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Purpose: To investigate the hemodynamic determinants of the embolization
efficiency index (EEI) during transcatheter hepatic arterial embolization (TAE),
with the goal of improving embolization protocols, optimizing therapeutic
precision, and mitigating the risks of non-target embolization.
Methods: Using computational fluid dynamics and patient-specific right hepatic
artery geometry from cone-beam CT angiography, we evaluated the impact of
inlet flow rate, target outlet pressure, and vascular hierarchy on EEI. Simulations in
OpenFOAM solved Navier-Stokes equations under steady and pulsatile flow.
Results: There was no correlation between inlet flow rate and EEI. Instead, EEI
exhibited an inverse linear relationship with target pressure, declining until flow
cessation at a certain pressure greater than 5000Pa. Proximity to the target outlet
significantly enhanced EEI. Backflow phenomenon indicated inherent non-target
embolization risks under pulsatile conditions.
Conclusion: This proof-of-concept study suggests that, in this model, EEI is
primarily influenced by outlet pressure and vascular anatomy, rather than inflow
dynamics. These findings call into question the conventional emphasis on flow
modulation, pointing to the potential value of pressure-aware strategies and
superselective catheter placement near targets. Based on the analyzed case, the
study offers quantitative thresholds and spatial EEI gradients that could help refine
TAE precision and potentially reduce complications. With further validation,
integrating such CFD-based EEI metrics into procedural planning may
contribute to standardizing embolization protocols.
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1 Introduction

Transcatheter arterial embolization (TAE) is a cornerstone in the
management of hepatocellular carcinoma (HCC) and metastatic liver
tumors, leveraging targeted occlusion of tumor-feeding arteries to
induce ischemic necrosis (Castiglione et al., 2025; Lanza et al., 2025).
Despite its clinical efficacy, suboptimal embolic distribution influenced
by hemodynamic complexity remains a challenge, potentially leading to
incomplete tumor response or off-target complications (Moon et al.,
2023; Gowda et al., 2021; van Roekel et al., 2021). Embolization
efficiency, defined as the proportion of embolic agents reaching the
target vasculature, is critical for therapeutic success but remains poorly
quantified in dynamic vascular environments.

Recent advances in computational fluid dynamics (CFD) have
enabled detailed simulations of arterial hemodynamics, offering
insights into flow patterns that influence embolic trajectories (Corti
et al., 2021). Previous studies (Taebi et al., 2020a; Aramburu et al., 2022;
Aramburu et al., 2016) demonstrated the utility of CFD in modeling
hepatic arterial flow, emphasizing the role of vascular geometry and
boundary conditions. However, the interplay between hemodynamic
parameters and embolization efficiency remains underexplored.
Traditional metrics like vascular embolization endpoints (e.g.,
contrast agent stasis) lack quantitative rigor (Periyasamy et al.,
2021), underscoring the need for a standardized indicator, such as
the embolization efficiency index (EEI).

Prior research highlights the impact of outlet pressure on flow
redistribution post-embolization. For instance, Vikström et al. (2024)
identified resistance boundary conditions as critical determinants of flow
partitioning in arterial networks, while Roncali et al. (2020) correlated
CFD-predicted flow patterns with clinical outcomes in
radioembolization. Despite these strides, gaps persist in understanding
how dynamic flow variations and anatomical hierarchies modulate EEI.

This study introduces a novel CFD-based framework to evaluate EEI
duringTAE, addressing two key questions: (1)Howdo inletflow rate and
target outlet pressure influence EEI? (2) How does vascular anatomical
hierarchy affect embolic distribution? By integrating patient-specific cone
beam computed tomography (CBCT) angiography and OpenFOAM-
based simulations, we analyze hemodynamic responses under varying
pressure and pulsatile flow conditions. Our findings aim to refine
embolization protocols, optimizing therapeutic precision while
mitigating risks of non-target embolization.

2 Materials and methods

2.1 Subjects

The subject is a 62-year-old male patient from the interventional
radiology department. His right hepatic artery has been identified as
healthy and included in the study. The protocol has been approved by
the clinical trial ethics committee/institutional review board (IRB) (2024-
KY-033), and informed written consent was obtained from the patient.

2.2 CBCT angiograph

The procedure was conducted with a CBCT-capable
angiography system (UNIQ FD 20, Philips Healthcare, Best,

Netherlands). Hepatic artery angiography via the femoral artery
approach was performed using a 5 French RH angiographic catheter
(Cordis Corporation, Miami lakes, FL, United States) (Figure 1A).
The Xper CT abdomen HQ protocol involved acquiring
620 projections by rotating the C-arm 240° around the patient
for 5.2 s. The imaging parameters were set at 120 kV and
265 mA, with a field of view (FOV) matrix size of 512 × 512.
The scan under breath-hold began 3 s after injecting 21 mL of
contrast medium (320 mg Iodixanol, Jiangsu Hengrui
Pharmaceuticals Co., Ltd., Lianyungang, China) through a RH
catheter in the right hepatic artery at a rate of 4 mL/sec. The
injector used was the Mark V ProVis Injector (MedradInc.,
Indianola, PA, United States) (Figures 1B,C).

2.3 Segmentation and meshing

The DICOM files from CBCT angiography were imported into
the 3D Slicer software (Harvard, Boston, United States, https://www.
slicer.org/) to generate the geometric 3D model in. stl format.
Subsequently, the model was imported into the snappyHexMesh
tool integrated within the OpenFOAM platform (OpenFOAM
Foundation Ltd., United Kingdom) for segmentation and
meshing of the hepatic arterial tree. The 3D reconstructions of
the arterial trees underwent additional processing, including
smoothing and truncating the outlets, resulting in the 3D
simulation geometries displayed in Figure 2A.

The mesh size was determined based on previous CFD studies’
meshing expertise and the results of a preliminary grid
independence study, leading to the generation of high-quality
surface meshes (Taebi et al., 2020a). The final linear tetrahedral
mesh comprised approximately 400,000 elements, with increased
mesh densities strategically placed at bifurcations and boundaries to
effectively capture more intricate flow patterns (Figure 2B).

2.4 Hemodynamic governing equations and
parameters

According to previous literature reports, the governing
hemodynamic equations used to solve the laminar incompressible
blood flow in the hepatic artery include the three-dimensional
Navier–Stokes conservation of mass and momentum equations
(Taebi et al., 2020b) as follows (Equations 1, 2).

∇. u( ) � 0. (1)

ρ
∂u

∂t
+ u.∇u( ) � −∇p + μ∇2u + 1

3
μ∇ ∇.u( ). (2)

In the aforementioned equations, u represents the flow velocity,
p denotes flow pressure, ρ indicates blood density, and μ signifies
dynamic viscosity. For the purposes of this study on the hepatic
artery, the blood flow behavior is analyzed using a Newtonian
model. Therefore, it is assumed that the blood is both
incompressible and Newtonian, with a density and dynamic
viscosity of 1,060 kg/m3 and 0.0035 Pa·s, respectively. Subsequent
calculations reveal that the maximum Reynolds number (Re = 417)
in this study is below 2,300, thus indicating a laminar flow state. All
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of the hemodynamic equations for blood flow in the hepatic artery
were numerically solved using the finite volume scheme in the
OpenFOAM platform.

2.5 Boundary conditions

Since the left lobe has been surgically removed, it was not
included in the computational domain. Therefore, the
computational model only consisted of the hepatic arterial tree in
the right lobe with an inlet at the right hepatic artery (Figure 2C).

The hepatic arterial tree analyzed in this study had one inlet
and 43 outlets. All branches are at a certain depth level (n = 1, . . . ,
N). The depth level of an artery is determined by the number of
branches the blood has passed through after passing through that
artery, starting from the inlet branch of the domain where the
depth level is one. In this arterial tree, one branch (n = 5) was
designated as the target branch for embolization (Figure 2C). The
target branch further divides into 10 target outlets (Figure 2D,
outlets 1-10). Along the path from the inlet to the target branch, a
cross-section is established at the midpoint of each branches
(Figure 2C, CS 1-5).

All parameters in this study were obtained from previous
research, human physiological data, or pre-experiments. As the
study examined the impact of different inlet flow rates on the
embolization efficiency index, a representative pulsatile waveform
(Figure 3A) with a parabolic velocity profile was approximated
and adjusted based on published data (Aramburu et al., 2022). The
outlet pressure is set to 300 Pa. When studying the stable flow
conditions, the flow rate at the inlet was 5 cm3/s. To investigate the
impact of outlet pressure on hepatic artery hemodynamics and
flow distribution, simulations were conducted by varying the total
pressure of the target branch from 0 Pa to 5,000 Pa (Six
conditions, including 0 Pa, 1,000 Pa, 2000 Pa, 3,000 Pa,
4,000 Pa, and 5,000 Pa, were included.). The pressure variation
range in the target branch falls within the normal physiological
parameter thresholds, and its rationality has been demonstrated
by the analysis results. Specifically, when the pressure is 0 Pa, the
outlet flow rate reaches its maximum. As the pressure increases,
the outlet flow rate gradually decreases. When the pressure
reaches 5,000 Pa, the outlet flow rate approaches 0 cm3/s,
which resembles the hemodynamic condition during vascular
or hepatic sinusoid occlusion. Higher pressures would result in
reverse flow, which is inconsistent with the anatomical and

FIGURE 1
The angiographic images of the right hepatic artery in a 62-years-old male. (A) Digital subtraction angiography (DSA): postero-anterior view. (B,C)
3D views based on CBCT angiography.
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physiological reality of the hepatic artery. This total pressure was
then distributed to each outlet (outlets 1-10) considering a direct
proportional relationship with the outlet cross-sectional areas. All
simulation scenarios assumed a rigid wall with no-penetration
and no-slip conditions.

2.6 Study outcomes

The Embolization Efficiency Index (EEI) is defined as the
proportion of the quantity flowing into the target branch when
an embolic agent is injected at a specific location in the arterial tree
relative to the total volume. This is approximately equal to the ratio
of the flow into the target branch passing through the embolization

operation site to the total flow at the embolization operation site
(Equation 3).

EEI � ∑Qtarget

Qtotal
× 100% (3)

Where Qtarget is the target outlet flow rate and Qtotal is the total
flow rate. Other study outcomes include inlet flow rate, cross-
sectional flow rate, outlet flow rate, and outlet pressure.

3 Results

Figure 3B shows the flow rate curve at the CS 5, which represents
the summed flow rates from outlets 1-10. The shape of the outlet

FIGURE 2
3D digital right hepatic arterial tree in CFD simulations. (A) 3D simulation geometries. (B) Mesh generation. (C) Cross-sections 1–4 (arrow) and the
target branch (red). (D) Target outlets 1-10.
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flow rate curve mirrors that of the inlet flow rate curve (Figure 3B),
indicating a positive correlation. The integral results of the outlet
flow rate are displayed in Figure 3C. Despite variations in the inlet
flow rate, there is no corresponding change in the EEI cloud map
(Figure 3D), suggesting no correlation between the inlet flow
rate and EEI.

As a result of factors such as vascular anatomical structure,
backflow is an inevitable phenomenon experienced by blood flow
within the vessels (Figure 4).

Under steady inlet flow conditions, as pressure at the target
outlet rises, the flow rate at that outlet decreases accordingly.
Eventually, when the pressure reaches a certain point, the flow at
the outlet ceases completely, resulting in zero blood flow
(Figure 5A). The increase in total pressure at the target
outlets (outlets 1-10) leads to a decrease in flow rates at the
relevant cross-sections (CS 2-4), showing an overall linear
declining trend (Figure 5B). Due to the direct proportionality
between flow rate and velocity at the same cross-section, the flow

FIGURE 3
The impact of different inlet flow rates on the embolization efficiency index (EEI). (A) The inlet velocity curve. (B) The outlet flow rate curve. (C) The
integral results of the outlet flow rate. (D) The EEI cloud map.

FIGURE 4
The backflow phenomenon in the flow field (red square).
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velocities at each cross-section are linearly inversely correlated
with outlet pressure.

Under a given pressure condition, the closer one gets to the
target outlet, the greater the embolization efficiency of the injected
embolic material, resulting in a larger EEI at that position.
Conversely, as outlet pressure rises, the EEI gradually diminishes
at the same vascular position. The cloud chart illustrating the
vascular EEI is depicted in Figures 5C–E.

4 Discussion

The present study leverages CFD to elucidate the hemodynamic
determinants of EEI during TAE procedure for hepatocellular
carcinoma. Our findings demonstrate that EEI is predominantly
governed by outlet pressure and vascular anatomical hierarchy rather
than inlet flow rate. This challenges conventional assumptions that
procedural success hinges onmodulating inflowdynamics, underscoring
the need for pressure-driven embolization strategies. These insights offer
novel quantitative correlations to refine embolization protocols.

Most liver tumors develop an extensive network of new,
abnormal, and disorganized blood vessels, a phenomenon known
as hypervascularity, to support their rapid growth. These tumor
vessels are often the primary targets for embolization. Tumor
hemodynamics play a critical role in selecting the appropriate
chemoembolization technique. However, despite the reactive
dilation of tumor-feeding arteries, in computational fluid
dynamics (CFD) research based on medical imaging data,
accurately reconstructing, segmenting, and analyzing small tumor
blood vessels remains challenging due to various factors. Therefore,
we designate one or several blood vessels supplying the tumor as
target outlets to simulate the macroscopic hemodynamic changes in
tumor-feeding arteries during TAE procedures.

Contrary to conventional assumptions, our results revealed
no correlation between inlet flow rate and EEI. This suggests
that embolic distribution is governed less by flow velocity and
more by vascular pressure and branching geometry. This
observation corroborates prior studies (Taebi et al., 2020b;
Högberg et al., 2016; Richards et al., 2012), who
demonstrated that microsphere distribution in hepatic
arteries depends on transient flow partitioning rather than
peak flow rates. Similarly, Camobreco et al. (2025)
highlighted that pulsatility-induced flow variations minimally
alter particle trajectories in bifurcations dominated by pressure
gradients. The decoupling of EEI from inlet flow rate implies
that embolization outcomes may be more predictable across
patients with varying cardiac outputs, provided pressure
profiles are adequately mapped.

Prior observations revealed that flow redistribution in arterial
networks is more sensitive to downstream resistance (Sun et al.,
2020; Gruionu et al., 2024). In this study, the inverse linear
relationship between target outlet pressure and EEI emphasizes
pressure modulation as a critical therapeutic lever. As pressure
increases, flow redistribution diverts embolic agents to lower-
pressure non-target vessels, reducing EEI. Clinically, this
underscores the importance of sequential embolization,
occluding distal branches first to elevate pressure and confine
subsequent embolic delivery (Horton and Adams, 2018). Our
findings extend these principles by quantifying the threshold
pressure required for near-complete flow cessation, offering a
benchmark for procedural endpoints. In addition, incomplete
embolization may arise from inadequate occlusion of collateral
pathways, as residual low-pressure outlets divert embolic agents
away from the target. Our results further validate the utility of
pressure modulation techniques, such as balloon occlusion or
vasoconstrictors, to enhance embolic delivery.

FIGURE 5
The impact of varying target outlet pressures on the embolization efficiency index (EEI). (A) Correlation between outlet pressure and flow rate. (B)
Correlation between outlet pressure and flow rates at cross-section 2–4. (C) EEI cloud map at an outlet pressure of 0 Pa. (D) EEI cloud map at an outlet
pressure of 2000 Pa. (E) EEI cloud map at an outlet pressure of 5,000 P.a.
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The spatial gradient in EEI, higher efficiency near the target
outlet, reflects the cumulative impact of vascular branching pressure.
Proximal embolization sites exhibited lower EEI due to flow
dispersion across bifurcations, a finding consistent with the
“vascular stealing” phenomenon. Superselective catheterization,
therefore, remains paramount to maximize EEI, as demonstrated
by Zhang et al. (2025) and Albrecht et al. (2021), who reported
improved tumor response rates with distal embolization. Our CFD
model quantifies this advantage, reinforcing the need for precision
in catheter navigation.

The observed backflow patterns highlight a persistent risk of
non-target embolization, particularly under pulsatile flow
conditions. Embolus reflux as a major contributor to
gastrointestinal complications during TAE, attributing it to
transient pressure gradients during systole (van Zadelhoff et al.,
2025). Our simulations extend this understanding by demonstrating
that backflow arises intrinsically from vascular geometry and
pulsatility. Mitigation strategies, including slower injection rates
(Ren et al., 2023) or balloon-assisted embolization (Lamanna et al.,
2021), may benefit from EEI-guided planning to balance efficacy
and safety.

Traditional embolization endpoints, such as contrast stasis, lack
the quantitative rigor needed for personalized therapy. EEI
addresses this gap by providing a dynamic, spatially resolved
measure of embolic distribution. This aligns with recent efforts to
establish CFD-derived biomarkers for procedural planning. For
instance, Roncali et al. (2020) used simulated particle trajectories
to predict radioembolization dosimetry, achieving strong
concordance with post-treatment imaging. Similarly, our EEI
framework could guide catheter placement and embolic dosing to
balance efficacy and safety.

The inverse relationship between outlet pressure and EEI
suggests that pre-embolization assessment of vascular pressure,
via pressure measurements or CFD, could optimize outcomes.
Real-time pressure monitoring during TAE could dynamically
guide embolic dosing to maintain optimal EEI. Additionally,
preprocedural CFD simulations may stratify patients based on
vascular pressure profiles, tailoring catheter positioning and
embolic agent.

While this study provides novel insights, certain limitations
warrant consideration. First, the assumption of rigid vessel walls
neglects arterial compliance, which modulates flow pulsatility and
pressure propagation. Second, the Newtonian blood model
simplifies non-Newtonian behaviors critical in small arterioles.
Third, static pressure values were used, whereas in vivo pressure
dynamically changes during embolization due to particle lodging
and vasospasm. Fourth, the model is simplistic and provides only a
preliminary representation of EEI-related findings. It requires
validation through more complex CFD analysis, such as
simulating catheter injections and the distribution of
microspheres with flow, as well as larger sample sizes. Future
studies should incorporate fluid-structure interaction and non-
Newtonian models to improve physiological fidelity. Future
studies should integrate patient-specific viscoelastic wall
properties and validate EEI correlations in multicenter cohorts.
Emerging 4D flow MRI techniques could further refine boundary
conditions, enhancing CFD accuracy. Lastly, in vitro models

incorporating embolic agents are needed to validate particle-fluid
interactions predicted by simulations.

5 Conclusion

This CFD-based proof-of-concept study suggests that target
outlet pressure and vascular anatomical hierarchy may be
primary determinants of embolization efficiency, while the
influence of inlet flow rate appears limited. By quantifying EEI
gradients and pressure thresholds, this work offers a preliminary
roadmap for optimizing TAE precision-including considerations
for proximal catheter placement, pressure-aware dosing, and
reflux mitigation. These principles, if integrated into patient-
specific computational models, could help standardize
embolization protocols and potentially improve tumor
response rates while reducing complications. With further
development, future integration with real-time imaging and
adaptive pressure algorithms may pave the way toward
transforming TAE from an operator-dependent procedure into
a precision oncology tool.
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