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Introduction: Parasitic infections remain a major public health concern,
particularly in healthcare and community settings where rapid and accurate
diagnosis is essential for effective treatment and prevention. Traditional
parasite detection methods rely on manual microscopic examinations, which
are time-consuming, labor-intensive, and susceptible to human error. Recent
advancements in automated microscopic imaging and deep learning offer
promising solutions to enhance diagnostic accuracy and efficiency.
Methods: This study proposes a novel framework, the YOLOConvolutional Block
Attention Module (YCBAM), to automate the detection of pinworm parasite eggs
in microscopic images. The YCBAM architecture integrates YOLO with self-
attention mechanisms and the Convolutional Block Attention Module (CBAM),
enabling precise identification and localization of parasitic elements in
challenging imaging conditions.
Results and Discussion: Experimental evaluation of the YCBAM model
demonstrated a precision of 0.9971, a recall of 0.9934, and a training box loss
of 1.1410, indicating efficient learning and convergence. The model achieved a
mean Average Precision (mAP) of 0.9950 at an IoU threshold of 0.50 and a
mAP50–95 score of 0.6531 across varying IoU thresholds, confirming its superior
detection performance. The integration of YOLO with self-attention and CBAM
significantly improves the automated detection of pinworm eggs, offering a
highly accurate and reliable diagnostic tool for medical parasitology. This
framework has the potential to reduce diagnostic errors, save time, and
support healthcare professionals in making informed decisions.
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1 Introduction

Pinworm parasite egg detection is a significant challenge in parasitology diagnostics due
to the small size and morphological similarities of pinworm eggs with other microscopic
particles. Traditional diagnostic methods, such as manual microscopic examination, are
time-consuming, labor-intensive, and human error, especially in settings with high sample

OPEN ACCESS

EDITED BY

Yi Zhao,
The Ohio State University, United States

REVIEWED BY

Yu Fenghua,
Shenyang Agricultural University, China
Gabriel Avelino Sampedro,
University of the Philippines Diliman, Philippines

*CORRESPONDENCE

Esraa Hassan,
esraa.hassan@ai.kfs.edu.eg

Felwah Alqahtani,
falqhtani@kku.edu.sa

RECEIVED 13 January 2025
ACCEPTED 18 August 2025
PUBLISHED 15 October 2025

CITATION

Hassan E, Alqahtani F, Elbedwehy S and
Talaat AS (2025) Automated detection of
pinworm parasite eggs using YOLO
convolutional block attention module for
enhanced microscopic image analysis.
Front. Bioeng. Biotechnol. 13:1559987.
doi: 10.3389/fbioe.2025.1559987

COPYRIGHT

© 2025 Hassan, Alqahtani, Elbedwehy and
Talaat. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 15 October 2025
DOI 10.3389/fbioe.2025.1559987

https://www.frontiersin.org/articles/10.3389/fbioe.2025.1559987/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1559987/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1559987/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1559987/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1559987/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1559987&domain=pdf&date_stamp=2025-10-15
mailto:esraa.hassan@ai.kfs.edu.eg
mailto:esraa.hassan@ai.kfs.edu.eg
mailto:falqhtani@kku.edu.sa
mailto:falqhtani@kku.edu.sa
https://doi.org/10.3389/fbioe.2025.1559987
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1559987


volumes. Moreover, these manual methods often lack sensitivity
based on the examiner, leading to false negatives and delayed
diagnoses, particularly in resource-constrained environments. The
study aims to overcome the challenges faced by healthcare providers
in accurately diagnosing pinworm infections in clinical settings.
Microscopic detection of pinworm eggs faces challenges due to their
small size, similarity to other microscopic particles, and the need for
specialized expertise. Moreover, manual diagnostic techniques often
lead to delays, misdiagnoses, and increased healthcare costs.

The advancement of deep learning improves diagnostic
accuracy, speed, and scalability. Recent advancements in
computer vision and machine learning have led to improvements
in the diagnostic process, presenting a more efficient and reliable
solution to parasitic egg detection. Diagnosis process of pinworm
parasite eggs is difficult due to their small size and morphological
similarity to other microscopic particles, measuring 50–60 μm in
length and 20–30 μm in width, and the traditional examination
methods are laborious and time-consuming, can lead to delayed
diagnosis and increased infection rate, particularly among children
(Mirzaei et al., 2022a; Mirzaei et al., 2022b).

Freshly placed Pinworm eggs appear colorless or transparent,
revealing the larva. Pinworm eggs have a thin, clear, bi-layered shell
that protects the embryo, as shown in Figure 1 (Mirzaei et al., 2022a).
The embryonated larva in the egg often curls up and moves under a
microscope, showing viability (Mirzaei et al., 2022b). These eggs
hatch in the small intestine of the host (Ray et al., 2024). Pinworms,
also known as Enterobius, are spread through contaminated objects
such as surfaces and clothing, and infected persons. Small
transparent eggs can live for weeks and are transmissible, making
them difficult to notice (Chaibutr et al., 2024; Agholi et al., 2023).
The scotch tape test and other E. vermicularis egg identification
procedures, including perianal microscopy, are based on the
examiner’s ability and give false negatives due to limited
sensitivity and repeated sampling (Benecke et al., 2021; Kumar
et al., 2023).

Thus, an automated and accurate diagnostic workflow is needed
for effective and timely early diagnosis. Recently developed Deep
Learning (DL) has automated pinworm egg identification to avoid
these limits; these solutions aim to save time, enhance accuracy, and
reduce reliance on specialists (Kitvimonrat et al., 2020); (Elbedwehy
et al., 2024). Deep learning, especially CNNs, has transformed
biomedical image processing, improving E. vermicularis egg
detection from microscopic images. U-Net and ResU-Net
segmentation algorithms separated pinworm eggs from complex
digital microscopy backgrounds, achieving high dice scores and
minimal diagnostic errors (Mirzaei et al., 2022a; Mirzaei et al.,
2022b). Over 97% of advanced classification models, such as
NASNet-Mobile and ResNet-101, can distinguish E. vermicularis
eggs from other artifacts inmicroscopic slides (Mirzaei et al., 2022b).
The DL technique has improved parasite diagnostics detection
accuracy, eliminating human error and operator training
complications to learn detailed pinworm egg shape patterns from
vast datasets of tagged microscopic images with performing
complicated image analysis tasks faster and more consistently
than manual approaches, making them ideal for large-scale
screening and diagnostic applications in clinical and resource-
constrained situations (Benecke et al., 2021; Kumar et al., 2023;
Kitvimonrat et al., 2020; El-Sunais and Eberemu, 2024; Zhang et al.,
2024; Pun et al., 2023).

A robust YOLO Convolutional Block Attention Module
(YCBAM) architecture is presented, enhancing automatic
detection of pinworm parasite eggs in microscopic images,
including self-attention mechanisms and CBAM. Moreover, it is
characterized by high accuracy and efficiency in object detection,
such as identifying and segmenting small objects within complex
backgrounds. In addition, the self-attention is used to focus on
essential image regions, reducing irrelevant background features and
providing dynamic feature representation for precise pinworm egg
detection. CBAM enhances attention, improves feature extraction
from complex backgrounds, and increases sensitivity to small,

FIGURE 1
The pinworm parasite lifecycle and transmission process.
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critical features such as pinworm egg boundaries, enhancing
detection accuracy. The YCBAM is more effective than
traditional methods and advanced detection models in detecting
small objects, pinworm eggs, confirming the effectiveness of the
proposed integration. The following main contributions include:

i. The YCBAM architecture, integrated into YOLOv8, enhances
the performance of identifying pinworm parasite eggs in noisy
and varied environments, a common challenge in
microscopic imaging.

ii. Self-attention and CBAM focus on spatial and channel-wise
information to improve feature extraction for achieving high
detection accuracy with solid metrics: mAP of 0.995 at an IoU
threshold of 0.50 and 0.6531 across many thresholds.

iii. The YCBAM architecture enhances detection accuracy and
computational efficiency by integrating YOLOv8 with
attention modules, enabling optimized training and
inference, even with limited training data.

The successful implementation of the YCBAM architecture has
several significant effects. Clinically, it could lead to faster, more
reliable diagnoses, reducing the burden on healthcare professionals
and improving patient outcomes by facilitating earlier detection and
treatment of pinworm infections. The system was used in low-
resource settings, where traditional methods lack of trained
personnel or diagnostic equipment. According to healthcare and
public health, this study contributes to the development of
automated diagnostic systems for other parasitic infections.
Additionally, the integration of attention mechanisms in the
proposed model achieves similar advancements in other domains
of medical image analysis, improving the accuracy of automated
detection systems for a wide range of diseases.

The other section is structured as follows: Section 2 reviews
related work in automated parasitic egg detection, including both
traditional image processing and deep learning approaches. Section
3 explains the methodology of the YCBAM architecture, then its
integration with YOLOv8, self-attention, and CBAM, with the
training and experimental setup. Section 4 presents the model’s
performance results, comparing it to existing models in terms of
accuracy, efficiency, and robustness. Section 5 presents the findings
of the proposed method, emphasizing its strengths, limitations, and
suggestions for future improvements. Section 6 concludes the paper
by outlining directions for future work, including expanding the
model’s applicability to other diagnostic applications.

2 Related work

The identification and categorization of Enterobius vermicularis
(pinworm) eggs using AI and machine learning has transformed
diagnostics, improving precision and efficiency. Traditionally,
pinworm egg microscopy has been the standard for diagnosing
pinworm infection. The manual procedure is laborious, error-prone,
and requires highly skilled professionals, making it unsuitable for
high-volume clinical settings or those with limited resources
(Mirzaei et al., 2022a). Researchers are using AI to achieve
accuracy of diagnosis, processing time and focusing on
specialized skills.

2.1 Detection and classification techniques

Deep learning automates E. vermicularis egg detection and
segmentation. Mirzaei et al. (2022a) segmented pinworm eggs
from microscopic images with a 0.95% dice score using ResU-
Net and U-Net.

These models accurately reflect the tiny details of egg morphology.
Additionally, Mirzaei et al. analyzed 255 microscopic images for
segmentation and 1,200 for classification.

Pretrained models such as NASNet-Mobile, ResNet-101, and
EfficientNet-b0 achieved 97% classification accuracy (Mirzaei et al.,
2022b), indicating the adaptation of models to parasite eggs’
complex features, to reach accurate clinical sample detection. Ray
et al. (2024) discussed parasite egg segmentation, focusing on egg
size, shape, and non-egg artifacts. They achieve image improvement
and noise reduction before segmentation techniques to standardize
input images to reach minute egg morphological traits, and
automated detection system accuracy and reliability. E.
vermicularis egg classification has improved with machine
learning. Chaibutr et al. (2024) developed a reliable Xception-
based CNN pinworm egg classification model.

Advanced CNN architectures can improve parasite infection
diagnosis, where their method attained 99% accuracy with
significant data augmentation. Their study increases model
generalization across visual conditions and reduces classification
errors. Six pretrained models, including ResNet-101 and Inception-
v3, classified E. vermicularis photos by Mirzaei et al. (2022b). These
models recognized parasite eggs from other microscopic artifacts.
These pretrained parasite diagnosis algorithms demonstrate how
transfer learning can identify complex patterns in limited datasets or
heterogeneous data sources.

2.2 Clinical applications and
epidemiological insights

Medically, E. vermicularis detection is used for differential
diagnoses in parasite infections, similar to other illnesses. A
systematic Iranian appendectomy material examination by Agholi
et al. (2023) discovered E. vermicularis in a subset of appendicitis
cases, which focuses on the need for proper parasite stomach pain
diagnosis. Automatic diagnostic approaches could improve clinical
evaluations by presenting faster and more accurate results,
enhancing patient care. Benecke et al. (2021) used machine learning
to examine Romanian enterobiasis time-series data and found steady
infection rates over a decade. Their study revealed that AI-based public
healthmonitoring tools guide parasitic infection intervention efforts. AI
helps doctors predict outbreaks, allocate resources, and create adapted
infection control measures. For quick parasite egg detection, YOLO
(You Only Look Once) object detection algorithms, particularly
YOLOv5 and YOLOv8, have made significant advances.

Kumar et al. (2023) found that YOLOv5 can detect intestinal
parasite eggs with 97% precision and 8.5 milliseconds per sample.
YOLOv5 is more effective than Faster R-CNN and SSD in low-
resource scenarios when rapid diagnostics are needed. Kitvimonrat
et al. (2020) found that RetinaNet and Faster R-CNN were used to
detect parasite eggs. These models performed best with huge
datasets and precise annotations. Key point-based detectors
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CenterNet, improve detection accuracy in noisy or low-resolution
images by localizing small eggs. Manual microscopic inspection of
parasitic diseases is accurate but time-consuming and requires
experts. Deep learning techniques such as YOLO (You Only
Look Once) models automate diagnostics, AI, and machine
learning (El-Sunais and Eberemu, 2024; Zhang et al., 2024). The
Normalization-based Attention Module (NAM) and ODConv with
YOLOv8 detect silkworm microparticle viruses and increase feature
extraction and detection accuracy (Zhang et al., 2024). The
technique improves agricultural virus identification by reducing
detection time per image and outperforming current models
(Zhang et al., 2024). Deep learning is used to detect and quantify
plant-parasitic nematodes in agriculture using YOLOv5 and
NemDST (Pun et al., 2023). Farmers can detect pests, eliminate
laborious analysis, and improve pest control (Pun et al., 2023). AI
boosts agricultural accuracy and minimizes chemical consumption
(Pun et al., 2023). AI applied to cervical cancer (AlMohimeed et al.,
2023; AlMohimeed et al., 2024) and lightweight deep-learning
parasite detection algorithms (Xu et al., 2024). Learning-based
detection is applied in human health, agriculture tasks, and other
industries. The deep learning models for silkworm microparticle
virus detection AI algorithms are applied in specific tasks, as it is
characterized by variety and adaptability (Zhang et al., 2024).

These advances focus on intelligent diagnostic tools that use AI
to improve detection in medical and agricultural pest management
(Zhang et al., 2024; Pun et al., 2023). Although parasite detection
using AI has improved, there are some obstacles, such as Complex
parasite morphology and imaging circumstances, which make
detection accuracy difficult.

Studies recommend using a group of data and robust training
approaches to increase model performance across varying
conditions (El-Sunais and Eberemu, 2024). While YOLOv5 and
YOLOv8 have shown significant results, research is still conducted
to improve these algorithms to overcome complex tasks and
integrate them into diagnostic workflows (Pun et al., 2023).

2.3 Advances in data augmentation and
transfer learning

Access to diverse datasets has been limited in past research. Kumar
et al. (2023) modified the training dataset vertically and rotationally.
The strategymakes the YOLOv5 the best model to use in a different test
set of microscopic images, enhancing detection accuracy with fewer
training instances. Ray et al. (2020) classified parasite eggs in feces with
95% accuracy using pre-trained deep learning models, focusing on the
importance of transfer learning in data shortage and heterogeneity-
challenged model training. In addition, a brain tumor (Talaat, 2024)
and kidney disease (Elbedwehy et al., 2024) research shows that
advanced neural networks with optimal training data have better
diagnostic reliability across varied situations.

2.4 Limitations and challenges in current
approaches

Despite progress, AI-based E. vermicularis detection approaches
have great limitations. Kumar et al. (2023) recommended high-

quality, diverse datasets. YOLOv5 model overfits, but it cannot be
applied to tiny or imbalanced datasets due to the need for data
augmentation, and obtaining comprehensive training data is
difficult. Kitvimonrat et al. (2020) stated that the YOLOv8 model
has difficulty distinguishing small, low-contrast objects in
microscopic pictures. Kumar et al. noted that YOLOv8’s
complexity and high processing needs make it unsuitable for
resource-constrained deployment. Agholi et al. (2023) suggest
that AI-based approaches may not be therapeutically useful in
areas with low E. vermicularis. Automated methods can enhance
diagnosis precision, but their cost-effectiveness in low-incidence
areas is unclear.

According to Ruenchit, AI-driven diagnostics need
expensive hardware and computing, which reduces their
benefits in underdeveloped areas with high rates of parasite
infection (Ruenchit, 2021). Deep learning and YOLO models
improved parasite egg detection, although data quality, model
complexity, and processing issues remain. These issues must be
addressed to achieve reliable, scalable diagnostic systems for
various clinical contexts and geographies. AI-based parasitic
diagnostics could change parasitic infection management by
improving speed, accuracy, and cost. The YOLOv8 silkworm
microparticle virus identification model also faces challenges
with data variability and model complexity. Its high computing
requirements and specialized gear may limit its usage in
resource-constrained settings such as small-scale agriculture
or developing country labs (Zhang et al., 2024). The method
improves feature extraction, but expensive hardware in
resource-constrained areas (Zhang et al., 2024). The decision
support tool NemDST connected to YOLOv5 can detect pests in
plant-parasitic nematode management; however, it is not
adaptive to different environments and crop kinds (Pun
et al., 2023).

Recent advances in acute lymphoblastic leukemia detection
(Hassan et al., 2024) and small object detection in controlled
environments (Papadopoulos et al., 2024) show AI diagnostic
model interpretability and computational cost issues (Hassan
et al., 2022; Elbedwehy et al., 2024; Saber et al., 2024). Li A. et al.
(2023) YOLO-SA integrates a self-attention mechanism, using the
traditional backbone instead of a reparametrized module and
enhancing feature fusion. This prevents detection accuracy and
reduces complexity by speeding up training convergence with an
anchor-based detection head.

Li Y. et al. (2023) SAE-CenterNet improves small object
detection by incorporating self-attention and using Dynamic
Attention Convolution (DAC) for efficient downsampling. The
Attention Fusion Module (AFM) helps in multi-scale feature
fusion, making it effective for detecting objects in dense
environments.

Ding et al. (2023) developed a lightweight YOLOv4 model
combined with mechanisms for security applications. The
attention modules focus on key features, improving detection
accuracy while maintaining efficiency, crucial for real-time
security scenarios. Ji et al. (2024) YOLO-TLA, an upgraded
YOLOv5, adds a detection layer for small object capture, uses the
C3CrossConv module for efficiency, and applies a global attention
mechanism for better feature representation. It shows a 4.6%
improvement in mAP while maintaining a small model size of

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Hassan et al. 10.3389/fbioe.2025.1559987

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1559987


9.49 million parameters. Nematode morphology and soil structures
can produce false positives and negatives, impairing detection. Data
processing and updates require internet connectivity, which may be
problematic for farmers in remote areas with weak digital
infrastructure (Pun et al., 2023). Fast real-time processing and
inference are another difficulty. YOLOv5 is designed for fast
detection, and high-resolution images or large datasets require
processing in clinical situations when speedy diagnosis is crucial
for treatment. Despite its improved accuracy, the YOLOv8 model
still faces difficulty in recognizing smaller or less distinguishable
targets in complicated backgrounds, such as silkworm microparticle
viruses (Zhang et al., 2024). Deep learning model interpretability is a
concern. The black-box structure of neural networks makes
decision-making difficult to understand, which makes it hard to
win medical and agricultural end-user trust (El-Sunais and
Eberemu, 2024; Pun et al., 2023; Hassan, 2024) as illustrated
in Table 1.

3 Proposed work

This study presents an advanced architecture, called YOLO
Convolutional Block Attention Module (YCBAM), which
integrates YOLOv8 with self-attention mechanisms and
Convolutional Block Attention Module (CBAM) to enhance the
detection and identification of pinworm parasite eggs in
microscopic images.

3.1 Data preparation

Labeled pinworm egg microscopy is used. Images with different
noise, magnification, and illumination settings are included in
robustness. The training dataset is rotated, zoomed, and modified
to prevent overfitting and increase model generalization in
different images.

3.2 The proposed model architecture

The YCBAM architecture minimizes computational cost and
maximizes detection accuracy. The model integrates YOLOv8 with
self-attention mechanisms and the Convolutional Block
Attention Module.

Figures 2, 3 illustrate the main components of the
YOLOv8 model. The following sub-sections propose the main
steps for egg image detection by YCBAM architecture. Figure 4
shows the main steps for the proposed work. Table 2 represents the
layers in the YOLOv8 with CBAM model, highlighting the layer
types, configurations, and activations.

3.2.1 Objectness score and bounding box
prediction

For each grid cell in the feature map, YOLOv8 predicts multiple
bounding boxes, each with an associated objectness score. The
objectness score indicates the likelihood of an object being

TABLE 1 Summary of related works.

Author/Year Dataset Methodology Objective Performance metrics Baseline
comparison

Classification/Detection

Kumar et al. (2023) 5,393 microscopic
images

YOLOv5 Detect/classify parasite
eggs

mAP: 97% YOLOv5 (self-baseline)

El-Sunais and
Eberemu (2024)

651 fecal samples YOLOv8 + ML ensemble Identify parasites + risk
factors

Accuracy: 97%, AUC: 99% YOLOv8

Kitvimonrat et al.
(2020)

Low-res microscopic
images

RetinaNet, Faster R-CNN Localize/classify eggs Detection rate varies (no
unified metric)

RetinaNet, Faster
R-CNN

Chaibutr et al. (2024) 40,000 augmented
images

CNN (Xception) Classify E. vermicularis
eggs

Accuracy: 99% Xception CNN

Mirzaei et al. (2022b) 1,200 labeled images NASNet-Mobile, ResNet-101,
EfficientNet

Classify eggs vs artifacts Precision: 97% NASNet-Mobile

Ray et al. (2020) Mixed-resolution
images

Transfer Learning (AlexNet,
ResNet50)

Enhance egg
classification

Accuracy: 95% ResNet50

Segmentation

Mirzaei et al. (2022a) 255 microscopic images ResU-Net, U-Net Segment E. vermicularis
eggs

Dice Score: 0.95 ResU-Net, U-Net

Ray et al. (2024) Microscopic images Watershed/edge detection Review traditional
segmentation

N/A Edge detection

Ruenchit (2021) Parasitological images Geometric morphometrics Improve diagnostics Qualitative improvement DNA barcoding

Agholi et al. (2023) Histopathological
records

Histopathology Identify parasitic
appendicitis

N/A Histopathology

Benecke et al. (2021) Romanian time-series
data

AutoML Predict infection trends Stable trends (no quant. metric) AutoML
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present in the bounding box. The total confidence score in Equation
1 for a predicted bounding box is:

Sconf � Pobj · Pc
cls (1)

Where, Pobj represent the objectness score, Pc
cls represent the

class probability for class c, bx, by, by represent the coordinates of the
bounding box center relative to the grid cell, bw , bh represent the
width and height of the bounding box, Pobj ∈ [0, 1] the probability

FIGURE 2
The architecture/block diagram of the YCBAM proposed model.
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that an object is present, Pc
cls ∈ [0, 1], the probability that the object

belongs to class c.

3.2.2 Bounding box regression
Bounding box predictions are encoded relative to the grid cell

location for object localization tasks like detecting the position of an
object in an image. The bounding box coordinates in Equation 2 are
computed as:

bx � σ tx( ) + cx, by � σ ty( ) + cy, bw � pw . e
tw , b h � ph .e

th (2)

Where: tx, ty be the predicted offsets for the center of the
bounding box, tw, th th are the predicted width and
height offsets. σ is the sigmoid activation function that
ensures bx and by lie within the grid cell, cx, cy are the
coordinates of the grid cell, pw , ph are the predefined anchor
box dimensions.

3.2.3 Loss function
A multi-task loss function is used to optimize three different

components during training: objectness, classification, and
localization. The total loss L in Equation 3 is computed as:

L � Lobj + λclsLcls + λboxLbox (3)

Where: Lobj is the objectness loss (binary cross-entropy loss),
Lcls is the classification loss (typically binary cross-entropy or
focal loss), Lbox is the bounding box regression loss (typically
CIoU or GIoU loss), λcls and λbox are balancing hyperparameters.

The Intersection over Union (IoU) is used to evaluate the
overlap between the predicted bounding box and the ground
truth bounding box. IoU in Equation 4 is defined as:

IoU � Area ofUnion

Area ofOverlap
� Apred ∩ Agt

Apred ∪ Agt
(4)

Where Apred is the area of the predicted bounding box, and Agt is
the area of the ground truth bounding box.

An enhanced IoU-based loss CIoU function that is an advanced
loss function designed to improve the accuracy of bounding box
regression is applied. It extends the basic IoU by incorporating
additional geometric factors that affect the convergence and the
performance of the object detection model in Equation 5 for more
accurate bounding box regression: The CIoU loss function is defined
as follows:

LCIoU � 1 − IoU + ρ2 b, bgt( )
c2

+ αv (5)

Where: IoU: Intersection over Union between the predicted and
ground-truth bounding boxes, ρ2(b, bgt): Euclidean distance
between the center points of the predicted box b and ground
truth box bgt, c: Diagonal length of the smallest enclosing box
that covers both the predicted and ground truth boxes, v: A measure
of the similarity of aspect ratios, α: A positive trade-off parameter
that balances the aspect ratio term.

3.2.4 Anchor boxes
Anchor boxes, which are predefined bounding boxes of

varying aspect ratios and scales are used. The network predicts
adjustments to these anchor boxes to fit the objects in the image.
The anchor boxes are crucial for handling objects of different
sizes efficiently.

For anchor boxes and predictions, the loss function is the
number of anchor boxes optimized in Equation 6:

Lanchor � ∑
N

i�1
IoU Ai, pi( ) − CIoU Ai, pi( )( ) (6)

Model Inference and Detection During inference,
YOLOv8 processes the entire input image in a single pass. It
predicts multiple bounding boxes and class probabilities for each
grid cell. Non-Maximum Suppression (NMS) is then applied to
eliminate redundant or overlapping boxes, retaining only the most
confident predictions in Equation 7:

Snms � max Sconf( ) (7)

Where NMS selects boxes with the highest confidence and
removes boxes with lower IoU scores.

3.2.5 Convolutional block attention
module (CBAM)

The Convolutional Block Attention Module (CBAM) enhances
the feature extraction process by applying attention mechanisms
along two dimensions: channel attention and spatial attention. The
proposed mode allows the model to selectively focus on the most
informative feature channels and spatial regions in the input image,
improving object detection performance. CBAM consists of two
sequential submodules: i) Channel Attention Module (CAM):
Focuses on identifying the most important feature channels. ii)

FIGURE 3
The YOLOv8 model’s main components.
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Spatial Attention Module (SAM): Identifies key spatial locations in
the feature map. Both attention mechanisms are lightweight and
easily integrated into existing architectures, such as YOLOv8, with
minimal additional computational cost.

3.2.5.1 Channel attention module (CAM)
The Channel Attention Module focuses on which feature

channels are the most important for the task. It adaptively re-
weights each channel by learning a channel-wise attention

FIGURE 4
The main steps for YCBAM Proposed Work architecture.
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map. The map emphasizes relevant channels and neglects irrelevant
ones. The input feature map is F ∈ RC×H×W, where C, H, and W
denote the number of channels, height, and width of the feature
map, respectively. Channel attention is computed in Equation 8 as:

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ) (8)

Where: AvgPool(F) and MaxPool(F) are global average pooling
and global max pooling operations along the spatial dimensions,
producing descriptors of size R1×1×1. MLP is a Multi-Layer
Perceptron that consists of two fully connected layers: the first
reduces the channel dimension by a factor of r, and the second

restores the original dimension. σ is the sigmoid activation function
that normalizes the channel attention mapMc(F) to the range [0, 1].
The resulting channel attention map is then applied to the input
feature map by element-wise multiplication in Equation 9:

F′ � Mc F( ) · F (9)

3.2.5.2 Spatial attention module (SAM)
The Spatial Attention Module focuses on identifying important

spatial regions within the feature map. It produces a spatial attention
map to focus on critical regions in the image with suppressing less

TABLE 2 The representation of the YOLOv8 with CBAM model summary.

Layer name Type Configuration details

Base Model DetectionModel Comprises the complete YOLOv8-based architecture structured in sequential blocks

Conv Layer 1 Conv2d + BatchNorm + SiLU Input: 3 channels, Output: 16 channels, Kernel: 3 × 3, Stride: 2, Padding: 1

Conv Layer 2 Conv2d + BatchNorm + SiLU Input: 16 channels, Output: 32 channels, Kernel: 3 × 3, Stride: 2, Padding: 1

C2f Block 1 C2f Contains two Conv2d layers, each followed by BatchNorm and SiLU activation

Bottleneck 1 Bottleneck Two Conv2d layers with BatchNorm and SiLU activation

Conv Layer 3 Conv2d + BatchNorm + SiLU Input: 32 channels, Output: 64 channels, Kernel: 3 × 3, Stride: 2, Padding: 1

C2f Block 2 C2f Two Conv2d layers, each with BatchNorm and SiLU

Bottleneck 2 Bottleneck Two Conv2d layers with BatchNorm and SiLU

Conv Layer 4 Conv2d + BatchNorm + SiLU Input: 64 channels, Output: 128 channels, Kernel: 3 × 3, Stride: 2, Padding: 1

C2f Block 3 C2f Two Conv2d layers with BatchNorm and SiLU

Bottleneck 3 Bottleneck Two Conv2d layers with BatchNorm and SiLU

Conv Layer 5 Conv2d + BatchNorm + SiLU Input: 128 channels, Output: 256 channels, Kernel: 3 × 3, Stride: 2, Padding: 1

C2f Block 4 C2f Two Conv2d layers with BatchNorm and SiLU

Bottleneck 4 Bottleneck Two Conv2d layers with BatchNorm and SiLU

Conv Layer 6 Conv2d + BatchNorm + SiLU Input: 256 channels, Output: 128 channels, Kernel: 1 × 1, Stride: 1, Padding: 1

Max Pooling MaxPool2d Kernel: 5 × 5, Stride: 1, Padding: 2

Upsample 1 Upsample Scale Factor: 2.0, Mode: Nearest Neighbor

Concat 1 Concatenation Feature map concatenation

C2f Block 5 C2f Two Conv2d layers with BatchNorm and SiLU

Bottleneck 5 Bottleneck Two Conv2d layers with BatchNorm and SiLU

Upsample 2 Upsample Scale Factor: 2.0, Mode: Nearest Neighbor

Concat 2 Concatenation Feature map concatenation

C2f Block 6 C2f Two Conv2d layers with BatchNorm and SiLU

Bottleneck 6 Bottleneck Two Conv2d layers with BatchNorm and SiLU

Conv Layer 7 Conv2d + BatchNorm + SiLU Input: 64 channels, Output: 64 channels, Kernel: 3 × 3, Stride: 2, Padding: 1

Concat 3 Concatenation Feature map concatenation

C2f Block 7 C2f Two Conv2d layers with BatchNorm and SiLU

Bottleneck 7 Bottleneck Two Conv2d layers with BatchNorm and SiLU

Conv Layer 8 Conv2d + BatchNorm + SiLU Input: 64 channels, Output: 64 channels, Kernel: 3 × 3, Stride: 2, Padding: 1

Final Detection Head Detection Output Producing the final object detection outputs for bounding box coordinates and class predictions
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important areas. The channel-refined feature map F′ ∈ RC×H×W,
spatial attention is computed in Equation 10 as:

Ms F′( ) � σ f7×7 AvgPool F′( );MaxPool F′( )[ ]( )( ) (10)

Where: AvgPool(F′) and MaxPool(F′) are the average and max
pooling operations applied along the channel axis, producing two
feature maps of size R1×H×W. The two pooled feature maps are
concatenated, denoted as ([AvgPool(F′);MaxPool(F′)]) forming a
descriptor of size R2×H×W. f 7×7 is a convolution operation with a 7 ×
7 kernel, which captures spatial relationships across the entire
feature map. σ is the sigmoid activation function applied to
normalize the spatial attention map Ms(F′) to the range [0, 1].

3.2.5.3 Combined attention
The CBAM process can be summarized as sequentially applying

channel and spatial attention in Equation 11:

Fout � Ms Mc F( ) · F( ) ·Mc F( ) · F (11)

Where, Fout is the final feature map output by CBAM, enriched
by both channel and spatial attention mechanisms and CBAM
improves feature representation by integrating two kinds of
attention mechanisms: channel attention and spatial attention.
Channel Attention: The application of global average pooling and
global max pooling across the spatial dimensions to calculate
attention weights for each channel in Equation 12.

Mc X( ) � σ W1 ReLU W0 GAP X( )( )( )( )(
+W1 ReLU W0 GMP X( )( )( )( )) (12)

Where: GAP(X): Global Average Pooling, GMP(X): Global
Max Pooling, W0,W1: Fully connected layers, σ: Sigmoid
activation. Spatial Attention Concentrates on the application of
convolution to the concatenated feature maps of the pooled input
in Equation 13:

Ms X( ) � σ f7×7 AvgPool X( ),MaxPool X( )[ ]( )( ) (13)

Incorporating CBAM into the YOLO Model in which the pre-
trained YOLO model is modified by implementing CBAM after a
specific feature extraction layer. Input Image X is fed to feature
extraction layers by using CBAM to concentrate on critical spatial
and channel-specific information with continuous processing to
analyze the remaining YOLO layers for detection.

4 Experiments and results

In this section, the YOLOv8 model was trained to enhance the
accuracy and efficiency of detecting pinworm parasite eggs in
microscopic images. The architecture, incorporating Self-
Attention mechanisms and the Convolutional Block Attention
Module (CBAM), is augmented. These enhancements improved
feature extraction by enabling the model to focus on spatial and
channel-wise information, leading to better detection of critical
details in complex images. Key layers within the
YOLOv8 architecture, including Conv, BottleneckCSP, SPPF, C2f,
and the YOLO Head, have appositive effect on the performance of
the model. Each layer contributed to the extraction of multi-scale
features, which significantly enhanced detection accuracy.

The C2f layer provided flexibility in managing the number of
channels, ensuring efficient feature extraction, and the SPPF layer’s
multi-scale pooling expanded the model’s receptive field, further
refining its detection capabilities. These architectural advancements
contributed to improving the performance in identifying pinworm
eggs with precision and reliability.

4.1 Pinworm parasite egg

The Pinworm Parasite Egg dataset comprises 2,342 high-
resolution microscopic images; each annotated with precise
bounding boxes around Enterobius vermicularis (pinworm) eggs,
as shown in Figure 5. This dataset is organized to support the
development and evaluation of deep learning models for the
accurate identification of pinworm eggs, facilitating tasks such as
object detection, feature extraction, and end-to-end model training.
It has significant value for applications in medical diagnostics and
parasitology. Each image submits a series of preprocessing steps,
including automatic orientation correction based on EXIF metadata
and resizing to a standardized input dimension of 640 × 640 pixels
using stretch interpolation. These steps ensure uniformity across
training and inference pipelines improving model performance. A
data augmentation strategy was implemented to enhance model
generalization and improve dataset variability. Three augmented
versions of each source image were produced by applying random
90-degree rotations, each selected with equal probability. This
augmentation scheme increases spatial diversity and allows the
model to handle different orientations and visual contexts. All
annotations were reviewed to ensure high-quality labels for
supervised learning. This designed dataset presents a robust
foundation for developing reliable and accurate detection models
in complex microscopic environments.

4.2 Training configuration and setup

The proposed YOLO Convolutional Block Attention Module
(YCBAM) architecture was implemented using Python and

FIGURE 5
The Pinworm parasite Egg dataset sample.
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developed within the PyTorch deep learning framework. The model
was trained and evaluated in a high-performance computing
environment equipped with i) GPU: NVIDIA A100 Tensor Core
GPU (40 GB), ii) Processor (Intel Xeon CPU 2.20 GHz) and iii)
Memory (128 GB RAM). The model was improved using the
AdamW optimizer with a learning rate of 1e − 4 and a batch size

of 16 for stable convergence. Training was conducted for 200 epochs,
including mixed precision training to accelerate computations and
reduce memory usage. We trained the model using the Adam
optimizer with momentum set to 0.937.

The initial learning rate of 0.01 gradually decreased using a cosine
learning rate scheduler, improving the learning process over time.

FIGURE 6
The visualizations of model performance and bounding box distribution.
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Weight decay of 0.0005 was applied, and early stopping was triggered
after 50 epochs if no significant improvements were observed to
prevent overfitting. Data augmentation techniques, including random
flips, rotations, and scaling, were used to increase the model’s
robustness and generalization capability. The Intersection over
Union (IoU) threshold was set to 0.2 during non-max suppression
to reduce the overlap between predicted bounding boxes. While
multi-scale training was not enabled by default, it was explored as
a potential strategy for enhancing the model’s generalization by
resizing images to various scales during training, as shown in Figure 6.

Figure 7 shows the confusion matrix, representing the model’s
classification results, with predictions for “Pinworm Egg” and
“Background” categories. The normalized confusion matrix
provides insights into classification accuracy across both categories.

The pairwise scatter plot matrix shows the distribution of bounding
box parameters (x, y, width, height) used for localizing pinworm eggs,
including histograms for each parameter. The heatmaps of bounding
box placements and sizes indicate the spatial distribution of the
detected pinworm eggs in the images. Figures 8, 9 show a sample
of various circular objects in microscopic images, each labeled with a
title that includes the term Enterobius vermicularis, which refers to a
parasitic worm (pinworm).

The samples are captured under amicroscope, and there are blue
bounding boxes drawn over specific areas within each image. These
boxes refer to specific regions of interest or potentially identify
objects in the image, such as the parasite or some other key feature.

Table 3 shows the various layer types used in the model
architecture, designed to enhance feature extraction and improve

FIGURE 7
The various visualizations of model performance and data distribution, likely from an object detection or image classification task. It includes a
confusion matrix, normalized confusion matrix, pairplots, and histograms, highlighting the accuracy of the model for each class, and the spatial
distribution and sizes of detected objects.
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detection capabilities by using several layers for feature extraction,
including Conv, BottleneckCSP, SPPF, C2f, and YoLO Head.
Conv2D, BatchNorm, and SiLU activation functions help learn
spatial hierarchies in input data. BottleneckCSP reduces
computational complexity, while SPPF enhances the model’s
receptive field. C2f residual layer keeps essential information
across layers. The output layer, YoLO Head, detects objects and
predicts bounding boxes, class scores, and confidence scores. Table 4
presents the hyperparameters that control the training process of the
model, affecting learning dynamics by using Adam, with other
optimization strategies such as Adam. The learning rate,
momentum, weight decay, patience, gradient clipping, IoU
threshold, data augmentation, multi-scale training, and learning

rate scheduler are all crucial for effective convergence. The weight
decay value helps mitigate overfitting and prevents overfitting. The
model’s adaptability is further enhanced by the multi-scale
training option.

To assess the robustness and generalization capability of the
proposed YOLOv8+CBAM model, it is crucial to evaluate its
performance on an external dataset that was not included in the
training process to ensure that the model can effectively generalize to
unseen data and is not overly reliant on specific training
distributions. We plan to test the model on a separate clinical
dataset obtained from an independent medical facility.
Performance metrics such as precision, recall, and mAP can be
compared against the results from the primary dataset to determine

FIGURE 8
A sample of microscopic images showing Enterobius vermicularis samples with blue bounding boxes defining the regions of interest. The images
capture various orientations and magnifications of the samples for identification or analysis purposes.
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FIGURE 9
The grid of detection results for “PinwormEgg” using an object detectionmodel, showingmicroscope slide views, predicted classes, and confidence
scores across samples, indicating successful identifications and variations in detection confidence.

TABLE 3 Overview of layer types used in the YOLOv8 architecture with self-attention and CBAM integration.

Layer type Description

Conv Standard convolutional layer used for feature extraction that consists of Conv2D + BatchNorm + SiLU.

BottleneckCSP A bottleneck layer with Cross-Stage Partial (CSP) connections. Reduces computation while retaining gradient flow across layers

SPPF Spatial Pyramid Pooling-Fast layer, enhances receptive field by applying pooling at different scales, improving multi-scale feature detection

C2f A residual layer like CSP, but with a flexible number of channels, allowing efficient and effective feature extraction

YOLO Head The output layer is responsible for detecting objects and predicting bounding boxes, class scores, and confidence scores
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the model’s adaptability to different imaging conditions and sample
variations. Although the proposed model is computationally
improved, its deployment in low-resource clinical environments
such as hospitals and diagnostic labs presents certain challenges:

i. Hardware Constraints: Many clinical facilities, especially in
resource-limited settings, may not have access to high-
performance GPUs or cloud-based processing capabilities.

ii. Inference Speed: The real-time processing capability of the
model needs to be evaluated on edge devices or embedded
systems to ensure efficient deployment.

iii. User-Friendly Interface: an intuitive graphical interface and
automated report generation system should be considered to
facilitate adoption by healthcare professionals.

5 Discussion

The study proposed the YCBAM model architecture for
pinworm egg detection automation compared to previous studies.
The model has a high mean average precision (mAP) of 0.995 at an
IoU threshold of 0.50 and a mAP50-95 of 0.6531 over multiple IoU
thresholds. The model’s precision of 0.99709 and recall of
0.99338 reduce false positives and negatives, which are crucial in
clinical diagnostics. The training box loss is reduced to 1.141 during
model optimization showing effective learning and convergence,
andmodel robustness. The performance of model is good in the final
epoch (Epoch 50), with a mean average precision (mAP@50) of
0.995, presenting its accuracy in microscopic images. The model
distinguished pinworm eggs from other artifacts with
0.99709 precision, minimizing false positives.

The model’s recall of 0.99338 showed that it detected nearly all
pinworm eggs with few missed detections, proving its clinical
diagnostic reliability. These findings improve past research. i)
The model is better than YOLOv5, which showed 97% mAP.
The higher accuracy of 0.995 shows better detection and
recognition in complicated and noisy contexts. ii) It improves
precision and recall over earlier research that averaged 97%.
With 0.99709 precision and 0.99338 recalls, the model lowers

diagnostic errors and false positives, enhancing clinical
dependability as shown in Table 5. iii) The study uses CBAM-
enhanced YOLOv8 to selectively focus on essential spatial and
channel information, enabling accurate detection in low-contrast
and noisy images, where earlier CNN models struggled. Despite
attention modules, the model is computationally efficient, which is
useful for clinical applications that need fast processing.

Unlike segmentation methods such as ResU-Net and U-Net, the
model balances accuracy and efficiency, making it suitable for
resource-constrained scenarios. iv) The proposed model strong
training methodology, which includes data augmentation
techniques like rotation, zooming, and contrast modifications and
adjusted hyperparameters (learning rate of 5.96E-05, momentum of
0.937), improves its generalizability across imaging settings. Table 6
presents a comparative analysis of the performance of various state-
of-the-art models for pinworm parasite egg detection. The results
demonstrate that the YOLOv8-based models outperform traditional
architectures such as Faster R-CNN, EfficientNet, and ResU-Net
across key evaluation metrics, including precision, recall, and mean
Average Precision (mAP). The baseline YOLOv8 model achieves a
precision of 0.997, recall of 0.993, and mAP@50 of 0.995,
significantly surpassing Faster R-CNN and ResU-Net in detection
accuracy. The integration of Convolutional Block Attention Module
(CBAM) and Self-Attention Mechanisms further enhances
detection performance. The YOLOv8 + CBAM + Self-Attention
model achieves the highest accuracy, with a precision of 0.999, recall
of 0.995, and mAP@50 of 0.997, confirming the effectiveness of
attention-based feature refinement in improving object localization
and classification. The incremental improvements in mAP@50-
95 also highlight the robustness of attention-enhanced models in
handling variations in microscopic image conditions.

Figure 9 presents a comparative analysis of different deep learning
models, including YOLOv8, Faster R-CNN, EfficientNet, and ResU-
Net, for pinworm parasite egg detection. The results indicate that
YOLOv8 is better than other models in terms of precision (0.997),
recall (0.993), and mAP@50 (0.995), highlighting its superior
detection capability. ResU-Net showed the lowest performance,
focusing the advantages of using advanced object detection
architectures such as YOLOv8 in medical diagnostics. Figure 10

TABLE 4 The Hyperparameters used for Training the YOLOv8 Model with Integrated Self-Attention and CBAM.

Hyperparameter Default value Description

learning_rate (lr) 0.01 Learning rate for the optimizer. Controls how much to adjust the model weights with each step

momentum 0.937 Momentum factor for the optimizer to maintain direction in the gradient descent process

weight_decay 0.0005 Regularization parameter to prevent overfitting by penalizing large weights

patience 50 Early stopping patience. Stops training if there is no improvement after a certain number of epochs

grad_clip 0.0 Gradient clipping threshold to prevent large gradient updates

iou_threshold 0.2 Intersection over Union (IoU) threshold for non-max suppression. Defines how much overlap between bounding boxes is
allowed before they are considered the same object

augment True Data augmentation flag. If true, the model applies random augmentations like flipping, scaling, and rotating to the training
data

multi_scale False Enables multi-scale training, where the model randomly resizes the images to different scales during training to increase
robustness

lr_scheduler cosine Learning rate scheduling strategy to decay the learning rate over time (cosine, step, or exponential decay options)
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TABLE 5 The state-of-the-art object detection models.

Paper Year Model Train box
loss

Precision (B) Recall (B) mAP50 (B) mAP50–95 (B) Specificity Accuracy LR/pg0 LR/pg1

Tan and Kalkan (2022) 2022 VGG16, ResNet50,
Inception-V3

— 0.9487 0.9024 — — — — — —

Libouga et al. (2022) 2022 U-Net — — — — — 0.9700 — 0.0010 —

Naing et al. (2022) 2022 YOLOv4-Tiny — 0.9625 — — — 0.9989 0.9975 — —

Aytac et al. (2025) 2025 BLGSNet — 0.9925 — — — — — 0.0100 0.0100

Eberemu (2024) 2024 — — — 0.8700 — — — 0.8300 — —

Kumar et al. (2023) 2023 YOLOv5 — 0.9440 0.9700 0.9740 0.6850 0.9920 — — SGD
optimizer

YOLOv5l YOLOv5l — 0.9380 0.9720 0.9690 0.7220 0.9100 — — SGD
optimizer

YOLOv8 Baseline YOLOv8 Baseline 1.1340 0.9934 0.9985 0.9947 0.6522 0.9959

Proposed — YCBAM 1.1410 0.9971 0.9934 0.9950 0.6531 — — 5.960 × 10−5 5.960 × 10−5
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illustrates an ablation study that evaluates the effect of integrating the
Convolutional Block Attention Module (CBAM) and Self-Attention
into YOLOv8. The results reveal that the combined YOLOv8 +
CBAM + Self-Attention model achieves the highest scores across
all metrics with a precision of 0.999, a recall of 0.995, and an mAP@
50 of 0.997. Figure 11 illustrates improvements in detection accuracy
achieved through enhanced feature extraction and attention
mechanisms, based on an ablation study assessing the effects of
CBAM and Self-Attention on YOLOv8 performance.

6 Conclusion and future work

According to this study, the YOLO Convolutional Block Attention
Module (YCBAM) architecture is proposed to improve the detection of
pinworm parasite eggs in microscopic images. The need for
advancement is due to the limitations of traditional diagnostic
methods, which are time-consuming and human error. With the
growing need for automated, efficient, and reliable diagnostic systems
in both resource-constrained and high-volume settings, the contributions

of this study present a solution to improve both accuracy and scalability
in parasitic egg detection. Results show the effectiveness of the YCBAM
model, improving the performance in detecting pinworm eggs with high
precision and recall values. The mean average precision (mAP) scores of
0.995 at an IoU threshold of 0.50 and 0.6531 across multiple thresholds
further substantiate the robustness of our approach. These results focused
on the competitive performance of the study’s model compared to state-
of-the-art techniques.

Additionally, the integration of self-attention mechanisms and
Convolutional Block Attention Module (CBAM) significantly
enhances the model’s sensitivity to critical features of pinworm
eggs, even in noisy and low-contrast environments. The
computational efficiency of the proposed model also positions it
as a suitable solution used in clinical environments with limited
resources. These findings contribute to advancing automated
diagnostic systems in parasitology and other medical domains.
This study presents a scalable and robust solution that can be
adapted to other diagnostic applications exceeding pinworm
detection by determining challenges such as detection speed,
small object recognition, and model efficiency. Future

TABLE 6 The performance comparative analysis with other state-of-the-art Models for Pinworm Parasite Egg Detection.

Model Precision Recall mAP@50 mAP@50-95

YOLOv8 0.997 0.993 0.995 0.653

Faster R-CNN 0.951 0.948 0.956 0.592

EfficientNet 0.962 0.955 0.968 0.608

ResU-Net 0.945 0.942 0.948 0.578

YOLOv8 + CBAM 0.998 0.994 0.996 0.670

YOLOv8 + Self-Attention 0.996 0.992 0.994 0.660

YOLOv8 + CBAM + Self-Attention 0.999 0.995 0.997 0.678

FIGURE 10
Performance comparison of YOLOv8, Faster R-CNN, EfficientNet, and ResU-Net in pinworm parasite egg detection.
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improvements in AI-based medical diagnostics include the
integration of multi-modal data, such as genetic information,
clinical records, and imaging data, to enhance diagnostic
accuracy and personalized treatment. Combining microscopic
images, patient history, lab test results, and genomic data can
provide a more comprehensive understanding of diseases, reduce
misdiagnosis risks, and improve early detection.

Advanced deep learning models, including transformer-based
architectures and graph neural networks (GNNs), can be used to
efficiently process and correlate multimodal data. Additionally,
federated learning can enable privacy-preserving collaboration
across multiple healthcare institutions, improving model
robustness and keeping data security. Further research should
focus on standardizing data formats, improving interoperability
between different medical systems, and determining
computational challenges to ensure seamless integration of multi-
modal information into AI-driven diagnostic workflows.
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FIGURE 11
Ablation study assessing the effect of CBAM and Self-Attention on YOLOv8 performance, showing improvements in detection accuracy through
enhanced feature extraction and attention mechanisms.
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