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Despite decades of research, complications associated with dysfunctional labor
are leading causes of maternal and neonatal morbidity. Currently available
experimental models are not sufficient to understand the complex
mechanisms underlying human labor nor to test new therapeutic approaches.
We sought to develop a bioprinted tissue model of pregnant human myometrium
that replicates the morphological, contractile and molecular characteristics of
native pregnant human uterine myometrium as a resource to accelerate basic
discovery and pharmacological testing. We have utilized primary human uterine
smooth muscle cells to bioprint myometrial tissue rings containing >75% viable
cells with elongated, smooth muscle morphology. Immunofluorescence
confirmed expression of smooth muscle markers (caldesmon, alpha smooth
muscle actin, and smooth muscle myosin), contractile-associated proteins
(oxytocin receptor, prostaglandin receptors and connexin-43), and steroid
hormone receptors (estrogen and progesterone receptors) characteristic of
pregnant human uterine myometrium. Bioprinted tissues contracted in
response to physiological agonists oxytocin (p < 0.001), prostaglandin F,, (p =
0.003), and prostaglandin E2 (p < 0.001), and relaxed in response to the nitric
oxide donor S-nitrosoglutathione (p = 0.004). Further development of this model
could provide an abundant and homogeneous tissue source to facilitate
mechanistic studies and test agents to modulate labor.
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Introduction

Human labor is characterized by the development and maintenance of coordinated
contractions of the uterine smooth muscle (myometrium). The premature initiation of this
process results in preterm delivery, a leading cause of neonatal morbidity and mortality
(Pehlivanoglu et al., 2013; Bradley et al., 2025). Weak or irregular contractions lead to labor
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dystocia and the need for delivery by Caesarean section, while
excessive contraction strength or frequency can result in hypoxia
and fetal distress (Barber et al., 2011; Pehlivanoglu et al., 2013).
Despite decades of research, the molecular pathways underlying
labor are not completely understood and complications associated
with labor dystocia and preterm delivery remain leading causes of
Caesarean section and neonatal morbidity respectively (Osterman
et al, 2021). Therefore, there is an urgent need to develop
biologically relevant model systems of normal and pathological
pregnancy conditions.

Several animal models have been used to study the molecular
mechanisms underlying the transition of the uterus to the contractile
state (Elovitz and Mrinalini, 2004; Mitchell and Taggart, 2009).
Rodent models are relatively inexpensive and can be genetically
manipulated; however, differences between the regulation of rodent
and human parturition include gestation length, fetal numbers,
placentation, progesterone regulation, and uterine anatomy,
histology, and physiology (Elovitz and Mrinalini, 2004; Mitchell
and Taggart, 2009; Aguilar and Mitchell, 2010; Malik et al., 2021).
Large animal models (ovine and porcine) are expensive and exhibit
differences in gestation length, fetal numbers, placentation, uterine
anatomy and hormonal regulation (Mitchell and Taggart, 2009;
Nielsen et al., 2016; Sun et al., 2023). Non-human primates serve as
excellent physiological models, but their accessibility is limited by
cost (Elovitz and Mrinalini, 2004; Adams Waldorf et al., 2011; Li
et al.,, 2021a). No animals display a high prevalence of spontaneous
preterm birth, and available models require interventions to induce
early labor (Nielsen et al, 2016). Therefore, it is important to
confirm findings from animal models in relevant human models
(Mitchell and Taggart, 2009; Nielsen et al., 2016).

Another model system that has been instrumental to elucidating
mechanisms underlying uterine smooth muscle function is the 2D cell
culture model (Condon et al., 2002; Haluska et al., 2002; Mesiano
et al, 2002). Cultured uterine myocytes have the advantages of
convenience, high reproducibility, and high throughput. Uterine
myometrial cells grown in culture maintain expression of key
contractile proteins (Condon et al., 2002; Devost and Zingg, 2007).
Cells in 2D culture cannot be used for contractile studies, with the
exception of myometrial cells grown on collagen gel lattices (Devost
and Zingg, 2007). Another disadvantage of 2D models is that
monolayers may not accurately reflect the complex cellular
interactions found in three-dimensional tissues, resulting in altered
gene transcription, protein production, cytoskeletal structure, and
cellular function (Ilicic et al., 2017; Souza et al., 2017; Moysidou et al.,
2020). Perhaps the most physiologically relevant contractile studies
have been performed with ex vivo human uterine myometrial tissue
strips (Baumbach et al., 2012; Arrowsmith and Wray, 2014; Maxey
and McCain, 2021). Human myometrial tissues are obtained from
patients undergoing elective Cesarean-section and myograph-based
experiments allow measurement of variables such as contraction
interval, amplitude, and force. Organ tissue bath experiments allow
the assessment of responses to pharmacological agents administered
directly to tissues in real time; however, limitations include a limited
window of tissue viability and high level of heterogeneity (Quaas et al,,
1987; Maxey and McCain, 2021).

There is a need to create functionally relevant human uterine
tissue models to accelerate basic pregnancy research and to reduce
the need for animal testing (Park et al., 2024; Wheeler and Leach,
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2025). Three-dimensional (3D) engineered tissue models have
emerged as powerful complimentary tools to study contraction
dynamics. Bioengineered models of normal and pathological
tissues have been developed, including contractile models of
skeletal, airway, vascular, and cardiac muscle (Liu et al., 2020;
Alave Reyes-Furrer et al., 2021; Gold et al., 2021; Jung et al,
2022; Kundu et al., 2022; Osagie et al., 2022; Finkel et al., 2023;
Hockney et al., 2023; Song et al., 2023; Cherukuri et al., 2024; Tung
et al., 2024; Dell et al., 2025). We sought to develop a comparable
bioprinted uterine myometrial tissue model that aims to replicate
native pregnant human uterine myometrium.

Materials and methods

Tissue procurement and uterine smooth
muscle cell isolation

Uterine tissue biopsies were obtained from the upper edge of the
transverse incision in the lower uterine segment from women
delivering via Caesarean section at Renown Regional Medical
Center, Reno, NV under informed consent and with approval
from the University of Nevada and Renown Regional Medical
Center Institutional Review Boards (Ulrich et al., 2019; Ulrich
et al, 2025). Tissue donors were pregnant individuals at
38-39 weeks of gestation in the absence of HIV or hepatitis
infection. Medical history data was collected and de-identified.
Patient ages ranged from 24 to 35 years (mean age 28 years). All
were Caucasian, singleton pregnancies, and parity 1-5 (mean 2).

Uterine myometrium was dissected and used for myometrial cell
isolation. Myometrial cells were separated using a gentleMACS
dissociation instrument (Miltenyi Biotec, Bergisch Gladbach,
Germany). Cells were strained, centrifuged, and resuspended in
Dulbecco’s modified Eagle medium (DMEM; ThermoFisher
Scientific) containing 10% fetal bovine serum and antibiotics.
Growth media was supplemented with 60 nM 17B-estradiol and
third
concentrations. Isolated cells were allowed to proliferate in a
humidified incubator at 37 °C, 5% CO,.

600 nM progesterone to mimic trimester plasma

Rheology

A rheometer (MCR 92, Anton Paar, Ashland, VA) equipped
with a cone-plate measuring system (cone angle of 1°, cone diameter
of 50.0 mm, and cone-to-plate gap of 0.102 mm) was employed to
evaluate the rheological properties of the prepared alginate-Matrigel
composites. The steady shear rate sweeps were carried out to
measure the yield stress and viscosity of the composites pre- and
post-crosslinking. Specifically, the composites with 0.5, 0.6, and
0.7% (w/v) alginate were selected as the pre-crosslinking samples,
while the composites with 0.5% and 0.6% (w/v) alginate were used as
the post-crosslinking samples. In the measurements, the shear rate
was increased from 107> to 107 s and the shear stress and viscosity
at each shear rate were recorded. For the yield stress, the obtained
shear stress-shear rate plots were fit into the Herschel-Bulkley model
(Zhu et al., 2005). All measurements were conducted at room
temperature.
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FIGURE 1

Overview of bioprinted human myometrial tissue production. Human uterine myometrial cells were isolated from uterine biopsies taken from
women undergoing elective Caesarian section at term. Myometrial cells were isolated and allowed to proliferate in 2D culture, suspended in an alginate-
based Bioink, and printed into 14 mm diameter rings. Bioprinted tissues were allowed to differentiate for 7 days, treated with alginate lyase, and then
allowed to differentiate an additional 7 days. At day 14, tissues were assessed for cell viability and morphology, protein expression, and function.

Created in BioRender. BURKIN, H. (2025) https://BioRender.com/s4rgt9b

Bioink preparation

An overview of the experimental design is shown in Figure 1.
After 3-9 passages, primary human myometrial cells were
trypsinized, collected by centrifugation, and combined with
bioink for 3D printing. For initial optimization experiments,
bioink contained 2.5 x 10’ myometrial cells/mL in 50% Matrigel
(Corning) and 0.5%, 0.55%, 0.60%, 0.70%, or 0.75% (w/v)
NOVATACH VLVG 4GRGDSP alginate (Novamatrix) in
Dulbecco’s Phosphate-Buffered Saline (DPBS) lacking calcium
and magnesium (ThermoFisher Scientific).

3D bioprinting parameters

Bioink was deposited onto Transwell culture inserts (Grenier
Biosciences) in 14-layer, 14 mm Mean Diameter rings using an
RX1 Microfluidic Bioprinter (Aspect Biosystems Ltd., Vancouver,
Canada) (Dickman et al, 2020). The microfluidic device allows
crosslinking directly in the printhead by combining bioink with a
CaCl,-based crosslinker (Aspect Biosystems). The crosslinker coaxially
surrounds the alginate bioink to rapidly form an insoluble hydrogel
fiber (Dickman et al., 2020). Print conditions were 69 mbar pressure
cell/bioink solution, 55 mbar pressure buffer (Aspect Biosystems Ltd.),
55 mbar pressure crosslinker (125 mM CaCl, in 2% polyvinyl alcohol,
Aspect Biosystems Ltd.), print speed 25 mm/s. For all subsequent
experiments bioink containing 50% Matrigel and 0.6% RGD-alginate
was used. Approximately 12 tissue rings were produced per mL bioink
with each tissue ring containing approximately 2 million cells.

Cell proliferation and differentiation

Myometrial cells were allowed to proliferate in hydrogel rings for
24 h and then the tissue rings were transferred to DMEM supplemented
with 1% insulin, transferrin, and selenium (ITS, Gibco), proline
[40 mg/L L-proline, 10 mg/L trans-4-hydroxy-L-proline, and
0.1 mg/L L-ascorbic acid 2-phosphate, Millipore Sigma (Thorrez
et al,, 2018)], 1% penicillin/streptomycin (ThermoFisher Scientific),

Frontiers in Bioengineering and Biotechnology

60 nM 17B-estradiol, and 600 nM progesterone (Sigma-Aldrich). An
8-mm diameter Pyrex cloning cylinder was placed in the center of each
bioprinted ring to prevent excess spontaneous tissue area reduction.
Media was changed every 2-3 days and cells within synthetic rings were
allowed to differentiate and form interconnected networks at 37 °C, 5%
CO,. After 1 week, synthetic tissue constructs were treated with
0.4 mg/mL alginate lyase in differentiation medium for 5 min at
37 °C and then placed at 4 °C for 15 min to dissolve remaining
alginate (Liang et al, 2016). Tissue rings were allowed to
differentiate an additional 6-7 days at 37 °C, 5% CO,.

Analysis of cell viability and morphology

Cell viability and morphology assessments were performed on
unfixed, intact tissue rings (live cells) 2 weeks post-printing. Tissue
rings were submerged in PBS containing calcium and magnesium.
Synthetic rings were incubated with 2 uM Calcein AM and 1 pg/mL
Hoechst for 20 min at 37 °C. Propidium iodide was added to 1 pg/mL
for an additional 5 min at 37 °C. Tissue rings were rinsed with PBS,
and fluorescent images were captured on an Olympus Fluoview
1,000 confocal microscope (Olympus). In some experiments, z-stack
images were captured to subjectively assess cells in 3 dimensions
(Supplementary Video S1).

Cell morphology and cell viability images were analyzed using
Image]/FIJI software. The percentage of viable cells was determined
by dividing the number of cells stained with Calcein AM (living
cells) by the number of cell nuclei detected with Hoechst (total cells).
Cell elongation percentage was determined by comparing total
number of visibly elongated cells divided by cells that were
visibly circular. Native human uterine smooth muscle is
characterized by high numbers of parallel elongated cells, and
this morphology is expected to promote contraction.

Immunofluorescence

Two weeks after printing, synthetic tissue constructs were
submerged in 4% paraformaldehyde for 5-10 min, permeabilized
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in 0.5% Triton X-100 for 3 min, washed 3 x 5 min in PBS, and
blocked in PBS containing 5% BSA at 4 “C overnight. Tissues were
incubated with primary antibody diluted in PBS containing 1% BSA
in a humid chamber at 4 °C overnight, followed by secondary
antibody diluted in PBS containing 1% BSA at 4 °C overnight. A
complete list of antibodies can be found in Supplementary Table S1.
Tissues were incubated in 1 pg/mL Hoechst for 5 min at room
temperature, followed by 3 washes with PBS. Fluorescent images
were captured from intact tissue rings with an Olympus Fluoview
1,000 confocal microscope (Olympus).

Contraction and relaxation experiments

Experiments were performed to determine if synthetic myometrial
constructs would respond to physiological contractile and relaxing
agents. At 14 days post printing, Pyrex cylinders were removed
using tweezers and a pipette tip to gently push the tissue ring
constructs off the cylinders. Rings were then allowed to equilibrate
1-2 h at 37 °C, 5% CO,. Tissue constructs were treated with either
10 nM oxytocin (OT), 1 uM prostaglandin F,, (PGF,,), 1 uM
prostaglandin E2 (PGE2), or 100 uM S-nitrosoglutathione (GSNO)
and incubated at 37 °C, 5% CO, for 2 h. Control was equal volume of
PBS for all groups. Myometrial tissue constructs were photographed
prior to addition of contractile (OT, PGF,,, and PGE2) and relaxing
(GSNO) agents and 2 h post treatment. Changes in inner ring diameter
were auto calculated in ImageJ FIJI and the percent change in area was
calculated in Excel. All contractile and relaxation experiments were
performed 2-3 times with 3-6 technical replicates per treatment.

Statistical analyses

Treatments were coded and samples randomized so those
collecting and analyzing data were blinded to the treatment
group (Landis et al., 2012). Experiments were performed with 3-
6 technical replicates per group. Differences between groups were
determined using unpaired, two-tailed t-tests or One-way ANOVA
with Tukey’s multiple comparisons test.

Results
Rheological measurements

To investigate the effects of alginate concentration on the
printability of alginate-Matrigel composites, the yield stress (1)
(Hua et al,, 2022) and dynamic viscosity (Hua et al., 2023) were
selected as the primary rheological parameters. The measurements
are illustrated in Figure 2. For the pre-crosslinking composites, all
the samples exhibited a weak yield-stress property. With the increase
of alginate concentration from 0.5% to 0.6% and 0.7% (w/v), the
yield stress increased slightly from 0.004 to 0.008 and 0.010 Pa
(Figure 2). The weak yield stress is attributed to the self-assembled
protein network of Matrigel, which comprises a complex mixture of
proteins, primarily laminin, collagen IV, entactin, and other
extracellular matrix components (Kane et al., 2018; Flores-Torres
et al., 2021), enabling the composite to behave solid-like at lower
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shear stresses. As shown in Figure 2, the viscosity continuously
decreased with the increasing shear rate, demonstrating a typical
shear-thinning behavior of the composites that facilitates the ink
extrusion during bioprinting (Liu et al., 2017; Amorim et al., 2021).
After crosslinking by CaCl,, the yield stress of the alginate-Matrigel
composites was significantly enhanced. As illustrated in Figure 2, the
composites with 0.5% and 0.6% (w/v) alginate have the yield stresses
of 17.19 and 68.23 Pa, respectively, upon crosslinking, which can be
explained by the formation of a densified 3D networked
microstructure  from chains.

alginate Simultaneously, the

crosslinked composites still possessed the shear-thinning
behavior, as shown in Figure 2, indicating that these composites

are still extrudable if a higher shear stress is applied.

Optimization of cell viability and
morphology

We determined the bioink conditions for optimal human
uterine smooth muscle cell viability and morphology. Our early
observations suggested bioink containing 50% Matrigel produced
tissues with higher cell viability and elongation compared to bioink
ECM
components (e.g., collagen or fibronectin alone, data not shown),

containing lower Matrigel concentrations or single
consistent with the observation that high Matrigel concentrations
promoted elongated morphology in bioprinted skeletal muscle
(Hinds et al,, 2011). RGD alginate was selected for its beneficial
effects on cell adhesion and differentiation (Gribova et al., 2013;
Gallagher et al., 2020). Cell viability was 65.2% when bioink was
prepared with 0.5% alginate and increased to 76.2% with 0.6%
alginate (p = 0.0082) and 79.8% with 0.7% alginate (p = 0.0012).
The percentage of elongated cells increased from 63.5% when bioink
contained 0.5% alginate to 84.3% with 0.6% alginate. We determined
that bioink containing 50% Matrigel and 0.6% RGD-alginate
provided the highest levels of elongated cells while retaining high

numbers of viable cells (Figure 3).

Expression of appropriate tissue markers

Immunofluorescence experiments were performed to confirm
the expression of smooth muscle, uterine, and contractile associated
proteins in bioprinted myometrial tissue constructs. We observed
appropriate expression and localization of smooth muscle markers
(caldesmon, a smooth muscle actin, and smooth muscle myosin),
contractile-associated proteins (oxytocin receptor, prostaglandin
receptors and connexin-43), and steroid hormone receptors
(estrogen and progesterone receptors) in synthetic tissue
constructs (Figure 4) (Chow and Lye, 1994; How et al, 1995;
Rezapour et al, 1996; Myatt and Lye, 2004; de Arruda et al,
2013; Kajuluri et al., 2020; Hanuman et al., 2023).

Synthetic human myometrial tissues
respond to contractile agonists

We detected oxytocin receptor expression in the bioprinted
myometrial tissue constructs (Figure 4) and observed a 34%
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Shear stress and shear viscosity of the bioink are dependent on alginate concentration. Pre-crosslinked bioink (0.5% and 0.6% alginate) exhibited
shear thinning, while post-crosslinked bioinks (0.5% and 0.6%) displayed characteristics of Newtonian fluid. In contrast, bioink containing 0.7% alginate
displayed Newtonian characteristics prior to crosslinking and could not be assessed post-crosslinking.

reduction in tissue ring area in response to 10 nM oxytocin
(compared to 25% in response to vehicle; p = 0.001, Figure 5).
These observations support the hypothesis that myocytes within the
synthetic tissues can produce a physiological response to the
contractile agonist oxytocin (Wray and Arrowsmith, 2021).

The bioprinted myometrial tissues expressed COX-2 and
prostaglandin receptors (data not shown) and contracted in
response to both PGE2 and PGF,, (Figure 5). Tissue ring area
was reduced 52.7% in response to PGF,,, compared to 21.5% for the
vehicle controls (p = 0.002). Similarly, treatment with PGE2 reduced
bioprinted tissue ring area 21.9% compared to 8.7% in vehicle-
treated controls (p 0.001). These data are consistent with
that  these

observations inflammatory mediators promote

Frontiers in Bioengineering and Biotechnology

05

myometrial contractions during labor (Li et al., 2021b). Together
these results indicate the bioprinted myometrial tissue constructs
displayed a contractile response to prostaglandins as expected for
human uterine smooth muscle.

Synthetic human myometrial tissues relax in
the presence of nitric oxide donor

Previous studies have demonstrated that uterine smooth muscle
exhibits a relaxation response distinct from other smooth muscle
tissues. Nitric oxide (NO) induces relaxation of uterine smooth
muscle in a dose-dependent manner, independent of cyclic
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Myometrial cell viability and morphology were optimal in bioink
containing 0.6% alginate. Cell viability and percent elongation in
tissues printed containing varying alginate concentrations were
assessed by live-dead stain with Calcein AM (live cells), propidium
iodide (PI, dead cell nuclei), and Hoechst (all cell nuclei). Bioink
containing 0.6% alginate yielded higher percentages of viable (**p <
0.01) and elongated (*p < 0.05) cells compared to bioink containing
0.5% alginate. Bioink containing 0.7% alginate improved cell viability
(**p < 0.01) but did not significantly improve cell elongation. Individual
dots represent technical replicate values. Image was captured at 20x
magnification.

guanosine monophosphate (cGMP) pathways (Buxton et al., 2001).
Bioprinted tissue ring area increased 4.8% 2 h after addition of the NO
donor S-nitrosoglutathione, which was significantly different from the
2.5% reduction in area observed in vehicle-treated control tissues. Our
synthetic myometrial model demonstrated relaxation in response to the
nitric oxide donor (Figure 5), providing evidence that our model can
respond effectively to pharmacological intervention.

Discussion

In recent years, bioprinted models of several reproductive tissues

have been developed, including ovary, placenta, uterine

endometrium, and the maternal-fetal interface (Haider and
2023). The first in vitro 3D model of uterine
myometrium consisted of primary human uterine smooth muscle

Beristain,

cells carrying magnetic nanoparticles that were assembled into 3D
ring structures via magnetic force (Souza et al., 2017). Immediately
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FIGURE 4
Bioprinted myometrial tissues appropriately expresses uterine

and smooth muscle markers. Confocal microscopy revealed
appropriate expression of contractile-associated proteins caldesmon
(CDM) and smooth muscle actin (SMA), contractile-associated
proteins connexin-43 (Cx43) and oxytocin receptor (OXTR),
progesterone receptor (PR), and estrogen receptor alpha (ER) in
bioprinted tissues. Nuclei were labeled blue with Hoechst. Images
were captured at 60x magnification.

after magnet removal, the tissue rings displayed spontaneous
contractile activity, which was inhibited with two commonly used
tocolytics. To date, this model has not been used to assess agonist-
induced contractions; however, this study confirmed pregnant
human myometrial cells retain the ability to respond to tocolytic
agents in culture. More recent data have shown that oxytocin
induces intracellular calcium transients in human myometrial
tissues printed in polyacrylamide hydrogels (Finkel et al., 2023).
Here, we report the development of the first bioprinted tissue model
of pregnant human myometrium that responds to multiple
physiological contractile stimulants as well as a known tissue
relaxant. This model does not require cells uptake magnetic
particles, which may alter multiple cellular functions (Chen and
Hou, 2023). Another relative advantage of the microfluidic
bioprinting platform is that multiple cell types can be deposited
in layers, so this model can serve as a foundation to develop models
in which interactions between the myometrium and other cell types
(such as immune or epithelial cells) can be studied. The 3D culture
conditions we describe are also compatible with scalable technology
to measure contraction force and frequency (Smith et al., 2022).
The bioprinted ring structure was chosen because it was expected to
allow diffusion of gases and molecules through the tissue while
supporting 3D intercellular interactions and allowing basic
contraction assays to be performed (Dickman et al, 2020). The
major uterine contractile agonists of pregnancy are oxytocin and
prostaglandins. Oxytocin was the first uterine contractile agonist
discovered, and synthetic analogs are commonly used to induce or
accelerate labor (Vigneaud et al., 2002; Uvnas-Moberg, 2024). During
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Bioprinted synthetic myometrial tissues display contraction and relaxation responses. Treatment with oxytocin, prostaglandin E2 (PGE2), and
prostaglandin F,, (PGF,,) resulted in tissue contraction as determined by a reduction in the inner ring area compared to vehicle treatment (**p < 0.01,
***p < 0.001). In contrast, tissues treated with a nitric oxide donor S-nitrosoglutathione (GSNO) showed significant relaxation as determined by an
increase in ring area compared to vehicle treatment (**p < 0.01). Each technical replicate is indicated by a dot. Each graph is representative of an
experiment that was repeated with 2-3 sets of bioprinted tissues. Representative tissue ring images are shown in the inserts to the right of each graph.

labor, oxytocin released from the pituitary binds to myometrial oxytocin
receptors to initiate a series of protein phosphorylation events resulting
in activation of the contractile machinery (Wray and Arrowsmith,
2021). In addition, locally produced oxytocin promotes prostaglandin
production (Uvnas-Moberg, 2024). PGE2 is FDA approved for labor
induction (Sanchez-Ramos et al., 2024) and PGF,, also promotes
uterine contraction (Ricciotti and FitzGerald, 2011). Bioprinted
tissues were comprised of myometrial cells obtained from term
pregnant human myometrium and maintained under high levels of
estradiol and progesterone to mimic physiological third trimester
concentrations. The bioprinted myometrial tissue model displayed
measurable contractile responses to three known agonists (oxytocin,
PGE2, and PGF,,) at concentrations previously used in ex vivo
pregnant human myometrial tissues by our laboratory and others
(Chiossi et al., 2012; Balki et al., 2014; Ulrich et al, 2019). The
observed PGE2 contraction response supports the hypothesis that
our model specifically replicates term pregnant human myometrium,
in contrast to nonpregnant human myometrium which relaxes in
response to PGE2 (Lopez Bernal et al., 1989).

The observed contraction and relaxation responses suggest the
myometrial tissue model we describe can serve as a foundation for
the development of complex human uterine tissue models, including
those for pathological pregnancy conditions such as preterm labor
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and induction failure. Currently available medications to reduce
preterm labor are only effective for 48 h, which is largely insufficient
to prevent preterm delivery (Lamont et al, 2016) Recent data
indicate macrophages promote development of the contractile
phenotype and mediate preterm parturition (Gonzalez et al,
2011; Lopez et al., 2024). Addition of immune or other cell types
may allow the creation of bioengineered tissues that functionally
represent human preterm laboring myometrium. The microfluidic
bioprinting platform allows the deposition of multiple cell types in
layers, so this bioprinted model can serve as a foundation to develop
models in which interactions between the myometrium and other
cell types can be studied. Labor dystocia is treated with the
administration of synthetic oxytocin, but patient responses are
highly variable, and oxytocin supplementation does not reduce
cesarean delivery rates (Bugg et al, 2013). Proposed uterine
factors underlying dystocia include inadequate expression of pro-
labor proteins, insufficient contractile force, and metabolic fatigue
(Kissler and Hurt, 2023). Bioprinted uterine tissues could be adapted
to represent preterm labor and labor dystocia to explore underlying
mechanisms and to identify and test new tocolytics and uterotonics.
The idea that myometrial tissue models of pathological pregnancy
conditions can be developed is supported by recent reports of
engineered tissue models that replicate cardiac, skeletal muscle,
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and gastrointestinal disease phenotypes (Workman et al.,, 2017;
Smith et al., 2022; Tsui et al., 2022; Cherukuri et al., 2024; Min
et al., 2024; Wheeler and Leach, 2025).

One limitation of this model is the need for characterization of
transcript and protein expression. Previous work has shown that,
after four passages in culture, uterine smooth muscle cells display
altered transcript levels for key labor-associated genes compared to
parent tissues, including elevated ESRI and GJAI transcript levels
and reduced OXTR and PGR transcript levels, and the reduction in
progesterone receptor expression was confirmed at the protein level
(Georgiou et al., 2016; Tlicic et al., 2017). In these experiments, the
smooth muscle cells were maintained in serum to stimulate
proliferation, followed by incubation in low serum conditions
overnight. While we do not report quantitative expression assays,
future experiments will determine if bioprinted myometrial tissues
display elevated expression of markers compared to cells in 2D
culture, as reported for other 3D tissue models (Dickman et al., 20205
Alave Reyes-Furrer et al., 2021). Myometrial cells within the
bioprinted tissues required culture in serum-free differentiation
medium for 2 weeks to attain optimal morphology (data not
shown). Other reports suggest the longer differentiation times are
required for 3D tissues to develop optimal morphology and
function, and this may be associated with changes in gene
expression (Dickman et al, 2020; Alave Reyes-Furrer et al,
2021). Additionally, the bioprinted myometrial tissues likely
contain low levels of other cell types in addition to myometrial
smooth muscle cells that may contribute to expression differences
and tissue function (Hanuman et al., 2023).

These bioprinted tissue constructs could provide a foundation for a
variety of mechanistic studies, including “knock out” or overexpression
experiments to elucidate or confirm important players in contraction
and relaxation pathways. Immortalized human uterine smooth muscle
cells have successfully been used for genetic manipulation experiments,
including CRISPR editing to modify the endogenous oxytocin receptor
gene (Fang et al., 2024). However, to our knowledge, these experiments
have not been replicated in a three-dimensional tissue environment
which our current model can provide. It is important to note that
bioprinted myometrial tissues exhibit reduced mechanical properties
compared to their native counterparts, primarily due to weak interfacial
strength between printed layers, uniform filament orientation different
from native muscle fiber alignment, and porous microstructure of the
bioink upon crosslinking. Since the bioprinted tissues are not strong
enough to withstand the tension necessary for myography experiments,
measurements of contraction force, frequency, or duration cannot
currently be obtained. Addition of biomaterials such as fibrin and
elastin could improve tensile strength and elasticity of bioprinted
myometrium (Li et al, 2024; Wang et al, 2024). Incorporation of
nanofibers produced via electrospinning improved cell morphology
and tensile strength in a scaffold-based uterine tissue model (Hanuman
et al, 2024). Despite these limitations, this model can serve as a
foundation for future research aimed at developing sensitive, scalable
contraction and relaxation assays in bioprinted myometrium (Alave
Reyes-Furrer et al., 2021; Finkel et al,, 2023; Hanuman et al., 2023).

In conclusion, we have developed a uterine myometrial tissue
that
morphological, contractile, and molecular characteristics of term

model phenotypically and functionally  represents
pregnant human myometrium. This work represents a foundational

step toward the long-term goal of developing bioprinted uterine
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tissue models that represent multiple pathological etiologies of
pregnancy and can serve as an accessible resource for basic
scientific discovery, toxicology studies, drug screening, and
preclinical testing.
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