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The convergence of loT sensing, edge computing, and machine learning
is revolutionizing precision livestock farming. Yet bioacoustic data streams
remain underexploited due to computational-complexity and ecological-validity
challenges. We present one of the most comprehensive bovine vocalization
datasets to date-569 expertly curated clips spanning 48 behavioral classes,
recorded across three commercial dairy farms using multi-microphone arrays
and expanded to 2,900 samples through domain-informed data augmentation.
This FAIR-compliant resource addresses key Big Data challenges: volume
(90 h of raw recordings, 65.6 GB), variety (multi-farm, multi-zone acoustic
environments), velocity (real-time processing requirements), and veracity (noise-
robust feature-extraction pipelines). A modular data-processing workflow
combines denoising implemented both in iZotope RX 11 for quality control
and an equivalent open-source Python pipeline using noisereduce, multi-modal
synchronization (audio-video alignment), and standardized feature engineering
(24 acoustic descriptors via Praat, librosa, and openSMILE) to enable scalable
welfare monitoring. Preliminary machine-learning benchmarks reveal distinct
class-wise acoustic signatures across estrus detection, distress classification,
and maternal-communication recognition. The dataset's ecological realism-
embracing authentic barn acoustics rather than controlled conditions-ensures
deployment-ready model development. This work establishes the foundation for
animal-centered Al, where bioacoustic streams enable continuous, non-invasive
welfare assessment at industrial scale. By releasing a Zenodo-hosted, FAIR-
compliant dataset (restricted access) and an open-source preprocessing pipeline
on GitHub, together with comprehensive metadata schemas, we advance
reproducible research at the intersection of Big Data analytics, sustainable
agriculture, and precision livestock management. The framework directly
supports UN SDG 9, demonstrating how data science can transform traditional
farming into intelligent, welfare-optimized production systems capable of
meeting global food demands while maintaining ethical animal-care standards.
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1 Introduction

The exponential growth of agricultural data—projected to
surpass 5.1 exabytes by 2025—positions precision livestock farming
at the intersection of IoT sensing, edge computing, and machine
learning analytics (Scoop Market Research, 2025; Precision
Business Insights, 2024). Within this evolving digital ecosystem,
bioacoustic data streams stand out as a particularly complex
and information-rich modality. These continuous, high-frequency
temporal signals demand specialized preprocessing pipelines,
robust feature engineering, and scalable analysis frameworks
to unlock actionable insights. Building on this context, the
rapid growth of digital agriculture has further highlighted the
transformative potential of big data and machine learning in
reshaping livestock farming into a more sustainable, welfare-
centered, and efficient sector. Among various sensing modalities,
bioacoustics has emerged as a powerful yet underutilized channel
of information, offering non-invasive insights into animal health,
behavior, and emotional state. In particular, cattle vocalizations
carry rich indicators of social interaction, estrus, maternal care,
hunger, stress, and pain, positioning them as promising biomarkers
for welfare monitoring and automated farm management systems.
Harnessing these signals, however, requires curated datasets that
faithfully capture the acoustic, behavioral, and environmental
realities of commercial farming contexts.

The lack of large, annotated datasets remains one of the most
significant bottlenecks in bovine bioacoustics research (Kate and
Neethirajan, 2025). Traditional acoustic analysis methods involving
manual spectrogram generation and feature extraction are
informative but not scalable to the data volumes required for robust
Al training, underscoring the critical need for comprehensive, FAIR
(Findable, Accessible, Interoperable, Reusable)-compliant datasets
that capture ecological validity while supporting big data analytics.
Importantly, FAIR principles do not require that all data be fully
open; rather, they emphasize transparent, machine-readable access
conditions that can accommodate justified restrictions such as farm
confidentiality (Martorana et al., 2022; Karakoltzidis et al., 2024).

Despite increasing interest, existing bovine vocalization
corpora remain limited in scale, scope, and reproducibility. Most
prior datasets have been collected from small cohorts under
controlled or homogeneous conditions, focusing primarily on a
narrow set of call types such as estrus calls or distress vocalizations.
For instance, the “BovineTalk” dataset reported over a thousand
vocalizations but from only 20 cows in isolation, thereby
excluding environmental noise and behavioral diversity. Similarly,
physiological studies linking calls to cortisol or estrus relied on
restricted conditions, limiting generalizability to commercial barns.
These constraints hinder the development of machine learning
models that can generalize across diverse farm environments,
rare behaviors, and variable acoustic conditions. Furthermore,
multimodal integration of audio with video or ethological
annotations is rarely implemented, restricting opportunities to
contextualize vocalizations with corresponding behaviors.

In addition to limited behavioral coverage, many existing
datasets deliberately exclude background noise to ensure clean
acoustic signals. While this simplifies analysis, it reduces ecological
validity, as commercial dairy barns are acoustically complex
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environments containing mechanical noise, overlapping calls, and
human activity. Models trained on clean laboratory recordings
often fail when deployed in real-world farms, where vocal
signals are embedded within heterogeneous soundscapes. There
is therefore an urgent need for datasets that reflect the acoustic
reality of farming environments, balancing signal clarity with
ecological authenticity.

To address these gaps, we introduce a novel bovine vocalization
dataset that combines scale, behavioral diversity, and ecological
realism with rigorous annotation and metadata standards. The
corpus comprises 569 curated clips spanning 48 behavioral classes,
recorded across three commercial dairy farms in Atlantic Canada
using a multi-microphone, multimodal design. By capturing
audio simultaneously from multiple barn zones—feeding alleys,
drinking troughs, milking parlors, and resting pens-and pairing
these recordings with video observations and detailed ethological
notes, the dataset provides a comprehensive representation of
the acoustic and behavioral ecology of dairy cattle. Unlike
earlier collections that prioritized controlled conditions, this
resource embraces the complexity of barn environments, including
background machinery, overlapping calls, and routine human
activity, thereby enhancing its value for developing robust, field-
ready analytical models.

A key contribution of this dataset lies in its ethology-driven
annotation scheme, which organizes vocalizations into nine main
categories and 48 sub-types covering maternal, social, reproductive,
feeding, drinking, handling, distress, environmental, and non-
vocal events. Each clip is annotated with behavioral context,
emotional valence, and confidence scores, enabling analyses that
extend beyond acoustics to questions of welfare, motivation,
and social interaction. This structure aligns with contemporary
animal welfare frameworks that emphasize emotional valence
and arousal, while also providing machine-readable descriptors
suitable for computational modeling. Equally important is the
dataset’s adherence to FAIR principles. Metadata tables document
recording context, equipment, clip features, and preprocessing
parameters in a transparent and reproducible manner. The
inclusion of acoustic features extracted with standardized pipelines
(Praat, librosa, openSMILE) ensures interoperability with other
livestock bioacoustic resources and facilitates downstream
applications ranging from supervised classification to exploratory
behavioral analysis.

Together, these elements establish this corpus as the
most comprehensive and ecologically valid dataset of bovine
vocalizations to date. It provides not only a foundation for
advancing machine learning approaches to livestock sound
analysis, but also a benchmark resource for researchers in animal
behavior, welfare science, and precision livestock management.
To support reproducible reuse, the curated clips and associated
metadata are deposited under restricted access in a Zenodo
repository with a persistent DOI, while the full preprocessing
and feature extraction pipeline is released as open-source code
on GitHub.

In addition to its methodological and scientific contributions,
this dataset holds direct significance for the emerging field
of precision livestock farming. By enabling the detection and
interpretation of vocal cues linked to health, reproduction, and
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welfare, it opens pathways for non-invasive monitoring systems
that can assist farmers in real time. Early detection of estrus,
distress, or discomfort through automated vocal analysis could
enhance reproductive management, reduce disease risks, and
improve overall herd wellbeing. Beyond cattle, the dataset also
contributes to the broader movement in animal-centered A, where
bioacoustic data are increasingly leveraged to give “digital voices”
to non-human species. Recent work on Al-assisted behavioral
monitoring in sheep and goats, for example, has demonstrated
how vocal and behavioral traits can be mapped to welfare-relevant
states using machine learning (Emsen et al., 2025). Our bovine
vocalization dataset extends this line of work to dairy cattle,
providing a complementary resource within a growing ecosystem
of Al tools that integrate vocalization analysis with computer vision
and wearable sensor data across ruminant species.

The remainder of this paper is structured as follows. Section 2
presents the novelty of the dataset, situating it in relation to
previous studies. Section 3 describes the data collection protocols,
including recording sites, equipment, and multimodal capture
methods. Section 4 outlines the preprocessing pipeline, covering
noise profiling, filtering, denoising, segmentation, and annotation.
Section 5 details dataset creation, including feature extraction,
biological interpretation, metadata design, and preliminary
analyses. Finally, Section 6 presents the discussion of significance
and limitations, and Section 7 concludes the paper highlighting
its potential as a benchmark for both animal welfare science and
big data applications in agriculture. Building on these motivations,
the next section outlines the novelty of our dataset in relation to
existing bovine vocalization corpora.

2 Dataset novelty

2.1 Scale and diversity of recordings

This work presents one of the most comprehensive bovine
vocalization datasets to date. The corpus comprises 569 clips
covering 48 behavioral labels (classes) and has a mean clip duration
of ~ 21 s (median ~ 13.8 s; range 2.8-445 s). Analysis shows a
long tailed distribution: the largest classes, Estrus_Call (117 clips)
and Feed_Anticipation_Call (113 clips), account for 40% of the
data, whereas many categories contain fewer than ten samples,
reflecting the rare and spontaneous nature of some behaviors.
Clip durations are short enough to facilitate fine grained acoustic
analysis yet long enough to capture the full vocalization plus
context. A detailed breakdown of the dataset composition is
provided in Supplementary Table S1, which reports clip counts and
total duration by main category, subcategory, farm, barn zone,
and microphone. The underlying metadata and acoustic feature
tables are distributed with the Zenodo record described in the
Data Availability Statement, enabling other researchers to subset
the corpus by behavioral class, recording context, or equipment
configuration for targeted analyses.

Most published bovine call datasets are smaller both in
scale and scope. For example, the “BovineTalk” study isolated
20 multiparous cows for 240 min post milking and obtained
1,144 vocalizations (952 high frequency and 192 low frequency)
(Gavojdian et al., 2024); the authors noted that calls were recorded
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under identical conditions and excluded noise. Another study
analyzed 12 Holstein heifers and reported that vocalization rate
peaked one interval before estrus climax and was higher during
natural than induced estrus (Rottgen et al, 2018). Yoshihara
and Oya (2021) recorded 290 calls from 32 cows across four
physiological states (feed anticipation, estrus, communication and
parturition) and showed that call intensity, pitch and formant
values reflected changes in salivary cortisol. Katz (2020) captured
333 high frequency calls from 13 heifers and demonstrated that
cows maintain individual vocal cues across contexts. Compared
with these studies, our dataset contains both high and low
frequency calls across positive and negative contexts, includes a
richer set of behavioral classes (maternal, social, estrus, feeding,
drinking, handling, distress, environmental and non vocal), and
encompasses multiple farms and barn zones. This breadth enables
analyses of behavioral diversity and cross context variation not
previously possible.

Beyond scale and diversity, novelty also arises from the
recording design, which is detailed in the next subsection.

2.2 Multi-microphone setup and
multimodal synchronization

Recordings were collected from three commercial Holstein-
Friesian dairy farms in Sussex County, New Brunswick, Canada
over three consecutive days (5-7 May 2025), with one farm
recorded per day between 9:00 am and 6:00 pm (Table 1). Across
these sites, 65 raw audio files were obtained, representing a total
of ~90 h of recordings (65.57 GB; mean file duration ~ 1 h 24 m,
mean file size ~1.0 GB).

The dataset captures four primary behavioral contexts—
drinking, feeding, milking, and resting—within commercial barn
environments. These settings included natural background sounds
such as clanging metal gates, fans, tractors idling, overlapping
vocalizations, and other routine noises. A representative example
of the feeding-zone deployment is shown in Figure I, where
a shotgun microphone is co-located with a ceiling-mounted
action camera to achieve synchronized audio-video capture of
cow behavior at the feed trough. By integrating multiple farms
and barn zones, the corpus reflects the true acoustic diversity
of commercial dairy environments rather than controlled or
laboratory conditions.

The novelty of this corpus lies in its multimicrophone,
multi-sensor design. Unlike earlier bovine vocalization studies
that relied on a single microphone or controlled settings, the
present dataset integrates recordings from multiple farms, barn
zones, and equipment types. Directional shotgun microphones
(Sennheiser MKH 416, RODE NTG-2) provided close-range, high
signal-to-noise vocalizations, while portable recorders (Zoom H4n
Pro, Zoom F6) and an autonomous Wildlife Bioacoustics logger
captured longer-duration ambient soundscapes.

This design ensured that both focal vocal events (e.g., estrus
calls, feeding anticipation) and background acoustic context
(e.g., overlapping moos, barn machinery, human activity) were
represented. The inclusion of video recordings from multiple
GoPro cameras added a complementary visual dimension, enabling
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TABLE 1 Overview of recording sites and microphone-recorder setup.

10.3389/fdata.2025.1723155

Herd size Barn zones Microphones  Recorders  Raw files Total Total size
(Holstein/others)  monitored (n) duration (h) (GB)
Farm 1 57 Holstein Feeding, drinking, Sennheiser MKH Zoom F6; 21 ~30h ~21.5
milking, resting 416; RODE NTG-2 Zoom H4n Pro
Farm 2 207 Holstein/Jersey mix Feeding, drinking, Sennheiser MKH Zoom F6; 21 ~29h ~22.0
resting, milking 416; Zoom H4n Pro Zoom H4n Pro
Farm 3 160 Holstein Feeding, resting, Wildlife Zoom F6; 23 ~31h ~22.1
drinking bioacoustics Zoom H4n Pro
recorder; RODE
NTG-2
Total 424 cows All zones (feeding, Multiple (MKH Zoom F6; H4n 65 90h2m 65.6
drinking, milking, 416, NTG-2, Pro;
resting) Bioacoustics)

Bold values indicate the total of all rows in the table.

A

FIGURE 1

zone microphone setup. (B) Feeding zone camera setup.

Multimicrophone and video setup used for synchronized multimodal recording in dairy barns. (A) Directional RODE NTG-2 shotgun microphone
connected to a Zoom H4n Pro portable recorder, deployed in the feeding section of farm. The setup was mounted on a stable tripod oriented
toward the feed trough to capture high-fidelity vocalizations while rejecting off-axis barn noise. (B) Ceiling-mounted GoPro action camera
positioned directly above the same zone in same farm to capture continuous 4K video of feeding behavior. The spatial alignment of microphone and
camera ensured accurate cross-referencing between audio and behavioral context during manual annotation and ethological validation. (A) Feeding

B)

cross-referencing of acoustic events with behavioral context.
Together, this multimodal, multi-sensor strategy produces a
holistic, reproducible dataset that captures the acoustic reality
of commercial dairy environments at unprecedented scale and
resolution. This design also supports downstream statistical
analyses that explicitly account for farm, barn zone, and
microphone as potential sources of variance (Section 5.6), enabling
users to quantify how much of the acoustic variability arises from
environmental and equipment factors vs. behavioral class.

2.3 Environmental noise profiling

Dairy barns are acoustically challenging, with persistent
machinery noise (milking robots, feeders, tractors), metal gate
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clanging, hoof impacts, people talking, urination, and wind. To
enable robust vocalization extraction, separate noise recordings
from each zone and analyzed using the Welch method with
a 16,384-sample FFT window. The resulting noise inventory
(Table 4) summarizes the spectral range and amplitude of different
noise sources. Drinking noise exhibited low frequencies around
20 Hz and broad high-frequency peaks up to 1,029 Hz; the mean
peak amplitude across samples was ~—40 dB. Feeding noise (mix
of hisses, horns, and gate impacts) had low frequencies from
30 Hz and high-frequency components up to ~567 Hz with
similar amplitude. Milking noise from robotic equipment was
dominated by low frequencies near 12 Hz and high frequencies up
to ~300 Hz and was louder (mean amplitude ~—22 dB). Resting
noise (urination and human speech) spanned 12-493 Hz with
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mean amplitude ~—21 dB. These profiles informed the design of a
band-pass filter (150-800 Hz) to remove low-frequency machinery
noise and high-frequency electrical hiss while preserving the
vocalization band. By providing a quantitative noise inventory,
our dataset allows researchers to reproduce the preprocessing
pipeline and evaluate the robustness of acoustic features against
background noise.

2.4 Annotation scheme and ethological
foundation

A key novelty of the dataset is its detailed annotation
scheme (Table 2) informed by ethological principles and welfare
protocols. The annotation system organizes vocalizations into nine
main categories:

e Maternal & calf communication - includes calls such as
Mother_Separation_Call (low frequency plaintive call when
a cow is separated from her calf), Calf Contact_Call
(high frequency squeal when a calf seeks contact), and
Maternal_Response_Call (mother cow responding back to her
calves).
e Social recognition & interaction - encompasses
affiliative calls like Greeting Moo, Group_Contact_Call,
Herd_Coordination_Call ~ and

Social_Bonding, reflecting social hierarchy and cohesion.

Response_Exchange_Call,

e Estrus & mating behavior - includes Estrus_Call, characterized
by loud high frequency bellowing signaling sexual receptivity;
Mating_Excitement_Call; and Mounting_Associated_Call.

e Feeding & hunger related - covers Feed_Anticipation_Call
(calls Dbefore feeding), Feeding Fustration_Call, and
Chewing_Rumination_Sounds (non vocal chewing noises).

e Water & thirst related - includes Drinking_Slurping Sounds,
Water_Anticipation_Call and Hydration_Distress.

e Distress & pain - covers High_Frequency_Distress (intense
distress vocalizations), Frustration_Call, Injury_Pain_Moo,
Sneeze, Cough and Burp.

e Environmental & situational - includes vocal responses
to environmental stimuli like Weather Response_Call,
Transportation_Stress_Call and Confinement_Protest_Call.

e Non vocal sounds - comprises non vocal behaviors such as

Breathing_Respiratory_Sounds and Licking_Sounds.

Each sub category is accompanied by a concise description
(e.g., Estrus_Call is a prolonged high frequency call emitted by
a receptive female; Feed_Anticipation_Call is a rhythmic moo
produced when cows expect feeding). The categories deliberately
span positive and negative welfare states in line with welfare
science. Prior research supports this ethological structuring: high
frequency calls with the mouth open are associated with distress or
long distance communication, whereas low frequency calls with the
mouth closed occur in calm social contexts (Jobarteh et al., 2024).
Vocalization rates also provide behavioral cues—for example,
Roéttgen et al. (2018) found that call rate peaks before estrus
climax, and Yoshihara and Oya (2021) linked increased formant
frequencies to elevated cortisol during parturition. By capturing a
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wide range of vocal types and non vocal sounds, our annotation
scheme enables analysis of both emotional valence and arousal, as
recommended in contemporary animal welfare frameworks.

2.5 Rich metadata and FAIR compliance

The dataset is accompanied by a comprehensive metadata
table (Table7) describing each clip. Key fields include the
unique file name, recording date, farm identifier, barn zone,
microphone model, duration, pitch statistics (mean, minimum
and maximum), and formant frequencies (F1 and F2), along
with categorical annotations such as main category, subcategory,
emotional context, confidence score, and textual description.
Feature definitions follow acoustic and ethological conventions—
for example, pitch relates to laryngeal tension and arousal, formant
spacing reflects vocal tract length, and energy measures indicate
call strength.

The metadata structure aligns with the FAANG (Functional
Annotation of Animal Genomes) guidelines for animal metadata
and adheres to the FAIR principles (Harrison et al, 2018).
These principles ensure that datasets are described with rich
metadata, use community standards, and are stored in formats
that facilitate long-term reuse across research communities.
Applying FAIR to bioacoustic corpora enhances transparency,
reproducibility, and integration with other animal genomics and
welfare datasets (Harrison et al., 2018).

Overall, the dataset’s novelty lies in its scale, diversity, multi-
microphone design, multimodal referencing, detailed ethology-
driven annotation scheme, and metadata structure that complies
with international standards. Compared with previous bovine
vocalization studies that focused on small cohorts or narrow
behavioral contexts, this corpus offers a more holistic and
reproducible resource for advancing machine learning and welfare
research in dairy cattle. Having established the dataset’s scope
and comparative novelty, we now describe the data collection
process, including recording sites, equipment, and behavioral
context capture.

3 Data collection

3.1 Recording sites

Data were collected from three commercial dairy farms in
Sussex County, New Brunswick, coded FARM1-FARM3, all of
which operated free-stall barns (Table 1). Farm 1 housed 57
Holstein cows, Farm 2 housed 207 cows in a mixed Holstein-Jersey
herd, and Farm 3 housed 160 Holstein cows. Recording took place
during sequential site visits (5-7 May 2025), ensuring coverage
across farms under comparable seasonal conditions.

Each barn was divided into four monitored zones—drinking
troughs, feeding alleys, milking parlor, and resting pens. Within
each zone, microphones were installed at fixed mounting locations
(for example above or beside water bowls, near feed mangers,
or along the fronts of resting stalls) chosen to coincide with
areas where cows repeatedly congregate. Rather than enforcing a
single, fixed source-microphone distance, this design reflected how
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TABLE 2 Mapping of acoustic features to biological interpretation and representative call types in the dataset.

Acoustic feature

Fundamental frequency (F0: mean, min,
max)

Biological interpretation

Determined by vocal fold tension, length, and mass; high F0 reflects arousal,
distress, or estrus, while low FO indicates calm affiliative contact.

Example call types

Estrus_Call, High_Frequency_Distress,
low-frequency moos (contact)

Formant frequencies (F1, F2)

Resonances of the vocal tract linked to mouth opening, tongue/lip position,
and body-size cues; larger F1-F2 separation often accompanies noisier or
less harmonic structure.

Water_Slurping_Sounds, harmonic moo
(stable formants)

Duration & timing (Start, End,
Duration)

Persistence of calling; shorter calls often reflect neutral/positive states,
whereas longer calls are associated with higher arousal or separation.

Mother_Separation_Call (long, low
intensity); Feed_Anticipation_Call
(short bursts)

Energy measures (RMS, intensity, time
to peak)

Reflect call forcefulness and emotional valence; high RMS and fast
time-to-peak indicate urgency, while low intensity with long duration
suggests persistent, subdued calls.

Aggressive_Bellow, Frustration_Call; calf
contact moo (low intensity)

Spectral centroid, bandwidth, roll-off,
Zero-Crossing Rate (ZCR)

Differentiate harmonic vs. noisy events; high centroid/ZCR imply noisy or
aperiodic content, low centroid indicates harmonic structure.

Sneezes, burps (high centroid, high
ZCR); harmonic moo (low centroid, low
ZCR)

Mel-Frequency Cepstral Coefficients
(MFCCs)

Capture global spectral shape and timbre; useful for subtle distinctions
between similar call types, with MFCC-based estrus detection reported at
> 90% accuracy.

Feed_Anticipation_Call vs.
Feeding_Frustration_Call

Voiced ratio

Proportion of voiced vs. unvoiced frames; distress calls tend to include more
unvoiced segments, whereas nasal moos are almost fully voiced.

High-frequency distress calls (more
unvoiced); nasal moos (fully voiced)

animals naturally move through these spaces. As cows approached,
fed, drank, queued for milking, or lay down, their vocalizations
were typically produced within a practical distance range of
approximately 0.5-3 m from the nearest microphone, depending
on their momentary position and orientation. This zone-based
layout enabled simultaneous, zone-specific recording and provided
systematic contrasts between different acoustic environments such
as feeding areas, milking stations, and resting pens.

In addition, manual observation logs were maintained
throughout, noting events such as feeding schedules, veterinary
visits, or machinery maintenance. These logs ensured that
contextual events were linked to the acoustic data, creating a diverse
soundscape that is representative of everyday husbandry practices
in Atlantic Canadian dairy barns.

To capture these environments effectively, a multimicrophone
hardware setup was deployed, as described below.

3.2 Recording hardware and microphone
placement

To ensure representative acoustic coverage, a multimicrophone
array was deployed, combining directional shotgun microphones
with portable recorders and one autonomous bioacoustics logger:

e Sennheiser MKH 416—hypercardioid interference-tube
shotgun microphone, widely used in film and wildlife
recording. Its strong side rejection allowed capture of subtle

vocal nuances despite barn noise (Sennheiser, 2023).

- Paired with Zoom F6—six-channel portable recorder
powered via phantom supply. The F6 supported 32-bit
float recording, dual A/D converters, and ultra-low-noise
preamps, preventing clipping even during high-intensity
calls (Zoom, 2023).

Frontiersin Big Data

e RODE NTG-2—supercardioid shotgun  microphone,
battery/phantom powered, valued for affordability and
portability, suited for close-range recordings in drinking and

milking contexts (RODE, 2023).

- Paired with Zoom H4n Pro—four-track handheld recorder
powered by two internal AA rechargeable batteries. The
H4n Pro included built-in X/Y stereo microphones, dual
XLR inputs, and 24-bit recording with maximum SPL
handling of 140 dB (Zoom, 2022). Two such RODE NTG-2
+ H4n Pro pairs were deployed for zone-specific coverage.

o Wildlife Bioacoustics autonomous recorder—a single passive
logger programmed for scheduled monitoring, especially
in resting areas. It operated continuously on four AAA
rechargeable Dbatteries, enabling long-duration capture
without human presence (Wildlife Acoustics, 2023).

File characteristics: Zoom F6 recordings were largest on
average (~1.7 GB, mean peak amplitude —43.7 dB, 20-1,029 Hz
range), followed by Zoom H4n Pro (~1.6 GB, —30.5 dB, 20-
820 Hz). The autonomous logger produced smaller files (~308 MB,
—20.1 dB, 12-893 Hz). By context, the drinking zone generated
the largest raw data volume (~3.65 GB), followed by feeding
(~1.7 GB), milking (~762 MB), and resting (~450 MB).

Cameras: Five fixed GoPro action cameras were installed above
barn zones, recording continuously at 4K/30 fps with wide-angle
lenses to cover feeding alleys, resting pens, drinking troughs, and
the milking parlor. Cameras were synchronized with audio via a
shared timecode feed.

Placement strategy: Microphones were mounted on adjustable
stands ~ 1 m above cow head height, oriented toward the
zone center. This prevented contact with animals, minimized
wall reflections, and ensured zone-specific capture. Cables
were routed along beams and tripods stands and shielded to
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FIGURE 2

Microphone setups across barn zones at Farm 1. (A) RODE NTG-2 shotgun microphone positioned along the feeding alley to capture close-range
vocalizations during feeding activity while minimizing side reflections. (B) Sennheiser MKH 416 directional microphone placed near the drinking
trough to record high-clarity vocal and non-vocal events amid tractors and metallic noise. (C) Autonomous Wildlife Bioacoustics recorder installed in
the resting zone to capture low-frequency moos and background group vocalizations without human presence. (D) RODE NTG-2 with Zoom H4n
Pro handheld recorder positioned near the milking station to document vocal and non-vocal sounds associated with handling and milking routines.

prevent chewing. The multimicrophone array (Figure 2) enabled
concurrent multi-zone recording and cross-comparison of calls
across environments.

This combination of hardware provided complementary
perspectives: phantom-powered Sennheiser + Zoom F6 setups
for high-fidelity focal recording, AA-powered RODE + Zoom
H4n Pro pairs for flexible mobile coverage, and the AAA-
powered Wildlife Acoustics logger for unattended long-term
monitoring. Together with parallel video capture, the setup
preserved both individual-level vocal features and group-level
acoustic context, forming a robust foundation for behavioral and
machine-learning analyses.

The full microphone and recorder specifications, including
deployment zones, recording durations, file sizes, and frequency
ranges for each configuration, are summarized in Table 3.
Because cows moved freely within these monitored zones,
the effective source-microphone distance varied naturally from
call to call. In practice, vocalizations were usually produced
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when cows were at, or passing through, the focal locations
(feed rail, water bowl, parlor entry, stall front), leading to a
typical distance range of around 0.5-3 m from the microphone.
This variability was intentional: the aim was to reproduce
the acoustic conditions under which real farm monitoring
systems would operate, rather than forcing a laboratory-style
fixed geometry.

The of the MKH 416 and
NTG-2 partially compensate for distance-related attenuation

directional characteristics

by preferentially capturing sounds within their frontal pickup
patterns and suppressing much of the off-axis machinery and
barn noise. At the analysis stage, our feature extraction pipeline
includes amplitude normalization and z-score standardization,
which reduces the influence of absolute intensity differences
arising from distance variation. Moreover, the majority of the 24
acoustic features used in subsequent models-such as fundamental
frequency, formant ratios, spectral centroid, and MFCCs-describe
the shape and structure of the signal rather than its absolute
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TABLE 3 Microphone and recorder setup used for barn vocalization recordings.
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Sennheiser Hypercardioid, Feeding alleys, Extremely ~1,738 ~1h28m -43.7 20-1,029
MKH 416 interference tube; resting areas directional; avoids
(shotgun) + 40-20,000 Hz; barn noise and
Zoom F6 paired with 32-bit prevents clipping

float recorder during loud moos
RODE NTG-2 Supercardioid; Drinking troughs, Affordable, ~1,555 ~1h25m -30.5 20-820
(shotgun) + 20-20,000 Hz; milking parlor portable; good for
Zoom H4n Pro paired with 24-bit close-up calls with

recorder reduced side

interference

Zoom H4n Pro Handheld, stereo + Feeding and Mobile capture, - - - -
(built-in XY + external inputs; milking flexible for focal
XLR inputs) 24-bit/96 kHz recording
Zoom F6 6-channel, 32-bit Feeding/resting Long sessions with - - - -
(standalone float, dual A/D wide dynamic range
channels) converters
Wildlife Acoustics | Passive Resting pens, Continuous ~308 ~1h15m -20.1 12-893
logger autonomous background scheduled

system; duty-cycled monitoring without

human presence

amplitude, and are therefore relatively robust to moderate changes
in distance.

Together, the zone-based, fixed microphone positions and
distance-robust feature design ensure that the dataset captures
realistic variability in recording conditions while remaining
suitable for machine-learning applications.

3.3 Behavioral context capture

Audio alone rarely conveys the full meaning of vocalizations.
To provide behavioral context, the project implemented a
multimodal capture protocol. Behavioral video was recorded
using the fixed GoPro cameras described above, and three
researchers maintained manual notes documenting the time of day,
weather conditions, feeding schedules, milking events, and notable
social interactions or stressors between cows. The annotation
framework was informed by Tinbergen’s four questions (Bateson
and Laland, 2013), which remain central in animal behavior
research. In the context of cow vocalization, these can be adapted
as follows:

e Function (adaptive value): What role does a call serve in daily
life? For example, does it facilitate feeding coordination, signal
distress, or attract social attention?

e Phylogeny (evolutionary background): How do vocal traits in
dairy cattle relate to those seen in other bovids or domesticated

species?

e Mechanism (causation): What immediate physiological
or environmental factors trigger a  vocalization
(e.g,  hunger, pain, separation, handling, or

barn noise)?
e Ontogeny (development): How does vocal behavior vary with
age, parity, or experience (e.g., heifers vs multiparous cows)?
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By linking proximate mechanisms (physiology, environment)
with ultimate functions (communication, adaptation), this
framework strengthens interpretation of the dataset beyond
acoustics alone. For instance, high-frequency open-mouth calls
may be tied to immediate arousal or stress, while also serving
long-term communicative roles within the herd (Jobarteh et al.,
2024).

Audio-video alignment was performed manually. Instead of
using automated synchronization hardware, researchers cross-
referenced the timestamps of audio recordings with video footage
and their own observation logs. This practical approach enabled
vocal events to be matched with visible behaviors (such as feeding,
resting, or responding to handling) without specialized tools.

3.4 File handling and storage

Field data were initially stored on the internal memory
cards of the Zoom recorders and GoPro cameras. To prevent
overwriting or accidental data loss, recordings from each farm were
transferred immediately after the day’s data collection. Files were
copied to a secure laptop on-site and then uploaded to a shared
Dropbox repository, ensuring both immediate backup and remote
accessibility. Audio recordings were saved in WAV format (44.1
or 48 kHz, 24-bit depth) and named according to a structured
convention: FarmID - MicrophonePlacement - BarnZone - Date -
Time. Video files were stored in MP4 format with matching time
stamps to maintain cross-referencing with audio.

To safeguard data integrity, the raw original files remain
archived in Dropbox. For subsequent analysis steps such as
preprocessing, cleaning, and segmentation, working copies were
downloaded and processed locally, ensuring that the original
dataset was preserved without modification. Metadata spreadsheets
were updated during each transfer to log file names, times,
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Multi-sensor Data Ingestion

|

{Preprocessing (noise profiling, filtering, denoising, segmentation)}

l

[Feature Engineering (24 acoustic features; Praat, librosa, openSMILE)}

l

{Cloud Storage & Metadata Indexing (raw — cleaned — features)}

l

Analytics (batch summaries, plots, model-ready matrices)

l

Outputs: Curated Clips, Feature Tables, Figures

FIGURE 3

Modular data processing workflow for the bovine bioacoustics
dataset, showing the sequential stages of data ingestion,
preprocessing (filtering and denoising), manual segmentation,
acoustic feature engineering, storage and metadata indexing, and
downstream analytics and machine-learning.

equipment used, and backup status. This multi-stage handling
approach-memory card — laptop — cloud backup — working
copies—provided a robust and traceable workflow that minimized
the risk of data loss and maintained strict separation between raw
and processed datasets.

3.5 Data processing workflow

To efficiently manage and analyse the ~ 90 h of multimodal
recordings (65 raw files; 65.6 GB), a modular and reproducible
data processing workflow was established in alignment with
FAIR and FAANG principles. Rather than a fully distributed
computing system, this workflow is best understood as a set
of clearly defined batch-processing stages that can be scaled
to distributed or cloud-based frameworks in future work. The
workflow (Figure 3) integrates five sequential stages, from ingestion
to analytics, ensuring traceable and scalable processing of livestock
bioacoustic data.

Processing was performed on a workstation equipped with
an Intel Core i9-12900K processor (16 cores, 24 threads), 64 GB
RAM, and an NVIDIA RTX 3090 GPU (24 GB VRAM). Primary
storage consisted of a 4 TB NVMe SSD, with continuous cloud
backup to a 2 TB Dropbox repository for redundancy and remote
access. All core steps were implemented in Python 3.10 using
open-source libraries, ensuring that the workflow can be replicated
without access to proprietary software. The workflow comprises the
following components:

e Data ingestion—Multi-sensor audio and video streams from
the three farms were organized using a structured, time-
stamped file-naming convention encoding farm, barn zone,
date, time, and device ID. Raw WAV files (44.1/48 kHz, 24-
bit) were ingested via Python scripts that used 1ibrosa
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for audio input/output and pandas for logging file-level
metadata. This automated ingestion step standardized file
formats, checked for corrupted or incomplete recordings, and
populated metadata tables for downstream processing.
Preprocessing—Raw recordings were processed in batches
following the standardized steps outlined in Sections 4.1-4.4,
including spectral noise profiling, band-pass filtering, adaptive
denoising, manual segmentation, and acoustic verification.
Batch preprocessing was implemented in Python 3.10 to
standardize signal quality across the heterogeneous barn
environments. We applied a fourth-order Butterworth band-
pass filter (50-1,800 Hz) using scipy.signal to isolate
the frequency range relevant for bovine vocalizations and
attenuate low-frequency machinery noise and high-frequency
artifacts. Spectral gating-based denoising was then performed
with the noisereduce library to suppress non-stationary
background noise while preserving vocal structure. In parallel,
manual segmentation was carried out in Raven Lite 2.0, using
the spectrogram and synchronized video to identify individual
vocalization events and exclude purely mechanical or non-
vocal sounds.

Feature engineering—for each segmented clip, we derived
a 24-dimensional acoustic feature vector designed to
capture the key temporal, voicing, spectral, and cepstral
properties
features

of cattle vocalizations. Core source-related

(fundamental frequency, formant frequencies,
intensity, and harmonic-to-noise ratio) were extracted using
Parselmouth, a Python interface to Praat. Complementary
spectral descriptors such as spectral centroid, bandwidth,
roll-off, root-mean-square (RMS) energy, and zero-crossing
rate, along with Mel-frequency cepstral coefficients (MFCCs),
were computed using 1ibrosa (version 0.10.1). For cross-
validation and extended feature sets, we additionally used
openSMILE (version 2.3.0).

Storage and metadata indexing—Cleaned audio clips, feature
tables, and contextual metadata were stored in a structured
directory hierarchy that clearly separated raw and processed
data and supported long-term reuse. Original recordings
were archived in a /raw folder, denoised and filtered clips
were stored under /processed, per-clip feature tables were
saved in /features, contextual and schema information
in /metadata, and annotation files (e.g., labels, time
boundaries) in /annotations. This layout ensured that
every processed object could be traced back to its raw source
file and associated metadata.

Analytics and output generation—Aggregated feature tables
were analyzed using pandas and scipy.stats to perform
descriptive statistics and inferential tests, including Kruskal-
Wallis tests and Dunn’s post-hoc comparisons. Visualizations
such as violin plots, spectrogram panels, and Pareto charts
were generated with matplotlib and seaborn to
characterize class-wise distributions and dataset structure.
Machine-learning models were trained and evaluated using
scikit-1learn (version 1.3.0) and PyTorch (version 2.0),
enabling both classical and deep-learning approaches to be
applied to the same standardized feature sets.
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3.5.1 Scalability considerations

Although all analyses in this study were conducted on a single
workstation, the modular design of the workflow facilitates future
scaling. Ingestion, preprocessing, and feature extraction stages can
be parallelised using frameworks such as Apache Spark or Dask;
storage can be migrated to cloud object stores such as Amazon S3
or Google Cloud Storage for multi-site deployments; and the entire
pipeline can be containerised using Docker to support reproducible
execution across different computing environments.

With raw recordings secured across farms and barn zones,
the following Section 4 details the preprocessing pipeline applied
to enhance signal quality and prepare clips for segmentation
and annotation.

3.6 Ethical approvals

All experimental procedures were reviewed and approved by
the Dalhousie University Animal Ethics Committee (Protocol
No. 2024-026). Data collection involved no physical interaction
with animals, and all participating farm owners were fully
informed of the study’s objectives and provided written consent.
In accordance with institutional and national ethical standards,
data were obtained solely through passive audio, image, and
video recordings.

4 Data preprocessing
4.1 Noise profiling

Noise spectral profiling was carried out as the first stage
of preprocessing, since raw barn recordings contained a wide
range of background sounds from machinery, metal gates, hoof
impacts, people, and other animals. This process involved analyzing
background noise patterns in terms of frequency (Hz) and
amplitude (dB) in order to distinguish cow vocalizations from
environmental sources. Noise-only segments were extracted from
the recordings for each barn zone and analyzed using Audacity
with the Welch spectrum function, configured with a 16,384-
point FFT window, 50% overlap, and a logarithmic frequency axis.
The Welch method was chosen because it averages overlapping
segments, giving smoother spectra and suppressing transient
spikes. Alternative methods such as Bartlett (less smoothing),
Blackman-Harris (suited for controlled studio audio), and Hanning
(unstable under noisy barn conditions) were considered, but Welch
proved to be the most reliable for real-world farm recordings.
The analysis revealed distinct noise signatures for different
barn zones.

e Drinking areas were dominated by metallic clanging of bowls,
splashing at troughs, and bowel noise, with frequency peaks
extending up to around 1029 Hz and mean amplitudes of
approximately -60 dB.

Feeding zones produced a mixture of metallic impacts,
compressed air hisses, and horn-like sounds, spanning 30-300
Hz with variable amplitudes.
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e Milking parlors were characterized by robotic systems,
pumps, and vacuum lines, which generated relatively narrow
frequency bands around 100-200 Hz but at higher amplitudes
between -10 and -36 dB.

Resting areas contained low-frequency components between
25-80 Hz from urination, rumination, and equipment hum,
combined with higher-frequency sounds such as people
talking.

In addition, microphone hiss was consistently detected below
50 Hz across all farms and zones.

These findings were consistent with the expectation that
barn-specific activities and equipment each contribute distinctive
background noise signatures that overlap with the vocal frequency
space of cows.

The profiles are summarized in Table 4, which presents the
farm-wise and barn-zone-wise distribution of noise sources,
frequency ranges, amplitudes, and the microphones used. This
information directly informed the design of the filtering pipeline
applied in subsequent preprocessing, where band-pass filtering was
configured to retain the main vocal range (~ 100-1,800 Hz) while
attenuating machinery hum, human speech, and high-frequency
hiss. A representative spectrogram and waveform comparison
(Figure 4) contrasts a cow vocalization with a noise-only segment,
illustrating the necessity of noise profiling before segmentation
and feature extraction. These zone-specific spectral noise profiles
then directly informed the parameter choices for band-pass filtering
and spectral denoising in the subsequent preprocessing stages
(Sections 4.2-4.4).

4.2 Band pass filtering

Based on the results of the noise spectral profiling and the
known frequency ranges of bovine vocalizations, a fourth-order
Butterworth band-pass filter was applied with cut-off frequencies
set at 50 Hz and 1,800 Hz. This frequency range was selected to
retain the majority of bovine vocal energy-where the fundamental
frequency typically lies between 100 and 300 Hz and harmonics
extend up to approximately 1,000 Hz-while attenuating low-
frequency machinery hum below 50 Hz and high-frequency
electrical hiss above 1,800 Hz. Previous studies have reported
comparable ranges, noting that cattle vocalizations commonly
exhibit fundamental frequencies between 80 and 180 Hz for
cows and calves, with energy extending up to 1 kHz or higher
in certain contexts (de la Torre et al, 2015; Briefer, 2012;
Lenner et al., 2025). The Butterworth filter was chosen due to
its maximally flat frequency response in the passband, which
avoids distortion of harmonic structure and preserves acoustic
fidelity. Its use is well established in acoustic and bioacoustic
research as a robust method for isolating biologically relevant
frequency bands (MacCallum et al., 2011; Simmons et al., 2022).
To eliminate phase shifts that might affect later acoustic feature
extraction, such as pitch contour or spectral energy analysis,
filtering was implemented using zero-phase forward-backward
filtering with the butter and f11tfilt functions from Python’s
scipy.signal library.
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TABLE 4 Farm-wise noise spectral profiles across barn zones.
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Category Noise source Microphone
Day 1 Farm 1 Drinking Metallic plates 190 Hz 655 Hz —60.5dB Zoom F6
Day 1 Farm 1 Feeding Bowel movement 229 Hz 567 Hz —54.8dB Zoom H4n
Day 1 Farm 1 Milking Robotic milking system 106 Hz 127 Hz —32.2dB Zoom H4n
Day 1 Farm 1 Resting Tractor 103 Hz 120 Hz —1.8dB Bioacoustics
Day 2 Farm 2 Drinking Birds chirping 421 Hz 579 Hz —25.7dB Zoom H4n
Day 2 Farm 2 Feeding Metal plates 164 Hz 283 Hz —58.2dB Zoom F6
Day 2 Farm 2 Milking Robotic milking system 217 Hz 301 Hz —25.7dB Zoom H4n
Day 2 Farm 2 Resting Microphone hiss 12Hz 19 Hz —13.9dB Bioacoustics
Day 3 Farm 3 Drinking Hiss + urination sound 91 Hz 146 Hz —24.6 dB Zoom H4n
Day 3 Farm 3 Feeding Hiss + tractor horn 30 Hz 72Hz —14.2dB Zoom F6
Day 3 Farm 3 Milking People talk + milking system 100 Hz 130 Hz —5.4dB Bioacoustics
Day 3 Farm 3 Resting Hiss 25Hz 38 Hz —20.3dB Zoom H4n
(A) Noise waveform (B) Moo waveform
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FIGURE 4
Comparison of barn noise and cow vocalization spectrograms. (A) Waveform and spectrogram of a barn noise segment dominated by broadband
mechanical and environmental energy. (B) Waveform and spectrogram of a cow “moo” call recorded in the same acoustic environment, showing
harmonic stacks and formant bands with periodic energy peaks. Spectrograms were computed using short-time Fourier transform and displayed in
decibel scale relative to the maximum amplitude to enable direct visual comparison of spectral structure and signal clarity.

This filtering step plays a critical role in the preprocessing
pipeline. By suppressing spectral energy outside the vocalization
band, it reduces broadband
harmonic patterns of vocalizations stand out more clearly in

interference and makes the

spectrograms. This is particularly important in barn environments
where background noise from ventilation systems, metallic
clanging, and robotic milking machinery often overlaps with
vocal frequencies in the 50-1,800 Hz range. While some
overlap remains, the band-pass filtering substantially improves
the signal-to-noise ratio, emphasizing the stable formants

Frontiersin Big Data

11

of cow vocalizations, which are most prominent between
200 and 400 Hz (Watts and Stookey, 2000; Green et al,
2019).

The filtering process also generates two outputs. First,
spectrogram data are exported as a CSV file, providing frequency
bins over time in tabular form, which enables automated detection
of vocal events such as moos, sneezes, or coughs without
continuous manual listening. Second, filtered WAV audio files are
produced, which present reduced background hiss and rumble
and therefore facilitate cleaner listening and manual annotation.
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(A) Audio clip — before band-pass
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FIGURE 5

and a common dB color scale for direct visual comparison.

Amplitude (dB)

Effect of band-pass filtering on an audio clip. (A) Spectrogram of the unfiltered signal showing broadband energy, including low-frequency hum and
high-frequency hiss. (B) Spectrogram after 50—1,800 Hz band-pass filtering, with clear attenuation of energy below 50 Hz and above 1.8 kHz while
preserving in-band harmonic structure. Dashed lines mark the passband; both panels share identical time and frequency axes (displayed to 5 kHz)

(B) Audio clip — after 50-1800 Hz band-pass
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Together, these outputs provide both a human-audible and
machine-readable foundation for subsequent stages of analysis.

Although this step does not entirely eliminate overlapping
barn noise within the vocalization band, it substantially improves
clarity and prepares the audio for further visualization, labeling,
and feature extraction. A side-by-side comparison of pre- and
post-filtering spectrograms (Figure 5) illustrates the suppression
of broadband noise while preserving the harmonic structure of
cow calls.

4.3 Noise reduction in iZotope RX 11

Following band-pass filtering, additional noise suppression was
carried out using iZotope RX 11 (iZotope Inc., Cambridge, MA),
a professional-grade audio restoration suite that offers fine-grained
spectral editing, adaptive noise learning, and fault repair modules.
Although iZotope RX is not yet cited in published bioacoustic
studies, its functionality parallels classical spectral denoising and
repair techniques long used in animal sound research (e.g. spectral
subtraction, MMSE spectral estimators, wavelet denoising) (Xie
et al.,, 2021; Brown et al., 2017; Juodakis and Marsland, 2022).
More recently, methods such as Biodenoising adopt high-quality
pre-denoising (often via speech-based or spectral tools) as pseudo-
clean references for training animal-specific models, which further
validates the use of advanced denoising tools upstream. RX 11
was chosen because it allows the user to visually inspect the time-
frequency structure, select noise-only regions, build adaptive noise
profiles, and non-destructively subtract noise while preserving the
vocal harmonics of interest. This flexibility is especially useful in
barn settings, where noise is heterogeneous (e.g. ventilation hum,
mechanical clanks, electrical hiss) and overlaps in frequency with
vocal energy.

We implemented a multi-stage noise reduction pipeline
consisting of the following steps:
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1. Gain normalization and DC offset removal to standardize
amplitude baselines across recordings.

. Spectral De-noise to compute adaptive noise estimates from
silent (non-vocal) segments and subtract them from the signal.

. Spectral Repair to mitigate transient artifacts (e.g., gate slams or
rapid mechanical clicks) by interpolating across missing time-
frequency bins.

. De-clip and De-crackle modules to correct occasional saturation
and impulsive noise events.

. EQ Match to smooth the overall frequency response and
compensate for microphone coloration, resulting in a more
natural tonal balance.

This pipeline produced a notable improvement in signal-to-
noise ratio, such that cow vocalizations became more distinct in
spectrograms, with cleaner harmonic continuity and fewer artifact
interruptions. The enhanced clarity aids both manual annotation
and downstream segmentation or feature extraction. A screenshot
of the RX 11 interface showing a spectral editing session (Figure 6)
visually demonstrates how noise is isolated and removed while
maintaining vocal structure. Although the approach does not fully
eliminate overlapping noise within the vocal band, it significantly
reduces interference and lays the foundation for robust event
detection and feature analysis.
iZotope RX 11
implemented a fully open-source Python pipeline that closely

Because is proprietary software, we
approximates this multi-stage workflow and can be executed
without commercial tools. Starting from the band-pass filtered

audio described in Section 4.2, the Python script performs:

1. Gain normalization and DC-offset removal: Audio is loaded,
the mean is subtracted to remove DC offset, and levels are peak-
or loudness-normalized to a consistent, non-clipping range.

. Broadband spectral de-noising: Non-stationary spectral gating
with noisereduce attenuates barn background noise, using
noise-only segments when available or adaptive noise estimation
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00:05:53.228

FIGURE 6

Spectral denoising of a cow vocalization in iZotope RX. Screenshot from iZotope RX (Spectral Denoise module) showing the noise-reduction
workflow applied to raw barn audio prior to feature extraction. The (upper panel) displays the original spectrogram with broadband background noise
typical of fan and machinery hum, while the (lower panel) shows the cleaned signal after adaptive spectral subtraction. Noise profile estimation was
performed using a noise-only segment, and attenuation settings were tuned to preserve vocal harmonics while suppressing stationary low-frequency
noise and high-frequency hiss. This preprocessing step enhanced signal-to-noise ratio and ensured clearer spectral features for subsequent analysis.

otherwise, with moderate reduction strength to preserve vocal
harmonics.

Short broadband
transients (e.g. metallic hits, clicks) are detected in the STFT

3. Spectral repair of transient artifact:

domain 1ibrosa and locally attenuated or smoothed in the
time-frequency representation.

. Optional de-clip and de-crackle: Clipped peaks are
reconstructed by interpolation between unclipped neighbors,
and fine impulsive crackle is reduced using simple median-
style filtering, applied only when clear recording faults are
present.

5. Spectral envelope / EQ matching: Average magnitude

spectra of each clip are matched to a neutral reference using

a frequency-wise gain curve numpy, scipy.signal,

reducing microphone- and placement-dependent

coloration.

This five-step workflow provides a transparent, fully
reproducible alternative to the RX 11 chain; although
the Python implementation follows the same processing

philosophy and sequence, individual output waveforms will
not match RX 11 results sample-for-sample and may differ
slightly in residual noise and timbre. The complete Python
implementation and configuration details for this pipeline
are available in the GitHub repository referenced in the Data
Availability Statement.
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4.4 Segmentation with Raven lite and
acoustic inspection in Praat

After denoising in iZotope RX 11, we segmented the
continuous recordings into individual vocalizations using Raven
Lite (Version 2.0). Raven Lite is a free audio analysis tool
developed by the Cornell Lab of Ornithology and widely applied in
ecological and behavioral bioacoustic studies (Dugan et al., 2016).
Raven Lite was selected because it provides real-time waveform
and spectrogram visualization with straightforward selection tools
for manual clipping and export, and it is freely available and
widely used in bioacoustic workflows. Although it lacks automated
detection and batch-processing features available in Raven Pro,
it was well-suited for the context-aware, manual segmentation
required in this study.

We configured Raven Lite to display a short-time Fourier
transform (STFT) spectrogram with a 1,024-point window, 50%
overlap, and a Hamming window (Figure7) which strikes a
practical balance between time and frequency resolution for
cattle calls. Candidate events were identified by visually scanning
the spectrogram for harmonic stacks or broadband bursts and
confirming each event by listening. Each clip was then extracted
with start-end markers, and 2-3 s of padding were included on
either side to preserve contextual cues (e.g., pre-onset inhalation,
resonance tails). Onset was marked where amplitude rose above
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FIGURE 7
Annotation of cow vocalizations using Raven Lite. Screenshot from Raven Lite showing manual annotation of vocalization segments on the
spectrogram view. Each selection box corresponds to an identified call event, with start and end times marked based on visible harmonic onset and
offset boundaries. This visual verification ensured accurate segmentation of vocalizations and exclusion of mechanical or environmental noise
Annotated time-frequency regions were later used as reference intervals for automated feature extraction and labeling in Python.
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the noise floor and the first harmonic band became visible; offset
was marked where energy returned to baseline—criteria consistent
with common bioacoustic segmentation practice in livestock vocal
studies (Meen et al., 2015).

To maintain traceability, each selection was exported as a new
WAV file and named with a structured convention encoding farm,
zone, date, time, microphone, and a provisional class placeholder.
Approximately 569 clips were extracted from 90 h of recordings.
To reduce subjectivity, an independent second annotator cross-
checked a subset of clips for boundary placement and completeness
(inter-observer calibration), and we adopted a conservative policy
of retaining extra seconds of context when uncertain.

Following clipping, we performed acoustic inspection in Praat
(Boersma, 2011) to verify segmentation boundaries and confirm
that selections represented bona fide vocalizations rather than
residual noise or mechanical transients (Green et al., 2019). In
Praat (Figure 8), we inspected pitch contours (F0) and formant
tracks (F1, F2) alongside intensity envelopes to check that harmonic
structure was continuous within marked boundaries and aligned
with cattle-vocal production expectations reported in prior work.
We then bridged Praat to Python via Parselmouth (Jadoul et al.,
2018) for scripted extraction of Praat-native measures (e.g., pitch
range, formants, harmonic-to-noise ratio), and complemented
these with librosa features (e.g., spectral centroid, bandwidth,
roll-off, zero-crossing rate) for machine-readable descriptors used
later in modeling. This combination ensured consistency between
human-verified boundaries and algorithmic features.

Frontiersin Big Data

Raven Lite’s strengths at this stage are its stability, clear
spectrogram interface, and low operational overhead for manual,
context-aware segmentation; limitations include the lack of batch
annotation and advanced detectors, which exist in Raven Pro and
in research code. As the dataset expands, we anticipate scaling via
semi-automated detectors (e.g., HMM/ML pipelines or Raven Pro’s
detection tooling) as demonstrated in related cattle-vocal detection
studies. For the present work, however, manual segmentation
with conservative padding and cross-validation produced a high-
confidence corpus appropriate for downstream feature extraction
and analysis.

To quantify how consistently this annotation protocol could
be applied by independent observers, we conducted an inter-
annotator agreement study on a stratified subset of clips, as
described in Section 4.5.

4.5 Inter-annotator agreement and
reliability

To assess the reliability of the behavioral and acoustic labels
applied to the curated clips, we conducted an inter-annotator
agreement study on a stratified subset of 150 audio clips. The
subset was sampled to cover all nine main behavioral categories
used in this study and the full set of 48 sub-categories, ensuring
representation across diverse vocal types and barn contexts. Each
clip in this subset was independently annotated by two trained
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FIGURE 8

automated feature extraction and modeling.

Acoustic inspection and feature verification in Praat. Screenshot from Praat showing waveform, spectrogram, pitch contour (Fp), formant tracks
(F1-F>), and intensity envelope for a representative cow vocalization. Visual inspection in Praat was used to verify segmentation boundaries and
confirm that selections represented bona fide vocal events rather than background transients. Continuous harmonic structure and expected formant
trajectories were checked against known patterns of bovine vocal production, ensuring that annotated clips reflected valid call behavior prior to

24605941

observers following the same guidelines as described in Section
4.6, including assignment of a main category, sub-category, and
associated contextual notes.

Agreement statistics were computed in Python using pandas
and the cohen_kappa_score function from scikit-learn
for nominal labels. A summary of inter-annotator reliability for
both main and sub-category labels is provided in Table 5. The
For the main behavioral categories (9 classes), direct comparison
between Annotator 1 and Annotator 2 yielded a Cohen’s
k of 0.884 with 90.0% raw agreement across the 150 clips,
indicating high consistency in assigning broad behavioral classes.
For the more fine-grained sub-categories (48 classes), inter-rater
agreement remained substantial, with x = ©0.699 and 71.3%
raw agreement.

We also evaluated agreement between each annotator and
the final consensus labels, which represent the adjudicated “gold-
standard” annotations used in the released dataset. Consensus
labels (“Main Category final” and “Sub Category final”) were
derived through joint review by both annotators and the lead
investigator, with reference to spectrograms, waveform envelopes,
metadata, and co-recorded video where available. For main
categories, agreement between the final labels and Annotator 1 was
0.930 (94.0% agreement), and between the final labels
0.954 (96.0% agreement). The
top confusing pairs are shown in Supplementary Figures S1, S2.

K‘ =
and Annotator 2 was Kk =

These reliability outcomes confirm that the finalized labels provide

a stable ground truth for subsequent first-level annotation and
downstream behavioral analyses.
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4.6 First level annotation

Each segmented clip was subjected to a first-level annotation
by two researchers, who assigned multiple labels reflecting call
type, emotional context, and confidence, as well as a behavioral
summary. Specifically, for each clip the annotator recorded:

e The main category and subcategory according to the scheme
defined in Section 2.4, grounded in ethological typologies of
vocalizing behavior;

e An emotional context label (distress, pain, anticipation,
hunger), reflecting the putative affective state at the time of
vocalization;

e A confidence score (1 = low to 10 = high) indicating the
annotator’s certainty in their labeling;

e A textual description summarizing observable behavioral cues
or situational context (e.g. “calf standing near water trough,”

» <

“cow waiting at feed gate,” “walking past milking parlor”).
Onset and offset boundaries were further refined within Praat
to exploit its high-precision time measurement and pitch/formant
display capabilities, allowing annotators to fine-tune temporal
limits of calls. The annotation guidelines drew from ethological
principles: calls were to be linked to proximate stimuli (e.g.
feeding, separation, disturbance) and considered in light of
possible ultimate functions (e.g. contact, distress, solicitation).
In ambiguous cases or overlapping calls, the label “Unknown”
was assigned for later review rather than forcing a classification.
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TABLE 5 Inter-annotator agreement for main and sub-category labels (150 clips).

Comparison Label level Clips Cohen's « Percent agreement
Annotator 1 vs Annotator 2 Main category (9 classes) 150 0.884 90.0%
Annotator 1 vs Annotator 2 Sub-category (48 classes) 150 0.699 71.3%
Final labels vs Annotator 1 Main category 150 0.930 94.0%
Final labels vs Annotator 2 Main category 150 0.954 96.0%
Final labels vs Annotator 1 Sub-category 150 0.832 84.0%
Final labels vs Annotator 2 Sub-category 150 0.860 86.7%

Annotators also consulted manual notes and co-recorded video
when available to confirm behavioral context (for instance,
verifying whether a cow was feeding vs. showing frustration).
The output of this stage is a curated set of labeled audio
clips, each with category, emotional valence, confidence, and
behavioral description, ready for downstream feature extraction
and statistical modeling.

In determining the type of call, annotators relied on the spectro-
temporal shape (e.g. harmonic stacks, frequency modulation,
call duration), amplitude envelope, and context. For example,
low-frequency calls with stable harmonics might be assigned
to contact or low-arousal categories, whereas calls with abrupt
onset, rapid modulation, or high spectral energy could indicate
agitation or alarm calls. This practice aligns with literature on cattle
vocalization as communicative signals bearing information about
motivation or affect (Green et al, 2018) and more broadly on
vocal behavior as an “ethotransmitter” in mammals (Brudzynski,
2013). In recent machine-learning work (e.g. Gavojdian et al., 2024,
“BovineTalk”), cattle calls are classified into low-frequency (LF) and
high-frequency (HF) types—often mapping LF to close-contact or
neutral states and HF to more urgent or negative states—which
lends empirical precedent to our annotation categories.

In summary, the preprocessing pipeline we employed—
spanning quantitative noise profiling, targeted filtering,
this
rigorous, context-aware annotation—addresses the challenges

professional ~ denoising, careful segmentation, and
of noisy barn environments and produces a high-quality, well-
documented corpus of vocalizations. This corpus forms a robust
foundation for feature extraction and subsequent machine
learning or statistical modeling. After preprocessing and initial
annotation, we proceeded to compile the dataset through feature
extraction, biological interpretation, metadata compilation, and

exploratory analysis.

5 Dataset creation

5.1 Acoustic feature extraction

Once the segmented clips had undergone first-level annotation,
we extracted a comprehensive suite of 24 acoustic features
to characterize each vocalization, as summarized in Table 6.
Feature computation was carried out using a combination of
Praat, Parselmouth, librosa, and openSMILE, representing both
traditional phonetic tools and modern signal-processing libraries.
The features spanned temporal, spectral, and cepstral domains,
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with the aim of capturing both biologically interpretable measures
and machine-readable descriptors commonly employed in animal
bioacoustic research (Meen et al., 2015; de la Torre et al., 2015).

e Temporal metrics included onset time, offset time, and call
duration. Duration has been repeatedly linked to arousal and
motivational state: shorter calls are more often associated with
neutral or positive contexts, while longer calls typically reflect
higher arousal or negative states (Brudzynski, 2013).

Signal quality was quantified using signal-to-noise ratio
(SNR), allowing assessment of how clearly the vocalization
emerged from the barn environment. High-SNR clips
ensure more reliable feature measurement and downstream
modeling.

Fundamental frequency (F0) was measured using Praats
autocorrelation method, with statistics for mean, minimum,
and maximum FO calculated for each clip. Cattle vocalizations
generally fall between 50 and 1,250 Hz, with typical averages
of 120-180 Hz. High-frequency calls near 150 Hz have been
linked to separation distress, whereas low-frequency nasal
calls around 80 Hz are associated with close contact and
calming social functions (Watts and Stookey, 2000; Green
et al., 2018; Gavojdian et al., 2024).

Intensity statistics (minimum and maximum dB) captured
variation between quiet and forceful calls. In line with
previous findings, higher-intensity calls often indicate urgency
or frustration, while lower intensities correspond to calm
affiliative contexts (Watts and Stookey, 2000).

(F1,
Praats Burg method. Formants represent resonances of

Formant frequencies F2) were estimated using
the vocal tract and provide cues to body size and vocal
tract shape (Fitch and Hauser, 2003). In cattle, F1 and
F2 have been documented in ranges between ~ 228
and 3,181 Hz, with average call durations of ~ 1.2 s
(dela Torre et al., 2015).

Band-level metrics were extracted using librosa, including
bandwidth, RMS energy (mean and standard deviation),
spectral centroid, spectral bandwidth, spectral roll-off
(85/95), zero-crossing rate (ZCR, mean and standard
deviation), and time to peak energy. These descriptors
summarize the energy distribution and noisiness of the
call. For example, high spectral centroid values correspond
to brighter, noisier events (e.g., metallic barn sounds,
snorts), whereas lower centroid values are characteristic of
harmonic moos.
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TABLE 6 Acoustic feature set extracted from segmented cattle vocalizations.

Feature

Start time, end time, duration

Description

Temporal metrics providing call timing and length. Duration has been linked to
arousal and behavioral state: shorter calls often reflect neutral/positive states, longer
calls higher arousal.

10.3389/fdata.2025.1723155

Extraction tool / method

Praat / parselmouth

Signal-to-Noise Ratio (SNR)

Measures clarity of the call relative to barn noise; ensures robust downstream feature
reliability.

Custom script (waveform-based)

Fundamental frequency (FO: mean,
min, max)

Pitch contour statistics; cattle vocal range ~50-1250 Hz. High frequencies linked to
distress/separation, low nasal calls (~80 Hz) to close contact.

Praat autocorrelation / Parselmouth

Intensity (min, max, mean dB)

Energy levels of the vocalization; high intensity = urgency/frustration, low intensity =
calm contact.

Praat / Parselmouth

Formants (F1, F2) Resonant vocal tract frequencies; provide cues to body size and vocal configuration. Praat Burg method
Spectral centroid Center of mass of spectrum; high values = bright/noisy, low values = harmonic moos. librosa

Spectral bandwidth Spread of spectral energy around the centroid. librosa

Spectral Roll-off (85%, 95%) Frequency below which 85% or 95% of spectral energy is contained. librosa

Zero crossing rate (mean, std) Rate of waveform sign changes; indicates noisiness/aperiodicity. librosa

RMS energy (mean, std) Root mean square energy; reflects call strength and stability. librosa

Time to peak energy Time taken for a call to reach maximum energy; a dynamic marker of urgency. librosa / scipy

Mel Frequency Cepstral Cepstral features capturing vocal timbre; widely used in vocal classification. librosa / openSMILE
Coefficients (MFCCs 1-13: mean,

std)

Voiced ratio

moos nearly fully voiced.

Proportion of voiced vs. unvoiced frames; distress calls often more voiceless, nasal

Praat / Parselmouth

e Mel-frequency cepstral coefficients (MFCCs) (first 13
coefficients: mean and standard deviation) were computed
using librosa and openSMILE. MFCCs provide a compact
representation of vocal timbre and are widely used in
classification of animal calls, including cattle vocalizations
(Schrader and Hammerschmidt, 1997; Sattar, 2022).

e Finally, the voiced ratio was calculated, representing the
proportion of frames classified as voiced vs. unvoiced. High-
frequency distress calls often exhibit more unvoiced frames
due to glottal widening and turbulent airflow, while nasal
low-frequency moos are typically fully voiced (Briefer, 2012).

All features were extracted at a sampling rate of 16 kHz (down-
sampled from 44.1/48 kHz), which preserved the relevant bovine
vocal bandwidth while reducing computational load.

Beyond numerical computation, these features hold biological
meaning, which we interpret in the next subsection.

5.2 Biological interpretation of acoustic
features

The selected features were chosen not only for their
statistical utility in machine learning, but also for their biological
interpretability. This dual emphasis ensures that computational
models remain grounded in the mechanisms of cattle vocal
production and their ethological significance.

e Fundamental frequency (F0) is primarily determined by the
length, tension, and mass of the vocal folds (Brudzynski,
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2010). Increases in FO are commonly associated with
heightened arousal, separation distress, or estrus, while lower
FO is characteristic of calm affiliative calls (Green et al.,
2018; Rottgen et al,, 2018). In our dataset, calls labeled
Estrus_Call and High_Frequency_Distress exhibited both
elevated maximum FO and greater FO variability, consistent
with reports that female cattle emit higher-pitched calls during
estrus or when separated from their calves. Conversely, low-
frequency nasal moos, typically around 80-120 Hz, were more
often associated with affiliative or contact-seeking contexts,
echoing findings from maternal-offspring communication
studies (de la Torre et al., 2015).

Formant frequencies (F1, F2) reflect vocal tract resonances
and convey information about articulatory configuration and
body size (Fitch and Hauser, 2003). Lower formant values are
linked to mouth opening and longer vocal tract length, while
higher formants reflect tongue and lip positioning. In our data,
Water_Slurping Sounds displayed broad bandwidths and
high F1-F2 separation, capturing their noisy, non-harmonic
structure, whereas harmonic moos showed tighter clustering
of F1 and F2 bands. This observation is consistent with earlier
descriptions of formant dynamics in cattle vocalizations
(Watts and Stookey, 2000).

Energy-based measures (RMS energy, intensity, and time
to peak) further captured the dynamic and affective force
of vocalizations. High RMS energy and short time-to-
peak values were prominent in Frustration_Calls and
Aggressive_Bellows, reflecting abrupt, high-force emissions.
By contrast, Mother_Separation_Calls were lower in intensity
but longer in duration, representing persistent vocal efforts at
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lower force levels, in line with observations of separation calls

in cow-calf pairs (Green et al., 2019).
e Spectral descriptors provided a robust means of
distinguishing harmonic from noisy events. Spectral centroid
and roll-off values differentiated stable harmonic moos from
broadband, non-vocal sounds such as sneezes, coughs, or
burps. These non-vocal events showed elevated centroid and
zero-crossing rate values, indicating their noisy and aperiodic

character (Meen et al., 2015).

e Finally, Mel-frequency cepstral coefficients (MFCCs)
encoded global spectral shape and proved particularly
useful for distinguishing subtle differences between

similar categories such as Feed_Anticipation_Call and
Feeding_Frustration_Call. This aligns with recent applications
of MFCCs in livestock monitoring, where cepstral analysis has
been shown to detect estrus events with accuracies exceeding
90% (Sattar, 2022; Gavojdian et al., 2024).

Taken together, these feature-behavior associations reinforce
that the dataset is not only suitable for computational modeling,
but also biologically meaningful.
readable established
(Tinbergen’s four questions; Dugatkin, 2020), the approach

By anchoring machine-

features to ethological frameworks

ensures that downstream classification and prediction retain

relevance to animal welfare science and practical dairy
farm monitoring.
To  ensure each  feature and  annotation  is

transparent and reusable, we compiled a structured

metadata schema.

5.3 Metadata compilation and schema

To ensure that each audio clip could be unambiguously
identified, contextualized, and reused for further research, we
developed a comprehensive metadata schema to accompany the
curated dataset (Table7). The schema integrates identifiers,
contextual  descriptors, acoustic = parameters, behavioral
annotations, and environmental measures, thereby aligning
with best practices for animal genomics and behavioral data
curation as outlined by the FAANG consortium (Harrison et al.,
2018) and FAIR data principles.

Metadata fields were structured into five categories:

1. File identifiers: Each clip is assigned a unique filename
following a structured convention that encodes farm ID,
recording zone, date, time, microphone ID, and provisional call
type. Additional fields include the original recording filename
and precise date-time stamps.

2. Contextual information: These fields capture the recording
environment and instrumentation, including farm identifier,
barn zone (e.g., feeding area, water station, resting area,
milking parlor), microphone model, recorder type, and mic
placement context. Such metadata ensure interpretability across
heterogeneous barn environments (Meen et al., 2015).

3. Acoustic features: The full set of 24 acoustic features described
in Section 5.1—including duration, FO statistics, formant
values, intensity measures, spectral centroid, bandwidth, roll-off,
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RMS energy, zero-crossing rate, MFCC statistics, voiced ratio,
and time-to-peak energy—are included. Storing these features
directly in the metadata table enables rapid subsetting and
analysis without rerunning extraction pipelines.

4. Behavioral annotations: Each clip is linked to the annotation
schema described in Section 4.6. Fields include the main
category and subcategory (e.g., Feeding Anticipation_Call,
Mother_Separation_Call, Burp), emotional context (discomfort,
pain, hunger, thirst), annotator confidence score (1-10), and
free-text description summarizing behavioral cues (e.g., “calf
standing near water trough,” “cow waiting at feed gate”). This
dual annotation—structured categories plus free-text notes—
enables both quantitative and qualitative analysis.

5. Environmental parameters: To document recording

conditions and preprocessing steps, metadata also include

the low and high frequency cut-offs from the band-pass filter

(Section 4.2), effective bandwidth, signal-to-noise ratio, and

microphone gain settings where available. These parameters are

critical for reproducibility, given the variability of barn acoustic

environments (Alsina-Pages et al., 2021).

The metadata schema thus supports Findable, Accessible,
Interoperable, and Reusable (FAIR) data practices by providing
clear identifiers, structured descriptors, and machine-readable
acoustic metrics. To illustrate, Tables8, 9 presents three
representative metadata records: a
in the
in the resting area, and a Burp in the feeding zone.
These

recording contexts, and acoustic profiles (e.g., differences in

Feed_Anticipation_Call

recorded feeding zone, a Mother_Separation_Call

examples demonstrate how behavioral categories,
duration, FO maxima, intensity, and formant dispersion) are
transparently documented.

By compiling both biological and technical descriptors, the
metadata not only enable efficient subsetting of the corpus (e.g.,
by behavior, environment, or acoustic property), but also ensure
long-term reproducibility and interoperability with other livestock

bioacoustic datasets.

5.4 Class distribution, augmentation, and
class balancing

The final curated dataset comprises 569 audio clips spanning 48
behavioral classes. Each clip is a denoised vocalization or nonvocal
sound with precise onset and offset boundaries. The mean duration
is ~ 21 s (median ~ 13.8 s; range 2.8-445 s), with ~ 75 % of clips
shorter than 21 s. The raw class distribution is strongly long-tailed:
a small number of behavior types (e.g., estrus calls, feed anticipation
calls, and respiratory sounds) account for a large fraction of clips,
while many classes are represented by fewer than 10 examples.
This pattern reflects both the true frequency of behaviors on farm
and the practical difficulty of capturing rare events. The long-tailed
distribution is illustrated by the histogram and Pareto plots in
Figures 9, 10. Compared with earlier bovine vocalization datasets
[e.g., 1,144 calls from 20 isolated cows (Gavojdian et al., 2024),
or 290 calls across four physiological states (Yoshihara and Oya,
2021)], our corpus is broader in scope, encompassing multiple
farms, barn zones, high- and low-frequency calls, and nonvocal
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TABLE 7 Metadata schema accompanying each segmented clip.

10.3389/fdata.2025.1723155

Field Description Data type Example
File Name Unique identifier for the clip, following structured naming String Farm1_Drinking_2025-05-05_10-

convention 45_Mic2_Feed_Anticipation.wav
Original File Parent recording file name String Farm1_Dayl_WaterStation.wav
Date Date of recording Date 2025-05-06

(YYYY-MM-DD)

Time Time of recording Time (HH:MM:SS) 10:45:32
Farm ID Unique identifier for farm Integer / String Farml
Barn Zone Location within barn (e.g., feeding, water, resting, milking area) String Feeding Zone
Microphone Model Microphone model used String Rode NTG2
Recorder Recorder type String Zoom H4n Pro
Mic Placement Placement or mounting details String Above feed trough
Context
Start Time (s) Start time of clip within original recording Float (seconds) 938.03
End Time (s) End time of clip within original recording Float (seconds) 963.84
Duration (s) Call duration Float (seconds) 25.81
Fundamental Mean, min, and max pitch values Float (Hz) Mean: 150 Hz; Max: 310 Hz
Frequency (F0)
Formants (F1, F2) First and second formant frequencies Float (Hz) F1 =320 Hz,F2=1180 Hz
Energy Metrics Intensity (min, max, mean dB); RMS energy Float (dB) Min = 55 dB, Max = 70 dB
Spectral Features Centroid, bandwidth, roll-off, zero crossing rate, time to peak Float / Derived Centroid = 1120 Hz; ZCR = 0.08
MFCCs (1-13) Mean and standard deviation of MFCC coefficients Array (floats) [12.4,9.6,...]
Voiced Ratio Proportion of frames classified as voiced vs. unvoiced Float (%) 92% voiced
Main Category Behavioral category (from annotation scheme) String Feeding and Hunger Related
Sub Category Specific vocal type String Feed_Anticipation_Call
Emotional Context Affective state inferred from annotation String Positive
Confidence Score Annotator certainty level (1 = low, 3 = high) Integer (1-3) 3

Description Free-text summary of behavior/context String Cow waiting at feed gate
Low Frequency Lower cutoff of applied band-pass filter Float (Hz) 50 Hz
Bound
High Frequency Upper cutoff of applied band-pass filter Float (Hz) 1800 Hz
Bound
Bandwidth Effective bandwidth of call Float (Hz) 1750 Hz
Signal-to-Noise Call clarity relative to background Float (dB) 15.3dB
Ratio
TABLE 8 Rep. metadata records (A): identifiers and context.
File name Barn zone Category Description
Feeding_Hunger_Empty_Feeder_Call_34s Feeding Empty_Feeder_Call Complaint at empty feeder
Maternal_Calf Separation_Mothercow_Call_13s Resting Mother_Separation_Call Loud, urgent call for calf
Non_Vocal_Chewing Burping_Sound_07s Feeding Burp Chewing and cud sounds

events. Skewed distributions are common in animal bioacoustics

(Kahl et al., 2021) and present well-documented challenges for

machine learning models, which may overfit to frequent classes

and underperform on rare but ethologically meaningful categories

(Johnson and Khoshgoftaar, 2019).
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To reduce this imbalance for model training, we implemented

a simple but explicit class-balancing scheme applied only to the

training set. First, we defined a target threshold of 81 clips per

class. This value is close to the size of mid-frequency classes in

the raw data and provides a practical upper bound that prevents a
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TABLE 9 Rep. metadata records (B): acoustic measurements.

10.3389/fdata.2025.1723155

Duration (s) FO Max (Hz) Intensity (dB) Formant 1 Formant 2 (Hz)
(Hz)
34.22 368.0 26.65 650.67 1653.99 Empty_Feeder_Call_34s
13.00 615.3 60.44 1079.64 1913.06 Mother_Separation_Call
6.84 29.7 28.89 740.71 1951.26 Burping_Sound_07s
Class distribution (long-tail)
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FIGURE 9

Overall class distribution of cow vocalizations. Long-tail distribution of all annotated classes in the dataset. Each bar represents the number of audio
clips within a behavioral or acoustic category. A pronounced imbalance is evident, with a few highly represented classes (e.g., estrus and anticipation
calls) and many rare categories such as response exchange or distress calls, reflecting the natural skew of on-farm acoustic events.

Pareto — Top 6 classes

120 A
- 100
100 -
2 80 2
5 80 S
(S
— (]
o F60 .2
g 60 s
==
E r40 £
2 Y] 3
20 20
0- Lo

FIGURE 10

Pareto chart of top six vocalization classes. Distribution of the most frequent vocalization categories in the dataset, displayed as a Pareto chart. Bars
indicate the number of clips per class, and the overlaid line shows the cumulative proportion of all clips. The six dominant classes together account
for the majority of recorded samples, illustrating the long-tailed nature of class occurrence and guiding model evaluation toward balanced and
minority-aware analysis.

few very common behaviors from dominating the training regime. ~ This down-sampling step limits the influence of extremely common

Classes with more than 81 original clips were subjected to majority ~ behaviors while still preserving a diverse set of exemplars.
undersampling. For these high-frequency classes, we randomly Classes with fewer than 81 clips but at least three original
selected 81 clips without replacement to retain in the training set.
For example, the Estrus Call and Feed Anticipation Call categories

were reduced from their original counts to 81 training clips each.

examples were then expanded via minority-class augmentation. For
these categories, we generated additional clips using a small set of
biologically plausible perturbations:
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1. Time-stretching [(0.8-1.2x) of the original duration]

2. Pitch shifting by up to £2 semitones,

3. Addition of low-level Gaussian noise (SNR > 20 dB) to simulate
varying background conditions.

4. Moderate gain adjustment (on the order of +6 dB) to mimic
changes in caller distance and vocal effort.

These augmentations simulate natural variability in vocal
production and recording context, such as differences in caller
distance, vocal effort, or microphone orientation. Importantly,
augmentation parameters were constrained to remain within
biologically plausible ranges: pitch shifts avoided unrealistic FO
values, while time-stretching was limited to +20% to preserve
temporal dynamics of vocal events (Briefer, 2012; Ganchev et al,,
2005).

Extremely rare classes with fewer than three original clips were
excluded from model training but retained in the metadata and
dataset documentation. These behaviors (e.g., certain rare maternal
or social calls) are clearly flagged as “Dropped” for training in our
tables but remain part of the annotated corpus for transparency and
for potential future aggregation with additional data.

After applying majority undersampling to very common classes
and augmentation to under-represented ones, the training set
expanded from 569 to approximately 2,900 clips, with a much
more even per-class distribution. Importantly, this balancing
procedure was applied only to the training split. The validation
and test sets are composed exclusively of original, non-augmented
clips, stratified by class, so that performance estimates reflect
how models generalize to real recordings rather than synthetic
variants. Table 10 presents the number of clips per class before and
after augmentation, demonstrating how augmentation improved
distributional balance.

By combining augmentation and balanced sampling, the
approach reduced class bias and improved the capacity of
models to generalize across both frequent calls (e.g., feeding
anticipation, respiratory sounds) and rare but behaviorally
significant calls (e.g., social recognition, separation). This
methodology reflects best practice in animal bioacoustics,
where careful

augmentation helps capture the ecological

variability of vocal signals without compromising their

biological validity.

5.5 Preliminary feature analysis

To assess the discriminative power of the extracted features, we
conducted exploratory analyses of temporal, spectral, and energy-
based parameters across the dataset. Clip duration (Figure 11)
exhibited a heavy-tailed distribution: the majority of clips were
shorter than 20 s, although some extended beyond 200 s; the
90th percentile was ~ 60 s. This skewed distribution reflects
the behavioral variability of cattle vocalizations, where most calls
are short, context-bound signals, while prolonged calls occur
during high-arousal contexts such as estrus or maternal separation
(Rottgen et al., 2018; Green et al., 2018).

Pitch statistics (Fp) (Figure 13) varied significantly across
call categories. Non-vocal sounds like Breathing, Chewing, and
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TABLE 10 Representative clip counts before and after class balancing in
the training set.

Class Before After
augmentation augmentation

Estrus_Call 117 81
Feed_Anticipation_Call 113 81
Breathing_Respiratory_Sounds 76 81
Chewing_Rumination_Sounds 32 81
Drinking_Slurping Sounds 17 81
Pre_Milking_Call 12 81
Cough_Calls 11 81
Pain_Related_Call 11 81
Maternal_Response_Call 1 Dropped
Restraint_Protest_Call 1 Dropped
Proximity_Maintenance_Call 1 Dropped

“Before augmentation” gives the number of manually segmented, denoised clips per
behavioral subcategory; “After augmentation” shows counts after applying majority
undersampling (for high-frequency classes) and synthetic augmentation (for under-
represented classes with > 3 clips). Classes with fewer than three clips were excluded from
training (“Dropped”). Validation and test sets use only original, non-augmented clips.

Mother_Separation_Calls showed low mean Fj values (~ 100 Hz),
consistent with affiliative and low arousal. In contrast, high-arousal
vocalizations such as Estrus Calls, Feed Anticipation Calls, Greeting
Calls, and Pre-Milking Calls clustered at substantially higher
median Fy values (~ 415-425 Hz), while Cough Calls reached
even higher medians (~ 440 Hz). These patterns are consistent
with previous work linking elevated Fy to heightened arousal and
distress in cattle and other mammals (Harrison et al., 2018; de la
Torre et al., 2015), and qualitatively match the separation between
low- and high-arousal classes visible in the violin plots.

Energy and spectral measures (Figures 12, 14) also showed
clear class-specific signatures. Non-vocal expulsive sounds such as
Breathing Respiratory Sounds and Chewing Rumination Sounds
were characterized by very high spectral centroid values (median
A 2.4 kHz), reflecting their broadband, noisy structure, and by
relatively high RMS energy compared with many harmonic contact
calls. Tonal vocalizations such as Estrus and Feed Anticipation
Calls, as well as Pre-Milking Calls, instead clustered at much
lower spectral centroids (medians ~ 370-400 Hz) with more
concentrated spectral energy. RMS energy further differentiated
classes: quiet, low-intensity events such as Pre-Milking and
Chewing Rumination Calls tended to have low median RMS values
(~ —64 to —60 dB), whereas high-arousal Mating Excitement Calls
and High Frequency Distress Calls were among the loudest signals
(medians ~ —22.5 dB and ~ —29.9 dB, respectively), consistent
with increased vocal effort during intense affective states (Meen
etal., 2015).

To statistically evaluate these patterns, we applied non-
parametric Kruskal-Wallis tests to four key features—clip duration,
mean F, spectral centroid, and RMS energy—across the twelve
best-represented classes (n > 10: Breathing Respiratory Sounds,
Chewing Rumination Sounds, Cough Calls, Drinking/Slurping
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Clip duration distribution
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FIGURE 11

Clip duration distribution across the dataset. Histogram showing the temporal distribution of clip lengths for all annotated vocalizations. Most clips
are short (under 20 s), while a small number extend beyond one minute, producing a heavy-tailed pattern. Dashed and dotted lines mark the median
and 90th-percentile durations, respectively, highlighting the variability in call length across behavioral contexts.
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FIGURE 12

Violin plot of spectral centroid (mean) by class. Distribution of mean spectral centroid values for the top six classes. The spectral centroid describes
the "brightness” of a sound, with higher values indicating stronger high-frequency components. The plot shows clear class-wise differences in
spectral coloration—harmonic moos cluster at lower centroids, whereas short impulsive events (e.g., coughs, sneezes) show broader,

higher-frequency spectra.

Sounds, Estrus Call, Feed Anticipation Call, General Discomfort
Call, Greeting Call, High Frequency Distress, Mating Excitement
Call, Pain Related Call, and Pre-Milking Call). All four features
showed highly significant differences among classes (duration: H =
143.6, p ~ 3.0 x 1072% mean Fo: H = 2209, p ~ 3.4 x 1074}
spectral centroid: H 2555, p ~ 2.0 x 107%%; RMS energy:
H =2029,p ~ 19 x 10737), confirming that temporal, spectral,
and energy-based parameters all carry strong class-discriminative

information.
We then used Dunn’s post-hoc tests with Bonferroni correction
to identify which specific class pairs differed significantly. Across
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the 66 possible pairwise comparisons among the twelve classes,
Dunn’s tests identified 27, 25, 22, and 18 significant pairwise
contrasts for duration, mean Fy, spectral centroid, and RMS energy,
respectively. For duration, Drinking/Slurping Sounds (median ~
30.0 s) were significantly longer than brief, high-arousal Mating
Excitement Calls (median 43 s pagg ~ L1 X 10711) and
Cough Calls (median ~ 11.8 s; pag; 2.7 x 107%), illustrating
how sustained drinking episodes contrast with short, impulsive

~
~

~
~

vocalizations. For mean Fy, low-frequency Breathing and Chewing
Rumination Sounds (medians ~ 118.5 Hz and ~ 105.6 Hz) differed
very strongly from high-frequency Estrus and Feed Anticipation
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Fundamental frequency (FO mean) by class
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Violin plot of fundamental frequency (Fo mean) by class. Variation in mean fundamental frequency (Fo) across the top six classes. Each violin depicts
the distribution of Fg values within a class, with the median shown by a central line. Lower-frequency ranges correspond to low-arousal or contact
calls, while higher-frequency calls are associated with heightened arousal or distress, consistent with previous reports in bovine vocal studies.

RMS energy by class

FIGURE 14
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Violin plot of RMS energy by class. Comparison of average root-mean-square (RMS) energy among the top six vocalization classes. The RMS
measure reflects overall signal intensity and vocal effort. Classes such as coughs and burps exhibit higher energy levels due to their abrupt,
broadband nature, whereas harmonic moos and contact calls show lower, more stable energy envelopes.

Calls (medians ~ 417.6 Hz and ~ 415.8 Hz), with Bonferroni-
corrected p-values effectively zero (p.g; < 107'2) and median
differences exceeding 290-310 Hz. Spectral centroid exhibited
similarly pronounced contrasts: non-vocal Breathing and Chewing
Rumination Sounds (medians ~ 2.4 kHz) had centroids more
than 2 kHz higher than tonal Estrus and Feed Anticipation Calls
(medians ~ 370-395 Hz; p,g; ~ 0), reflecting the broadband, noisy
profile of respiratory and chewing events. Finally, RMS energy
distinguished quiet contact-type calls from loud, high-arousal calls:
Mating Excitement Calls (median ~ —22.5 dB) were significantly
more intense than Chewing Rumination Sounds and Pre-Milking
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Calls (medians ~ —59.7 and ~ —64.4 dB;padj < 10710, indicating
markedly higher vocal effort. Summary of Kruskal-Wallis statistics
and the number of significant Dunn’s post-hoc comparisons per
feature are shown in Table 11.

Feature distributions were visualized using violin plots
(Figures 12-14), which highlight these class-specific signatures:
Estrus and Feed Anticipation Calls cluster at higher FO ranges
and moderate spectral centroids; non-vocal respiratory and
chewing sounds occupy a distinct region with very high spectral
centroids and variable energy; and short, high-energy events
such as coughs and distress calls show both elevated RMS
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TABLE 11 Kruskal-Wallis and Dunn’s post-hoc results for four key
acoustic features across the twelve best-represented behavioral classes.

Feature H p-value Significant

(Kruskal— Dunn pairs
Wallis) (Bonferroni)

Duration (s) 143.61 11 2,99 x 107%° 27

Mean F 220.86 11 342 x 1074 25

(Hz)

Spectral 255.49 11 1.98 x 1078 22

centroid

(Hz)

RMS energy 202.90 11 1.86 x 1077 18

(dB)

H and p-values refer to the Kruskal-Wallis omnibus test (df = 11). The final column reports
the number of pairwise class contrasts that remained significant in Dunn’s post-hoc tests after
Bonferroni correction.

and distinctive spectral profiles. Taken together, these Kruskal-
Wallis and Dunn’s test results show that all four key features
vary strongly and systematically among behavioral classes, with
mean FO and spectral centroid providing particularly strong
discrimination, and roughly one-third to two-fifths of all class
pairs differing significantly for each feature even under stringent
Bonferroni correction.

5.6 Linear mixed models and variance
components

To quantify how much variation in acoustic features is
attributable to vocalization class vs. recording context, we fitted
linear mixed-effects models (LMMs) for four key features: clip
duration, mean FO, spectral centroid, and RMS energy. For each
feature, we used the same twelve best-represented behavioral
classes as in the Kruskal-Wallis analysis and specified vocalization
class as a fixed effect, with random intercepts for farm, barn
zone, and microphone identity. This structure allowed us to
partition variance into components associated with caller behavior
(class), farm-level differences, local barn environment, microphone
placement, and residual (within-class) variation.

Likelihood ratio tests comparing full models (including the
fixed effect of class) against reduced models with only random
effects showed that vocalization class significantly improved model
fit for all four features. The likelihood ratio statistics were large
and highly significant (duration: LR ~ 1774, df = 27, p ~
4.6 x 10724 mean Fp: LR ~ 63.6, df = 27, p ~ 8.7 x 107
spectral centroid: LR ~ 789.8, df = 27,p ~ 5.4 x 107149, RMS
energy: LR ~ 332.0,df = 27,p ~ 2.9 x 107°%), confirming that
vocalization class explains a substantial amount of variation beyond
farm, barn zone, and microphone effects. Full variance-component
plots for all four linear mixed-effects models are provided in
Supplementary Figures S3-S6.

(Table 12)
duration and spectral centroid are particularly structured

Variance component estimates revealed that

by vocalization class and barn environment. For duration,
vocalization class accounted for ~ 59.8% of the variance, with a
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TABLE 12 Proportion of variance in four key acoustic features explained
by vocalization class, barn zone, microphone, and residual error in linear
mixed-effects models.

Feature Vocalization Barn Microphone Residual
class (%) zone (%) (VA

Duration 59.8 38.4 0.0 1.8

(s)

Mean F, 12.1 1.0 2.1 84.7

(Hz)

Spectral 452 29.4 5.5 19.9

centroid

(Hz)

RMS 46.7 05 10.3 425

energy

(dB)

Values are expressed as percentages of total variance.

further 38.4% attributable to barn zone and only 1.8% to residual
variation. Spectral centroid showed a similar pattern, with 45.2%
of variance explained by class and 29.4% by barn zone, compared
with 5.5% by microphone and 19.9% residual. These results
indicate that temporal and broad spectral-shape features carry
strong class-specific signatures that remain robust after accounting
for recording context, although local barn environment still
contributes meaningfully.

In contrast, mean Fy exhibited a much larger residual
component: only 12.1% of its variance was explained by
vocalization class, with 1.0% from barn zone and 2.1% from
microphone, while 84.7% remained as within-class residual
variance. This suggests that Fy is influenced by substantial
individual- or moment-level variation that is not captured by our
current metadata, even though the class effect is still statistically
significant. For RMS energy, vocalization class and recording
hardware both played important roles: 46.7% of variance was
attributed to class, 10.3% to microphone, and 42.5% to residual
variation, underscoring that amplitude features are inherently
sensitive to microphone placement and local noise, but still
retain a strong behavioral signal. Overall, the LMM results
corroborate the non-parametric tests by showing that key acoustic
features contain substantial class-discriminative information, while
explicitly quantifying the contributions of farm, barn environment,
and microphone placement to the observed variability.

5.7 Principal component analysis of
acoustic feature space

To visualize structure in the multivariate feature space, we
applied principal component analysis (PCA) to the 24 standardized
acoustic features extracted from all clips. The first principal
component (PC1) explained 29.6% of the variance, the second
(PC2) 16.0%, and the third (PC3) 14.1%, so that the first three
PCs together captured 59.7% of the total variance. PCs 4 and
5 accounted for an additional 9.7% and 7.7%, respectively, with
each subsequent component explaining < 5% (scree plot in

frontiersin.org


https://doi.org/10.3389/fdata.2025.1723155
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Kate and Neethirajan

Supplementary Figure S7), indicating a clear elbow after the first
3-5 components.

Inspection of the PCA loadings showed that PCl was
dominated by spectral-shape and noisiness measures, with high
positive loadings for spectral centroid, spectral bandwidth, spectral
roll-off, and zero-crossing rate, as well as the first formant (f;). PC2
loaded most strongly on MFCC1, RMS energy mean and standard
deviation, voiced ratio, and SNR, capturing an amplitude/voicing
gradient. PC4 was primarily associated with Fj statistics (mean,
minimum, and maximum), indicating that fundamental frequency
variation is concentrated on a separate axis from broad spectral
shape and energy.

The PC1-PC2 score distribution reveals a structured acoustic
landscape: clips form broad clusters along a gradient from
broadband, noisy events with high spectral centroid and zero-
crossing rate (high PC1) to more tonal calls with concentrated
low-frequency energy (low PCl), and along a second gradient
from low-intensity, low-MFCCI1 sounds to high-energy, strongly
voiced events (high PC2). This multivariate view is consistent
with the univariate and mixed-model analyses, confirming
that temporal, spectral-shape, and energy features jointly
organize cattle vocalizations in a low-dimensional space that
can be exploited by downstream classifiers. Taken together,
these dataset creation steps and multilevel statistical analyses
provide a well-characterized acoustic benchmark for dairy cattle
vocalizations, which we now interpret in the broader context of
precision livestock welfare and existing bioacoustics literature in
the Discussion.

6 Discussion
6.1 Significance for Al and big data

The dataset presented in this study contributes directly to
advancing Al and data-driven approaches in animal bioacoustics.
Unlike prior collections that were limited in size or scope, this
corpus offers both scale and diversity, providing 569 annotated clips
(expanded to ~ 2,900 after augmentation for modeling) across 48
behavioral classes. Such breadth is crucial for machine learning
applications, where model performance depends on exposure to
both common and rare events. By incorporating high-arousal
calls (e.g., estrus, distress), affiliative calls (e.g., contact, maternal),
and non-vocal sounds (e.g., breathing, burps), the dataset enables
algorithms to learn the acoustic signatures of a wide behavioral
spectrum rather than a narrow subset of conditions.

Equally important is the dataset’s ecological realism. Machine
learning models trained on clean, noise-free recordings often
fail when deployed in real barn environments. By retaining
authentic background noise and overlapping acoustic events, this
resource ensures that computational models developed from it
are robust to the challenges of deployment. The multimicrophone
and multimodal setup adds further depth, allowing researchers
to explore cross-validation across equipment types and zones,
or to align acoustic features with behavioral context captured
in video. This design makes the dataset valuable not only for
supervised classification but also for self-supervised learning,
representation learning, and transfer learning, areas where large,
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heterogeneous datasets are particularly impactful. The Kruskal-
Wallis, Dunn’s post-hoc tests, and linear mixed-effects models
together show that key acoustic features (duration, FO, spectral
centroid, RMS) vary systematically between behavioral classes and
are not dominated by farm, barn zone, or microphone artifacts.
Variance components indicate that class explains a substantial
proportion of the variability, with environmental and hardware
effects contributing smaller, secondary components.

Finally, the integration of FAIR-compliant metadata and
standardized acoustic features (Praat, librosa, openSMILE) ensures
that the dataset is interoperable with wider Al research ecosystems.
Researchers can directly apply established pipelines for feature
selection, dimensionality reduction, or deep learning input
preparation, reducing barriers to reproducibility. Because the
pipeline relies on generic time-frequency features and FAIR
metadata, the same framework can be extended to other livestock
species (e.g., sheep, goats, pigs) and integrated into cross-species
AI models for farm animal welfare. In this way, the dataset bridges
the gap between animal behavior research and contemporary Al
methodologies, situating bovine vocalization analysis firmly within
the domain of big data science.

6.2 Limitations and challenges

While comprehensive, the dataset is not without limitations.
The most prominent challenge lies in class imbalance, with a
small number of categories such as estrus and feeding anticipation
dominating the corpus, while rare events like drinking competition
calls or novel environment response calls are represented by only a
few clips. This long-tailed distribution mirrors behavioral ecology
but complicates model training, as classifiers may overfit frequent
categories while neglecting rare yet ethologically significant ones.
Augmentation strategies can mitigate this bias, but they cannot
fully replace naturally occurring data.

Another limitation arises from the subjectivity of manual
annotation. Although rigorous protocols and cross-validation
by multiple annotators were employed, certain call types
are inherently ambiguous, especially when overlapping with
background noise or occurring in complex social contexts.
Labels such as “frustration” or “distress” are based on behavioral
inference, which, while grounded in ethology, cannot capture
internal emotional states with absolute certainty. This highlights
the need for future datasets to integrate multimodal physiological
or sensor-based validation to strengthen label reliability. Manual
segmentation and annotation, while ensuring high fidelity, remain
time-intensive and may limit scalability without semi-automated
approaches. Future work integrating automated detectors or
active learning frameworks could alleviate this bottleneck while
preserving annotation accuracy.

The acoustic environment itself also posed challenges.
Commercial barns are characterized by persistent mechanical
noise and overlapping vocal activity, which, although essential
for ecological realism, reduce signal clarity. Even after careful
denoising and filtering, residual interference remains in some clips.
While this realism enhances deployment value, it also increases
computational demands for segmentation, feature extraction,
and classification. Researchers applying advanced models to this
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dataset should therefore be aware that noise robustness remains an
open problem.

A key limitation is that we did not estimate source-microphone
distance for each clip. Microphones were placed in ecologically
realistic positions within barn zones, but per-clip distance and
propagation paths were not measured. As a result, amplitude-
related features combine caller effort, distance, and local acoustics;
future work using video tracking or localization technology could
explicitly model distance and better separate source-level and
environmental effects.

Similarly, cow-level factors such as age, parity, and lactation
stage were not fully encoded in the public metadata, and we
did not perform systematic parity- or age-stratified analyses. Our
results therefore reflect aggregate patterns across mixed groups of
heifers and multiparous cows. Future studies should incorporate
standardized animal-level descriptors to disentangle behavioral,
physiological, and life-history effects on vocalization structure.

Finally, although the dataset is large by livestock bioacoustics
standards, it remains modest compared to big data benchmarks
in other Al fields such as speech recognition or computer vision.
Expanding the temporal coverage (e.g., across seasons, farms, and
breeds) and enlarging the sample size would further strengthen
its generalisability and enable the training of more complex deep
learning architectures.

6.3 Outlook and future directions

The current dataset establishes a foundation, but it also opens
several avenues for expansion and methodological innovation.
One promising direction is the incorporation of longitudinal
recordings that capture vocal behavior across different seasons,
management practices, and life stages. Extending coverage
beyond three farms and including diverse breeds would improve
representativeness and allow for comparative studies across genetic
and environmental contexts.

Another opportunity lies in multimodal integration. While
this dataset already links audio to video and manual annotations,
future work could align vocal data with physiological markers (e.g.,
heart rate, cortisol levels, rumination sensors) to provide multi-
layered evidence of welfare states. Such integration would reduce
ambiguity in behavioral labels and strengthen the interpretability
of acoustic indicators.

From a computational perspective, the dataset is particularly
well-suited for exploring emerging AI paradigms. Large,
heterogeneous acoustic corpora are valuable for training self-
supervised models that learn general-purpose representations
before fine-tuning for specific tasks such as estrus detection,
welfare monitoring, or individual identification. Similarly, transfer
learning from bovine vocalizations to related species-or from
human speech models to livestock contexts—presents opportunities
for cross-domain innovation.

Finally, the dataset highlights the importance of open,
standardized resources in agricultural AL By adhering to FAIR
principles, this work contributes to a growing movement toward
reproducible, community-driven datasets in animal science.
Establishing shared benchmarks for livestock bioacoustics, similar
to ImageNet or LibriSpeech in computer vision and speech
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research, would accelerate progress by enabling systematic
comparisons of models and fostering collaborative development.
The resource introduced here can serve as an early step in
that direction, encouraging both the scaling of future datasets
and the refinement of analytical tools tailored to animal vocal
behavior. These considerations set the stage for our conclusion,
where we summarize the dataset’s contributions and its potential
role in advancing digital agriculture and big data applications in
animal science.

7 Conclusion

In this work, we introduced one of the most comprehensive
bovine vocalization datasets assembled to date, integrating 569
curated original clips across 48 behavioral classes recorded in
authentic barn environments. By combining multi-microphone
audio capture, complementary video observations, and detailed
ethology-driven annotations, the dataset provides an ecologically
valid resource for advancing both animal behavior research
and computational modeling. Preprocessing steps ensured that
clips were denoised, segmented, and paired with rich metadata,
while feature extraction pipelines generated interpretable acoustic
descriptors aligned with welfare science.

The dataset makes three key contributions. First, it broadens
the empirical foundation for studying cattle vocal behavior beyond
the constraints of controlled laboratory recordings, embracing
the acoustic complexity of real farm settings. Second, it provides
a reproducible, FAIR-compliant framework with transparent
metadata and feature definitions, positioning bovine bioacoustics
within the wider ecosystem of big data research. Third, it offers a
benchmark corpus for the development and testing of AI methods,
from supervised classification to emerging approaches such as
self-supervised representation learning.

Taken together, these contributions establish a foundation for
non-invasive, data-driven approaches to animal welfare monitoring
and precision livestock management. While challenges remain in
scaling, class balance, and multimodal integration, this dataset
represents a critical step toward creating the robust, reproducible
resources needed to give cattle a “digital voice” in future smart
farming systems.
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