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Objective: Deep learning (DL) has introduced new possibilities for estimating
human joint moments - a surrogate measure of joint loads. However, traditional
methods typically require extensive synchronised joint angle and moment data
for model training, which is challenging to collect in real-world applications. This
study aims to improve the accuracy and data efficiency of knee joint moment
estimation via leveraging self-supervised learning techniques to automatically
extract human motion representations from large-scale unlabeled joint
angle datasets.
Method: We proposed a joint moment estimation method based on self-
supervised learning (SSL), using a Transformer auto-encoder architecture. The
model was pre-trained on large-scale unlabeled joint angle data with masked
reconstruction to effectively capture spatiotemporal features of human motion.
Subsequently, we fine-tuned the model using a small amount of labeled joint
moment data, enabling accuratemapping from joint angles to jointmoments. We
evaluated this method on a dataset of 55 normally developing children and
compared the performance of the pre-trained SSL model fine-tuned with
different amounts of labeled data to a baseline model.
Results: The Fine-tuned model significantly outperformed the baseline model,
especially in scenarios with scarce labeled data. MSEs were reduced from 24.00%
to 45.16% (with an average reduction of 36.29%), and MAE from 18.18% to 37.80%
(with an average reduction of 26.48%). The proposed SSL model exceeded the
performance of the baseline model trained with 100% data, using only 20% of the
data in the labeled dataset during fine-tuning. When both models were fine-
tuned using only 5% of the labeled data, the proposed SSL achieved four-fold
better performance than the baseline model.
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Conclusion: This study demonstrates that self-supervised learning significantly
improves the accuracy and data efficiency of joint moment estimation, providing a
more efficient solution for biomechanical evaluation. The proposed model can
reduce the burden of collecting data and expand clinical applications.

KEYWORDS

joint moment estimation, self-supervised learning (SSL), data scarcity, data efficiency,
lower limb dynamics

1 Introduction

Joint moments estimation plays a central role in biomechanics
and rehabilitation engineering. It is widely applied in the evaluation
of musculoskeletal dynamics, with applications ranging from injury
prevention to rehabilitation monitoring. Analysis of lower limb joint
moments is particularly critical, as it provides insight into load
distribution and joint stability, which are essential for diagnosing
gait abnormalities and optimizing therapeutic interventions. For
example, knee moment is a critical metric for assessing knee joint
health (Wang et al., 2020a; Ulrich et al., 2023). Reducing knee
adduction moment (KAM) without increasing knee flexion moment
(KFM) may alleviate knee symptoms in individuals with knee
osteoarthritis (Edd et al., 2020).

Traditionally, the calculation of joint moments requires data
from two input sources - marker trajectories of the modeled body
segments, and ground reaction forces (Alkjaer et al., 2001).
Limitations associated with traditional motion capture include: 1)
the need for expensive equipment, 2) the time-consuming nature of
data collection and processing, and 3) restricting data collection to
within laboratory conditions. Recently, a greater number of studies
have shown that joint moments can be predicted based solely on
kinematic inputs, such as those measured using an inertial
measurement unit (IMU) (Altai et al., 2023; Hossain et al., 2023;
Sharifi Renani et al., 2021) by leveraging machine (ML) and deep
learning (DL) algorithms. Coupling ML and DL with biomechanical
inputs has the strong potential to bring biomechanical assessments
from the laboratory to free-living clinical and community
environments.

DL algorithms are particularly attractive as a method for
predicting joint moments as they do not require predefined
assumptions about the system, and can handle complex non-
linear relationships and high-dimensional data (Paaß and
Hecker, 2023). Among DL models, Deep Neural Networks
(DNNs), Convolutional Neural Networks (CNNs), and Long
Short-Term Memory (LSTM) networks have demonstrated
superior performance in joint moment estimation (Mansour
et al., 2023), compared to traditional regression-based models
and physics-based biomechanical models, which often rely on
hand-crafted features and predefined assumptions. Gait
kinematics such as angles (Zhang et al., 2022b), velocities, and
accelerations (Xiang et al., 2024), have been widely recognized as
effective input features for DL models in predicting joint moments.
Kinematic data can be collected using wearable devices, such as an
IMU (Uhlrich et al., 2022) and markerless motion capture,
enabling real-world, out-of-lab assessment of joint mechanics
(Palucci Vieira et al., 2024). However, a critical limitation of
DL, and indeed ML, algorithms is the requirement for large
labeled datasets. Such labeled datasets are very rarely available

because of the time-consuming nature of the collection and
processing of motion capture data. For example, it is much
easier to collect larger quantities of “unlabeled” kinematic data,
such as from IMUs or markerless motion capture, from a greater
number of participants in free-living environments, compared to
traditional motion capture data.

Training DL models using large-scale datasets has emerged as
the mainstream approach (Nguyen et al., 2019; Wang et al., 2020b;
Shen et al., 2023). Self-supervised learning (SSL) has emerged as a
groundbreaking paradigm to address the challenge of labeled data
scarcity in machine learning (Gündüz et al., 2023; Khowaja et al.,
2023). By pre-training models on large volumes of unlabeled data,
which can later be fine-tuned on a smaller set of labeled data for
solving specific tasks, SSL enables models to uncover intricate
feature representations and patterns within the data, significantly
enhancing their predictive accuracy and generalization capabilities
(Hestness et al., 2017; Giakoumoglou and Stathaki, 2024). The pre-
training step involves masking certain portions of the input data and
then training a model to reconstruct the masked parts based on the
remaining visible information (Kenton and Toutanova, 2019). This
approach has proven highly effective in various domains, including
image processing (Scanvic et al., 2023), natural language processing
(NLP) (Kenton and Toutanova, 2019), as well as time-series analysis
(Zhang et al., 2024). Recent studies have begun to explore SSL’s
potential in biomechanics, from various biomedical signals (Del Pup
and Atzori, 2023) to the geometric representations of limb shapes
(Gu et al., 2021; Tan et al., 2024). Despite the remarkable success SSL
has demonstrated, biomechanical datasets, especially those
involving gait kinematics, typically encompass multiple walking
speeds and subjects from various age groups, posing challenges
for SSL methods based on masking and reconstruction. It remains
unclear whether SSL with masking and reconstruction can
effectively learn joint angle representations with these complex
combined features and enhance performance on downstream
tasks of estimating joint moments. Furthermore, predicting joint
moments from joint angles remains a challenging and
uncertain task.

This paper aims to apply SSL to improve the accuracy and data
efficiency of joint moment estimation by utilizing unlabeled joint
angle data with a two-stage approach (Table 1). The gait analysis
dataset includes joint angle data for 18 lower limb kinematic
features. We first pre-trained a transformer-based model on
unlabeled joint angle data using masking and reconstruction
tasks to extract spatiotemporal features. The pre-trained model
was then fine-tuned for a supervised task mapping joint angles to
the corresponding joint moments using labeled data. We assessed
the SSL model’s performance and data efficiency by comparing it
with baseline Transformer models trained from scratch under
identical hyperparameter and training configurations as the pre-
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trained SSL model. Evaluation metrics, including mean squared
error (MSE) and mean absolute error (MAE), were used to quantify
the differences between predicted and observed joint moments. We
selected the hip, knee, and ankle joints as the primary lower-limb
joints for evaluating model performance. Furthermore, we
compared model accuracy under varying amounts of labeled
data. To explore prediction improvements under different input-
output scenarios, we utilized each of the three joint angles as input to
estimate the three joint moments, respectively.

2 Methods

2.1 Pre-training dataset

We used a joint angle dataset comprising 18 lower limb
kinematic features, without labeled joint moments for our SSL
pre-training. The dataset is based on a large gait analysis dataset

(Senden et al., 2023), with typically developing children walking at
different speeds.

The gait analysis dataset includes 55 typically developing
children (24 boys and 31 girls) aged from 3 to 17 years (mean
age 9.38 years, 95% CI: 8.51–10.25), with an average body mass of
35.67 kg (95% CI: 31.40–39.94) and leg length of 0.73 m (95% CI:
0.70–0.76). The dataset was specifically designed to capture
substantial inter-subject variability and personalised walking
patterns essential for detecting individual gait abnormalities. The
significant anthropometric diversity, spanning a 14-year age range
with considerable variation in body mass and leg length, naturally
generates diverse joint moment patterns, as biomechanical loading
varies substantially with body size, limb length, and developmental
stage. For population stratification, participants were categorized
into five age groups: 3–6 (n = 11), 7–8 (n = 10), 9–10 (n = 15), 11–12
(n = 11), and ≥ 13 years (n = 8), ensuring comprehensive
representation across developmental stages, each characterized by
distinct gait maturation patterns and joint loading characteristics.

TABLE 1 Two-stage approach with pre-training and fine-tuning for joint moment prediction.

Stage Objective Dataset Label

Pre-
Traininga

Learn general spatiotemporal features from unlabeled lower-limb
kinematics (Table 2)

18 kinematic features from the lower-
limb

None

Fine-
Tuningb

Predict knee, ankle, and hip moments from their labeled kinematics 6 joint angle–moment pairs Each angle mapped to its corresponding
moment

aUtilizes masking and reconstruction to learn motion representations without force/moment labels.
bAligns specific lower-limb angles with labeled joint moments for supervised training.

FIGURE 1
Illustration of marker points and major lower limb joint positions. The dataset (Senden et al., 2023) was acquired using the CAREN system, which
integrates an instrumented treadmill equipped with force plates and a 12-camera three-dimensional motion capture system for comprehensive gait
analysis. The green markers depicted in the figure represent the placement of reflective markers, which were positioned on prominent anatomical
landmarks of the subject in accordancewith theHBM2 (Human BodyModel 2) protocol (Motek BV, 2018) Thewhite circles in this figure highlight the
primary joints of interest in this study—specifically, the hip, knee, and ankle joints. Kinematic data (joint and segmental angles) and kinetic data (joint
moments) from these joints were extracted to facilitate the subsequent training and evaluation of deep learning models.
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Participants performed walking tasks at three speeds defined as
comfortable, 30% slower than comfortable, and 30% faster than
comfortable in a virtual environment using the Computer Assisted
Rehabilitation Environment (CAREN), including an instrumented
treadmill and a 3D motion capture system with 12 cameras (Vicon
Nexus v2.7) both operating at 100 Hz. For each speed condition,
250 gait cycles were recorded at a sampling frequency of 100 Hz. The
dataset utilized 26 reflective markers placed at specific body
landmarks according to the Human Body Lower Limb model
with trunk markers (HBM2 (Motek BV, 2018), Figure 1) to
capture gait kinematics during the walking task. A force plate
(ForceLink, Culemborg, Netherlands) set at 15 Hz for the low-
pass prefilter frequency and 20 N for the force threshold were used to
measure the GRF during the walking task.

The raw data was processed using a low-pass filter with a cutoff
frequency of 15 Hz. The GRF was normalized to body weight (Hof,
1996). All gait cycles were time-normalized from 0% to 100% of the
gait cycle using linear interpolation, yielding 897 data samples.
18 kinematic features were extracted (Table 2). The processed
data were represented as temporal waveforms on a uniform grid
spanning 0%–100% of the gait cycle and extracted for subsequent
training and evaluation.

2.2 Fine-tuning datasets

For our Fine-Tuning processing, we utilized six joint angle
features, from the 18 kinematic features, and six corresponding

joint moment datasets derived from the same gait analysis dataset
(Senden et al., 2023). Joint moments were computed using inverse
dynamics based on the inputs of marker trajectories and GRF,
following the same pre-processing procedures applied to
joint angles.

We extracted the LKneeFlex, RKneeFlex, LAnkleFlex,
RAnkleFlex, LHipFlex, and RHipFlex angle datasets from the
pre-training dataset and synchronized and merged each with its
corresponding moment dataset based on time steps. The resulting
restructured datasets (Table 1), which paired joint angles with their
corresponding moments, were subsequently utilized in the fine-
tuning phase.

2.3 Model architecture

We developed a Transformer-based architecture to establish the
relationship between joint angles and joint moments (Figure 2). The
model comprises two stages: self-supervised pre-training and
supervised fine-tuning.

We first used a Transformer auto-encoder (Figure 2a) to learn
robust representations from large-scale unlabeled joint angle
datasets. The Transformer’s input was a window of joint angle
data with 64 samples with 18 kinematic features (Table 2). We then
implemented a sliding window approach to segment the continuous
joint angle data into fixed-length sequences of 64-time steps with an
overlap of 1-time step between successive windows, resulting in a
total of 33,189 windows. A 64-time-step window was selected to
capture at least one complete gait cycle across most age groups and
walking speeds, based on the average cycle duration observed in our
dataset (typically 60–70 frames per step at 100 Hz), ensuring
essential feature retention while avoiding redundancy that could
increase the computational burden and reduce training efficiency.
This fixed-length windowing strategy, combined with patch-wise
encoding, allows the model to retain temporal locality within each
gait cycle. The self-attention blocks further learn spatial correlations
among joints at each time step, while the reconstruction task
enforces the preservation of fine-grained biomechanical signals,
enabling both local and global representations to be captured
simultaneously. Then, the 64 samples were split into patches with
a length of 1, maintaining input dimensions of [batch size, 64, 18],
where 18 corresponds to the kinematic features listed in Table 2.
After segmentation, 10% of the input data was randomly masked
and replaced with a learnable mask embedding vector. Through
comparative experiments with different masking ratios (5%, 10%,
15%, 20%) selected based on previous self-supervised learning
studies (Kenton and Toutanova, 2019; Weng et al., 2024), we
found that 10% offered the best balance for biomechanical data.
We then randomly reordered the data before further analysis,
minimizing potential biases introduced during data collection or
pre-processing and ensuring a consistent distribution of the data.
The model was trained to reconstruct the original masked data by
minimising the MSE between the reconstructed and true inputs,
with no explicit labels required for this self-supervised
learning phase.

We linearly mapped each patch to a vector of length 24 and added
sinusoidal positional encoding to preserve the temporal sequence
information. The preprocessed data was then fed into the

TABLE 2 Overview of the 18 gait kinematics features for pre-training.

Joint name Description

Lankleflex Left ankle dorsiflexion/plantarflexion

Lanklepron Left ankle pronation/supination

Lhipabad Left hip abduction/adduction

Lhipflex Left hip flexion/extension

Lhiprot Left hip internal/external rotation

Lkneeflex Left knee flexion/extension

Pelvicobl Pelvic obliquity

Pelvicrot Pelvic rotation

Pelvictil Pelvic tilt

Rankleflex Right ankle dorsiflexion/plantarflexion

Ranklepron Right ankle pronation/supination

Rhipabad Right hip abduction/adduction

Rhipflex Right hip flexion/extension

Rhiprot Right hip internal/external rotation

Rkneeflex Right knee flexion/extension

Trunkflex Trunk flexion/extension

Trunkrot Trunk rotation

Trunktilt Trunk tilt
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Transformer model, generating an output with dimensions identical
to the input. The Transformer has eight self-attention blocks, with a
per-block configuration of 12 attention heads, 2048 feedforward units,
10% dropout, 1 × 10−5 layer normalization, and rectified linear unit
(ReLU) activation function. These hyperparameters were determined
through a systematic grid search process. We experimented with
various Transformer layers (4, 8, 12), attention heads (8, 12, 16),
window sizes (32, 64, 128), and patch sizes (1, 2, 4) on the validation
set, while maintaining consistent training configurations. The final
configuration was selected based on the optimal balance between
model performance (measured by reconstruction error) and
computational efficiency. The outputs were linearly mapped back
to the original data dimensions (patch length × 18 joint features)
to reconstruct the unmasked input data, completing the auto-
encoding process.

The downstream prediction task utilized a fine-tuning model
built upon the pre-trained model (Figure 2b). This phase retained
the core architecture and majority of the pre-trained parameters
from the pre-trained model while fine-tuning the final layers to align
with the new data distribution and prediction targets. We used the
angles of the knee (left and right), ankle (left and right), and hip (left
and right) as inputs with dimensions [batch size, 64, 2] for each
joint-specific model, mapping the Transformer’s output to predict
respective joint moments with corresponding output dimensions
[batch size, 64, 2]. Similar to the joint angle pre-training process, we
segmented the synthetic angle-joint mapped data into windows of
64 time steps with 1 time step overlap, obtaining 33,189 samples in
total. Unlike pre-training, no masking was applied during the fine-
tuning step, ensuring that the model could focus on task-specific

prediction accuracy using supervised learning with MSE loss
between predicted and labelled joint moments.

2.4 Training protocols

Models were implemented in Python 3.9 using PyTorch 1.9. An
NVIDIA RTX 3070 Ti GPU was used to conduct the model training
and testing process. The SSL pre-training phase required
approximately 8.5 h of computational time, while the fine-tuning
phase requiring only 2.8 h on average for each joint-specific model
(knee, ankle, and hip) over 500 epochs. The total training time for
our complete framework, including all six joint-specific fine-tuning
models, was approximately 25 h.

We designed a two-stage approach (Table 1) to train the model:
self-supervised SSL pre-training and supervised fine-tuning. This
two-stage approach was designed to leverage large-scale unlabeled
data effectively while ensuring accurate prediction of joint moments.

2.5 Self-supervised SSL pre-training

For the proposed SSL pre-training, we randomly masked a
certain proportion of the time steps and trained the model to
reconstruct the masked segments. We adopted a Transformer-
based architecture due to its superior capability to capture long-
range dependencies and parallel temporal processing, which are
particularly advantageous in modeling complex gait dynamics.
Reconstructing masked joint angles helps the model capture both

FIGURE 2
Framework of self-supervised learning for enhancing joint moment estimation from gait kinematics. (a) Pretraining Phase: Continuous time-series
data are derived from angular measurements of 18 lower-limb kinematic features. These data are divided into overlapping time windows and
subsequently segmented into fixed-length patches. A subset of the input fragments is randomly masked, and the resulting data are processed using a
Transformer-based self-supervised model, which is trained by minimizing the reconstruction error through MSE loss. This process enables the
model to effectively learn temporal dynamics and spatial correlations inherent in the data, thereby establishing a generalized representation of human
motion. (b) Fine-tuning Phase: Utilizing the pre-trained model’s weights and biases as initialization, three separate fine-tuning models are developed to
predict moments for the knee, ankle, and hip joints. The downstream data are preprocessed using the same windowing and patching approach as in the
pre-training phase but without masking. The processed joint angular data are then fed into the respective fine-tuning models, with the objective of
optimizing predictive performance for each specific task.
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local continuity and global coordination patterns that are essential
for downstream tasks such as joint moment prediction (Zhang
et al., 2024).

We utilized the Adam optimizer (Kingma, 2014) to adaptively
adjust learning rates based on the first and second moments of
gradients, using an initial learning rate of 1 × 10−4 and batch size of
64. The model was trained for 2000 epochs with the learning rate
adjusted using a cosine annealing schedule (Loshchilov and Hutter,
2016) to facilitate smooth and effective convergence. We employed
the entire dataset for pre-training without setting aside a separate
test set, as the model evaluation was exclusively carried out on
downstream datasets that were different from those used during pre-
training. To mitigate overfitting, we applied weight decay (Krogh
and Hertz, 1992) at a rate of 1 × 10−5 and incorporated dropout
(Srivastava et al., 2014) with a rate of 0.1. These regularization
techniques ensured improved generalisation by penalizing large
weights and reducing reliance on specific neurons during training.

2.6 Supervised fine-tuning

For downstream evaluation, we employed a fine-tuning strategy
to adapt the pre-trained model to the specific task of joint moment
estimation. Joint flexion and extension features were used as inputs
during fine-tuning, as these movements represent the primary
planar motions in the sagittal plane during gait and contribute
most significantly to the lower-limb joint loading patterns (Gray
et al., 2019). Additionally, flexion-extension movements typically
show higher signal-to-noise ratios and greater reproducibility across
participants compared to other features.

We varied the proportion of training samples used for fine-
tuning, ranging from 5% to 100% of the fine-tuning dataset. Unlike
the pre-training process, we split the dataset into the training,
validation, and test sets in proportions of 70%, 20%, and 10%,
respectively. We first froze 75% of the pre-trained model’s
parameters by freezing the first six layers and unfreezing the final
two layers, which was empirically validated in our preliminary
experiments to provide the best trade-off between generalization
and task-specific adaptation, ensuring that the foundational
knowledge extracted from the pre-training process remained
intact. This parameter freezing strategy is particularly important
for Transformer models, which are known to suffer from
catastrophic forgetting during transfer learning. By limiting
updates to only the higher layers, the model can better retain
generalizable motion representations while adapting to the
downstream angle-to-moment mapping task.

To ensure robust performance and prevent overfitting when
working with limited labeled data, we implemented comprehensive
monitoring and mitigation strategies throughout the fine-tuning
process. We employed early stopping based on validation loss with
a patience of 20 epochs to automatically terminate training when no
improvement was observed, preventing excessive adaptation to small
training sets. Throughout the fine-tuning process, we continuously
monitored the gap between training and validation losses to ensure
consistent generalisation performance. The SSL pre-training phase
itself provides inherent regularisation benefits by establishing robust
spatiotemporal representations from large-scale unlabeled data,
creating strong inductive biases that naturally resist overfitting

during fine-tuning. Combined with our unified regularization
parameters (weight decay of 1 × 10−5and dropout rate of
0.1 maintained consistently across all data scenarios) and parameter
freezing strategy, these mechanisms enabled reliable performance even
when fine-tuning with as little as 5% of labelled data.

Then, we fine-tuned the weights and biases based on the mapping
between the angles andmoments of the knee, ankle, and hip (Yosinski
et al., 2014). This approach helps preserve the general, domain-
invariant representations learned by the pre-trained model,
mitigates overfitting, and reduces the training complexity and
computational costs, improving both efficiency and stability. We
utilized the Adam optimizer with a lower initial learning rate of
1 × 10−6 and batch size of 64. To preserve the representations
acquired during pre-training, we set the initial fine-tuning learning
rate to be 100 times smaller than that used in the pre-training phase.
The model was trained for 500 epochs with the learning rate adjusted
using a Plateau-Based Learning Rate schedule to dynamically adjust
the learning rate based on the validation set loss.

2.7 Baseline model

The baseline model functions as a comparative benchmark to
assess the effectiveness of the proposed pre-trained SSL and fine-
tuning approach.

We constructed the baseline model utilizing an identical model
architectural framework as the proposed pre-trained SSL model but
trained it directly on a fully labeled dataset (labeled joint moment for
each angle in the pre-training dataset) without any pre-training using
SSL. To ensure a fair comparison, we employed the same optimizer
and learning rate strategy as the SSL pre-training approach.

The baseline model has demonstrated strong performance in
joint moment estimation tasks and thus serves as a suitable
benchmark for evaluating the effectiveness of the proposed model.

2.8 Performance evaluation

We utilized MSE (Equation 1) and MAE (Equation 2) (Karatsidis
et al., 2018) to evaluate the effectiveness of the proposed SSL and fine-
tuning approach, which are defined as follows:

MSE � 1
N

∑
N

i�1
yi − ŷi( )2 (1)

MAE � 1
N

∑
N

i�1
yi − ŷi

∣∣∣∣
∣∣∣∣ (2)

whereN denotes the total number of samples, yi denotes the actual
value for the i-th sample, and ŷi denotes the predicted value for the
i-th sample.

To ensure the robustness and reliability of our results, each
experimental condition was evaluated across 10 independent
training runs using different random seeds to account for the
inherent variability in deep learning model training. The
performance metrics reported throughout this study represent the
mean performance across these multiple runs.

We employed a comprehensive evaluation strategy to assess the
performance of the proposed model, focusing on two main aspects:
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prediction accuracy and data efficiency. By incorporating both MSE
and MAE metrics, we can effectively evaluate the model’s accuracy
and robustness.

2.9 Prediction accuracy

Prediction accuracy is a crucial metric for evaluating model
performance, as it enhances the reliability and applicability of the
model while reducing the risks of misdiagnosis and incorrect
assessments.

We conducted a comprehensive comparative evaluation of the
proposed model and the baseline Transformer model using MSE
and MAE, indicating the accuracy and stability of the model.
Furthermore, we extended our analysis to include a detailed
examination of the errors between the predicted values produced
by the proposed model, the baseline Transformer model, and the
true values on the test set at each time step, assessing the model
performance dynamically. This highlighted the performance
differences under various conditions and provided deeper
insights into the models’ prediction accuracy.

2.10 Data efficiency

Data efficiency is a critical aspect of modern machine learning,
particularly in scenarios characterized by large-scale data
requirements or data scarcity (Chen et al., 2020a; Grill et al.,
2020). It focuses on optimizing model performance while
minimizing resource consumption. Data efficiency enables models
to achieve competitive performance without requiring proportional
increases in data volume. It is particularly advantageous for high-
dimensional and complex data, where labeleding costs are prohibitive
or the availability of labeled samples is inherently limited.

We simulated data scarcity by varying the amount of training
data used during the fine-tuning stage while maintaining a fixed test
set. We trained the model using varying proportions of the fine-
tuning dataset to simulate different levels of data availability. The
performance of the fine-tuned models was assessed using MSE, and
the results were compared to the baseline model. The findings can
demonstrate the potential of SSL pre-training to reduce dependency
on labeled data while maintaining or improving predictive accuracy.

Furthermore, we conducted an extensive investigation into the
relationship between input-output configurations and prediction
performance through additional experimentation. We utilized the
angle features of the three joints as the sole input to predict each of
their respective joint moments. This setup was designed to evaluate
the model’s capacity to predict multiple joint moments from single-
joint input and to explore inter-joint motion relationships.

3 Results

3.1 Prediction accuracy

The proposed pre-trained and fine-tuned model achieved higher
accuracy in estimating joint moments based on corresponding joint
angles compared to baseline models with identical architecture.

The alignment among peak joint moments (indicating
maximum load or muscle activation) and valley joint moments
(indicating minimum load or muscle activation) improved
significantly with the proposed model, achieving improvements
ranging from 50% (15% gait cycle of the left knee) to 100% (50%
gait cycle of the left ankle) across multiple joints (Figure 3). With the
fine-tuned model, the average deviation at these peaks was roughly
0.02 N ·m/kg, compared to about 0.04 N ·m/kg for the baseline of
50% reduction in error. Similarly, during valley phases (e.g., mid-
stance, occurring within the 0%–60% gait cycle range), the proposed
model lowered errors from around 0.03 to 0.015 N ·m/kg. Among
the three joints, the prediction of the LHipFlex and RHipFlex
moment demonstrated the best optimization, especially when the
moments exhibit a gradual change.

To address the clinical utility requirements, we conducted a
focused analysis of prediction errors at peak joint moments, which
represent the most clinically relevant phases of the gait cycle for
biomechanical assessment. The fine-tuned model demonstrated
superior accuracy at these critical moments across all joints. For
the knee joints, the mean absolute error at peak flexion moments
was 0.015 ± 0.006 N· m/kg for the left knee and 0.011 ± 0.006 N·
m/kg for the right knee, representing relative errors of
approximately 7.5% and 2.9% of the true peak moments,
respectively. The ankle joints showed exceptional performance
with mean absolute errors of 0.014 ± 0.008 N· m/kg (left) and
0.009 ± 0.006 N· m/kg (right) at peak plantarflexion moments,
corresponding to remarkably low relative errors of 5.2% and 1.1%
respectively. Hip joints demonstrated mean absolute errors of
0.081 ± 0.049 N· m/kg (left) and 0.048 ± 0.024 N· m/kg (right)
at peak extension moments, with relative errors of 12.9% and 8.7%.
These peak-specific error metrics demonstrate that the model
maintains high accuracy during the most critical phases of gait.

The predictions of different joint moments demonstrated overall
improvements when analyzing the MSE and MAE (Figure 4). The
LAnkleFlex and RAnkleFlex moments predictions showed the most
precise results with MAE values of 0.051 N ·m/kg and
0.064 N ·m/kg, respectively, improving by 37.8% and 30.4% over
the baseline. LAnkleFlex moments estimated by the fine-tuned
model demonstrated the lowest MSE (0.011 (N ·m/kg)2),
reflecting an improvement of 38.9% compared to the baseline.
Similarly, the RAnkleFlex moments also performed exceptionally
well with the MSE reducing to 0.012 (N ·m/kg)2, a 33.3%
improvement over the baseline. Additionally, the MSE was
reduced by approximately half for the RKneeFlex moments
prediction (44.4%) and LHipFlex moments prediction (45.2%).
The MAE of the RKneeFlex moment prediction also reduced by
24% from 0.187 to 0.142 N ·m/kg.

3.2 Data efficiency

The fine-tuned model consistently outperforms the baseline,
achieving significant error reductions across all training data sizes,
and highlighting its superior data efficiency and predictive
accuracy (Figure 5).

When fine-tuned with only 20% of the training data, the
proposed SSL model achieved a right knee MSE of approximately
0.041 (N ·m/kg)2, matching—or even slightly surpassing—that of
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the baseline model trained on the full dataset. Increasing the labeled
data to 50% allowed the SSL model to further reduce the MSE of the
right knee to roughly 0.030 (N ·m/kg)2, a 44.44% improvement
over the baseline of 0.054 (N ·m/kg)2. Even under more extreme
constraints, using only 5% labeled data, the SSL approach can
maintain an MSE of around 0.053 (N ·m/kg)2, a roughly four-
fold decrease compared to the baseline of 0.091 (N ·m/kg)2,
highlighting the robustness and data efficiency gained through
self-supervised pre-training.

3.3 Other results

We designed a matrix (Figure 6) to demonstrate the MSE for
predicting the six joints’moments from each joint’s angles, revealing
both the strong local correlations in same-joint mappings and the
inter-joint synergy captured in cross-joint predictions.

In particular, diagonal cells, representing the same joint
mappings such as the angle of the left ankle to the moment of
the left ankle, generally exhibit the lowest errors (e.g., around
0.010 to 0.020 (N ·m/kg)2, confirming that local angular data are
the strongest predictors of local joint moments. For the same joint
mappings, our proposed model shows a consistent reduction in
MSE compared to the baseline model (e.g., 0.011 vs.
0.018 (N ·m/kg)2 for left ankle, a 38.9% reduction). Off-
diagonal cells, such as estimating the right knee moment from
the left knee angle, show moderately higher MSE (e.g.,
approximately 0.028–0.037 (N ·m/kg)2. The model’s ability to
maintain reasonable accuracy in cross-joint scenarios highlights
the robust internal representations it learned during self-

supervised pre-training, indicating enhanced generalization for
more complex prediction tasks.

4 Discussion

This work demonstrated that using SSL to pre-train the
Transformer model for estimating joint moments from joint
angles can improve prediction accuracy and data efficiency.
Previous DL models for biomechanical estimation required large-
scale datasets with completely manually labeled data and extensive
laboratory time for data collection. In contrast, we used a limited
amount of labeled data to establish the relationship between
different joint angles and moments. From a practical
implementation perspective, while our SSL approach requires a
one-time computational investment of approximately 25 h,
traditional biomechanical data collection for generating
equivalent labelled datasets would require approximately
100–200 h of laboratory time, including participant recruitment,
experimental setup, data collection, and post-processing. Moreover,
our pre-trained model can be efficiently fine-tuned for new
populations or conditions in less than 3 h, compared to weeks or
months required for collecting new labelled datasets in clinical
settings. Three key outcomes of this work are:

• Improved prediction accuracy and data efficiency: Compared
to supervised learning, the SSL pre-trained model can improve
data efficiency bymore than 80%. Furthermore, it can improve
prediction accuracy by more than 40% when training with the
same amount of labeled data.

FIGURE 3
Comparison of joint moment predictions across six joints during a normalized gait cycle. Each plot represents the predicted and observed joint
moments (in N ·m/kg) for a specific joint, including the left and right knee, ankle, and hip. The dashed orange lines indicate predictions from the fine-
tuned model, the dashed green lines represent predictions from the baseline model, and the solid purple lines show the observed joint moments. The
fine-tuned model consistently aligns closer to the observed joint moments, demonstrating improved prediction accuracy, especially in capturing
dynamic trends throughout the gait cycle.
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• Discovering the spatiotemporal representations between
different joints and movements: The use of a 10% masking
ratio during pre-training led to enhanced performance,
revealing the inherent structure and regularity of lower-limb
joint movements. Additionally, the prediction accuracy of joint
moments was evaluated using various joint angles, highlighting
the interrelation among lower-limb joints.

• Proven scalable framework: The two-stage approach provides
the flexibility of expanding the model to additional joints,
tasks, or populations, enabling broader applications in clinical
and biomechanical assessments.

In recent studies, joint kinematics, such as joint angles, combined
with electromyography (EMG) signals, have been widely utilized to
predict joint moments (Zhang et al., 2022a; Wang et al., 2023; Serbest
et al., 2023). In this work, we focus exclusively on joint angles as input
features for moment prediction, simplifying data collection and

assessing the feasibility of achieving accurate predictions without
additional features. Furthermore, we broaden the scope of joint
moment prediction by including a more diverse set of joint angles
and movements, enabling the model to capture complex relationships
between joint kinematics and their corresponding joint moments.
This approach aims to uncover nuanced interactions, providing a
more comprehensive representation of human biomechanics.

Additionally, two-stage approaches leveraging self-supervised
pre-training followed by supervised fine-tuning have been widely
explored in fields such as vital signmonitoring (Yfantidou et al., 2024),
image analysis (Feng et al., 2021), and adversarial learning (Chen et al.,
2020b; Zakarias et al., 2024). However, their application in
biomechanical modeling remains relatively unexplored, where
conventional approaches still predominantly rely on fully
supervised learning with large amounts of labeled data—resources
that are often difficult and expensive to obtain. In this study, we adapt
and validate a two-stage self-supervised learning paradigm within the

FIGURE 4
Comparison of MSE (top) and MAE (bottom) between baseline model and fine-tuned model. Models for joint moment prediction based on the
corresponding joint angle across six joints: left knee, left ankle, left hip, right knee, right ankle, and right hip. The fine-tuned model demonstrates
significant improvements in both metrics across all categories, highlighting its superior performance in predicting joint moments with reduced error.
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angle-to-moment time-series domain for the first time, demonstrating
its potential to improve predictive accuracy while substantially
reducing reliance on labeled datasets. Due to the absence of
publicly available benchmark models trained on the same dataset,
it was not feasible to perform a fair comparison across different SSL
strategies. To ensure a controlled evaluation, we compared our

method against a baseline model with an identical Transformer
architecture trained from scratch. The results confirm that, by
leveraging large-scale unlabeled joint kinematic data, our approach
effectively captures spatiotemporal representations and improves
generalization performance, presenting a practical alternative to
conventional supervised pipelines in biomechanical modeling.

FIGURE 5
Comparison of data efficiency between the baseline model and the fine-tuned model for the right knee moment prediction. The fine-tuned model
demonstrates consistently superior performance across varying labeled training data sizes, achieving lower MSE and highlighting the benefits of the pre-
training and fine-tuning framework.

FIGURE 6
Matrix of MSE for joint moment prediction across different input joint angles. TheMSE values ((N ·m/kg)2) demonstrate the prediction performance
for each joint combination, with darker shades indicating lower errors and brighter shades representing higher errors. This visualization aids in identifying
the relative accuracy of predictions across various input-output joint pairings.
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SSL trains a model to capture the relationships between motions
of different joint angles specific to the pre-training data.
Consequently, it yielded the most significant improvement in joint
moment estimation for the knee joint. Specifically, compared to
baseline model trained from scratch, our fine-tuned model
achieved a 44% reduction in right knee MSE (from 0.045 to 0.025)
and a 32% reduction in left knee MSE (from 0.047 to 0.032). Notably,
using only 20% of the labeled data, our SSL-based model achieved
comparable performance to a fully supervised model trained with
100% of the labeled data, demonstrating the data efficiency of SSL.
These substantial gains in knee prediction may indicate that the knee
experiences greater loading variations during the gait cycle, providing
richer spatiotemporal cues for the model to leverage (Telfer et al.,
2017). also supported this observation, highlighting that knee joint
moments exhibit notable variability influenced by specific kinematic
and spatiotemporal parameters, including gait speed, stance duration,
and knee flexion angles, thus making these parameters particularly
sensitive for knee moment prediction.

Although the ankle and hip joints also benefited from pre-
training, their improvements were comparatively smaller. For
example, the left ankle MSE dropped from approximately
0.018 to 0.011 (a 39% reduction), and the right ankle from
0.018 to 0.012 (33%). For the hip, the left joint MSE was nearly
halved, decreasing from 0.031 to 0.017, while the right hip saw a
more modest reduction from about 0.025 to 0.019 (24%).

These results confirm that even for joints where baseline error
metrics were relatively low, the pre-trained representations
enhanced predictive performance. Moreover, the reduction in
MSE highlights a decrease in large error instances, while the
MAE reflects the model’s overall performance by capturing the
average magnitude of errors. The notable decline in MSE, alongside
a modest MAE reduction, indicates that the proposed model
achieves not only lower overall error but also greater consistency
and stability across different joint predictions.

The significantly improved prediction of peak and valley joint
moments during a normalised gait cycle demonstrates the proposed
model’s superior ability to capture dynamic features and accurately
predict time series data (Zhang et al., 2024; Kenton and Toutanova,
2019). This highlights its strong spatiotemporal modelling capability.
From a clinical perspective, such accuracy in detecting joint-loading
extremes is crucial for identifying pathological gait patterns associated
with conditions like knee osteoarthritis or neuromuscular disorders.
Shifts in peak and valley moments often serve as indicators of
progressive joint deterioration or compensatory strategies
(Miyazaki et al., 2002; Delp et al., 2007), making this level of
accuracy invaluable for early diagnosis and intervention.

One of the most compelling advantages of the proposed SSL-
based framework is its ability to achieve high predictive accuracy
while significantly reducing reliance on labeled data. Our results
demonstrate that the SSL model can match—or even
outperform—the baseline model trained from scratch with 100%
labeled data, using only 20% of the labeled dataset for fine-tuning.
Even under more extreme constraints—such as fine-tuning with
only 10% of the labeled data—the SSL model’s MSE remains below
0.050, reflecting up to a fourfold improvement over the baseline.

This level of data efficiency underscores the value of self-
supervised pre-training in offering a strong initialization that
facilitates effective adaptation with limited labeled data. Beyond

reducing the cost and time required for experimental data collection,
this also alleviates participant burden, particularly for populations
that are difficult to access or at higher risk (e.g., paediatric or clinical
cohorts). Notably, the baseline model’s performance deteriorates
sharply when access to labeled examples is restricted, with the MSE
nearly doubling from 0.045 to 0.100 (N ·m/kg)2). In contrast, the
SSL model maintains low error by leveraging the robust
spatiotemporal representations learned during pre-training,
demonstrating the potential of self-supervised learning to
drastically reduce the need for extensive labeled datasets while
preserving—or even enhancing—predictive accuracy compared to
models trained from scratch.

The trend of the cross-joint predictions (Figure 6) demonstrated
that each joint’s moment is predominantly driven by its angular
variations, although inter-joint coupling (e.g., knee–ankle synergy)
also influences dynamic consistency. Interestingly, the matrix further
reveals that certain cross-joint predictions can nearly match the
accuracy of same-joint mappings. For instance, predicting the right
ankle moment from the left ankle angle yields an MSE of around
0.015 (N ·m/kg)2, only marginally higher than the 0.012 observed on
the diagonal (i.e., right ankle angle to right ankle moment). This
outcome highlights the fine-tuned Transformer model’s ability to
capture multi-joint synergies in gait, leveraging spatiotemporal
representations learned from a large corpus of unlabeled angle
data. The model appears to leverage subtle inter-limb
correlations—for instance, a compensatory modification in ankle
motion if knee mobility is constrained. Such insights hold clinical
relevance, as the improved understanding of how movements at one
joint influence loading patterns at another joint could guide
rehabilitation professionals in designing more targeted
interventions, especially for conditions involving compensatory gait
strategies (Nadeau et al., 1997). has shown that individuals with
Patellofemoral Pain Syndrome (PFPS) exhibit lower knee extensor
moments (0.104 N ·m/kg, 16% lower) and higher hip extensor
moments (0.064 N ·m/kg, 56% higher) during the early stance
phase compared to healthy controls. Given that our SSL model
can accurately capture joint moment variations with a MSE as low
as 0.015 (N ·m/kg)2 in cross-joint predictions, it demonstrates the
potential to distinguish such subtle biomechanical differences in
clinical assessments. This suggests that our approach may aid in
the early detection of PFPS and other subtle gait abnormalities,
enabling timely interventions and treatment adjustments.

In addition, the bilateral symmetry observed in cross-joint
predictions has direct implications for rehabilitation protocol
design, suggesting that unilateral training interventions may have
predictable effects on the contralateral limb, supporting the clinical
practice of using bilateral exercises for unilateral deficits. Additionally,
the cross-joint prediction capabilities demonstrate potential for
advancing prosthetic control systems, where predicting joint
moments from kinematic data of intact joints could inform the
development of more intuitive prosthetic devices that anticipate
loading requirements based on residual limb movements.

5 Limitations and future work

Several limitations of this study provide important directions for
future research.
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5.1 Data expansion

While our study demonstrates the effectiveness of SSL in a
pediatric population (3–17 years), its generalisation to broader
demographics remains an open challenge. Adults and elderly
individuals exhibit distinct anthropometric profiles, slower gait
speeds, and increased joint stiffness, all of which may affect the
learned angle-to-moment mappings. Moreover, pathological
populations such as those with cerebral palsy, stroke, or
Parkinson’s disease often develop individualized compensatory
strategies that fall outside the current training distribution.

To address these limitations, we plan to leverage the
demonstrated data efficiency of our SSL framework through
transfer learning and domain adaptation techniques. Specifically,
pre-trained models will serve as initialisations for fine-tuning on
smaller, population-specific datasets. This approach is particularly
beneficial in clinical contexts, where acquiring large labeled datasets
from elderly or pathological populations poses ethical and practical
challenges.

In future work, we will systematically validate the proposed SSL
framework across different age groups and clinical cohorts. We also
aim to diversify the training dataset to include additional movement
types—such as running, jumping, and cutting—to test the model’s
adaptability across cyclic and non-cyclic motor patterns (Giarmatzis
et al., 2015). These expansions will further assess the robustness and
generalizability of our approach beyond walking.

5.2 Technical improvements

While our SSL-based model achieves high prediction accuracy
and strong data efficiency, its current computational footprint has
not been optimized for real-time deployment. This limitation may
hinder practical adoption in wearable and mobile health
applications, where immediate feedback is critical for continuous
biomechanical monitoring.

To address this, future work will focus on real-time
implementation optimization through advanced model
compression techniques, including knowledge distillation, post-
training quantization, and structured pruning. These approaches
aim to reduce inference latency and memory demands without
compromising predictive performance. The ultimate goal is to
enable seamless integration with wearable IMU systems and edge
devices, supporting real-world gait analysis and joint moment
estimation outside laboratory settings.

5.3 Data analysis

While our study demonstrates the effectiveness of SSL for joint
moment estimation and highlights its potential for improving data
efficiency, it does not include comprehensive comparisons with
conventional biomechanical modeling methods or alternative
deep learning architectures. This limits our ability to conclusively
establish the relative advantages of our approach within the broader
methodological landscape.

To address this limitation, future research will include
systematic cross-paradigm evaluations against established models

such as inverse dynamics-based biomechanical estimators, recurrent
architectures like LSTMs for temporal sequence modelling, CNNs
for spatial feature extraction, and hybrid CNN-LSTM frameworks
that integrate both.

In addition, we plan to conduct formal statistical power analyses
and larger-scale validation studies with predefined sample size
calculations. These efforts will enhance the statistical robustness
of our findings and support their translational potential in clinical
and real-world applications.

6 Conclusion

This study demonstrates that self-supervised learning (SSL) can
substantially enhance both the accuracy and data efficiency of lower-
limb joint moment estimation from gait kinematics. By leveraging
large-scale, unlabeled joint angle datasets, our framework achieved
up to 36% improvements in MSE while requiring only 20% of the
labelled data to match the performance of fully supervised models.
These findings highlight the potential of SSL to reduce reliance on
costly labelled data and accelerate the deployment of biomechanical
models in clinical and field-based settings. Our work provides a
scalable and data-efficient foundation for future joint load
estimation systems, offering a promising step toward accessible,
real-time gait assessment beyond laboratory environments.
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