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Introduction: Advancements in artificial intelligence are transforming rehabilitation
by enabling scalable, patient-centric solutions within modern healthcare
systems. This study introduces 3D-PoseFormer, a deep multimodal framework
designed for the telerehabilitation of individuals with lower back pain (LBP).
Methods: The proposed system performs automated data acquisition using
synchronized RGB and depth video streams to enable real-time, markerless,
and sensor-free analysis of physiotherapy exercises. From the depth sensing
module, 3D body joint positions are extracted and used to generate SMPL-based
mesh vertices for detailed biomechanical analysis and postural representation.
Simultaneously, RGB frames are processed using keypoint detection
algorithms—Shi-Tomasi, AKAZE, BRISK, SIFT, and Harris corner detection.
Extracted features are enhanced through semantic contour analysis of
segmented body parts to capture localized appearance-based information
relevant to LBP therapy. The fused multimodal features are then passed to a
Transformer-based machine learning model that captures temporal motion
patterns for accurate exercise classification and human intention recognition.
Results: The system removes the need for wearable sensors and supports
autonomous, continuous monitoring in home-based rehabilitation. Validation
on the KIMORE dataset (baseline, including rehabilitation exercises by patients
with lower back pain), mRI dataset (rehabilitation exercises), and UTKinect-
Action3D dataset (comprising diverse subjects and activity scenarios) achieved
state-of-the-art accuracies of 94.73%, 91%, and 94.2%, respectively.
Discussion: Results demonstrate the robustness, generalizability, and clinical
potential of 3D-PoseFormer in Al-assisted rehabilitation, offering a scalable and
intelligent healthcare system for remote physiotherapy and patient monitoring.
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1 Introduction

Lower back pain (LBP) is a prevalent musculoskeletal disorder
that affects spinal posture, mobility, and quality of life.
Rehabilitation for LBP often demands sustained physiotherapy
involving repetitive, supervised exercises. However, conventional
rehabilitation requires regular clinical visits, posing accessibility
barriers for individuals in remote, rural, or resource-constrained
settings. Moreover, unsupervised home exercises risk incorrect
execution, potentially worsening patient outcomes. Furthermore,
recent advancements in artificial intelligence and computer vision
have enabled promising alternatives for automated rehabilitation.
Yet, most image-based systems struggle with real-world challenges
such as occlusion, appearance variation, depth ambiguity, and
dependency on camera viewpoints (Wang et al., 2011; Cao et al,
2017). These limitations hinder accurate biomechanical analysis and
compromise the reliability of unsupervised assessment in home
environments.

Recent rehabilitation research has also emphasized cross-
dimensional multimodal assessment, where visual modalities are
fused with physiological electrical signals to enhance clinical
reliability. For example (Ao et al, 2023), employed sEMG-based
muscle synergy analysis for gesture recognition, demonstrating the
value of electrophysiological cues. Related studies have shown that
combining vision with surface EMG improves motor intention
decoding (Zhang et al, 2019) and supports more accurate
rehabilitation monitoring (Xia et al, 2020). While these
multimodal approaches show promise for enhanced accuracy,
they introduce practical challenges including increased hardware
complexity, user compliance issues with wearable sensors, and
potential discomfort during extended use. Consequently, vision-
only systems remain valuable for applications requiring non-
invasive deployment, minimal infrastructure requirements, and
broader accessibility across diverse wuser populations and
environmental conditions.

To address these challenges, we propose 3D-PoseFormer, a deep
multimodal framework tailored for remote lower back pain
rehabilitation. The system leverages RGB and depth video
streams to enable real-time physiotherapy analysis without
wearable sensors or physical markers. From depth images, we
extract 3D joint locations and reconstruct full-body meshes using
the Skinned Multi-Person Linear (SMPL) model (Loper et al., 2015),
capturing precise pose and shape parameters. Concurrently, RGB
images are processed via classical keypoint detectors (Shi-Tomasi,
AKAZE, BRISK, SIFT, Harris) and enhanced through semantic
These
complementary features are fused into a unified representation.
These
representation and passed to a Transformer-based architecture
(Vaswani et al., 2017; Liu et al., 2022). This approach effectively
models temporal dynamics for robust exercise classification and

contour extraction to localize anatomical features.

complementary features are fused into a unified

correctness evaluation.

The proposed 3D-PoseFormer directly addresses prior
limitations by using depth-based 3D joint reconstruction and
mesh modelling to handle occlusion and appearance variation,
RGB-D

temporal modelling mitigate depth ambiguity and viewpoint

while multimodal inputs with Transformer-based

dependency. These design choices ensure robust rehabilitation
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analysis in realistic scenarios. The framework integrates structural
body modelling, appearance cues, and temporal context without
requiring physical markers and complements clinician supervision.

We evaluate our system on three public datasets KIMORE
(Capecci et al, 2019), mRI, and UTKinect-Action3D achieving
(94.73%, 91.0%, and 94.2%,
respectively), thereby demonstrating its generalizability and

state-of-the-art  performance
clinical relevance.
Main contributions of this work are as follows.

o We present a novel rehabilitation framework free from
external sensors or physical markers, combining depth-
based 3D mesh reconstruction with RGB-based 2D
keypoint extraction for accurate biomechanical assessment.

« We propose DKP-Net-24, a novel keypoint extraction
framework for robust 3D keypoint estimation from depth-
based silhouettes under varying arm poses. It employs
specialized image processing pipelines to adapt dynamically
to different body alignments, ensuring reliable motion
tracking for rehabilitation assessment.

o We propose a unique feature fusion technique that combines
2D and 3D keypoints, integrating 2D appearance features, 3D
mesh geometry, and semantic contours into a unified feature
vector, coupled with Transformer-based classification.

2 Literature review

In the domain of exercise assessment and recognition, a wide
variety of technologies have been explored. Inertial Measurement
Units (IMUs) are one of the most commonly used tools due to their
portability and ability to capture fine-grained motion data. $ahin
(2024) reviewed wearable technologies in physiotherapy and
rehabilitation, highlighting their applications in monitoring
movement, sleep, and managing chronic health conditions.
Despite the promising results, the need to wear multiple sensors
can reduce practicality and wuser comfort in non-clinical
environments.

Gumaei et al. (2019) proposed a hybrid deep learning model
combining SRUs and GRUs for multimodal wearable sensor-based
human activity recognition, achieving 99.80% accuracy on the
MHEALTH dataset and about 95.70% in 10-fold cross-validation.
Chang et al. (2011) used Kinect for posture coaching, achieving
91.9% accuracy in pose classification and 93.75% in trajectory
recognition, but faced issues with low light and cluttered
backgrounds. Yang et al. (2012) achieved 85% accuracy for gait-
based exercise recognition with Kinect, but performance dropped
when users were occluded or faced away. Barabas et al. (2019)
developed a Kinect-based platform for monitoring elderly
movements and detecting falls in indoor settings, achieving
approximately 92% accuracy in fall detection.

Recent works have also explored telerehabilitation and
intelligent exercise monitoring using multimodal and sensor-
based Ashraf et al. (2025)
telerehabilitation system for elderly healthcare using physical

approaches. proposed a

exercise monitoring, while Awan et al. (2024) introduced a

robust exercise-based telerehabilitation framework tailored for
elderly healthcare services. Tayyab and Jalal (2025) developed a
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disabled
monitoring and healthcare recognition. Similarly, Akhter et al.

machine learning-based system for rehabilitation
(2023) presented a deep skeleton modeling approach with hybrid
hand-crafted cues for exercise recognition. Fatima et al. (2024)
designed a feature extraction strategy combining full-body and
geometric features for sports interaction recognition, whereas
Nadeem et al. (2020) applied multidimensional features and a
Markov model for accurate physical activity recognition in smart
health fitness. Afsar et al. (2023) employed deep learning models
with body-worn sensors for sports activity recognition in
exergaming, complemented by studies such as Khan et al. (2025),
Javeed and Chelloug (2022), and Kaynat et al. (2025), who applied
artificial neural networks, gesture recognition, and dynamic features
for immersive fitness and wearable-sensor-based exergaming
systems. Tayyab et al. (2025) proposed a hybrid deep learning
approach combining key body descriptors for sports activity
recognition, while Nazar and Jalal (2025) developed wearable
sensor-based activity classification methods for intelligent
healthcare (2025)

proposed a holistic pose estimation and dynamic motion analysis

monitoring. Furthermore, Kamal et al
framework for telerehabilitation of physically disabled individuals,
demonstrating the potential of deep models in clinically relevant
rehabilitation systems.

More recently, RGB-based approaches have gained attention
due to their non-intrusive and sensor less nature. Gupta et al. (Gupta
et al, 2020) reviewed various RGB video-based human activity
recognition models, where several architectures such as 3D
CNNs and LSTMs reached 80%-85% accuracy on different
movement datasets. However, the sensitivity of RGB approaches
to illumination changes, camera placement, and background noise
remains a significant challenge. Li et al. (Li et al., 2021) developed an
action recognition system using RGB video and graph convolution
networks, achieving 82.4% accuracy, but struggled with frame drops
and keypoint inaccuracies under occlusion. Aubry et al. (2019)
proposed an action recognition approach using 2D skeletons
extracted from RGB videos and CNN-based
achieving 83.32% (cross-subject) and 88.78% (cross-view)
accuracies on the NTU RGB+D dataset with ResNet. Xu et al.
(2021) developed a dual-stream model integrating scene images with

classification,

human skeleton data for action recognition, achieving 94.10%
accuracy on benchmark datasets. However, real-world robustness
was limited.

Hamdy et al. (2024) proposed a transformer-based model for
classifying rehabilitation exercises, achieving 91.96% accuracy to
enhance physical therapy assessment and monitoring. However,
performance dropped when joint extraction was inaccurate.
Recently, 3D human reconstruction methods, especially those
using the SMPL model, have shown promise in exercise
assessment, providing a detailed understanding of body
movement beyond traditional 2D or depth-based methods. Zanfir
et al. (2018) developed a 3D pose estimation pipeline using SMPL-
based reconstruction, achieving 87.2% accuracy in fitness activity
analysis. Kanazawa et al. (2018) introduced Human Mesh Recovery
(HMR), using SMPL for 3D pose estimation from a single RGB
image, laying the foundation for marker less 3D exercise assessment.
Saqlain et al. (2022) introduced 3DMesh-GAR, a 3D human body
mesh-based approach for group activity recognition from RGB
frames, achieving 93.6% accuracy on the Collective Activity Dataset.
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Kocabas et al. (2020) introduced VIBE, which generates
temporally coherent SMPL parameters, achieving 86.3% accuracy
in action recognition despite motion blur and occlusions. Pavlakos
et al. (2017) used volumetric prediction of 3D meshes for activity
recognition, reaching 83.7% accuracy in gesture-based fitness
datasets. These studies underline the growing relevance of 3D
reconstruction techniques, particularly those involving SMPL, in
advancing the field of exercise assessment. By capturing pose and
shape in a camera-invariant and rotation-robust format, SMPL
opens new avenues for tele-rehabilitation, automated posture
correction, and non-intrusive fitness coaching.

3 Methodology

The methodology has two phases: RGB-Keypoint Detection
(RGB-KPD), where RGB images were processed to estimate the
human pose using keypoints detection algorithms. The second
phase is Depth-based Mesh Generation (D-Mesh). In the depth
image processing phase, the proposed system extracts human
silhouettes and detects 3D body joint positions from depth
images. These are then passed to the SMPL model to generate
detailed 3D body mesh vertices, along with pose and shape
parameters. In the RGB-KPD phase, RGB images are processed
to extract complementary visual features. Silhouettes are analyzed
using multiple keypoint detection techniques, including Shi-Tomasi,
AKAZE, BRISK, SIFT, Harris corner, and contour-based analysis.
Body part parsing is performed using a pre-trained model, and
contour analysis is applied to each segmented part. The features
from the RGB and depth streams are fused, and a Transformer-
based architecture is used to capture temporal dynamics and assess
exercise quality. The workflow is shown on Figure 1.

3.1 RGB-KPD

The methodology for extracting human silhouettes from video
stages: preprocessing,
segmentation, and silhouette extraction. These operations are

frames involves three core semantic
applied on a per-frame basis, assuming that frames have already

been extracted from the input videos.

3.1.1 Preprocessing

Each input frame, denoted as I ¢4 (x, y), where (x, y) are pixel
coordinates, is initially converted from BGR to RGB color space. It is
then resized to match the input dimensions expected by the
semantic segmentation model, represented as (W,H). The
resized image is normalized using the mean and standard
deviation  statistics of the model’s training dataset.
Mathematically, this transformation can be written as in
Equation 1.

! !

T preprocessed (x: y) = M (1)
where I represent the input frame. (x, y) are the pixel coordinates in
the resized image of dimensions H x W, (x,y') are the
corresponding pixel coordinates in the original BGR image after

resizing to H x W, Irgp (x', ') denotes the RGB color value at pixel
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(x',y') after the BGR to RGB conversion and resizing, p represents
the mean vector (or scalar if it’s a per-channel mean) calculated from
the model’s training dataset and o represents the standard deviation
vector (or scalar if it’s a per-channel standard deviation) calculated
from the model’s training dataset. This normalized image is then
converted into a tensor as in Equation 2.

Liensor = Tensorize(l prepmessed) (2)

3.1.2 Semantic segmentation

The tensor Ijensor is passed through a DeepLabV3 (Hamamoto
etal., 2024) segmentation model with a ResNet-101 (Panigrahi et al.,
2024) backbone to produce a pixel-wise segmentation map. The
model outputs a probability distribution for each pixel given in
Equation 3.

Sout (‘x’ y) = DeepLabV3 ( Tiensor) (-x> y) (3)

To assign a class label to each pixel, the class with the highest
probability is selected using the argmax operation given by
Equation 4.

Sseg (X, y) = ArgmaXye,.., N}Sout (X, )’) [”] (4)

where arg max selects the index n of the highest probability in the
vector Sy (x, ¥) corresponding to the class label assigned to that
pixel. Following this, a binary mask M4, (x, y) is generated by
analyzing all regions in Ss.;. Among all the segmented regions, only
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the largest connected component is retained, ensuring that the most
prominent human figure in the frame is selected using Equation 5.

Moo (%, 7) = 255,if (x,y)ELargestComponent(Sseg) )
raw %o ¥ 0, otherwise

3.1.3 Silhouette extraction

To refine the extracted mask, morphological operations are
applied to M, (x, ¥). Specifically, opening and closing
operations are performed using a kernel K of size 5x5 to
remove small artifacts and fill small holes given by Equation 6.

Mcleuned = (meoK) ‘K= [(me S} K) ® K] (6)
where K = {[ (M4, © K) ® K] ® K} © K. The cleaned mask is then

resized back to the original frame dimensions (W, H) for accurate
alignment using Equation 7.

Muligned (x> }/) = Mcleuned( \‘XW J) \‘yH J > (7)

w H

where [-] denotes the floor function (used in nearest-neighbor
interpolation), x€[0, W-1], ye[0, H-1]. Finally, the silhouette
frame is generated by applying this mask to the original input
frame. Only pixels corresponding to the detected human are
retained, while all other pixels are set to zero (black background).
The final silhouette frame Ignoyerre (X, ¥) is computed as in
Equation 8.
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(a) (b)

FIGURE 2
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(c)

Keypoint detection on silnouette images using (a) Contour approximation, (b) Harris corner detection, and (c) Shi-Tomasi method

Ifmme (.X, y)) lf Maligned (x) )’) =255
0, otherwise

Isilhauette (X, y) = { (8)

This approach ensures the robust isolation of the human figure
from each frame, producing clean silhouettes suitable for
downstream analysis.

3.1.4 2D keypoints feature extraction

To extract meaningful structural keypoints from binary human
silhouettes, we employed a suite of classical keypoint detection
techniques rooted in image geometry and intensity discontinuity.
Each method targets distinct properties of the silhouette and
collectively offers a diverse spatial representation of the human
form across varying poses.

3.1.4.1 Contour-based keypoints

Contour approximation detects the outer boundary of a shape
and simplifies it into a polygonal representation. As illustrated in
Figure 2a, this method localizes keypoints along the silhouette’s
perimeter, concentrating on high-curvature regions such as elbows,
knees, and shoulder angles. By adjusting the approximation
tolerance, the method effectively balances geometric precision
and sparsity, resulting in a reduced set of anatomically relevant
The the
Douglas—Peucker algorithm (Douglas and Peucker, 1973), which

points. polygonal simplification is governed by
recursively removes points where the perpendicular distance d L to
the baseline segment is below a specified threshold & using

Equation 9.

|(Xz —Xl)()’l - )’0) - (x; —xo)()’z —y1)|

dl=
\/(xz -x) + (y2 _yl)z

)

3.1.4.2 Harris corner detection

Harris corner detection identifies regions with strong local
intensity variations, mathematically characterized by eigenvalue
analysis of the gradient covariance matrix (Harris and Stephens,
1988). In silhouette imagery, these variations are caused by shape
discontinuities. As shown in Figure 2b, Harris keypoints are
densely distributed around joint regions, including wrists,
ankles, and neck transitions, where the silhouette contour
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exhibits abrupt directional changes. The corner response
function is defined as in Equation 10.

R = det(M) - k.(trace (M)) (10)
where M is the second-moment matrix given in Equation 11.
I Iyl
M=|,% 7 (11)
{ IxI, If/ ]

and Ix,I, are image gradients along the x and y directions,
respectively.

3.1.4.3 Shi-Tomasi corner detection

Shi-Tomasi enhances the Harris approach by retaining only
those points with the highest structural stability, as defined by the
minimum eigenvalue of the autocorrelation matrix (Shi and Tomasi,
1994). As visualized in Figure 2c, this results in spatially clean and
anatomically consistent points located primarily at prominent
body joints.

3.1.4.4 ORB-based detection

Oriented FAST and Rotated BRIEF (ORB) utilizes intensity
difference testing over a circular neighborhood to identify stable
keypoints (Rublee et al., 2011). As seen in Figure 3a, the detected
points consistently emerge at limb extremities, head contours, and
joint areas. ORB is particularly effective at capturing repeated spatial
patterns across multiple poses, making it well-suited for silhouette-
based action analysis.

3.1.4.5 BRISK-based detection

Binary Robust Invariant Scalable Keypoints (BRISK) identifies
local extrema by comparing intensity patterns across concentric
circular layers (Leutenegger et al., 2011). Figure 3b demonstrates
that BRISK effectively highlights joint-like structures and pose-
specific inflection points such as raised hands, bent arms, and
inclined postures. The circular sampling design contributes to its
ability to adapt to shape deformation and body articulation.

3.1.4.6 SIFT-based detection

SIFT (Scale-Invariant Feature Transform) identifies keypoints
by locating extrema in scale-normalized Difference-of-Gaussian
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https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1631910

Ashraf et al.

10.3389/fbioe.2025.1631910

(b)

(c)

FIGURE 3

(d)

Keypoint detection results using (a) ORB, (b) BRISK, (c) SIFT, and (d) AKAZE on binary human silhouettes

FIGURE 4
Skeleton-based keypoints showing endpoints (green) and
branch points (red) on human silhouettes.

space (Lowe, 2004). Despite the lack of texture in silhouette images,
the method succeeds in capturing stable points at scale-consistent
SIFT keypoints
predominantly lie along the outer edges, providing a compact yet

curvature zones. As seen in Figure 3c,
descriptive summary of the silhouette geometry. The scale-space

extrema are located by solving using Equation 12.

oD(x,y,0) 0

do (12)

where D(x, y,0) = L(x, y,ko) — L(x, y,0) and L represents the
Gaussian-blurred image at scale o.

Frontiers in Bioengineering and Biotechnology

3.1.4.7 AKAZE-based detection

Accelerated KAZE (AKAZE) operates in nonlinear scale space
and extracts robust keypoints even under low contrast (Alcantarilla
et al., 2011). Its performance on silhouette data is illustrated in
Figure 3d, where keypoints are clustered around the torso and limbs.
The method adapts well to body articulation and provides enhanced
sensitivity to localized structural transitions.

3.1.4.8 Skeleton-based landmark detection

To extract topological keypoints, we applied skeletonization to
reduce each silhouette to its medial axis (Zhang and Suen, 1984).
Endpoints and branch points were identified by analyzing the
neighborhood connectivity of skeletal pixels. As shown in
Figure 4, this method reliably identifies semantically meaningful
regions such as fingertips, feet, and limb-torso junctions, offering a
structural representation aligned with human pose semantics.

3.1.5 Body part labelling

To derive a semantically rich, region-specific understanding of
the human body, we employed a body part labeling (BPL) approach
using the Single-Human-Parsing-LIP (Huang and Yang, 2024)
model proposed by Huang et al. This model, based on a deep
convolutional encoder-decoder framework,\ performs dense pixel-
wise classification across twenty predefined body parts including
limbs, torso, and accessories. Due to its relatively lightweight
architecture and efficient inference capability, it serves as a
computationally economical solution well-suited for large-scale or
resource-constrained deployments.

The model was applied on preprocessed silhouette frames to
generate multi-class segmentation masks where each pixel is

frontiersin.org
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©

Semantic segmentation results using the LIP model for different upper body poses: (a) Arms extended at chest level, (b) Arms extended at head level,

(c) Arms raised above the head.

FIGURE 6
Part-wise contour point visualization across various frames

mapped to a corresponding anatomical region. Specifically, the

model  produces a  per-pixel  probability  distribution
Y= [j;l.,].“),j/i,j(z),...,j/l.,].(N)], and the final label map
L € ZFW is obtained by Equation 13.

L;; = argmax j/,.’j © (13)

cefl,..,N}

where y; ; (© denotes the predicted probability of class ccc at pixel
(i, j). As shown in Figure 5, each segmented region is color-coded
for visual clarity, facilitating subsequent part-wise analysis. We
developed a color-guided contour extraction method using the
semantic label map from the parsing model. Each body part was
isolated with its unique color, followed by binary masking and
intensity thresholding for boundary extraction. Contours were
traced with a point-based algorithm and visualized with color-
coded hexagonal markers to represent anatomical regions, as
shown in Figure 6. This approach effectively captures geometric
structures aligned with human anatomy.

3.2 D-mesh

In D-Mesh phase, the methodology for processing depth images
involves several stages: preprocessing and Dynamic KeyPoint

Frontiers in Bioengineering and Biotechnology

Network (DKP-Net) for keypoint extraction. Preprocessing
enhances the image by removing noise, the floor, and improving
contrast. DKP-Net extracts 3D keypoints, capturing x, y coordinates,
and z-depth. The 3D body joint positions extracted are passed to the
Skinned Multi-Person Linear (SMPL) model to generate detailed 3D
body mesh vertices, along with pose and shape parameters. DKPNet
uses tailored pipelines (DKP-Net-24-L and DKP-Net-24-R) for
different arm positions.

3.2.1 Preprocessing

This study employs the RANSAC algorithm to effectively
remove the floor from the depth image by fitting a plane model
to the detected floor points. The process starts by identifying floor
pixels-based on their depth values and using a binary mask to ensure
that only foreground pixels are considered. The depth values are
then analyzed to generate a set of 3D points representing the floor, as
defined in Equation 14.

P_floor ={(x, y) | z>0and binary_m[y, x] = 255} (14)

where z represents the depth value, and the binary mask is used to
differentiate foreground pixels from background pixels. The
RANSAC algorithm is then applied to estimate a planar model
that best fits the floor points, as described by Equation 15.

z=ax+by+c (15)
After computing the floor model, points with residuals smaller

than a predefined threshold e are identified as floor pixels and
removed, as illustrated in Equation 16.

0, z—a.x+b.y+c|<s
z, otherwise

Depthcorrected [y,x] = { (16)

This process effectively removes the floor while maintaining the
structural integrity of the other depth values in the image, as
depicted in Figure 7a. The depth image, with the floor removed,
I;, is then normalized to enhance contrast using Min-Max
normalization using Equation 17, as described in Figure 7b.

Lo (%, ) = Ii(x, y) — min (1)

" max (I;) - min (I) X255 (17)

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1631910

Ashraf et al.

10.3389/fbioe.2025.1631910

(c)

FIGURE 7

(d)

Preprocessing steps: (a) Floor-removed image, (b) Normalization, (c) CLAHE, and (d) Bilateral Filtering.

To further enhance contrast, we apply CLAHE (Contrast Limited
Adaptive Histogram Equalization), which improves local contrast while
avoiding excessive noise amplification as shown in Figure 7c. The
transformation is described by Equation 18, where P, (i) represents
the clipped cumulative distribution function used in CLAHE.

Tnorm (%.7)

Letahe (-x: ,V) = Z Pclip (l) (18)
i=0

To make the grayscale depth image compatible with color-based
processing techniques, we duplicate the single channel across three
channels, as shown in Equation 19.

L = (Icluhe (-x: y), Lane (x, y): T ane (.X, y))T (19)

To preserve edges while minimizing noise, we apply
bilateral filtering using Equation 20, as described in as shown
in Figure 7d.

in,yi135h (xz, yl)Gs (d)Gr (r)

Y 1iiGs ()G, (r) (20)

Ifiltered (-X) }/) =

where d represents the spatial distance, rrr represents the intensity
difference, and G, G, are Gaussian functions. These preprocessing
steps are illustrated in Figure 7.

3.2.2 Deep learning-based human
silhouette isolation

To segment objects from depth images, we apply the
DeepLabV3+ segmentation model with a ResNet-101 backbone,
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as illustrated in Figure 4. This model uses Atrous Spatial Pyramid
Pooling (ASPP) to capture multi-scale contextual information. The
preprocessed image is resized to 256 x 256 pixels and then
transformed into a tensor, as defined in Equation 8, where 7
represents the tensor transformation and R denotes the resizing
operation given by Equation 21.

T (%, y) = T(R(Ijiterea X 256 x 256)) (21)

The transformed image tensor is input into the DeepLabV3+
model, which produces a pixel-wise segmentation map, as shown in
Equation 22.

P(x,y) =arg max Mo (%, y,¢) (22)

Morphological operations refine the segmentation mask
through
segmentation for applications like activity recognition and

resizing, closing, and dilation, ensuring precise

medical imaging.

3.2.3 Dynamic Keypoint Network — 24 points (DKP-
Net-24)

DKP-Net-24 (Dynamic Keypoint Network — 24 Points) is a
robust framework for extracting keypoints from depth-based
silhouettes. Unlike static methods, it dynamically adjusts to
variations in pose, body alignment, and arm positions, making it
ideal for motion tracking and rehabilitation assessment. The system
uses two pipelines to extract 3D keypoints (x, y, z) for detailed
human motion representation. DKP-Net-24-L handles lowered
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TABLE 1 (DKP-Net-24-L) keypoint detection for lowered arms.
1. procedure MAIN(human_silhouette)

2. Initialize an empty list for results

results « []

3. Set the input silhouette

silhouette « human_silhouette

4. Determine the initial position of the head

head_x, head_y < width/2, top_pixel_y

5. Set the neck position just below the head
neck_x, neck_y « width/2, head_y + h/8

6. Find the x-coordinate of the right shoulder at the neck level
shoulder_right_x « max{x | silhouette(neck_y, x) > 0} - 5

7. Find the x-coordinate of the left shoulder at the neck level

shoulder_left_x « min{x | silhouette(neck_y, x) > 0} + 5

10.3389/fbioe.2025.1631910

8. Calculate the center x-coordinate of the neck between the shoulders

neck_x « avg(shoulder_right_x, shoulder_left_x)

9. Adjust collarbone positions based on shoulder coordinates

collarbone_left_x, collarbone_right_x « (shoulder_left_x + 15, shoulder_right_x - 15)

10. Define the starting and ending positions of the hips
hip_start, hip_end « 3h/5, 2h/3

11. Find the left and right hip positions

hip_left_x, hip_right_x « min/max{x | silhouette(y, x) > 0, y € [hip_start, hip_end]}

12.  Calculate the pelvis position
pelvis_x, pelvis_y « avg(hip_left_x, hip_right_x), avg(hip_start, hip_end)

13.  Determine the center of the spine

spine_x, spine_y « avg(neck_x, pelvis_x), avg(neck_y, pelvis_y)

14. Define the upper spine position

spine_upper_x, spine_upper_y « avg(neck_x, spine_x), avg(neck_y, spine_y)

15. Define the lower spine position

spine_lower_x, spine_lower_y « avg(pelvis_x, spine_x), avg(pelvis_y, spine_y)

16. Find the elbow positions based on the neck and spine range

elbow_left_x, elbow_right_x « min/max{x | silhouette(y, x) > 0, y € [neck_y, spine_y]}

17.  Find the wrist positions based on the spine and pelvis range

wrist_left_x, wrist_right_x « min/max{x | silhouette(y, x) > 0, y € [spine_y, pelvis_y]}

18. Locate the ankle positions at the bottom of the silhouette

ankle_left_x, ankle_right_x « min/max{x | silhouette(bottom_pixel_y, x) > 0}

19. Adjust heel positions slightly lower than the ankles
heel_left_y, heel_right_y « ankle_left_y - h/40, ankle_right_y - h/40

20. Display the detected keypoints
results < DISPLAY_RESULTS(all keypoints)

return results

21. end procedure

arms using contour-based analysis, while DKP-Net-24-R is
optimized for raised arms, ensuring reliable keypoint detection.
The extraction procedure for lowered arms is outlined in Table 1.

When the arms are raised above shoulder level, the algorithm
described in Table 2 adapts the keypoint localization process
to ensure accurate tracking of the shoulders, wrists, and hand.
Detected key body points for different postures are shown in
Figure 8.

Frontiers in Bioengineering and Biotechnology

3.2.4 3D mesh reconstruction

In this work, we developed a pipeline for 3D human mesh
reconstruction and SMPL model fitting (Loper et al., 2015) using
multiple motion capture datasets. To ensure compatibility across
different skeletal formats, we applied a joint mapping strategy that
converts our DKP-Net-24 joint extraction into the SMPL structure.
These joints are then used to estimate 3D poses and reconstruct
body geometry. The SMPL model provides a learned, parametric
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TABLE 2 (DKP-Net-24-R) keypoint detection for raised arms.
1. procedure MAIN(human_silhouette)

2. Initialize an empty list for results

results « []

3. Set the silhouette as input human silhouette

silhouette « human_silhouette

4. Define hip start and end positions based on height
hip_start, hip_end « (3h/5, 2h/3)

5. Calculate the x-coordinates of the left and right hips

10.3389/fbioe.2025.1631910

hip_left_x, hip_right_x « min/max{x | silhouette(y, x) > 0, y € [hip_start, hip_end]}

6. Calculate the pelvis center coordinates

pelvis_x, pelvis_y « avg(hip_left_x, hip_right_x), avg(hip_start, hip_end)

7. Set body center positions for the left and right sides
body_center_left, body_center_right « hip_left_x, hip_right_x

8. Find the head position based on the first non-zero pixel above the hips
head_x, head_y « first nonzero pixel in [0, hip_start]

9. Calculate the neck position by offsetting the head’s position
neck_x, neck_y « (head_x, head_y + h/12)

10. Identify the x-coordinates of the left and right shoulders at the neck level
shoulder_left_x, shoulder_right_x « min/max{x | silhouette(neck_y, x) > 0} + 5
11.  Adjust collarbone positions from the shoulders
collarbone_left_x, collarbone_right_x « (shoulder_left_x + 15, shoulder_right_x - 15)
12.  Determine the left and right hand x-coordinates based on silhouette across columns
left_hand_x, right_hand_x < min/max{x | silhouette[:, x].any()}
13.  Set wrist coordinates based on hand positions with a slight vertical offset
left_wrist_x, right_wrist_x « (left_hand_x, right_hand_x), (left_hand_y + 10, right_hand_y + 10)
14. Locate the elbow positions between the neck and spine regions
elbow_left_x, elbow_right_x « min/max{x | silhouette(y, x) > 0, y € [neck_y, spine_yl]}
15. Calculate the center of the spine by averaging pelvis and neck coordinates
spine_x, spine_y « avg(neck_x, pelvis_x), avg(neck_y, pelvis_y)
16. Define the upper spine coordinates between neck and spine centers
spine_upper_x, spine_upper_y « avg(neck_x, spine_x), avg(neck_y, spine_y)
17.  Locate the knee positions around 3/4 of the height from the top
knee_y « 3h/4, knee_left_x, knee_right_x « min/max{x | silhouette(knee_y, x) > 0} + 7
18. Find the ankle positions at the bottom of the silhouette
ankle_left_x, ankle_right_x « min/max{x | silhouette(bottom_pixel_y, x) > 0}
19. Adjust heel positions slightly lower than the ankles
heel_left_y, heel_right_y « ankle_left_y - h/30, ankle_right_y - h/30
20. Display all detected keypoints
results < DISPLAY_RESULTS(all keypoints)
21. Return the final results
return results
22. end procedure

mesh representation with 6,890 vertices and 13,776 faces, enabling
realistic and efficient modeling for animation and analysis.

This model defines the human body through two parameter
sets: pose parameters 0 ¢ R’?, which encode 3D axis-angle
rotations across 24 joints, and shape parameters f € R'
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which describe identity-specific body shape variations based
on a low-dimensional shape space derived from body scan
The SMPL mesh computed through a
blend function that incorporates these parameters using
Equation 23.

datasets. is
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(a)

FIGURE 8
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(c)

Detected key body points for different postures: (a) Neutral stance, (b) One-arm relaxed, and (c) Arms raised. When the arms are raised above
shoulder level, the algorithm described in Table 2 adapts the keypoint localization process to ensure accurate tracking of the shoulders, wrists, and hand.

M(6,8) =W (T (6, 5).] (B), 6, w)

where T' (0, 8) denotes the template mesh deformed by shape and

(23)

pose, J(B) represents joint locations derived from the shape-
dependent skeleton, W (.) is the linear blend skinning (LBS)
function, applying the rotations defined by 0 using precomputed
weights w. The model outputs three key components: the vertex
positions V € R%3 that define the surface geometry, the joint
positions J € R?**? used for pose tracking, and the face connectivity
F € R1*7%3 which defines the mesh structure. To align with the
SMPL model, the 24 joints are structured as (frames, 24, 3) tensors.
A depth inversion corrects orientation, and one-to-one mapping
ensures anatomical alignment. SMPL fitting minimizes joint loss by
reducing the Euclidean distance between predicted and extracted
joints using Equation 24.

24
Ljoint = Zwi”]SMPL - ]camputed"i (24)

i=1

where w; are per-joint weights that control the importance of each
joint in the loss calculation. To ensure physiologically plausible
poses, a probabilistic prior from a Gaussian Mixture Model (GMM)
trained on real motion data is used. It penalizes poses that deviate
from natural human movement patterns using Equation 25.

Lpose = —10gP(9) (25)

where p(0) is the GMM likelihood, a regularization term penalizes
extreme shape values to ensure realistic body proportions using
Equation 26.

Loape = B[ (26)

A smoothness constraint is added to ensure continuity between
frames, reducing jitter by penalizing large joint position changes
between consecutive frames using Equation 27.
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T-1 5
Lsmaoth = Z ||]SMPL - ]computed||2

t=1

27)

where T is the number of frames, Laplacian regularization ensures
smooth mesh surfaces by keeping vertices near their neighbors using
Equation 28.

2

1
&Y
2

jEN;

Lmesh = z

i

V; (28)

In this expression, V; is the position of the ith vertex and N;
denotes its one-ring neighborhood. The overall objective function
combines these components, with each term weighted by a
corresponding coefficient A; to control its influence using
Equation 29.

Ltotal = Aleuint + AZLpose + A3Lshupe + A4Lsmoath + ASLmesh (29)

The loss is minimized with Adam optimization, refining 6 and {8
for accurate 3D meshes. Figures 9, 10 show depth frames and 3D
meshes for body poses from KIMORE and UTKinect-

Action3D datasets.

3.3 Feature fusion

A feature fusion stage combines RGB and depth modalities.
Specifically, let k;eR” represent keypoint features from the ith
RGB frame, capturing visual cues through methods like contour
approximation, corner detection (e.g., Harris, Shi-Tomasi), and
feature descriptors (e.g., ORB, SIFT). Furthermore, let b,-eRQ
denote body part label features from depth data, encoding
segmentation and body region identification. In addition,
m;ieRS represents 3D mesh parameters, including pose and
shape, derived from depth data using models like SMPL. The
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FIGURE 9
3D reconstruction of a subject from the UTKinect-Action3D dataset: (a) Random walk toward the chair (b) Leaning forward to pick up an object with
both hands closing (c) Closing of arms (d) Opening the arms after the clap.
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FIGURE 10
3D reconstruction of a subject from the KIMORE dataset: (a) Holding a bar with both hands at face level (b) Moving the bar to the right side while
keeping it in both hands (c) Bringing the bar back to the front of the face (d) Moving the bar to the left side while keeping it in both hands.
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fused feature vector f; is computed by concatenating these vectors
using Equation 30.

fi = ki (3] b,' & m; (30)

where @ represents the concatenation operation, resulting in
f,€RP**S. Fusion of RGB and depth enhances robustness to
occlusion, clothing, and viewpoint changes. The fused feature
vectors f; for a sequence of M frames are then assembled into a
feature matrix F = [f},f,,..., fM]eRMX(P +Q+S)  \which serves as
input to the subsequent temporal modeling stage for exercise
recognition.

3.4 Transformer-based human action
recognition

Given a sequence of fused numerical features for human action
recognition, each time step x;eR” encapsulates a combination of
modalities such as spatial skeleton data, inertial sensor signals, and
appearance features, all merged into a unified vector. This results
in an input sequence X = {x, x,,..., Xr}, where T denotes the
number of temporal frames, and each x; carries rich multimodal
contextual information. The fused input is projected into a
common latent space using a learnable transformation given by
Equation 31.

e = Winx; + b, e, €R¥model (31)

To capture temporal ordering, positional encodings p,eR®wl
are added, yielding the input embeddings to the Transformer using
Equation 32.

0) _

2O = e +p; (32)

The resulting sequence Z© = {ZI(O), zéo), . ,Z;O)

} is passed to
a stack of Transformer encoder layers, which learn attention-based
temporal representations from the fused features. Inside each
the Multi-Head Self-Attention mechanism

enables the model to weigh interactions between time steps. For

encoder layer,

each layer, query, key, and value matrices are computed using
Equation 33.

Q=2ZW K =2ZWK v = Zzw" (33)

The scaled dot-product attention computes dynamic temporal
dependencies using Equation 34.

KT
Attention(Q,K, V) = sof tmax(Q )V

NZR

In the multi-head form, multiple such attention mechanisms

(34)

run in parallel using Equation 35.

MHSA(Z) = Concat (head,, . . ., head;,)W©® (35)

This output is passed through a position-wise feed-forward
network using Equation 36.

FFN (x) = max(0,xW, + b;))W, + b, (36)

Residual connections and normalization are applied to preserve
gradients and stabilize learning using Equation 37.
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Z' = LayerNorm(Z + MHSA(Z)),

Z"Y = LayerNorm(Z' + FFN(Z')) (37)

This pooled vector is then passed into a fully connected
classification layer followed by a softmax to predict the action
label using Equation 38.

y= softmax(Wczugg + bc) (38)

where, yeRK represents the probability distribution across human
action classes. The model uses cross-entropy loss for optimization.
The Transformer on fused features enhances accuracy by capturing
spatial-temporal dependencies and multimodal complementarity.
The workflow is in Figure 11, and the algorithm is in Table 3.

4 Results and evaluation
4.1 Experimental setup

Complete implementation was conducted on a Google Colab
virtual machine with an NVIDIA Tesla T4 GPU with 16 GB
GDDR6 VRAM, 2,560 CUDA cores, and 320 Tensor cores,
running Ubuntu 18.04.6 LTS. The environment used Python
3.10.13 with PyTorch 2.1.0+cull8 and cuDNN 8.9.1, enabling
GPU-accelerated
operations. We used TorchVision 0.16.0 for image processing,
NumPy 1250 and Pandas 2.1.1 for data handling, and
Matplotlib 3.8.0 and Seaborn 0.12.3 for visualization.

tensor  computations and  convolution

4.2 Datasets

We used the KIMORE dataset, which includes data from
78 subjects (44 healthy, 34 with low-back pain) performing five
rehabilitation exercises. It provides RGB and depth videos, 25-joint
skeleton positions, and clinical scores for each repetition, supporting
intelligent remote rehabilitation monitoring. Additionally, we
incorporated the mRI dataset, a multi-modal 3D pose estimation
resource with over 5 million frames from 20 subjects, captured using
RGB-D cameras, mmWave radar, and IMUs. This dataset aims to
advance home-based health monitoring. Further to test the
generalizability we thoughtfully selected UTKinect-Action3D
action recognition dataset. The dataset records 10 subjects
performing 10 daily-life actions, with synchronized RGB, depth,
and skeletal data for
physical therapy.

The presented work is motivated by the rehabilitation of patients
with lower back pain (LBP), and the KIMORE dataset directly
reflects this scenario through rehabilitation-specific exercises
performed by both healthy subjects and LBP patients. To
complement this, we included the mRI and UTKinect-Action3D

generalizable action recognition in

datasets to strengthen the generalization of the rehabilitation
framework. The mRI dataset contains multi-modal recordings of
repetitive and complex movements (e.g., bending, squatting,
reaching), which closely resemble the functional motions targeted
in LBP rehabilitation. Similarly, the UTKinect-Action3D dataset
includes a wide variety of full-body actions that involve spinal
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mobility and trunk stability (e.g., bending, lifting, side movements),
both of which are central components in evaluating rehabilitation
progress for lower back disorders. By training and validating our
model on these datasets, we ensure that the system is not overfitted
to one rehabilitation dataset but can generalize to broader variations
of human motion that are highly relevant to lower back
rehabilitation tasks.

4.3 Confusion matrices

Table 4 shows the confusion matrix for correctness classification
on the KIMORE dataset, achieving a 94.73% overall accuracy.
Exercises E1 (0.92), E4 (0.97), and E5 (0.97) were classified
highly accurately. Minor misclassifications occurred between
E2 and E3, likely due to similar movement patterns.

Table 5 presents the confusion matrix for the mRI dataset, with a
91% overall accuracy across 12 exercise classes. Exercises such as E2, E3,
E5, E6, E7, E9, E10, E11, and E12 showed excellent recognition (>0.86).
Some confusion occurred, notably for E1 and E4, due to overlapping
execution characteristics. Table 6 shows results for the UTKinect-
Action3D dataset, achieving 94.2% overall accuracy. Actions like
Clap Hands (0.98), Wave Hands (0.97), Pick Up (0.97), and Throw
(0.91) were classified with high precision. Minor confusion appeared
between motion-similar actions like Stand Up and Walk and Carry and
Pull. Overall, the model demonstrated strong classification performance
across all three datasets, with most errors arising from visually or
kinematically similar actions.

4.4 Classification performance evaluation

Table 7 reports the precision, recall, and Fl-score values for
correctness classification on the KIMORE dataset. For the KIMORE
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dataset, the model demonstrated excellent performance across all
five exercise classes. The highest scores were achieved for Exercise 5
(E5), with a precision of 0.98, recall of 0.96, and an F1-score of 0.97,
followed by Exercise 4 (E4), which recorded consistent values of
0.96 for both precision and recall, resulting in an F1-score of 0.96.
While Exercise 1 (E1) also achieved strong results with a precision of
0.93 and recall of 0.95, slightly lower values were observed for
Exercise 2 (E2) and Exercise 3 (E3), with F1-scores of 0.89 and 0.87,
respectively. These lower values correspond with the confusion
matrix findings, where misclassifications between E2 and E3 were
noted, highlighting areas where the system occasionally struggles to
differentiate similar movement patterns.

Table 8 reports the precision, recall, and F1-score values for the
mRI dataset across twelve different exercise classes. The model
demonstrated strong and consistent performance on most
exercises. Notably, E11 achieved the highest scores with a
precision of 0.93, recall of 0.92, and Fl-score of 0.93, followed
closely by E10 (precision: 0.89, recall: 0.94, F1-score: 0.92) and E3
(precision: 0.91, recall: 0.92, Fl-score: 0.91). Exercises E5, E7, E9,
and E12 also showed high Fl-scores of 0.89, indicating robust
classification in these categories. However, El exhibited the
lowest performance, with a recall of 0.47 and an Fl-score of 0.59,
suggesting challenges in accurately identifying this exercise. Overall,
the model shows promising recognition capability across the dataset,
with a few classes like E1 and E4 (F1-score: 0.72) requiring further
attention to enhance classification accuracy.

Table 9 reports the precision, recall, and F1-score values for the
UTKinect-Action3D dataset. The model performed well across all
actions, with Clap hands achieving the highest scores (precision:
0.97, recall: 0.97, F1-score: 0.97), followed by Throw (precision: 0.91,
recall: 0.99, F1-score: 0.95) and Pick up (precision: 0.98, recall: 0.84,
Fl-score: 0.90). Other actions like Carry and Push also showed
strong results. However, Stand-up had lower performance
(precision: 0.60, recall: 0.80, F1-score: 0.69), indicating difficulties
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TABLE 3 3D-poseformer: Multimodal-depth exercise recognition via 3D-mesh and Transformer.

3D-PoseFormer: Multimodal RGB-Depth Exercise Recognition via 3D Mesh and Transformer

Input: RGB_image, Depth_image

Output: exercise_label: Recognized exercise class

Algorithm

1. procedure MAIN(RGB_image, Depth_image)

2. rgb_features « PROCESS_RGB(RGB_image)

depth_features < PROCESS_DEPTH(Depth_image)
fused_features «— FUSE_FEATURES(rgb_features, depth_features)
predictions < TRANSFORMER_CLASSIFIER(fused_features)
return predictions

end procedure

procedure PROCESS_RGB(image)

preprocessed «— PREPROCESS_RGB(image)

10. silhouette «— SEGMENT_HUMAN(preprocessed)

11. keypoints «— EXTRACT_2D_KEYPOINTS(silhouette)

12. part_labels < BODY_PART_PARSING(silhouette)

13. contour_points « EXTRACT_CONTOUR(part_labels)

14. return CONCAT(keypoints, contour_points)

O © N kW

15. end procedure

16. procedure PROCESS_DEPTH(image)

17. cleaned « PREPROCESS_DEPTH(image)

18. silhouette «— SEGMENT_HUMAN_DEPTH(cleaned)

19.  keypoints_3D « EXTRACT_3D_KEYPOINTS(silhouette)
20. mesh « RECONSTRUCT_3D_MESH(keypoints_3D)

21. smpl_params « FIT_SMPL(mesh, keypoints_3D)

22. return smpl_params

23. end procedure

24. procedure FUSE_FEATURES(rgb_feats, depth_feats)

25. fused < CONCAT(rgb_feats, depth_feats)

26. return fused

27. end procedure

28.  procedure TRANSFORMER_CLASSIFIER (features)

29. embedded < EMBED(features)

30. positional < ADD_POSITIONAL_ENCODING(embedded)
31. for each layer in TRANSFORMER_ENCODER_STACK do
32. positional < TRANSFORMER_ENCODER(positional)
33. end for

34. output « CLASSIFY(positional)

35. return output

36. end procedure

TABLE 4 Confusion matrix for correctness classification for KIMORE
dataset.

Class El E2 E3 E4 ES5
El 0.92 0.03 0.03 0.01 0.02
E3 0.02 0.93 0.01 0.00 0.04
E3 0.02 0.06 0.88 0.02 0.02
E4 0.01 0.01 0.01 0.97 0.00
E5 0.02 0.00 0.01 0.01 0.97

Accuracy 94.73%

Opverall,
action recognition, with room for improvement in Stand-up
classification.

in differentiation. the model demonstrated strong

Frontiers in Bioengineering and Biotechnology

The model showed strong classification on the KIMORE
dataset (Figure 12), with high AUCs across exercises. E5
(0.98), E4 (0.97), and E2 (0.96) had near-perfect
discrimination, while E1, though lower, still achieved 0.88.
The mean AUC was 0.94, highlighting
performance, with El likely being harder to distinguish due to
movement similarities. The model showed strong discriminative

robust overall

performance across all exercises (E1-E12) in the mRI dataset, as
shown by the ROC analysis in Figure 13. Most exercises achieved
excellent AUCs, with E12 (0.99), E9-E11 (0.98), and E3, E6, and
E7 (0.96) performing exceptionally well. E2 (0.93) and E8 (0.91)
also maintained high performance. The mean AUC was 0.93, far
above random guessing. E1 (0.75) and E4 (0.83) had lower scores,
suggesting greater classification challenges due to overlapping
kinematics.

Overall, the model demonstrated robust exercise recognition
in the mRI dataset. The model showed strong performance on the
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TABLE 5 Confusion matrix for correctness classification for mRI dataset.

10.3389/fbioe.2025.1631910

Class E1 E2 E3 E4 ES E6 E7 E8 E9 E10 E11 E12

El 0.47 0.06 0.00 0.06 0.06 0.12 0.00 0.06 0.00 0.06 0.00 0.12

E2 0.00 0.86 0.01 0.06 0.00 0.01 0.01 0.00 0.00 0.04 0.00 0.00

E3 0.02 0.00 091 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00

E4 0.00 0.04 0.00 0.67 0.00 0.08 0.04 0.08 0.04 0.00 0.00 0.04

E5 0.01 0.00 0.02 0.00 0.89 0.00 0.00 0.01 0.00 0.02 0.04 0.00

E6 0.00 0.00 0.01 0.01 0.00 0.92 0.00 0.03 0.00 0.00 0.01 0.01

E7 0.00 0.00 0.02 0.03 0.00 0.00 091 0.02 0.02 0.00 0.00 0.02

E8 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.83 0.04 0.00 0.00 0.00

E9 0.01 0.01 0.03 0.00 0.02 0.01 0.01 0.01 0.92 0.00 0.00 0.00

E10 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.99 0.00 0.00

Ell 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.93 0.02

E12 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.98

Accuracy 91%
TABLE 6 Confusion matrix for correctness classification for UTKinect-Action3D dataset.
Class Walk Sitdown Standup Pickup Carry Throw Push Pull Wave hands Clap hands
Walk 0.90 0.00 0.20 0.00 0.00 0.00 0.01 0.05 0.01 0.00
Sit down 0.02 0.89 0.00 0.00 0.03 0.00 0.01 0.00 0.01 0.00
Stand up 0.02 0.01 0.60 0.01 0.03 0.00 0.03 0.05 0.00 0.00
Pick up 0.00 0.01 0.10 0.97 0.05 0.02 0.01 0.00 0.00 0.00
Carry 0.00 0.01 0.00 0.00 0.84 0.00 0.02 0.09 0.00 0.01
Throw 0.00 0.01 0.00 0.00 0.00 091 0.00 0.00 0.00 0.00
Push 0.05 0.01 0.00 0.00 0.03 0.02 0.92 0.00 0.00 0.01
Pull 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.82 0.01 0.01
Wave hands 0.00 0.01 0.00 0.01 0.03 0.05 0.01 0.00 0.97 0.00
Clap Hands 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98
Accuracy 94.2%

TABLE 7 Precision, recall, and F1-score results over KIMORE Dataset.

Exercises Precision Recall Fl-score
El 0.93 0.95 0.94
E2 0.89 0.90 0.89
E3 0.86 0.87 0.87
E4 0.96 0.96 0.96
E5 0.98 0.96 0.97

UTKinect-Action3D dataset (Figure 14), with most actions
achieving high AUCs. “Clap hands” reached 1.00, “Wave
hands” 0.99, and “Sit down,” “Pick up,” and “Push” all 0.98.
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“Stand up” had a lower AUC of 0.79. The mean AUC was 0.95,
indicating robust classification with only minor challenges for
“Stand up.”

4.5 Comparison with state-of-the-art

Table 10 compares recent studies on rehabilitation
exercise recognition. Jleli et al. (2024) achieved 87% accuracy
with YOLO V5 and ShuffleNet V2 on KIMORE, while Zaher
et al. (2024) improved it to 93.08% with CNN optimization.
Zaher et al. (2025) reported 81.85% using a hybrid FCBEF-
Extra Trees model. For UTKinect-Action3D, Kegeli et al.
(2022), Ding et al. (2018), and Kumar et al. (2024) achieved

93.4%, 91.5%, and 93.5% accuracy, respectively. An et al. (2022)
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TABLE 8 Precision, recall, and Fl-score results over mRI dataset.

Exercises Precision Recall Fl-score
El 0.82 047 0.59
E2 0.86 0.87 0.86
E3 091 0.92 091
E4 0.76 0.68 0.72
E5 0.89 0.90 0.89
E6 0.79 0.93 0.86
E7 0.88 0.89 0.89
E8 0.78 0.84 0.81
E9 0.88 0.90 0.89
E10 0.89 0.94 0.92
Ell 0.93 0.92 0.93
E12 0.82 0.98 0.89

TABLE 9 Precision, recall, and Fl-score results over UTKinect-Action3D
dataset.

Exercises Precision Recall F1-score
Walk 0.91 0.77 0.83
Sit down 0.89 0.93 0.91
Stand up 0.60 0.80 0.69
Pick up 0.98 0.84 0.90
Carry 0.83 0.87 0.85
Throw 0.91 0.99 0.95
Push 0.91 0.88 0.90
Pull 0.81 0.85 0.83
Wave hands 0.96 0.90 0.93
Clap hands 0.97 0.97 0.97
achieved mAP scores of 91.56% and 95.07% with

ActionFormer on mRI. The proposed model outperforms
previous work with 94.73% (KIMORE), 91% (mRI), and
94.2% (UTKinect-Action3D), demonstrating
generalizability.

superior

4.6 Ablation study

An ablation study was performed to evaluate the contribution of
each feature stream as well as the impact of feature dimensionality
on model performance (Table 11). The full model, which integrates
preprocessing, 3D Mesh features, 2D keypoints, and BPL-based
contour points, achieved the highest accuracy across all datasets. For
the 3D Mesh features, reducing the number of SMPL vertices by 25%
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ROC Curves for KIMORE Dataset
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ROC Curves for KIMORE dataset.

ROC Curves for mRI Dataset
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ROC Curves for mRI dataset.

and 50% produced only moderate accuracy declines compared to the
full-resolution mesh, while complete removal caused the largest
performance drop (KIMORE: 94.73%-91.79% to 90.52%-87.00%).
The smooth decline across these conditions indicates that the model
does not simply memorize high-dimensional details but continues to
generalize well even with fewer vertices. This suggests a low risk of
overfitting to mesh complexity, while still confirming the strong
importance of biomechanical information. For the 2D keypoints,
models trained with individual detectors (AKAZE, SIFT, BRISK,
ORB, Shi-Tomasi) achieved stable accuracy in the 90%-93% range,
while the fused vector consistently outperformed single detectors.
This consistency across different detectors demonstrates that the
model is not overfitting to the idiosyncrasies of any one keypoint
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ROC Curves for UTKinect-Action3D Dataset
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ROC Curves for UTKinect-Action3D dataset.

representation. Instead, it learns complementary information from

multiple detectors, thereby
robustness.

For the BPL-based contour features, randomly pruning 50% of
contour points while maintaining uniform distribution across body

parts led to only a minor accuracy drop (KIMORE: 94.73%-

improving generalization and

10.3389/fbioe.2025.1631910

92.70%), while complete removal produced a slightly larger
decline. This indicates that the framework remains reliable even
when partial information is missing, showing resilience to noise and
occlusion. Overall, the ablation results confirm that the model
under reduced feature

maintains  strong  performance

dimensionality and noisy conditions, demonstrating both

robustness and resistance to overfitting.

4.7 Computational cost analysis

We evaluated the computational cost of all the major
components of proposed architecture as shown in Table 12,
the pipeline exhibits a clear distinction between lightweight
classical techniques and computationally intensive deep
learning models. Classical keypoint detection methods,
including corner and feature detection, are highly efficient
and contribute minimally to overall computational cost. In
contrast, stages such as semantic segmentation, body part
parsing, 3D keypoint extraction, and pose fitting dominate
processing, forming the primary bottlenecks in the system.
Feature fusion operations are lightweight, while transformer-
based inference introduces moderate computational overhead.
Overall, the pipeline relies on GPU acceleration for near real-
time performance, with optimization of segmentation and pose-
fitting stages offering the greatest potential for improving
throughput.

TABLE 10 Comparison of methodologies, datasets, and results from recent studies on physical rehabilitation exercise recognition and assessment.

Author Title Methodology Dataset Results
Jleli et al. Artificial Intelligence-driven Remote YOLO V5-ShuffleNet V2 KIMORE Accuracy = 87.00%
(2024) Monitoring Model for Physical
Rehabilitation
Zaher et al. Unlocking the potential of RNN and CNN CNN with hyperparameter tuning KIMORE Accuracy = 93.08%
(2024) models for accurate rehabilitation exercise
classification on multi-datasets
Zaher et al. | Rehabilitation monitoring and assessment:a = The combination of FCBF for feature ranking KIMORE Accuracy = 81.85%
(2025) comparative analysis of feature engineering and Extra Trees classifier
and machine learning algorithms on the UI-
PRMD and KIMORE benchmark datasets
Kegeli et al. 3D Skeletal Volume Templates for Deep HOG + Deep Features UTKinect-Action3D Dataset Accuracy = 93.40%
(2022) Learning-Based Activity Recognition
Ding et al. Human Action Recognition Using Similarity Rotation Matrix Representation-Based 3D UTKinect-Action3D Dataset Accuracy = 91.50%
(2018) Degree Between Postures and Spectral (RMRB3D) with Singular Value Decomposition

Learning

(SVD) and Hidden Markov Model (HMM)

Kumar et al. Human Action Recognition from Depth

Time-Series Graph Matching (TSGM)

UTKinect-Action3D Dataset Accuracy = 93.50%

(2024) Sensor via Skeletal Joint and Shape
Trajectories with a Time-Series Graph
Matching
An et al. Multi-modal 3D Human Pose Estimation ActionFormer mRI: Multi-modal 3D Human Pose = Protocol 1 (Random
(2022) using mmWave, RGB-D, and Inertial Estimation Dataset using split) mAP = 91.56
Sensors mmWave, RGB-D, and Inertial Protocol 2 (Subject-
Sensors wise split) mAP =
95.07

Proposed KMORE 94.73%

mRI 91.00%

UTKinect-Action3D 94.20%
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TABLE 11 Ablation study on model configurations and their impact on exercise recognition accuracy across KIMORE, UTKinect-Action3D and mRI datasets.

Model configuration Description KIMORE mRlI UTKinect-
accuracy (%) accuracy Action3D
(%) accuracy (%)
All Parameters (Preprocessing, 3D Mesh, = Model trained using all feature extraction techniques 94.73% 91.00% 94.20%
2D Keypoints, BPL-based Contour Points)

Without Preprocessing Model trained without image preprocessing 90.50% 87.30% 88.80%
Without 25% 3D Mesh Vertices Model trained with 25% reduced 3D Mesh Vertices 91.79% 87.50% 88.80%
Without 50% 3D Mesh Vertices Model trained with 50% reduced 3D Mesh Vertices 90.52% 87.10% 86.20%

Without 3D Mesh Model trained without 3D mesh features 87.00% 85.00% 82.00%
Without 2D Keypoint (AKAZE) Model trained with AKAZE keypoints 91.20% 89.40% 92.25%
Without 2D Keypoint (SIFT) Model trained with SIFT keypoints 90.25% 88.20% 90.20%
Without 2D Keypoint (BRISK) Model trained with BRISK keypoints 91.50% 89.10% 91.90%
Without 2D Keypoint (ORB) Model trained with ORB keypoints 90.75% 89.40% 91.80%
Without 2D Keypoint (Shi Tomasi) Model trained with Shi Tomasi keypoints 92.30% 89.70% 93.20%
Without Complete 2D Keypoints Vector Model trained without all 2D keypoint features 91.00% 89.00% 86.00%
Without 50% BPL-based Contour Points | Model trained without 50% BPL-based contour points 92.70% 90.40% 91.20%

(Random Selection with Uniform number of

keypoints per body part)

Without BPL-based Contour Points Model trained without BPL-based contour points 91.60% 89.40% 88.90%

TABLE 12 FLOPs, and estimated time per frame for 3D-PoseFormer pipeline.

Stage Technique Estimated time per frame (ms) FLOPs (GFLOPs)
RGB-KPD Shi-Tomasi Corner Detection 1.2 0.02
AKAZE Feature Detection 1.3 0.03
BRISK Feature Detection 1.3 0.03
SIFT Feature Detection 1.8 0.04
Harris Corner Detection 1.2 0.02
DeepLabV3+ with ResNet-101 (Segmentation) 12.0 15.6
Body Part Labeling (Single-Human-Parsing-LIP) 2.5 0.8
Contour-Based Keypoint Extraction 0.6 0.01
D-Mesh DKP-Net-24 (3D Keypoint Extraction, L and R pipelines) 12.0 0.5
SMPL Fitting (Pose/Shape Optimization) 18.0 2.3
Feature Fusion Concatenation of RGB and Depth Features 2.5 0.01
Transformer Inference Transformer Encoder (4 layers, 8 heads, 512 dims) 10.0 1.8
Total ~55 2031

5 Conclusion

accurate, real-time performance evaluation in unconstrained,
home-based settings. The key novelty of the proposed approach

In this work, we proposed a novel multimodal deep learning
pipeline for automated recognition and assessment of physiotherapy
exercises, specifically designed for remote rehabilitation of
physically disabled individuals. Unlike existing systems that rely
on wearable sensors, markers, or controlled clinical environments,
our framework leverages only RGB and depth data to deliver
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lies in its comprehensive fusion of depth-based 3D body mesh
representations generated using SMPL and appearance-based
features extracted from RGB images using both classical
keypoint detectors and semantic contour analysis on segmented
body parts. This multi-level feature representation is further
enhanced by a Transformer-based temporal modeling module,
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enabling robust classification and fine-grained assessment of
exercise execution quality. Our system outperforms prior
methods on benchmark datasets, achieving 94.73% accuracy on
KIMORE, 91% on mRI and 94.2% on UTKinect-Action3D
demonstrating its effectiveness, generalizability, and real-world
applicability. The proposed pipeline represents a significant
toward scalable, and sensor-free

advancement intelligent,

telerehabilitation solutions.
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