes e and f, and for Patient 3, it was near plane h. The
maximum difference in TMP values predicted by the two methods
exceeded 5 mmHg, occurring near the iliac bifurcation in Patient 1,
around plane j.

3.4 Flow patterns

The flow patterns in the aorta of Patient 1 are presented here.
Results for Patients 2 and 3 can also be found in the Supplementary
Material. Figure 8 illustrates the flow patterns in Patient 1 at five
representative time points, and Figure 9 shows the velocity
distribution on the selected planes. Unlike the blood pressure
distributions, the velocity distributions predicted by the two
methods were similar. Aorta tears cause a significant reduction in
the cross-sectional area of the TL, but most of the blood still flows
into the TL (86.5% in the proposed method and 88.4% in the
traditional method), resulting in a high blood velocity in the TL.
For branches supplied by both TL and FL, there was a slight but not
significant change in the proportion of source. In the REIA, the
proportion of blood flow from the TL increased from 85.4% in the
traditional method to 87.4% in the proposed method.

Like velocity, the distributions of LNH predicted by the two
methods are similar. To maintain conciseness, these distributions
are not shown here and can be found in the Supplementary Material.
We calculated the difference in LNH by subtracting the values
predicted by the traditional method from those predicted by the
proposed method, as shown in Figure 10. The differences in LNH
were scattered sporadically throughout the aorta, with more
pronounced variations observed in the FL, which has a relatively
large volume. From a temporal perspective, the differences were
more pronounced during mid-systolic acceleration and the diastole
phase compared to other times. This may be linked to the strong
transition flow occurring between systole and diastole (Liu et al.,
2012; Poelma et al., 2015).

3.5 WSS-related hemodynamics

The distributions of WSS-related metrics in Patient 1 are shown
in Figure 11, with those for Patients 2 and 3 available in the
Supplementary Material. The distributions predicted by the two
methods were similar, especially for the metrics based on cycle-
averaged data such as TAWSS, OSI, and RRT. This is
understandable, as these indicators are derived from wall shear
stress, which is determined by the velocity gradient near the vessel
wall. As previously mentioned, the velocity distributions along the
aorta trunk predicted by the two methods were comparable. In the
TL, high blood velocity resulted in high and unidirectional WSS,
characterized by higher TAWSS, lower OSI and RRT, and more
uniform AFI. In contrast, the FL exhibited low and oscillating WSS,
with lower TAWSS, higher OSI and RRT, and more varied AFI, due
to the larger volume and lower flow rate.

We calculated the difference in these metrics by subtracting the
values predicted by the traditional method from those predicted by
the proposed method, as shown in Figure 11. In the celiac trunk, the
TAWSS predicted by the proposed method was relatively lower due
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and mid-diastole.

to the reduced flow rate. Differences in OSI were observed in areas
near the visceral branches, where flow patterns were complex, while
differences in RRT were scattered sporadically throughout the FL.
For AF], significant differences were widely distributed throughout
the aorta, especially in the FL.

4 Discussion

4.1 Comparison with zero-pressure
simulations

More realistic predictions of blood flow distribution enable
more precise identification of malperfusion syndrome in patients.
This represents a significant advancement over past studies that
used simulations with zero-pressure outlets to assess the risk of
malperfusion. Cheng et al. (2013) utilized transient simulations
with zero-pressure outlets to analyze the hemodynamic
characteristics of four patients with acute TBAD, two of whom
developed complications of malperfusion. They suggested that
higher flow rate into the FL might be related to malperfusion
syndrome. However, their models did not include downstream
branch arteries. Furthermore, a high flow rate into the FL does not
necessarily result in malperfusion, as a patent FL can still supply
blood to the distal arteries (Bonfanti et al., 2019). Alimohammadi
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et al. (2014) developed a patient-specific simulation tool for aortic
dissection, in which the downstream flow division was first
determined using a steady-state CFD simulation with zero-
pressure outlets to tune the Windkessel model parameters for
multi-scale simulations. Their results showed that 39.4% of the
inlet flow went through the BT, leaving only 45.0% for the
descending aorta, which contributed to lower limb and/or vital
organ malperfusion. However, simulations using zero-pressure
the
downstream branches because the flow division was directly

outlets likely overestimate risk of malperfusion in
determined by the geometric resistance in the reconstructed
aorta model. For comparison, we conducted simulations with
zero-pressure outlets for Patient 1, following the methodologies
of Cheng et al. (2013) and Alimohammadi et al. (2014). Table 2
illustrates the flow rate in branches predicted by these simulations.
The “OPa_Windkessel_target” values represent the flow division
predicted by the steady-state simulation with zero-pressure outlets.
The “OPa_Windkessel” values denote the flow rates predicted by
the multi-scale simulation with Windkessel models, whose
parameters were estimated using the flow division in “OPa_
Windkessel_target”. The “OPa_Transient” values show the flow
division predicted by the transient simulation with zero-pressure
outlets. It is evident that the flow distributions predicted by these
simulations are similar, with approximately 48% of the inlet flow

passing through the BT, similar to Alimohammadi et al.‘s study
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(Alimohammadi et al, 2014). The flow rates in the three
branches on the arch were much higher than those in distal

Furthermore, more accurate predictions of blood pressure and
WSS-related metrics allow for a more precise evaluation of aortic

branches, which is clearly inconsistent with the diseases progression risks, including the obstruction of the TL

physiological condition. (Bonfanti et al., 2019; Xu et al,, 2021), the evolution of the FL
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TABLE 2 Flow division predicted by simulations with zero-pressure outlets.

Location

OPa_Transient

OPa_Windkessel

Zero-pressure outlets

OPa_Windkessel_target

BT 49.1% 46.6% 47.0%
LCC 6.0% 10.8% 10.9%
LSA 20.8% 23.5% 23.7%

CT 0.3% 0.4% 0.4%
LRA 2.2% 1.8% 1.8%
RRA 0.8% 1.7% 1.7%
SMA 6.9% 5.1% 5.1%
IMA 0.2% 0.3% 0.3%
LEIA 3.1% 2.4% 2.2%
LITA 4.3% 2.9% 2.7%
RITA 3.7% 2.5% 2.3%
REIA 2.6% 1.9% 1.9%

(Chen et al, 2013; Xu et al,, 2018), the dilation and rupture of
aneurysms (Teng et al, 2022), and the formation of luminal
thrombosis (Naim et al., 2016).

4.2 Impact of manual model repair

As introduced before, the proposed method involves manual
repair of the diseased aorta model, which can introduce additional
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errors. Given that the level of smoothing in model reconstruction
significantly impacts hemodynamic predictions (Paritala et al,
2023), we conducted a preliminary investigation into the effect of
the smoothing factor on the results. Specifically, the repaired aorta of
Patient 1 was smoothed to varying degrees, and the flow division in
branches was recalculated using the proposed method. The results,
presented in Table 3, indicate that smoothed models yielded more
consistent flow rates with the proposed method and deviated
significantly from the flow division predicted by the traditional
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TABLE 3 Target flow rates predicted by steady-state simulations for various repaired geometries.

Location Smoothing degree Proposed method Traditional method
Moderate Severe
BT 19.4% 19.4% 19.4% 18.9% 17.2%
LCC 4.4% 4.3% 4.3% 4.5% 4.1%
LSA 9.1% 9.0% 8.9% 9.5% 8.7%
CT 9.2% 9.2% 9.1% 9.1% 15.5%
LRA 11.2% 11.3% 11.4% 11.2% 10.5%
RRA 10.9% 11.0% 11.2% 10.8% 10.5%
SMA 11.3% 11.3% 11.3% 11.4% 10.5%
IMA 0.5% 0.5% 0.5% 0.5% 0.5%
LEIA 8.4% 8.4% 8.4% 8.5% 7.9%
LIIA 3.6% 3.6% 3.6% 3.6% 3.4%
RIIA 3.6% 3.6% 3.6% 3.6% 3.4%
REIA 8.4% 8.4% 8.3% 8.4% 7.9%

method. Future work should focus on developing automated model
repair techniques to strengthen the robustness of the proposed
method. Ford et al. (2009) developed an objective and automated
technique for digitally repairing arteries with saccular aneurysmal
lesions. However, for more complex aortic conditions, such as
fusiform aneurysms or aortic dissection, efficient automated
repair algorithms remain unavailable.

4.3 Limitations and future perspectives

There are several limitations in this study. First, while we
showed that the proposed method could reproduce inlet blood
pressure closer to the physiological data of patients, some
persistent differences remained. These discrepancies arose
because the Windkessel model parameters were estimated by a
steady-state simulation with mean systolic blood flowrate at the
inlet. This strategy is more effective for healthy aortas, where
geometric resistances of branches vary similarly under different
inflow rates. However, in stenotic branches of diseased aortas, the
variation in resistance with inflow rate differs significantly from
that of vessels with normal diameters, leading to less satisfactory
predictions. In Li and Mao’s study (Li and Mao, 2023), the
the pressure
physiological data also increased after the artificial narrowing of

difference between reproduced inlet and
a branch. In addition, estimating Windkessel parameters from
steady-state simulations has an inherent drawback: arterial
compliance is neglected. As a result, the predicted inlet pressure
(Pin) in Equation 1 is overestimated, leading to an underestimated
resistance term (R;). When these parameters are subsequently
applied in transient simulations, the Windkessel model tends to
underestimate the mean arterial pressure across the cardiac cycle.
Fortunately, the framework proposed in this study is adaptable to
any Windkessel model tuning strategy that requires target flow

rates, including those based on 0D simulations (Stokes et al., 2021).

Frontiers in Bioengineering and Biotechnology 13

In the future, efforts should focus on improving strategies to better
reproduce patient physiological data.

In addition, several common assumptions and simplifications in
CFD simulations, such as the rigid vessel wall, empirical inflow
waveform combined with a plug flow profile, and Reynolds-
averaged turbulence models, may reduce accuracy. Previous
studies have shown that assuming a rigid wall tends to
overestimate flow velocity and wall shear stress (Ene et al., 2014;
Bonfanti et al., 2018). Compared with healthy aorta, neglecting wall
compliance in diseased aortas with local stenoses, as considered in
this study, may introduce larger errors. On the one hand, wall
deformation can substantially alter the local resistance at the stenotic
site and thereby affect flow distribution; on the other hand, in some
pathologies, such as aortic dissection, intimal flap motion may cause
dynamic obstruction (Kim et al, 2023), leading to significant
changes in hemodynamics. Simplifications in the inlet boundary
condition, particularly the use of a plug profile, have also been
shown to compromise the accuracy of wall hemodynamic
predictions in the ascending aorta (Stokes et al, 2023a).
Moreover, the Reynolds-averaged turbulence model adopted in
this study (the standard k - &€ model) may not adequately capture
the transition between laminar and turbulent flow. Performing
large-eddy simulations with finer meshes would enable the
resolution of smaller-scale vortical structures and yield more
accurate wall hemodynamic characteristics (Manchester et al.,
2022; Cheng et al., 2025). Nevertheless, while these assumptions
and simplifications may limit the absolute accuracy of the
simulations, they do not undermine the demonstration that the
proposed approach outperforms the traditional one.

Finally, the actual flow rate in a patient’s aortic branches is also
regulated by the sympathetic nervous and endocrine systems (Leito-
Rocha et al, 2012), which were not explicitly considered in this
study. The sympathetic nervous system is known to regulate blood
pressure by controlling peripheral resistance and cardiac output
(Luo, 2003). In this study, different inlet pressures were assigned to
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the repaired and diseased aorta, implying that the effect of the
sympathetic nervous system was, to some extent, implicitly
considered. If physiological parameters such as blood pressure
and cardiac output in the healthy state were available, the
proposed method could be further refined. Additionally, future
studies should validate the accuracy of the proposed method
using clinically measured flow data, for example, obtained by
four-dimensional flow magnetic resonance imaging (4D-Flow
MRI), two-dimensional phase-contrast magnetic
imaging (2D PC-MRI), or Doppler ultrasound.

resonance

5 Conclusion

In summary, a novel framework has been developed to
determine the flow division in aortic branches of patients with
aortic diseases. This framework includes manual repair of diseased
geometry and iterative steady-state CFD simulations to predict the
target flow division for the lesional model. The predicted flow
division is then used to estimate Windkessel model parameters
for multi-scale simulations.

Applications in three patients demonstrated that the proposed
method predicted a significant reduction in blood flow in stenotic
branches, aligning more closely with physiological expectations.
Furthermore, the method improved accuracy in reproducing
blood pressure. Some differences in other hemodynamic metrics
were observed between the two methods. Further studies are needed
to validate the proposed method by comparing predicted aortic
hemodynamic with clinically measured values.
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