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The rising prevalence of antibiotic resistance necessitates innovative alternatives
for managing polymicrobial oral infections. Photothermal therapy (PTT) emerges
as a revolutionary approach that transcends conventional antimicrobial
limitations by leveraging near-infrared (NIR)-activated photothermal agents to
generate localized hyperthermia, enabling precise biofilm eradication while
circumventing systemic drug resistance. The modality capitalizes on the
anatomical accessibility of oral tissues and the optical transparency of dental
structures, allowing spatiotemporal control over pathogenic niches from
superficial caries biofilms to deep periodontal pockets. Recent advances in
nanoplatform engineering have unlocked multifunctional PTT systems capable
of synergizing thermal ablation with immunomodulation, biofilm matrix
penetration, and even tissue regeneration, addressing the dual challenges of
microbial persistence and host inflammatory damage. However, clinical
translation remains hindered by unresolved technical barriers, including
optimal thermal dosage calibration, lesion-specific material design, and long-
term biosafety assessment. This review systematically dissects cutting-edge
photothermal strategies across the oral infectious spectrum (dental caries,
endodontic infections, periodontitis, and peri-implantitis) while critically
evaluating their mechanistic innovations in overcoming antibiotic limitations.
We further propose a roadmap for next-generation smart PTT systems
integrating stimulus-responsive materials and microbiome-aware therapeutic
paradigms to achieve personalized oral infection management.
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1 Introduction

As one of the most critical anatomical regions in the body, the oral cavity constitutes the
initial segment of the digestive tract and maintains direct exposure to the external
environment (Madani et al., 2014; Kunath et al., 2024). This unique anatomical and
physiological positioning renders it highly susceptible to colonization by a diverse array of
microorganisms. Structures such as teeth, gingival sulci, and mucosal surfaces provide a
nutrient-rich ecological niche for these microbial communities to colonize, flourish, and
thrive (Deo and Deshmukh, 2019; Brookes et al., 2023). The oral microbiome, recognized as
the secondmost complex microbial ecosystem in the human body, predominantly colonizes
the surface of oral mucosa and dentition (Kilian et al., 2016; Xiao et al., 2020; Baker et al.,
2024). The maintenance of oral microbial homeostasis is critical for preserving both oral
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and systemic health. Multiple exogenous and endogenous
factors—including dietary patterns, tobacco use, suboptimal oral
hygiene practices, systemic comorbidities, and pharmacological
interventions—can perturb the equilibrium of the oral
microbiota, predisposing to pathogenic shifts (Sedghi et al., 2021;
Gupta et al., 2024). Such dysbiosis states enable the proliferation of
opportunistic pathogens, precipitating polymicrobial infections
exemplified by periodontitis (Lamont et al., 2018; Jiang et al.,
2021; Sedghi et al., 2021; Belibasakis et al., 2024). As a global
health priority, oral infections rank among the most prevalent
human infections, imposing significant socioeconomic burdens
on healthcare infrastructure and international economies (Peres
et al., 2019; Bernabe et al., 2020; Collaborators, 2025; Zheng
et al., 2025). Clinically, these diseases often present with
symptoms such as toothache and gingival inflammation, which
can significantly impair mastication, communication, and
aesthetic function, ultimately diminishing people’s quality of life
(Spanemberg et al., 2019; Popescu et al., 2024). Moreover, emerging
evidence underscores a compelling association between oral
infections and an elevated risk of systemic disorders, including
diabetes mellitus, atherosclerosis, and Alzheimer’s disease
(Scannapieco and Cantos, 2016; Altamura et al., 2024; Popescu
et al., 2024; Villoria et al., 2024). Consequently, the prevention,
management, and therapeutic intervention of oral infections have
garnered considerable scientific and clinical attention, underscoring
the imperative for interdisciplinary research and innovative
strategies to mitigate their global impact.

Oral infections comprise a diverse group of highly prevalent
conditions, including dental caries, endodontics, periodontitis, and
peri-implantitis, etc (Gondivkar et al., 2019; Peres et al., 2019). The
management and treatment of these diseases are characterized by
three distinct features: First, the affected organs (such as the pulp
chamber, root canal, and periodontal tissues) are small in volume yet
anatomically complex, making it difficult to completely eradicate
infections, which often results in suboptimal treatment outcomes or
even failure. Second, most of the oral infections are oral biofilm
infection-associated diseases (Muras et al., 2022; Pan et al., 2025).
Extracellular polymeric substances (EPS) in microbial biofilms offer
adhesion and protection, rendering innate immune cells and
conventional antimicrobials ineffective at breaking down oral
biofilms and eradicating the microbes they contain (Bowen et al.,
2018; Chen et al., 2023a). Third, the oral and maxillofacial region,
being crucial for speech, mastication, respiration, and aesthetics,
possesses complex physiological and psychological functions,
necessitating minimally invasive treatment approaches that
preserve function. Oral infections typically necessitate the
removal of pathogenic bacteria and their biofilms (Ertem et al.,
2017; Pitts and Mayne, 2021; Alawaji et al., 2022). Current clinical
approaches are based on mechanical removal supplemented by
antibiotics, such as scaling and root planning (SRP) therapy
combined with minocycline for periodontitis (Mombelli, 2018;
Sanz et al., 2020; Laforgia et al., 2024). However, the effectiveness
of the traditional mechanical bacteria and biofilms removal method
is primarily compromised by the intricate and small anatomical
structures of the organs (Li et al., 2021; Lin et al., 2024). Meanwhile,
inappropriate antibiotic use has led to bacterial resistance, including
multidrug-resistant bacteria (Hernando-Amado et al., 2019; Rams
et al., 2020). Oral biofilms significantly contribute to drug resistance,

as their matrix effectively bars the penetration and activation of
antibiotics. Moreover, as bacteria expand and metabolic residues
accumulate, the resulting acidic shift within the biofilm environment
not only inactivates antibiotics but also compromises their overall
effect. Therefore, alternative non-antibiotic-dependent
antimicrobial strategies are required to address these issues.

Widely utilized across various fields, including antimicrobial
applications, photothermal therapy (PTT) represents a promising
strategy for the treatment of oral infections (He et al., 2023; Wang
et al., 2024; Liang et al., 2025; Zhang and Chen, 2025). PTT operates
by exposing photothermal agents (PTAs) to light at a specific
wavelength (e.g., visible or near-infrared, NIR), which facilitates
the interaction of photons with the PTAs’ surface (Overchuk et al.,
2023). This interaction induces molecular vibrations and rotations,
converting the absorbed energy into heat and elevating the local
temperature (Fang et al., 2025; Zhang et al., 2025). Elevated
temperatures disrupt bacterial cell membranes, compromising
their structural integrity and increasing permeability, which leads
to the leakage of essential intracellular components (Cao et al., 2024;
Mondal et al., 2024). Concurrently, crucial bacterial proteins
involved in replication, metabolic processes, and survival are
denatured, ultimately leading to bacterial demise (Yin et al.,
2019). Unlike antibiotics, PTT’s physical antibacterial mechanism
offers broad-spectrum capabilities, a low likelihood of inducing drug
resistance, and the ability to circumvent pre-existing drug-resistant
bacterial strains (Cao et al., 2024). PTT has also demonstrated
significant advantages in combating biofilms. PTAs, especially in
nanoparticle form, can readily traverse the EPS to access the
embedded microbial cells (Pinto et al., 2020). Moreover,
hyperthermia exhibits significant potential to disrupt the intrinsic
physiological microenvironment of biofilms by inactivating their
inherently bioactive substrates, such as nucleic acids and proteins,
which contribute to the degradation of oral biofilms (Liu et al., 2021;
Chen et al., 2023b; Mammari and Duval, 2023). It has also been
reported that PTT can disrupt pathogen co-aggregation via the Cbe-
Ltp1-Ptk1-fimA signaling pathway, thereby preventing biofilm
development (Lin et al., 2024). While high temperatures (>50 °C)
inhibit bacterial growth, mild PTT (mPTT; <45 °C) can modulate
host immune responses and promote tissue regeneration (Sheng
et al., 2021; Zhang et al., 2021; Huang et al., 2022; Li et al., 2022; Xue
et al., 2022; Xue et al., 2023). Extensive studies have demonstrated
that periodic mild PTT, by maintaining local temperatures at
approximately 40 °C–43 °C for short durations (e.g., 3–5 min)
repeated several times, can substantially mitigate inflammation
and accelerate both angiogenesis and osteogenesis (Zhang et al.,
2019; Li et al., 2022; Wu et al., 2022; Zeng et al., 2023; You et al.,
2024). Thermal stimulation could regulate macrophage polarization
by activating the PI3K-AKT1 signaling pathway, which promotes
the phenotypic transition of pro-inflammatory M1 macrophages
towards an anti-inflammatory and pro-reparative M2 state.
Angiogenesis might be fostered through the vascular endothelial
growth factor (VEGF), heat shock protein 90 (HSP90)/endothelial
nitric oxide synthase (eNOS) pathways, while osteogenesis might be
promoted by enhancing bone morphogenetic protein-2 (BMP-2)
expression and activating the Wnt signaling pathway (Zhang et al.,
2019; Sheng et al., 2021). Therefore, PTT offers a powerful and
versatile approach, integrating potent antimicrobial activity with
desirable anti-inflammatory and pro-regenerative functions, making
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it a valuable strategy when combined with other antimicrobial and
regenerative strategies (Chen et al., 2023b). As a non-antibiotic-
dependent antimicrobial strategy, PTT offers antibacterial
performance superior to that of antibiotics. This advantage stems
from its non-invasive, spatiotemporal, and site-selective
characteristics, strong tissue penetration, low side effects, broad-
spectrum antibacterial properties, inherent resistance to the
development of drug resistance, and versatile nature as a
therapeutic platform (Wu J. et al., 2019) (Figure 1).

The efficacy of PTT for oral infections hinges on two factors: the
PTAs and the light sources. While the superficial anatomical
location of oral tissue mitigates concerns regarding penetration
depth, PTT’s overall effectiveness is primarily limited by the
photothermal conversion efficiency (PCE) of PTAs and the risk
of collateral thermal damage to healthy tissues from overheating
(Liu et al., 2019; Yu S. et al., 2024). Over the past few decades,
advancements in nanomaterials have significantly improved the
PCE of PTAs (Zhao et al., 2024). Research has gradually shifted
from focusing solely on the photothermal properties of individual
materials to strategically designing and synthesizing multifunctional
platforms. These platforms integrate features like targeted drug
delivery, synergistic antibacterial action, and combinational
immune modulation, thereby enhancing therapeutic efficacy

while minimizing adverse effects. This field has rapidly
progressed, yielding encouraging results. While existing reviews
primarily focus on specific materials [e.g., gold-based
nanomaterials (Zhang S. et al., 2024; Qi et al., 2025)] or single
diseases [e.g., dental caries (Xu et al., 2025) and periodontitis (Li
J. et al., 2024)], a comprehensive, interdisciplinary overview of the
broader spectrum of major oral infections is still missing. Here, we
summarize the advances of PTT in oral infections with a focus on
dental caries, endodontics, periodontics, and peri-implantitis,
highlight the design concepts and mechanisms, address the
challenges PTT faces, and suggest future directions (Figure 2).
We aim to provide a foundational framework for advancing PTT
research for the treatment of oral infections and to catalyze the
development of precise, efficient, and clinically viable therapeutic
strategies (Table 1).

2 PTT for dental caries

Dental caries is a chronic condition precipitated by the
accumulation of dental plaque, metabolic acid production, and
subsequent localized demineralization of hard tissues, which can
lead to severe tooth defects (Pitts et al., 2017; Shen et al., 2024; Zhao

FIGURE 1
Schematic illustration of the versatile mechanisms of photothermal therapy (PTT). PTT could modulate the host’s biological response. This includes
promoting the polarization of pro-inflammatoryM1macrophages towards an anti-inflammatory M2 phenotype via the PI3K-AKT1 signaling pathway. The
resulting pro-regenerative microenvironment enhances angiogenesis through the VEGF/HSP90/eNOS pathway and promotes osteogenesis by
activating the BMP-2 and Wnt signaling pathways. Created in BioRender. Liang, J. (2025) https://BioRender.com/6vgs15f.
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et al., 2024). Dental plaque, composed of cariogenic microbial
biofilms, serves as a critical etiological driver in dental caries
development, with Streptococcus mutans (S. mutans) being the
primary cariogenic pathogen (Li et al., 2024d; Mazurel et al.,
2025). The primary approach to preventing and treating caries
involves using antimicrobial drugs combined with mechanical
removal of decayed tissue (Akindele et al., 2025; Song et al.,
2025). However, biofilms impede the penetration of antimicrobial
drugs and enable bacteria to adapt their metabolic states to the
biofilm microenvironment, thereby fostering antibiotic resistance
(Jakubovics et al., 2021; Hajishengallis et al., 2023). Moreover,
mechanical removal often damages healthy tooth structures and
is prone to caries recurrence (AlSahafi et al., 2022). There have been
innovative approaches for caries prevention and treatment,
including therapeutics to prevent the demineralization caused by

dental biofilm (Li et al., 2024d) (novel chemoprophylactic agents,
antimicrobial peptides, probiotics and replacement therapy, etc.) as
well as therapeutics to promote the remineralization process
(fluoride and casein phosphopeptides, etc.) (Chen and Wang,
2010). However, the implementation of these methods is limited
by factors such as mucosal irritation, systemic toxicity, the
development of drug-resistant microbes, and the inability to
maintain adequate drug concentrations in the oral cavity.

The unique properties of PTT, such as its ability to deliver
localized and controlled thermal energy, make it a promising
alternative to conventional methods for managing dental caries.
By leveraging the photothermal effect, PTT can selectively target
cariogenic biofilms without causing significant damage to
surrounding healthy tissues (Zhu et al., 2014; Tan et al., 2018;
Yang et al., 2018). Since cariogenic bacteria generate an acidic

FIGURE 2
Schematic illustration of photothermal therapy (PTT) for oral infectious diseases. By leveraging photothermal agents (PTAs), PTT converts near-
infrared (NIR) laser into localized hyperthermia to induce pathogen mortality. The application of PTT to oral infectious diseases has predominantly seen
progress in the areas of dental caries, endodontics, periodontics, and peri-implantitis, but also holds significant promise for treating other infections like
infectious bone defects and candida infections. Created in BioRender. Liang, J. (2025) https://BioRender.com/6vgs15f.
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TABLE 1 Summaries of photothermal therapy (PTT) for oral infectious diseases. This section comprehensively summarizes the details of recent research reported in the literature, emphasizing the functionalization of
photothermal agents (PTAs), their therapeutic highlights, and the underlying design concepts and mechanisms.

Disease
type

Therapy
model

Photothermal
agents

Functionalization Exposure
condition

Bacterial
species

Research phase Therapeutic highlights Ref.

Dental Caries PTT PDA Fe3O4 NPs loaded with Ag via PDA
reduction and grafted with glycol chitosan

post-PDA coating

808 nm, 0.75 W cm-2,
10 min

S. mutans Planktonic bacteria,
biofilms

Ag-enhanced PTT, pH-responsive release of Ag+,
magnetically retrievable nano agents

Xu et al. (2020a)

PTT, drug therapy ZIF-8 coated with PDA 808 nm, 1.5 W cm-2,
10 min

S. mutans Planktonic bacteria,
biofilms, animal model

Synergistic oral biofilm eradication using pH-
responsive Zn2+ release and photothermal effect

Pan et al. (2025)

PTT, PDT, drug
therapy

IR780 Poly (ethylene glycol)-b-poly(3-acrylamide
phenylboronic acid)-b-poly(2-(5,5-
dimethyl-1,3-dioxan-2-yloxy) ethyl
acrylate) dual block copolymers co-

encapsulating ciprofloxacin and IR780

808 nm, 1.5 W cm-2,
5 min

S. mutans Planktonic bacteria,
biofilms, isolated dental
model, animal model

Integrating biofilm penetration and bacterial
anchoring for targeted drug delivery

Yu et al. (2022)

PTT, Drug
Therapy

GO Amino-functionalized 808 nm, 0.88 W cm-2,
5 min

S. mutans Planktonic bacteria Amino-GO with integrated positive charge,
strong photothermal effect, and inherent cutting

effect

Lu et al. (2021)

PTT PB NPs Ag+-doped Prussian blue nanoparticles
encased in cationic guar gum

808 nm, 0.4 W cm-2,
3 min

S. mutans, S.
sobrinus, S.
sanguinis

Planktonic bacteria,
biofilms, animal model

Combined PTT with Ag+ release for enhanced
and safer caries treatment

Li et al. (2024b)

PTT, PDT Zinc phthalocyanine
tetrasulfonate (ZnPcS4)

ZnPcS4 with surface modification by
guanidinium-functionalized, fluorocarbon-

grafted calix [5]arene

660 nm, 1 W cm-2,
5 min

S. mutans Planktonic bacteria,
biofilms, in vitro human
biofilms model, animal

model

Adaptive PTT and PDT enhancement enabling
on-demand modality switching

Zhang et al.
(2024b)

PTT BP NSs Encapsulated in chitosan and PLGA-PEG-
PLGA hydrogel matrices

808 nm, 1 W cm-2,
5 min

S. mutans, S.
sanguinis

Planktonic bacteria,
animal model

Highly efficient bactericidal and
remineralization-promoting effects

Ran et al. (2024)

Endodontics PTT AuNRs — 810 nm, 0.2 W, 20 min E. faecalis In vitro biofilms Mature E. faecalis biofilm developed in roots
using aModified Drip Flow Reactor (MDFR) and

a Static Method

Galdámez-Falla
et al. (2022)

PTT, PCT AuNPs AuNPs integrated onto Cu2-xS 808 nm, 0.5 W cm-2,
10 min

E. faecalis, F.
nucleatum

Isolated dental models,
animal model

Combining PTT and peroxidase-like catalytic
therapy (PCT) to enhance biofilm bacteria

eradication in root canals

Cao et al. (2021)

PTT AuAg core-shell — 808 nm, 1 W cm-2,
10 min

E. faecalis Planktonic bacteria,
biofilms

Effective antibacterial agents against Ag+-
resistant E. faecalis

Feng et al. (2024)

PTT, PDT BP NSs BP NSs decorated with monodisperse
AuNPs

808 nm, 1 W cm-2,
5 min

E. faecalis Planktonic bacteria,
biofilms

First study on antibacterial and antibiofilm
activity of BP/Au nanocomposites via NIR light-

mediated photothermal process

Aksoy et al.
(2020)

PTT,
chemotherapy

Two isoindigo (DIID)-based
semiconducting conjugated
polymer (PBDT-DIID)

PBDT-DIID NP core incorporating
polylactide

808 nm, 0.8 W cm-2,
2.5 min

E. faecalis Isolated dental model Photothermal enhancement of root canal
treatment outcome by heating 1% NaClO

solution

Duan et al. (2022)

Periodontitis PTT, CDT PDA Cu2O NPs and PDA-coated titanium
dioxide loaded within a hydrogel composite

NIR, 1.00 W cm-2,
18 min 452 nm,

5.52 W m-2, 5 min

S. aureus, E. coli, S.
mutans

Planktonic bacteria,
animal model

ROS generation boosts antibacterial efficacy and
facilitates Cu+ oxidation to Cu2+, synergistically
promoting osteogenesis with the photothermal

effect

Xu et al. (2020b)

(Continued on following page)
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TABLE 1 (Continued) Summaries of photothermal therapy (PTT) for oral infectious diseases. This section comprehensively summarizes the details of recent research reported in the literature, emphasizing the
functionalization of photothermal agents (PTAs), their therapeutic highlights, and the underlying design concepts and mechanisms.

Disease
type

Therapy
model

Photothermal
agents

Functionalization Exposure
condition

Bacterial
species

Research phase Therapeutic highlights Ref.

PTT,
immunotherapy

AuAg NPs Branched AuAg NPs with a procyanidin-Fe
network surface loading

808 nm, 2.5 W cm-2,
3 min

P. gingivalis, F.
nucleatum

Planktonic bacteria,
animal model

ROS scavenging and promotion of
M2 macrophage polarization via the PI3K/AKT

pathway, leading to immunity regulation

Wang et al.
(2022a2)

PTT,
immunotherapy

AuAg NPs loaded with procyanidins 808 nm, 2.5 W cm-2,
5 min

P. gingivalis Planktonic bacteria,
animal model

Ag+ enhanced PTT provides antibacterial effect,
while procyanidins regulate host immunity by
scavenging ROS, inhibiting inflammation, and

modulating macrophage polarization

Wang et al.
(2023a)

PTT, CDT CuS NPs CuS and MnS co-crystallized into
nanosheets, enabling MnO2 layer-assisted

synthesis of CuS/MnS@MnO2

808 nm, 1 W cm-2,
5 min

P. gingivalis, F.
nucleatum

Planktonic bacteria,
biofilms, animal model

Single nanocrystalline material achieving PTT
and CDT for maximized nanomedicine synergy

Chen et al.
(2023c)

PTT CuS NPs precipitated with chitosan, then
methacrylated and photo-crosslinked with

GelMA to form hybrid hydrogels

808 nm, 1 W cm-2,
5 min

E. coli, S. aureus,
MRSA

Planktonic bacteria,
animal model

Injectable hybrid hydrogels achieved both
enhanced osteogenesis and NIR-triggered

sterilization

Yang et al. (2025)

PTT, PDT CuS loaded with serine endopeptidase 980 nm, 1.5 W cm-2,
3 min

F. nucleatum Planktonic bacteria,
biofilms, animal model

Enzymatic degradation of the biofilm by
introducing a protease

Gao et al. (2023)

PTT, drug therapy GNC GNR filled with phase-change materials
(PCM) and tetracycline (TC), with a surface

modification of
poly(N-isopropylacrylamide-co-

diethylaminoethyl methacrylate) (PND)

808 nm, 1.0 W cm-2,
3 min

S. aureus Planktonic bacteria,
animal model

Precise NIR light-controlled release of
encapsulated drugs via dual thermosensitive

transitions of PCM (liquid-solid) and PND (coil-
granule)

Zhang et al.
(2020)

PTT, drug therapy Au nano bipyramids Mesoporous silica-coated Au nano
bipyramids mixed with gelatin methacrylate

808 nm, 1.2 W cm-2,
5 min

P. gingivalis Planktonic bacteria Antibiotic drug release and photothermal
treatment triggered by NIR irradiation

Lin et al. (2020)

PTT, PDT ICG ICG complexed with sPDMA, a poly(2-
(dimethylamino)ethyl methacrylate) brush
synthesized by ATRP using bromo-β-

cyclodextrin (CD-Br) initiator

808 nm, 2 W cm-2,
5 min

P. gingivalis Planktonic bacteria,
animal model

Polycationic brushes as a novel carrier material
for antibacterial agents

Shi et al. (2021)

PTT, SRP — 810 nm, 0.5 W, 1.5 min - Clinical randomized
controlled trial

Evaluation of ICG-diode laser effects on
periodontal cells with regenerative capacity

Chiang et al.
(2020)

PTT,
immunotherapy

MPB NPs MPB NPs loaded with baicalein 808 nm, 1 W cm-2,
15 min

P. gingivalis, F.
nucleatum

Planktonic bacteria,
animal model

ROS-scavenging nanoplatform promotes
M2 macrophage polarization via photothermal

bioplatform-assisted immunotherapy

Tian et al. (2022)

PTT, PDT,
immunotherapy

AuNRs S-nitrosothiols and ICG loaded into
mesoporous silica-coated AuNRs

808 nm, 1 W cm-2,
5 min

P. gingivalis, F.
nucleatum

Planktonic bacteria,
biofilms, animal model

NIR light triggers antibacterial effects (AuNR,
PTT), anti-inflammatory action (ICG, PDT), and

modulation of inflammatory immunity
(generated NO)

Qi et al. (2022)

PTT, Drug therapy,
immunotherapy

PB NPs PB NPs coated with PDA and subsequently
loaded with minocycline

808 nm, 1 W cm-2,
5 min

S. sanguinis, P.
gingivalis, F.
nucleatum

Planktonic bacteria,
biofilms, animal model

Mild temperature anti-plaque activity and ROS
scavenging attributed to PB nanozymes
(enzyme-like activity) and PDA (catechol

reducibility)

Wang et al.
(2023b)

PTT, PDT IR820 IR820 complexed with oxyhemoglobin 808 nm, 2 W cm-2,
5 min

P. gingivalis In vitro biofilms, animal
model

Hemoglobin as a carrier for targeted delivery of
therapeutics to P. gingivalis

Bai et al. (2022)
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TABLE 1 (Continued) Summaries of photothermal therapy (PTT) for oral infectious diseases. This section comprehensively summarizes the details of recent research reported in the literature, emphasizing the
functionalization of photothermal agents (PTAs), their therapeutic highlights, and the underlying design concepts and mechanisms.

Disease
type

Therapy
model

Photothermal
agents

Functionalization Exposure
condition

Bacterial
species

Research phase Therapeutic highlights Ref.

PTT, CDT Cu3P Cu3P modified with poly (allylamine
hydrochloride) and lactate oxidase

1064 nm, 0.75 W cm-2,
5 min

S. gordonii, P.
gingivalis

In vitro biofilms, animal
model

Single-material system with PTT and CDT
functionalities exhibiting synergistic therapeutic
efficiency through a dynamic positive feedback

loop

Lin et al. (2024)

PTT, PDT T8IC NPs Hydrogel with 3D network architecture as a
carrier for BMP-2 and T8IC

808 nm, 1.5 W cm-2,
5 min

P. gingivalis Planktonic bacteria,
biofilms, animal model

Enhanced PDT and sustained BMP-2 release
achieved with mild PTT (45 °C) in a Hydrogel +

T8IC + Laser + BMP-2 + H2O2 system,
demonstrating excellent bactericidal effect,

osteogenic induction, and biosafety

Wang et al.
(2023c)

PTT, PDT, CDT Bi2S3 NPs Bi2S3 NPs anchored on Cu-tetrakis(4-
carboxyphenyl)porphyrin nanosheets to
create a novel Z-scheme heterostructured

nanocomposite

635 nm,1 W cm-2,
10 min

P. gingivalis, F.
nucleatum, S.

gordonii

Planktonic bacteria,
biofilms, animal model

Heterostructure facilitates highly efficient light
absorption and electron-hole separation, leading

to synergistic PDT/PTT/CDT with potent
antibacterial activity against periodontal

pathogens

Kong et al. (2023)

PTT, drug therapy Fe3O4 Fe3O4 wrapped ZnO with an outer layer of
epsilon-polylysine (EPL)

808 nm, 1 W cm-2,
5 min

P. gingivalis Planktonic bacteria,
biofilms, animal model

Anti-inflammatory effects and enhanced
antibiofilm efficacy via mild-temperature

antibacterial PTT

Li et al. (2025)

PTT, CDT Bi2Te3 NSs Lu-Bi2Te3 decorated with Fe3O4 and
poly(ethylene glycol)-b-poly(l-arginine)

(PEG-b-PArg)

1064 nm, 1 W cm-2,
5 min

P. gingivalis, F.
nucleatum, S.
aureus, E. coli

Planktonic bacteria,
biofilms, animal model

Synergistic generation of ROS and RNS via
photothermal/thermocatalytic effects under

NIR-II laser irradiation leads to biofilm damage

Dai et al. (2023)

PTT, gas therapy PB nanozymes Ruthenium (Ru)-doped PB nanozymes
integrated with sodium nitroprusside (SNP)

808 nm, 1 W cm-2,
5 min

P. gingivalis, F.
nucleatum

Planktonic bacteria,
biofilms, animal model

NO-releasing nanozyme therapy using mild-
temperature photothermal activation

Li et al. (2024e)

PTT, PDT, gas
therapy

Ag2S Ag2S NPs loaded with ZIF-90, ICG, and
L-arg molecule

808 nm, 1 W cm-2,
5 min

P. gingivalis, F.
nucleatum

Planktonic bacteria,
biofilms, animal model

NO-synergized PTT and PDT using a
nanocomposite platform

Wu et al. (2023)

PTT,
immunotherapy

AuNPs Yolk–Shell structure composed of Au and
CeO2 loaded with dimethyl fumarate

635 nm, 0.8 W cm-2,
5 min

E. coli, S. aureus Planktonic bacteria,
animal model

Triple-combination therapy for periodontitis
enabled through antioxidant, mitochondrial

maintenance, and immunomodulation

Li et al. (2024d)

Peri-implantitis PTT TiO2 (Si/P/F) multi-doped porous TiO2 matrix 808 nm, 0.6 W cm-2,
5 min

S. aureus Planktonic bacteria,
biofilms, animal model

Endowing dental implants with superior
bactericidal ability, accelerated epithelial sealing
and osseointegration, and reduced alveolar

resorption

Xue et al. (2023)

PTT ICG — 810 nm, 0.67 W cm-2,
Not mentioned

S. gordonii In vitro biofilms First evaluation of the antimicrobial effect of PTT
on zirconia surfaces

Shim et al. (2022)

PTT, PDT ICG and rapamycin encapsulated within
liposomes

808 nm, 1.5 W cm-2,
5 min

S. aureus, S. oralis Planktonic bacteria,
biofilms, animal model

Increases bacterial motility by elevating
intracellular ATP, inhibits bacterial adhesion and

biofilm formation, thus preventing disease
recurrence

Xiao et al. (2024)

PTT GO Reduced GO (rGO) 940 nm, 4 W cm-2,
2 min

S. mutans, P.
gingivalis

Planktonic bacteria Zirconia coated with rGO via atmospheric
plasma to eliminate implant surface plaque

Park et al. (2023)

(Continued on following page)
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TABLE 1 (Continued) Summaries of photothermal therapy (PTT) for oral infectious diseases. This section comprehensively summarizes the details of recent research reported in the literature, emphasizing the
functionalization of photothermal agents (PTAs), their therapeutic highlights, and the underlying design concepts and mechanisms.

Disease
type

Therapy
model

Photothermal
agents

Functionalization Exposure
condition

Bacterial
species

Research phase Therapeutic highlights Ref.

PTT PDA — 808 nm, 1 W cm-2,
5 min

S. aureus Planktonic bacteria, In
vitro 3D peri-implantitis

model

First report of collateral thermal damage to
tissues overlying an implant surface coated with

photothermal NPs

Ren et al. (2020)

PTT Simvastatin-loaded ZIF-8 nanoparticles
coated with PDA and subsequently
incorporated into a Chitosan (CS)/β-
glycerophosphate (β-GP) system

808 nm, 0.5 W cm-2,
10 min

S. aureus, P.
gingivalis

Planktonic bacteria,
biofilms, animal model

Demonstrated attenuation of infection and
inflammation in peri-implantitis lesions

Liu et al. (2025)

PTT, PDT Ce6-loaded ZIF-8 nanoparticles coated with
PDA/UBI

660 nm, 1.3 W cm-2,
5 min

S. aureus, E. coli Planktonic bacteria,
biofilms, animal model

Precise targeting of bacteria and enhanced oral
biofilm penetration

Wang et al.
(2025)

Infectious bone
defect

PTT MXene MXene (Ti3C2) incorporated into a 3D
bioprinted composite hydrogel scaffold

composed of GelMA, β-TCP, and Sodium
alginate (Sr2+)

808 nm, 1.5 W cm-2,
5 min

S. aureus, E. coli Planktonic bacteria,
animal model

Personalized bone tissue engineering scaffolds
exhibiting synergistic antibacterial and

osteogenic effects

Nie et al. (2022)

PTT MgMps MgMps combined with PLLA to form a
lamellar heterostructured Mg/PLLA

composite membrane via accumulative
rolling

808 nm, 0.7 W cm-2,
1 min

E. coli, S. aureus Planktonic bacteria,
animal model

Programmed degradation to release Mg2+,
antibacterial efficacy and endogenous
vascularized bone regeneration ability

Wang et al.
(2023d)

Candida
infections

PTT MPN-Pd Metal-phenolic networks with Pd
nanoparticle nodes (MPN-Pd)

808 nm, 1 W cm-2,
45 min

C. albicans Planktonic bacteria,
biofilms, animal model

Demonstrated PTT’s potential against oral
fungus infection

Chen et al.
(2023a)

Abbreviation. 3D, three-dimensional; ATP, adenosine-triphosphate; ATRP, atom transfer radical polymerization; AuNPs, gold nanoparticles; AuNRs, gold nanorods; BMP-2, bone morphogenetic protein-2; BP, black phosphorus; C. albicans, Candida albicans; CDT,

chemical dynamic therapy; E. coli, Escherichia coli; E. faecalis: Enterococcus faecalis; EPL: epsilon-polylysine; F. nucleatum: Fusobacterium nucleatum; GelMA, gelatin methacrylate; GNC, gold nanocages; GO, graphene oxide; ICG, indocyanine green; MgMps, Mg

microparticles; MPB, mesoporous Prussian blue; MPN, metal-phenolic networks; MRSA, Methicillin-resistant Staphylococcus aureus; NIR, near-infrared; NPs, nanoparticles; NSs: nanosheets; P. gingivalis: Porphyromonas gingivalis; PB, prussian blue; PCM, phase-

change materials; PCT, peroxidase-like catalytic therapy; PDA, polydopamine; PDT, photodynamic therapy; PEG, polyethylene glycol; PLLA, polylactic acid; PLGA, poly lactic acid-co-glycolic acid; PTT, photothermal therapy; rGO, reduced graphene oxide; RNS,

reactive nitrogen species; ROS: reactive oxygen species; S. aureus, Staphylococcus aureus; S. gordonii: Streptococcus gordonii; S. mutans, Streptococcus mutans; SNP, sodium nitroprusside; S. oralis, Streptococcus oralis; S. sanguinis, Streptococcus sanguinis; S. sobrinus,

Streptococcus sobrinus; SRP, scaling and root planning; TC, tetracycline; UBI, ubiquicidine; ZIF, zinc imidazolate framework.
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microenvironment through biofilm formation and acid production
on tooth surfaces, pH-responsive targeting strategies have been
developed for PTAs (Xu H. et al., 2022; Yu et al., 2022). A
photothermal antibacterial “warm paste” was fabricated by
loading Ag onto the surface of Fe3O4 nanoparticles by
polydopamine (PDA) reduction, followed by a second PDA
coating and subsequent grafting with glycol chitosan. Under
normal physiological conditions, the PDA layer inhibits the
excessive release of Ag+ and reduces its damage to normal
tissues. However, within a cariogenic acidic environment, the
protonation of amine groups on glycol chitosan leads to a
positive charge on the nanoparticles, which enhances their strong
adhesion to negatively charged cariogenic bacteria at the intended
site. When irradiated by NIR, the increased temperature promotes
Ag + release, leading to a high local concentration in the cavitated
dental tissue. This thereby achieves effective targeted antimicrobial
action through an Ag-assisted PTT strategy (Figure 3A) (XuH. et al.,
2022). Other pH-responsive agents tailored for acidic oral niches
include zinc imidazolate framework-8 (ZIF-8) and Poly (ethylene
glycol) (PEG) etc (Yu et al., 2022; Pan et al., 2025). The positive
charge of some modified PTAs like amino-functionalized graphene
oxide (GO) ensures their strong interaction with the negatively
charged bacterial cells, which can also be helpful for the target of
cariogenic bacteria (Lu et al., 2021). This precision is particularly
advantageous in the complex and delicate environment of the oral
cavity, where preserving tooth structure and minimizing collateral
damage is critical. Furthermore, PTT’s ability to generate heat at
specific depths reduces the production of exopolysaccharides—the
main component endowing biofilm architecture and stability (Yao
W. et al., 2025). This mechanism aids in the disintegration of
biofilms and ensures effective penetration, addressing a major
limitation of traditional antimicrobial therapies. Emerging studies
have also highlighted the potential of PTT to synergize with other
therapeutic modalities (Xu X. et al., 2022; Li et al., 2024c). One key
feature of PTT, its efficient thermal generation at desired locations,
can enhance combination therapies in various ways. For instance,
PTT can be combined with photodynamic therapy (PDT) or
antimicrobial agents, where the photothermal effect promotes the
controlled release of these agents (Xu H. et al., 2022; Pan et al., 2025)
or enables on-demand modality switching between PTT and PDT
(Zhang Y. et al., 2024), thereby boosting their efficacy in eradicating
biofilms. An adaptive supramolecular nanoformulation (ZnPcS4@
GC5AF5, GFZ) switchable from PTT to PDT under the trigger of
adenosine triphosphate (ATP) was reported. The activation of the
photothermal properties of GFZ through visible irradiation led to
bacterial cell membrane rupture and intracellular ATP release.
Subsequently, ATP reduced the photothermal activity (low state)
and restored the photodynamic activity (ON state). A large number
of reactive oxygen species (ROS)were generated while avoiding high
local temperatures, which not only resulted in eradicating
pathogenic bacteria biofilms but also minimized heat damage to
normal pulp tissues (Figure 3B) (Zhang Y. et al., 2024).

Despite these promising advances, several challenges remain in
translating PTT into clinical practice for caries treatment. Key issues
include optimizing the parameters of light irradiation (e.g.,
wavelength, intensity, and duration) to achieve effective biofilm
eradication without causing thermal damage to oral tissues.
Additionally, PTAs’ long-term safety and biocompatibility must

be rigorously evaluated to confirm their suitability in the oral
cavity. The prevention and management of dental caries
represent a protracted process, so further research is also needed
to investigate the potential of PTT in preventing caries’ recurrence
and addressing the complex microbial ecology of dental biofilms.
Developing composite materials capable of inhibiting the
proliferation of cariogenic bacteria and facilitating the
remineralization of early-stage demineralized dental tissues
constitutes a promising research trajectory for the future (Zhu
et al., 2022). In conclusion, PTT represents a groundbreaking
approach to combating dental caries, offering a combination of
precision, efficacy, and minimal invasiveness that addresses the
limitations of current therapies. As research in this field
continues to advance, PTT holds the potential to revolutionize
the prevention and treatment of dental caries, ultimately
improving oral health outcomes and alleviating the global burden
of this pervasive disease.

3 PTT for endodontics

The dental pulp comprises sterile connective tissue and is
protected by the surrounding enamel, dentin, and cementum
(Pohl et al., 2024). Exposure resulting from factors including
trauma, dental caries, or tooth wear can precipitate endodontics,
characterized by symptoms such as pain, sinus tracts, and swelling
(Karamifar et al., 2020). The elimination of bacteria and their
biofilms assumes a pivotal role in the treatment of endodontics
(Neelakantan et al., 2017). In clinical practices, root canal therapy
(RCT) represents a commonly employed approach for removing
microorganisms that instigate or exacerbate this ailment (Burns
et al., 2022; Huang et al., 2024). Although biomechanical root canal
preparation and chemical sterilization of irrigants could effectively
eradicate the microbes, achieving thorough debridement and
eradicating tenacious infections persist as formidable challenges
in root canal treatment (Moradi Eslami et al., 2019).
Additionally, High concentrations of chemical irrigants may
cause serious damage by irritating periodontal soft and periapical
tissues (Xu H. et al., 2022). Enterococcus faecalis (E. faecalis) is a key
bacterial species frequently isolated from root canals afflicted with
refractory endodontic infections, contributing to 20%–70% of RCT
failures (Manoil et al., 2023). This is attributed to its capacity to form
biofilms which can adapt to external alterations as an integrated
entity (Pourhajibagher et al., 2018; Cao et al., 2021). Consequently,
various studies aim to explore novel materials, encompassing
irrigants and intracanal dressings, to eliminate E. faecalis in the
biofilm phase (Aksoy et al., 2020; Cao et al., 2021; Duan et al., 2022;
Galdámez-Falla et al., 2022; Feng et al., 2024). During PTT,
hyperthermia aids in biofilm disintegration and induces bacterial
demise (Mei et al., 2023; Zhou et al., 2024). Crucially, it remains
confined within the root canal, as tooth hard tissues impede the
complete transfer of heat to the periodontal tissues, thereby reducing
potential damage to these tissues (Duan et al., 2022). Studies have
demonstrated that PTT exhibits remarkable efficacy against E.
faecalis and its biofilms without compromising dentin strength,
supporting its potential as a prospective antibacterial therapy during
RCT (Castillo-Martínez et al., 2015; Khantamat et al., 2015;
Bermúdez-Jiménez et al., 2020; Galdámez-Falla et al., 2022).
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The thermal generation of PTT not only directly inhibits E.
faecalis and its biofilms, but can also be combined with root canal
conventional irrigants, such as sodium hypochlorite (NaClO) and
hydrogen peroxide (H2O2), to augment the overall efficacy of root
canal disinfection. Cao et al. (2021) constructed Au@Cu2-xS NPs
by integrating Cu2-xS with peroxidase-like activity and Au NPs
with photothermal effect to augment the capacity to eliminate
biofilms. It not only exhibits strong photothermal activity but also
catalyzes H2O2 to generate hydroxyl radicals (·OH), which are
more effective for biofilm degradation. Mechanistic studies
demonstrated that the treatment effectively degrades proteins
and polysaccharides—the primary components of biofilm EPS.
The synergistic strategy combining PTT and peroxidase-like
catalytic treatment with H2O2 holds significant potential for

eradicating bacteria and biofilms within root canals (Figure 4A).
Heating 1% NaClO—another irrigant extensively used
clinically—within the root canal during PTT also significantly
enhances its antibacterial efficacy (Abou-Rass and Oglesby,
1981; Tosić et al., 2016). A temperature increase of <10 °C on
the external root surface achieved 99.7% antimicrobial efficacy
against E. faecalis using heated 1% NaClO solution (Figure 4B)
(Duan et al., 2022). Additionally, scanning electron microscopy
(SEM) reveals that the teeth treated in the experimental group
exhibit regular exposure of dentinal tubules. Conversely, the
dentin in the control groups exhibited a rough surface,
characterized by a profusion of bacteria and smear layers, with
the majority of dentinal tubules remaining occluded (Figure 4C)
(Duan et al., 2022). These studies manifested the potential of safely

FIGURE 3
Photothermal therapy (PTT) for dental caries. (A) Schematic illustration depicting a removable photothermal antibacterial “warm paste” designed to
target cariogenic bacteria. Reproduced with permission (Xu H. et al., 2022). Copyright 2021, Elsevier Group. (B) Schematic illustration of effective biofilm
removal using a supramolecular nanoformulation featuring adaptive photothermal/photodynamic conversion. Reproduced with permission (Zhang Y.
et al., 2024). Copyright 2024, American Chemical Society.
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and efficaciously improve the RCT outcome by heating
the irrigants.

Current research on PTT for endodontic diseases focuses
primarily on its antibacterial role as an adjunct to root canal
therapy, predominantly targeting E. faecalis. As effective
treatments for refractory and recurrent root canal infections
remain lacking, PTT offers a promising therapeutic approach.
Nevertheless, the tooth root canal is complex and contains many
small branching canals. The root canal biofilm is a very complex,
organized entity (Neelakantan et al., 2017). Single-rooted
mandibular premolar models and monospecies biofilms used
in previous studies may oversimplify the root canals and the
ecological phenomenon of biofilms. They may not truly reflect
the results achievable in the clinical scenario. After the
photothermal material is injected into the root canal and
exerts its function, the challenge of effectively removing it
without impeding subsequent root canal filling represents
major hurdle confronting research in this field.

4 PTT for periodontitis

Among all oral infectious diseases, the PTT for periodontitis has
garnered the most extensive attention. Periodontitis represents a
chronic inflammatory disorder instigated by bacteria (Kwon et al.,
2021). The establishment of pathogenic bacteria within subgingival
dental plaque provokes the host immune response, resulting in the
generation of a significant amount of ROS and subsequent oxidative
stress (Sczepanik et al., 2020; Kwon et al., 2021; Iniesta et al., 2023).
Consequently, this process leads to the degradation of tooth-
supporting tissues, eventually resulting in the development of
periodontal pockets, alveolar bone resorption, and subsequent
tooth loosening (Kuboniwa et al., 2017; Tóthová and Celec, 2017;
Heitz-Mayfield, 2024). Currently, in clinical practice, mechanical
debridement and antibiotics are commonly employed (Mombelli,
2018; Cobb and Sottosanti, 2021). Nevertheless, in most cases,
mechanical debridement proves arduous to comprehensively
eliminate periodontitis infections within deep-seated periodontal

FIGURE 4
Photothermal therapy (PTT) for endodontics. (A) Schematic illustration of Au@Cu2-xS nanoparticles with NIR photothermal and peroxidase (POD)
catalytic activities for antibiofilm-oriented root canal therapy. Reproduced with permission (Cao et al., 2021). Copyright 2021, Elsevier Group. (B)
Schematic diagram illustrating the heating of a 1% NaClO solution under 808 nm laser irradiation in the presence of PBDT-DIID nanoparticles to enhance
intracanal sterilization. (C) Representative SEM images of the middle of the sample tooth in different groups. Reproduced with permission (Duan
et al., 2022). Copyright 2022, John Wiley and Sons Group.
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pockets, furcation, and irregular root surface regions (Umeda et al.,
2004). Additionally, the protracted administration of antibiotics
engenders numerous issues, such as the development of drug-
resistant bacteria, bacillary dysentery, and gastrointestinal
disorders (Rams et al., 2020). Beyond bacterial factors, biofilm-
induced immune dysregulation constitutes another major
contributor to impaired bacterial clearance and disease
persistence in periodontitis. Consequently, periodontitis
treatment represents a key research focus in dentistry, with
current strategies targeting not only antibacterial action but also
anti-inflammatory effects and periodontal regeneration (Kong et al.,
2023; Wang F. et al., 2023; Li T. et al., 2024; Li Z. et al., 2024; Yang
et al., 2025). PTT offers distinct advantages for periodontitis
treatment, as it not only enables efficient and safe bacterial
elimination but also promotes cell proliferation, angiogenesis,
wound healing, and bone regeneration—key factors in
periodontal recovery (Zhang et al., 2021). More significantly, it
can be integrated with PDT, chemical dynamic therapy (CDT),
antibacterial agents, and bioactive materials to construct a material
system featuring multi-functional synergy in antibacterial, anti-
inflammatory, and tissue-regeneration functions (Shi et al., 2021;
Bai et al., 2022;Wang H. et al., 2023; Lin et al., 2024;Wu et al., 2025).

Unlike dental caries or endodontic treatments—which involve
heat-tolerant hard tissues—periodontitis affects the thermally
sensitive periodontium. Combination therapy—a well-established
paradigm in antimicrobial treatment—enhances therapeutic efficacy
by integrating distinct therapeutic mechanisms beyond the
capabilities of individual monotherapies (Wang N. et al., 2022).
This approach enables superior outcomes at reduced thermal
dosages. Mild hyperthermia (<45 °C) enhances the bactericidal
efficacy of antibiotics by inhibiting enzyme activity, while
preserving surrounding tissue integrity. tissues (Gao et al., 2019).
The synergy between PTT and antibiotics such as tetracycline (TC)
(Zhang et al., 2020) and minocycline (Lin et al., 2020; Wang X. et al.,
2023) represents a strategic approach for an efficacious periodontal
antibacterial therapy. To enhance drug delivery efficiency and curtail
systemic harm, drug delivery systems (DDS) are frequently utilized
to administer antibiotics (Lin et al., 2020; Zhang et al., 2020; Shi
et al., 2021). Hydrogels, widely employed in DDS, can conform to
the irregular morphology of periodontal pockets and enhance the
retention rate of the released drugs at the local infection site. The
heat of PTT can stimulate and trigger the controlled release of drugs
within the DDS, thereby achieving synergistic sterilization through
the combined action of antibiotics and photothermal effects (Lin
et al., 2020; Zhang et al., 2020). Beyond antibiotics, PTT could
synergize with alternative antibacterial strategies—including Ag+

(Wang F. et al., 2023),. PDT (Bai et al., 2022; Gao et al., 2023;
Wu et al., 2023), CDT (Chen Q. et al., 2023; Dai et al., 2023; Lin et al.,
2024), and gas therapy (Dai et al., 2023; Li Z. et al., 2024)—to
enhance periodontal biofilm eradication. The synergistic integration
of PDT and PTT, activated by a single 808 nm NIR source, amplifies
antibacterial efficacy while reducing both drug dosage and laser
energy requirements (Qi et al., 2022). This dual-modal approach
enhances bacterial elimination beyond monotherapies: PTT-
induced hyperthermia disrupts membrane integrity, facilitating
deeper penetration of ROS generated through PDT to inflict
lethal oxidative damage (Wang R. et al., 2022; Wu et al., 2023).
Highly toxic ·OH generated by CDT exhibits potent destructive

effects on bacterial biofilms and cell membranes, demonstrating
significant efficacy against bacterial infections (Guo et al., 2020).
Notably, these ·OH radicals critically deplete ATP levels, inhibiting
heat shock proteins and reducing bacterial heat resistance (Chen
et al., 2020; Wang F. et al., 2023). This thereby enhances the
efficiency of PTT, highlighting a promising single-material
solution for concurrent CDT and PTT. Gas therapy represents a
novel, promising strategy for targeting deep infections in
periodontal tissues. Nitric oxide (NO) has demonstrated
outstanding antimicrobial efficacy and the ability to combat
resistance linked to bacterial biofilms (Li Z. et al., 2024). It could
increase the sensitivity of the bacteria to heat and promote tissue
healing by stimulating angiogenesis and alleviating the damage
caused by periodontitis (Yuan et al., 2020; Dai et al., 2023).
When combined with PTT, this approach demonstrates
significant synergistic efficacy in the treatment of periodontitis
(Dai et al., 2023; Li T. et al., 2024).

Bacterial infection might be the primary cause of inflammation’s
initial stages, but the host’s immune inflammatory response is
responsible for promoting periodontitis (Hajishengallis, 2014). To
treat periodontitis thoroughly, regulating host immunity is also
crucial in addition to clearing the biofilm in the disease area (Qi
et al., 2022; Wang N. et al., 2022; Chen Q. et al., 2023).
Proanthocyanidins (PCs), a class of natural phenolic compounds,
demonstrate efficacy in impeding the elevation of ROS inhibiting
inflammatory factors, and regulating macrophage polarisation in
periodontal disease sites (Gil-Cardoso et al., 2019; Kim et al., 2019;
Wang H. et al., 2022; Zhang et al., 2023). A nanocomposite named
AuAg-PC NPs was synthesized with PCs as a reducing agent.
Biofilms can be eradicated through Ag+-synergistic PTT, whereas
PCs demonstrate the capacity to eliminate ROS and modulate tissue
self-healing via the PI3K/Akt signaling pathway. Hence, the
nanocomposites can eradicate periodontal pathogens and restore
the immune regulation environment (Figure 5A) (Wang F. et al.,
2023). Additionally, baicalein (BA) (Tian et al., 2022), nitric oxide
(NO) (Qi et al., 2022), PB nanozymes (Wang P. et al., 2023; Li Z.
et al., 2024), ceria (CeO2) (Li T. et al., 2024), rapamycin Xiao et al.,
2024) and dimethyl fumarate (DMF) (Li T. et al., 2024) have been
employed to modulate the detrimental innate inflammatory
responses triggered during persistent infections. Considering that
the destruction of periodontal soft tissues and the resorption of
alveolar bone induced by periodontitis are irreversible processes,
periodontal tissue regeneration is crucial for treating periodontitis
(Yao H. et al., 2025). Although PTT can promote osteogenesis,
monotherapies are often insufficient to elicit an adequate
therapeutic response—and PTT is no exception. Recently, tissue
engineering has proffered new prospects for repairing periodontal
tissue defects in patients with periodontitis (Hussain et al., 2022;
Wang P. et al., 2023). A thermosensitive and injectable hydrogel
with a three-dimensional (3D) network architecture was employed
as a delivery system for the controlled release of osteoinductive
agents (BMP-2) and phototherapy agents (T8IC and H2O2). PTT
combined with PDT exhibited excellent bactericidal effects while
sustained release of BMP-2 and mild temperature (45 °C) induced
osteogenesis (Figure 5B) (Wang P. et al., 2023). An appropriate
concentration of Cu2+ promotes the proliferation and osteogenic
differentiation of bone marrow mesenchymal stem cells (BMSCs)
(Burghardt et al., 2015). Nanomaterials such as copper sulfide (CuS)
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nanoparticles leverage this biological activity while exhibiting strong
NIR absorption and exceptional PCE, enabling their use as potent
PTAs (Yang et al., 2025). This dual functionality facilitates
simultaneous spatiotemporal antibacterial action and alveolar
bone regeneration.

Notable progress has been achieved in the research on PTT for
periodontitis. The research spans three key aspects: antibacterial,
anti-inflammatory, and tissue-regeneration. Each function can
synergize with the others, yielding favorable outcomes.
However, we have not yet seen a multifunctional material or
system integrating all of them, and the development of triple-
functional materials or systems represents a future research

trajectory. Although current photothermal conversion materials,
such as gold nanorods, exhibit excellent biocompatibility, their
long-term retention in the body may hinder periodontal tissue
regeneration and affect overall health. Future research should
focus on developing photothermal materials that can be
metabolized and cleared by the body to avoid potential adverse
effects. Additionally, previous studies predominantly utilize near-
infrared region I (NIR-I, 650–1000 nm) lasers; near-infrared
region II (NIR-II, 1000–1700 nm) which offers deeper tissue
penetration into the periodontal pocket and improved precision
in targeting periodontal lesions is a promising direction for future
research (Luo et al., 2025).

FIGURE 5
Photothermal therapy (PTT) for periodontitis. (A) Schematic illustration depicting the synthesis principle and therapeutic mechanism of AuAg-PC
nanoparticles in treating periodontitis. Reproduced with permission (Wang F. et al., 2023). Copyright 2023, Royal Society of Chemistry. (B) Schematic
illustration of thermosensitive and injectable hydrogel with T8IC, H2O2, and bone morphogenetic protein-2 (BMP-2). Reproduced under Creative
Commons CC BY license (Wang P. et al., 2023). Copyright 2023, The Author(s), Published by Springer Nature Group.
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5 PTT for peri-implantitis

Peri-implantitis constitutes a pathological condition associated
with dental plaque that occurs in the tissues surrounding dental
implants (Giok et al., 2024). The hallmark of this condition includes
inflammation of the peri-implant mucosa and concomitant
supporting bone loss (Berglundh et al., 2018; Schwarz et al.,
2018). Inflammatory manifestations, bleeding or hyperemia upon
probing, an augmentation in probing depth, and radiographic
indications of bone resorption constitute the typical clinical
features of peri-implantitis (Diaz et al., 2022). Unlike natural
teeth, implants lack a periodontal ligament to separate the
inflammatory cell infiltrate from the crestal bone (Carcuac et al.,
2013). Therefore, peri-implantitis progresses faster than
periodontitis around teeth. In the absence of effective
intervention, the inflammatory process progressively damages
osseointegration and ultimately causing implant mobility and loss
(Daubert et al., 2015; Derks et al., 2016). Furthermore, the peri-
implant microbiome and biofilm composition differ from those
around natural teeth, making peri-implantitis management more
challenging and less predictable than periodontitis treatment
(Koyanagi et al., 2013; Wu L. et al., 2019). Clinically, the
management of peri-implantitis bears resemblance to that of
periodontitis, predominantly relying on the mechanical
elimination of biofilms and the administration of antibiotics
(Giok et al., 2024). However, due to the inaccessibility of infected
implant surfaces and the potential for mechanical debridement to
damage implant topography, effective biofilm eradication and re-
osseointegration remain clinically challenging (Wang et al., 2020;
Munakata et al., 2022; Ichioka et al., 2023). Therefore, preventing
peri-implantitis is clinically paramount—significantly more critical
than treatment.

The development of peri-implantitis begins with planktonic
bacterial adhesion to implant surfaces (Osman et al., 2022).
While titanium alloys and zirconia are common dental implant
materials, neither exhibits inherent antibacterial activity (Pieralli
et al., 2017; W. Nicholson, 2020; Chen et al., 2021). Consequently,
enhancing the antimicrobial functionality of implants is critical to
mitigate peri-implantitis. Surface modifications can profoundly alter
the micro/nanotopography and chemical composition of titanium
implants, enhancing hydrophilicity, mechanical stability,
osseointegration capacity, and antibacterial efficacy (Sun et al.,
2023; Gkioka and Rausch-Fan, 2024; Yu Y. M. et al., 2024).
When irradiated with NIR light, dental implants coated with
graphene oxide (GO) (Park et al., 2023) or PDA nanoparticles
(Ren et al., 2020) demonstrate reduced adhesion of S. mutans
and Porphyromonas gingivalis (P. gingivalis). Despite their
antibacterial efficacy, photothermal coatings risk collateral tissue
damage through heat dissipation near infection sites, potentially
compromising healthy peri-implant tissue integration (Werner
et al., 2009). Ren et al. (2020) devised a model wherein
keratinocytes were cultured on a membrane filter within a
transwell system while fibroblasts adhered to a titanium surface
beneath the membrane. This model could be used to investigate the
previously uninvestigated risk of collateral tissue damage from
photothermal coatings on implant surfaces (Figure 6A). The use
of novel biomaterials represents another strategy. Similar to
periodontal therapy, this approach targets bacterial elimination

and reduces inflammatory responses through immunoregulation
(Xue et al., 2023; Liu et al., 2025). A critical distinction, however, is
the requirement for a firm biological seal between the abutment and
the gingival epithelium (Mahmoud et al., 2019). This seal is essential
to prevent bacterial invasion and subsequent marginal bone loss
(Fischer et al., 2022). Additionally, dental implants must achieve
osseointegration with alveolar bone post-implantation (Chen et al.,
2024). Xue et al. (2023) proposed a multipurpose photothermal
strategy that uses Si/P/F-doped TiO2 to address these challenges
through dual functionality: exhibiting strong photothermal response
and NIR-triggered F− release. The resulting hyperthermia-F- synergy
disrupts Staphylococcus aureus (S. aureus) by reducing ATP
synthesis, increasing membrane permeability, and generating
ROS that oxidize cellular components to cause bacterial death.
Concurrently, mild hyperthermia with released ions enhances
gingival epithelial hemidesmosome formation and osteoblast
activity. Another critical distinction in the field of peri-
implantitis is the complexity of establishing animal models.
Several in vivo studies of dental peri-implantitis have employed
mouse femoral peri-implantitis models (Xiao et al., 2024; Wang
et al., 2025); however, these models fail to accurately replicate the
clinical condition of dental peri-implantitis within the alveolar bone
(Zhang J. et al., 2024). The “ligature model” in alveolar bone mimics
naturally occurring peri-implantitis and is suitable for studying the
disease (Carcuac et al., 2013). The optimal timing for implant
placement in mouse alveolar bone to establish a murine peri-
implantitis model remains a contentious issue due to the limited
understanding of the anatomical structure and physiological state of
the alveolar bone after implant placement (Tzach-Nahman et al.,
2017; Wong et al., 2018). Micro-CT and histological sectioning
techniques suggested 6 weeks after the extraction of the maxillary
first molar might be the appropriate time for implant placement
(Figure 6B) (Liu et al., 2025). This finding offers significant data
supporting the development of the murine peri-implantitis model.

Given the escalating prevalence of dental implants in dental
prosthodontics clinical practice, it is anticipated that peri-implantitis
will garner increasing attention. As a non-invasive and non-
antibiotic-resistant antibacterial strategy, PTT holds great
promise in preventing and treating peri-implantitis. Notably,
when integrated with bone regeneration strategies, it can
substantially promote the osseointegration process while
preventing postoperative infection and enhancing the success rate
of implant surgery. The current research bottleneck lies in
determining how to minimize or eliminate collateral
photothermal damage to healthy tissue cells in the peri-implant
region while effectively eradicating bacteria through photothermal
action. With the establishment of suitable animal models, future
research in this field will accelerate, leading to significant advances.

6 PTT for other oral infectious diseases

Infectious bone defects (IBD) collectively refer to a class of
diseases characterized by tenacious infection, persistent
inflammation, bone destruction, impaired blood supply, and a
protracted course of diseases, making them particularly
challenging to manage (Han et al., 2024). It can be caused by jaw
osteomyelitis, trauma, postoperative infection of tumors, etc
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(Dong et al., 2017). Clinical treatment strategies typically encompass
antibiotic administration, excision of necrotic bone fragments,
debridement procedures, and transplantation of bone grafts
(Qian et al., 2023; Han et al., 2024). Nevertheless, antimicrobial
overuse drives the evolution of drug-resistant strains (Hu et al.,
2024). Moreover, requiring bone graft implantation post-infection
eradication significantly prolongs treatment duration. Therefore,
developing biomaterials that simultaneously deliver antibacterial
functionality and personalized osteogenic capabilities is
imperative. The photothermal effect delivers dual benefits:
conferring antibacterial activity while using moderate local
heating to upregulate key genes (e.g., osteogenesis-related genes)
that promote tissue regeneration (Avci et al., 2013; Ma et al., 2020).
Wang W. et al. (2023) developed a lamellar heterostructured Mg/
PLLA composite periosteum membrane via an accumulative rolling
method for application at bone defect sites. A consistent supply of
Mg2+ activates key extracellular matrix proteins and transcription
factors implicated in bone regeneration and angiogenesis. The
photothermal effect of Mg microparticles can eliminate bacteria
while further enhancing bone marrow-derived mesenchymal
stromal cells (BMSCs) differentiation. Although overheating risks
inducing apoptosis in both bacteria and healthy cells, longitudinal
analysis revealed converging cell densities between composite
membrane treated and control groups over time. This
demonstrates that strategically controlled PTT ultimately favors
tissue repair over thermal damage. Consequently, the PTT-

enhanced composite periosteum achieved on-demand
antibacterial efficacy and exceptional endogenous vascularized
bone regeneration (Figure 7A). Beyond artificial periosteum,
research has extended to 3D-printed hydrogels for tissue
regeneration (Nie et al., 2022). These studies indicate that the
application of PTT in the field of biomedical engineering holds
great promise.

Beyond its efficacy against oral bacterial infections, PTT has
demonstrated effectiveness against other microbial infections,
including fungal infections. Candida albicans (C. albicans) is a
primary etiological agent for most nosocomial infections affecting
immunocompromised patients, and emerging multidrug resistance
has made it an urgent threat (Arendrup and Patterson, 2017).
Oropharyngeal candidiasis represents a form of oral candidal
infection with a higher prevalence in individuals with conditions
such as diabetes mellitus, immunodeficiency, and xerostomia
(Stoopler et al., 2024). Similarly, it is associated with C. albicans
biofilms on the oral mucosa. The intrinsic resistance of biofilms to
antifungal agents has augmented the challenges associated with
effective antifungal treatment. Chen et al. (2023a) developed a
metal-phenolic network with Pd nanoparticle nodes (MPN-Pd)
and found that C. albicans is more sensitive to hyperthermia
than bacteria like E. faecalis and S. mutans which might be
attributed to the fungal membrane containing
dipalmitoylphosphatidylcholine phospholipid molecules that are
more sensitive to temperature. The histological evaluation of

FIGURE 6
Photothermal therapy (PTT) for peri-implantitis. (A) Schematic illustration demonstrating photothermal bacterial killing in a 3D tissue model and
surface coverage of human gingival fibroblasts (HGFs) and the eradication of Staphylococcus aureus (S. aureus) upon NIR irradiation of PDA nanoparticle
coated titanium surfaces in monocultures. Samples were immersed in varying volumes of DMEM-HGmedium (for HGFs) and PBS (for staphylococci), as
illustrated in the schematics. The dotted lines demarcate NIR irradiation times considered acceptable for preserving tissue integration (>40% cell
surface coverage; red data) and ensuring significant bacterial killing (>99.9%; blue data). The gray shading indicates the range of acceptable irradiation
times that satisfy both criteria. Reproduced under Creative Commons CC BY-NC-ND 4.0 license (Ren et al., 2020). Copyright 2020, American Chemical
Society. (B) Schematic diagram, Micro-CT, Hematoxylin-Eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining of in vivomodeling of
peri-implantitis in mice. Reproduced with permission (Liu et al., 2025). Copyright 2025, Elsevier Group.
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mouse oral candida infection model indicates that the PTT is
effective in the therapeutic goal of treating oropharyngeal
candidiasis by eradicating C. albicans in the oral cavity, while
showing no sign of collateral damage (Figure 7B). However, the
current research on the antifungal application of PTT remains in its
nascent stages, with limited experimental and clinical data currently
available. Viral infections cause oral infectious like herpetic
stomatitis. Theoretically, PTT also has the potential to be used
for antiviral therapy, as viral structures and proteins are also prone
to denaturation and inactivation at high temperatures (Bai et al.,
2023; Li B. et al., 2024). Given PTT’s remarkable antibacterial

prowess and compatibility with other treatment modalities or
bioactive materials, it is expected to be used to treat a broader
spectrum of oral infections.

7 Summary and outlook

PTT heralds a paradigm shift in the prophylaxis and therapeutic
strategies for oral infections. It proffers an efficacious, precise, and
minimally invasive alternative to antibiotics. By capitalizing on the
potency of light and heat, PTT surmounts the limitations inherent in

FIGURE 7
PTT for infectious bone defect and candida infection. (A) Schematic illustration of the self-reinforced Mg/PLLA composite membrane with lamellar
heterostructure working as a periosteum for on-demand bacteria inhibition and rapid bone reconstruction. Reproduced with permission (Wang F. et al.,
2023). Copyright 2022, John Wiley and Sons Group. (B) MPN-Pd-mediated system for the treatment of oral candidiasis. (a) Workflow of the in vivo
experiment. (b) Digital images of oral candidiasis models under different treatments. (c) Quantitative analysis of the pseudomembrane area. (d)
Viability of Candida albicans (C. albicans) evaluation. Reproduced with permission (Chen et al., 2023a). Copyright 2023, John Wiley and Sons Group.
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extant therapies, such as the burgeoning issue of antibiotic resistance
and the propensity for tissue damage. Simultaneously, it furnishes a
platform conducive to innovative and multifarious applications. As
research within this domain continues to burgeon, PTT offers
significant potential to revolutionize the management of oral
infections charting a course towards more efficacious and
sustainable solutions in oral healthcare. Critically, PTT
demonstrates not only potent antibacterial efficacy but also
significant potential for promoting tissue regeneration. Its
compatibility with other therapeutic modalities enables
synergistic treatment outcomes—particularly valuable for
managing periodontitis and infectious bone defects where
restoring biological function extends beyond mere
antibacterial control.

Despite its considerable potential, PTT’s clinical translation
markedly lags behind that of its counterpart, PDT, with scarce
clinical trials, and a range of challenges must be surmounted to fully
actualize its clinical implementation for treating oral infections. The
dual objectives of potent bactericidal effects and minimal collateral
tissue damage pose an inherent trade-off, which may be addressed by
improving targeting specificity. This underscores the need for advanced
intelligent drug delivery systems and highly precise laser irradiation
with deep-tissue penetration capability. Furthermore, combining PTT
with adjuvant therapies to enhance bacterial photosensitization offers
an alternative viable approach. Moreover, long-term biocompatibility
and safety of PTAs necessitate comprehensive assessment to attenuate
potential risks, such as tissue inflammation or systemic toxicity. The
clinical translation of PTAs hinges on their long-term biosafety and
effective clearance to mitigate the toxicity risk from bioaccumulation.
To address this, key strategies focus on either biodegradability or renal
clearance. For metallic PTAs like gold, which are poorly biodegradable,
engineering ultrasmall, renally-clearable (<5 nm) nanoparticles offers a
promising solution (Hwang et al., 2014; Tang et al., 2014). Alternatively,
designing for biodegradability is a major focus. This includes inherently
biodegradable inorganic materials like black phosphorus, which
degrades into harmless phosphates, and carbon-based materials (e.g.,
GO) that can be broken down by enzymes (Lalwani et al., 2014).
Organic materials often show superior biocompatibility; the FDA-
approved dye indocyanine green (ICG) provides a clinical
benchmark with its rapid hepatobiliary clearance, while engineered
polymers (semiconducting polymer nanoparticles, SPNPs) can be
designed with cleavable bonds (Lyu et al., 2018; Della Pelle et al.,
2021). Ultimately, this focus on creating intentionally degradable or
clearable nanoparticles is the critical step toward bringing PTT from
preclinical studies to clinical reality. Finally, a significant barrier to the
clinical translation of PTT is the lack of standardized parameters across
preclinical studies. This challenge is formidable, extending beyond just
light exposure conditions. A review of the literature reveals considerable
variability in irradiation, with typical parameters involving an 808 nm
laser at a power density of 0.5-3 Wcm-2 for 5–10 min, aiming for
temperatures of 55 °C–60 °C for conventional PTT or a milder
~41 °C–43 °C for mild PTT. Furthermore, given that this research is
still largely in the preclinical stage, different laboratories employ unique
nanoparticle platforms and diverse infectionmodels. This heterogeneity
makes it exceedingly difficult to directly compare the therapeutic
efficacy of different photothermal systems. Therefore, establishing
standardized protocols that encompass not only irradiation
parameters but also the class of nanomaterial and the type of

infection being modeled is imperative to accelerate the clinical
translation of this promising therapeutic modality.

In light of this, future research endeavors regarding the
application of PTT in oral infections, encompassing dental caries,
endodontics, periodontitis, and peri-implantitis, should center on
the following aspects: ⅰ. Establish experimental models that can
duplicate the complexity of biofilms to evaluate the antibacterial
efficacy of PTT comprehensively. The mechanism of PTT against
dental plaque biofilms also needs to be further studied. ⅱ. Develop
photothermal materials that are smart-responsive, degradable, or
can be cleared by body metabolism to improve the biosafety of PTT.
ⅲ. Probe into applying NIR-II lasers in deep-seated oral tissues to
augment the precision of treatment. ⅳ. Fortify interdisciplinary
integration, promote the combinatorial utilization of PTT with
traditional antibacterial, immunomodulatory, and tissue-
regeneration strategies, and engineer multifunctional materials. ⅴ.
Facilitate large-scale clinical trials, standardize treatment
parameters, evaluate long-term biosafety, and ultimately propel
its clinical translation. Future research should also be directed
towards elucidating the interplay between PTT and the oral
microbiota, especially its implications for non-pathogenic
commensal bacteria. Preserving the eco-logical equilibrium of the
oral microbiota is pivotal for upholding overall oral health and
forestalling diseases associated with dysbiosis. Additionally,
developing cost-effective and scalable PTT systems is imperative
for its widespread clinical deployment, particularly in resource-
constrained settings. In summary, PTT presents a highly
promising approach to the treatment of oral infections, replete
with substantial potential for clinical translational applications.
With the evolution of multi-disciplinary convergence, it may
emerge as a novel approach for combating oral-related infections,
thereby conferring greater benefits to humanity.
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Glossary
3D Three-dimensional

Alg Sodium alginate

ATP Adenosine triphosphate

ATRP Atom transfer radical polymerization

AuNPs Gold nanoparticles

AuNRs Gold nanorods

BA Baicalein

BMP-2 Bone morphogenetic protein-2

BMSCs Bone marrow-derived mesenchymal stromal cells

BP Black phosphorus

C. albicans Candida albicans

CDT Chemical dynamic therapy

DDS Drug delivery systems

E. coli Escherichia coli

E. faecalis Enterococcus faecalis

eNOS Endothelial nitric oxide synthase

EPL Epsilon-polylysine

EPS Extracellular polymeric substances

F. nucleatum Fusobacterium nucleatum

GelMA Gelatin methacrylate

GNC Gold nanocages

GO Graphene oxide

HE Hematoxylin-Eosin

HGFs Human gingival fibroblasts

HSP90 Heat shock protein 90

IBD Infectious bone defects

ICG Indocyanine green

MgMps Mg microparticles

MPB Mesoporous Prussian blue

MPN Metal-phenolic networks

mPTT Mild photothermal therapy

MRSA Methicillin-resistant Staphylococcus aureus

MSC Mesenchymal stem cell

NIR Near-infrared

NIR-I Near-infrared region I

NIR-II Near-infrared region II

NO Nitric oxide

NPs Nanoparticles

NSs Nanosheets

P. gingivalis Porphyromonas gingivalis

PB Prussian blue

PC Proanthocyanidins

PCE Photothermal conversion efficiency

PCM Phase-change materials

PDA Polydopamine

PDT Photodynamic therapy

PEG Polyethylene glycol

PLGA Poly lactic acid-co-glycolic acid

PLLA Polylactic acid

POD Photothermal and peroxidase

PTAs Photothermal agents

PTT Photothermal therapy

rGO Reduced graphene oxide

RCT Root canal therapy

RNS Reactive nitrogen species

ROS Reactive oxygen species

S. aureus Staphylococcus aureus

S. gordonii Streptococcus gordonii

S. mutans Streptococcus mutans

S. oralis Streptococcus oralis

S. sanguinis Streptococcus sanguinis

S. sobrinus Streptococcus sobrinus

SDT Sonodynamic Therapy

SEM Scanning electron microscopy

SNP Sodium nitroprusside

SRP Scaling and root planning

TC Tetracycline

TRAP Tartrate-resistant acid phosphatase

UBI Ubiquicidine

VEGF Vascular endothelial growth factor
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