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Introduction: Tobacco growers usually face particular challenges in predicting
the risks of tobacco root diseases due to complex pathogenesis, concealed early
symptoms, and heterogeneous farm conditions.

Methods: To address this problem, we proposed a flexible Probabilistic Hybrid
Temporal Fusion Network with Random Period Mask (PHTFNet-RPM). This model
is designed to forecast future multi-day disease incidences and indices. It
incorporates a hybrid input structure with RPM to handle configurable static
management variables and time-series data of weather factors and disease
metrics, using the RPM to simulate diverse absences of historical observations.
The model’s internal hierarchically aggregated modules learn cross-variable
and cross-temporal feature representations to model the complex non-linear
relationships. Furthermore, probabilistic theory-based uncertainty quantification
is designed to enhance the model's credibility and reliability.

Results: The proposed PHTFNet-RPM was validated using a large-scale time-
series dataset of tobacco root diseases, organized from 20-year meteorological
and disease survey records in Chuxiong Prefecture, Yunnan Province. Extensive
comparative experiments demonstrated that our model achieves a 4.44%—
16.43% lower mean absolute error (MAE) than existing models (including LR, SVR,
CNN-LSTM, and LSTM-Attention).

Discussion: The results confirm that the model can reliably forecast disease
progression trends under different configurations, even when relying solely on
historical weather observations. The integration of uncertainty quantification
provides a robust tool for assessing prediction reliability, offering significant
practical value for disease management.

KEYWORDS

hybrid neural network, random period mask, uncertainty estimate, plant disease
forecasting, time-series modeling, smart agriculture

1 Introduction

Tobacco plant is an important cash crop in China, with an output value of
approximately 600 billion yuan. In tobacco cultivation, it is critical to manage diseases
because they will cause a decline in yield and quality of tobacco leaf. In China, more
than 20 common diseases damage tobacco crops. Among them, root diseases are highly
transmissible, severe in impact, and difficult to control (Nyvall, 2013). For example, for
two root diseases of black shank and black root rot, when inspecting tobacco plants’
health statuses and confirming diseases, the plants have been severely harmed and it
is difficult to cure them because they have latent period and the root damages can
not be easily found (Pandey, 2023). This significantly affects tobacco yield and quality.
To prevent these diseases, the scientific method is to monitor growing conditions,
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predict the disease outbreak risks and implement some
management measures to clear pathogens and block pathogen
transmission. Accordingly, it is key to predict disease outbreak
and severity according to the growing condition and management
levels (Patil et al., 2022; Dharanya et al., 2025; Chen et al., 2025).

However, the causes of tobacco root diseases are complex and
it is difficult for prediction and early-warning of disease outbreak.
The influence factors contain climatic condition, variety selection,
greenhouse seedling management, soil condition, fertilization
practices and field management (Kishan Das Menon et al., 2021).
Taking black shank for example, high temperature and humidity
are the favorable conditions in which it easily outbreaks. Besides
the historical meteorological factors, the conditions conducive to
disease onset and spread also rely on soil drainage and scientific
management measures (Csinos, 1999). Totally, these influence
factors interact on each other, contributing more or less to the
disease outbreak and development. For accurate prediction and
early-warning of tobacco root diseases, it is necessary to design
reasonable quantification of each factor and further model the
relation these influence factors and disease risks (Suarez et al.,
2023).

To date, many researches have been done for reducing and
controlling tobacco root diseases in agriculture and in the artificial
intelligence (AI) domain. Agronomists study the causes and
suppression methods of root diseases and further develop biocides
and farm chemicals (Qian et al., 2019; Zhu et al., 2024). Al scientists
focus on analyzing the relations between tobacco plants’ growing
conditions and root diseases and automatically diagnosing and
forecasting diseases (Rao et al., 2016; Aldaour and Abu-Naser, 2019;
Cai et al,, 2019; Chin et al.,, 2022; Dharanya et al., 2025; Chen et al,,
2025). They collect sensor data to describe the growth conditions,
including the soil moisture and nutrient status, and meteorological
factors such as temperature, humidity, illuminance and cloud cover
(Kishan Das Menon et al., 2021). Based on the sampled sensor
data, prediction models are built to estimate the level of disease risk
or the detailed technological parameters, for instance, the disease
incidence and the disease index. Furthermore, some prevention
measures can be automatically recommended according to the
estimated disease risk levels and diagnosis results.

Especially, in the recent years, the significant advancements
in AI and machine learning technologies (Delfani et al., 2024)
have greatly propelled the development of tobacco disease risk
prediction. The representative works mainly focus on two aspects
of the intelligent diagnosis and the risk prediction. In the diagnostic
researches, the expert system (Rao et al., 2016) and the Computer
Vision (CV) (Sun et al., 2024) are the mainstream technologies.
The description of lesions is fed into the intelligent system
constructed by expert experiences (knowledge base and inference
rules) (Aldaour and Abu-Naser, 2019). It automatically derives the
categories and severities of diseases. In the CV-based diagnostic
methods, the images of tobacco plants are sampled and the lesion
features in the images will be automatically extracted through the
hand-crafted feature descriptors or the learned feature extractors
(Xu et al., 2022). The extracted lesion features will be combined
with the classification and regression technologies, e.g. the Support
Vector Machine (SVM) and Deep Neural Networks (DNN) (Lin
et al,, 2022), to recognize and analyze the diseases. However, the
intelligent diagnosis technologies are less effective to provide an
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early-warning of tobacco root diseases because their early lesions
are invisible under the earth.

Rather than relying on the analysis of lesions on tobacco
plants, the risk prediction mainly utilizes the growth conditions
and disease-resistant characteristics of crop varieties to estimate
the likelihood of disease outbreak (Gonzédlez-Dominguez et al.,
2023). The disease risk prediction models can be mainly classified
into three categories: the data-based ones, the process-based ones,
and time-series forecasting ones. Data-based models explore the
prediction rules and mechanism by analyzing the relations between
the host plant, the pathogen and the environment, using statistical
tools and AI algorithms together with a set of observed data (Cai
etal.,, 2019; Van Nguyen, 2021). For a data-based prediction model,
the forecasting accuracy mainly relies on the quantity and quality
of the historical data about disease outbreak. It is partly affected
by the modeling methods and learning algorithms. However, in
most cases of forecasting crops diseases, the historical observed
records are scarce and precious. Process-based models construct
the parameterized functions driven by environmental variables to
describe the change process of disease in space and/or time (Salotti
et al., 2022; Patel et al., 2020). For a process-based model, specific
expert knowledge is required and the constructed model has less
generalization, which generally applies to a single kind of disease.

Time series forecasting models integrate the characteristics of
the data-based models and the process-based models. Multiple
methods, such as smoothing methods, decomposition methods,
regression methods, and DNN, can be utilized to designed the
time series models (Masini et al., 2023). To optimize them, time-
series data, such as continuously varying historical weather records
and growth conditions, is required. The model automatically
learn the relation between disease risks and crops temporally
continuous growth conditions (historical weather) from the time-
series data. Moreover, the varying process of disease development
can be implicitly exhibited because time series data training the
models contains such varying process (Wang et al., 2024; Chen
et al., 2025). However, compared to the data-based and process-
based models, time series forecasting models impose stricter
requirements on data samples, necessitating the measurement of
continuous disease progression. It implies significantly higher costs
(Gonzélez-Dominguez et al., 2023).

Recently, crop disease forecasting based on time series models
and weather factors has attracted more attention due to the
development of agricultural big data and the successful application
of time series models in the fields such as energy, retail and
economics (Masini et al., 2023). For example, Krishna and Prema
(2023) experimentally analyzed multiple time series models such
as ARIMA, MLP, RNN and LSTM in predicting fruit rot disease
incidence. Chen et al. (2024) compared three models such as LSTM,
LSTM-Attention and Transformer-based Informer (Zhou et al.,
2021) in forecasting the incidence of pests in tea gardens. They
revealed that the LSTM-Attention model integrating sequence-to-
sequence encodings and the attention mechanism can better learn
the temporally-related features. Wang and Li (2025) integrated
ARIMA and deep learning to propose a ARIMA-LSTM model for
pest and disease prediction and management of sugarcane. Multiple
hybrid models combining CNN and LSTM (Wang et al., 2024; Guo
et al., 2024; Chen et al., 2025) are proposed to forecast different
crop diseases. In forecasting tobacco diseases, Chen et al. (2025)
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proposed a CNN-LSTM model to forecast four tobacco diseases by
utilizing time-varying meteorological factors.

By reviewing the previous literatures about forecasting crop
diseases, we find that the following problems are available in the
current researches. Firstly, most forecasting models are constructed
based on meteorological factors, but the field management
information is less considered (Cai et al, 2019; Van Nguyen,
2021; Patel et al, 2020; Chin et al., 2022; Chen et al., 2025).
However, besides meteorological factors, the tobacco root disease
development is severely affected by field quality and management
factors such as soil drainage, variety resistance and management
level (Suarez et al., 2023). If these factors are not integrated
into a forecasting model, it will causes that the model can not
adaptively adjust the forecasting function according to these related
factors. Especially, for most growers in a tobacco producing area,
the meteorological factors are similar, but they have diverse field
conditions and management levels, each tobacco field may have
a different disease risk profile. To better predict the disease risks
in each tobacco field, the information of land quality and field
management should be quantified and embedded into the model
besides the time-varying meteorological factors. Accordingly, the
model user can flexibly configure the model according to his
land information and management level, so that the model can
adaptively adjust its forecasting functions.

Secondly, in the domain of forecasting crop diseases (Gonzalez-
Dominguez et al., 2023), most existing models are unable to identify
data quality and provide reliable uncertainty approximation. This
results in a lack of interpretability in reasoning and forecasting.
Namely, the data uncertainty, model uncertainty and predictive
uncertainty are not considered and Bayesian learning theories
are not introduced in modeling (Zhou et al., 2022; Wang and
Yeung, 2020). A model integrated the data uncertainty estimation
can better process the noise data, which is usually caused by the
irreducible error in the observation process. For example, the
lesions is possibly measured wrongly and the disease index could be
computed in error (Pandey, 2023). If a model integrates the model
uncertainty and predictive uncertainty, it can effectively emulate
the uncertainty that experts face when making predictions. This
helps the model provide reliable and interpretable predictions. In
other words, given an observation record, it not only predicts the
disease risk but also estimates the reliability of the prediction using
the learned model, which helps model users to make scientific
disease managements.

Finally, less crop disease forecasting models considered the
diverse absences of disease records in designing and training
models (Gonzélez-Dominguez et al., 2023; Masini et al., 2023),
which causes a significant degradation of forecasting precision
when lacking recent historical disease records and mainly relying
on meteorological factors. However, historical disease records are
not updated in a timely manner and the diverse absences of them
are frequently encountered situations because the assessment and
measurement of disease severity are time-consuming processes.
Most existing models assumed that all historical disease records
are available and training data usually can not cover all situations
of diverse absences of disease records (Chen et al., 2024; Wang
et al., 2024; Guo et al.,, 2024; Chen et al., 2025). When training
the time series forecasting models, the model’s predictive learning
will depend more heavily on historical disease data than on
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meteorological variables. In forecasting, when lacking the recent
historical disease records, the forecasting precision will decrease
severely. Therefore, in modeling or designing learning algorithms,
it is necessary to simulate the diverse absences of disease records in
real-world application scenarios so that the model can learn how to
adaptively balance the historical disease records and meteorological
variables to make prediction.

Based on the above observed problems, we proposed a flexible
Probatilistic Hybrid Temporal Fusion Network with Random
Period Mask (PHTFNet-RPM) for forecasting tobacco root diseases
based on the architecture of temporal fusion transformer (Lim
etal., 2021). The PHTFNet-RPM forecasting model mainly consists
of condition-configurable hybrid-structured input with RPM,
multi-level time-series feature extraction and fusion, and multi-
horizon multi-target prediction. Moreover, the reliability estimate
of learned model and forecasted results is integrated in model
design and model learning by the Monte Carlo Dropout-based
Bayesian inference (Sankararaman et al., 2022) and the predictive
confidence interval (Cai, 2002). To validate the proposed model,
we constructed a time-series dataset of tobacco root disease
and conducted extensive contrast experiments. The experimental
results show our approach significantly outperforms the recent
methods, e.g., the CNN-LSTM for forecasting tobacco diseases
(Chen et al., 2025) and the LSTM-Attention for predicting insect
pests in tea gardens (Chen et al., 2024). Furthermore, the detailed
model analysis experiments validate that RPM enables our model
to extract effective features for accurately forecasting the disease
progression trend, with minimal impact from diverse absences of
disease data.

Our contributions are concluded as following: (1) The
proposed PHTFNet-RPM model integrates the flexible hybrid-
structured input and the powerful representational capacity to
conduct the condition-adaptive prediction. Its hybrid-structured
input with RPM can well incorporate the time-series historical
weather and disease observations together with configurable
field management conditions. Moreover, RPM simulates the
diverse absences of historical data. The model’s hierarchically
aggregated modules collectively achieve powerful adaptive feature
representation. (2) The uncertainty quantification of forecast
results enhances prediction credibility and interpretability by
providing probabilistic bounds, enabling risk-aware decision-
making. The uncertainty estimate of learned model ensures model
robustness and reliability in real-world deployments. (3) We
constructed the first large-scale time series dataset for forecasting
tobacco root diseases, including black shank and black root rot. It
contains about 12 thousands of time-series samples from real-field
meteorological and disease records for 20 years, from 2003 to 2022,
covering disease survey records in the field management period of
tobacco from transplanting to harvest.

2 Materials and data processing

2.1 Collection of tobacco root disease data
and weather data

This paper takes management data of tobacco root diseases
from Chuxiong Company of Yunnan Provincial Tobacco
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TABLE 1 Variable description in disease data.

Variable name

Variable type

Variable value

10.3389/fdata.2025.1705587

Description of variable and its value

Independent variables (static, field management)

Survey year Discrete {1,---,n)} 1 and n, individually indicate the starting and ending year.
Survey location Discrete {1,---,9} Nine numbered county-level survey stations.

Disease category Discrete {1,2} Two categories of diseases: black shank and black root rot.
Tobacco variety Discrete {1,2,3,4} Four varieties related to disease resistance.

Rotation crops Discrete {1,---,6} Six rotation crops related to soil pathogen load.

Seedling means Discrete {1,---,5} Five seedling means related to pathogen load on plants.
Management level Discrete {1,---,5} Five grades of disease precaution and control.

Past prevalence Discrete {1,---,5} Historical disease outbreak scale.

Independent variables (time-varying, weather condition)

Sampling date Discrete [1,---,n4] 1 and ny individually indicate the starting and ending dates.
Max temperature Continuous [15.0,40.0] It facilitates pathogen transmission.

Avg temperature Continuous [10.0,30.0] Same to the above.

Relative humidity Continuous [0.0,100.0] Same to the above.

Daily Rainfall Continuous [0.0,1000.0] Affecting soil and air humidity.

Sunshine hours Continuous [0.0,14.0] Affecting soil and air humidity.

Wind speed Continuous [0.0,10.0] Affecting soil and air humidity.

Target variables (time-varying metrics)

Disease incidence Continuous [0.0,1.0] It describes disease prevalence.

Disease index Continuous [0.0,1.0] It describes disease severity.

Corporation as the survey and research subjects. The data
collection lasted for 20 years (from 2003 to 2022) and the
data sources cover nine counties and districts in Chuxiong
Prefecture. The collected data mainly includes three categories:
disease management data closely-related to observation stations,
continuously-recorded disease data and historical daily weather
records as shown in Table 1. In collecting disease records in each
year, the disease surveys were conducted every 5 or 10 days from
transplanting to the field until tobacco leaf harvesting. In the
disease surveys, a five-point sampling method (Pandey, 2023) was
used to evaluate disease incidence and disease index, with 50 plants
surveyed at each point, resulting in a total of 250 plants surveyed
per field. According to the disease statuses of the investigated 250
tobacco plants, the disease incidence y;,. and the disease index y;,4
are manually computed as follows:

m
Yine = —> (1)
n

r
Zsi*ni

_ =1
Yind =

% Sy @
Here, n is the total number of investigated plants, m is the
number of infected plants. The severity of disease is classified into r
grades. s; corresponds to the score of the i-th grade. n; is the number
of plants which are identified as being with the i-th grade disease.
sy is the maximum score, which corresponds to the most serious
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disease. yinc and y;,4 respect the prevalence and severity of tobacco
root diseases.

2.2 Data processing

In the original management data, sampling intervals of
historical disease records possibly are inconsistent, e.g. every 5 days
or every 10 days in different years as shown in Figure 1. Moreover,
the disease records are not related to the weather data because
the disease data and the weather data are collected individually.
Therefore, it is necessary to process and integrate them for better
training the forecasting model.

2.2.1 Complement and argumentation of disease
historical records

In order to keep sampling intervals consistent and increase data
quantity, we adopt the spline interpolation method to argument
disease records with multi-day interval as daily records. As shown
in the Figure 1, given the original seven records of disease index of
black shank (recording once every 5 days from June 15th to July
15th in 2014) at the Yaoan survey station, a cubic spline function
is first obtained. Then, for the dates without practical records, their
disease index values are sampled on the fitted spline function. To
simulate the manual errors, the new generated values are added by a
Gaussian noise. In this way, the daily disease index will be obtained.
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FIGURE 1

Generation of daily disease index records by applying the spline interpolation method on historical records with the intervals of 5 days.
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Model construction process and problem formulation for forecasting tobacco diseases. When predicting multiple target variables, there will be
multiple predicted curves. Here, for simplicity, only the disease index is shown.
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2.2.2 Integration of disease and weather data for
dataset construction

The disease forecasting model aims to construct the mapping
relation between independent variables (static management
information and time-series weather data) and target (dependent)
variables as shown in Table 1. For the data-driven learning
model, recorded data for independent and target variables should
be fed into the model for optimizing model parameters. We
integrated the heterogeneous data and organized all records as
the JSON-formatted dataset according to the literature (Lim et al.,
2021) and the Pytorch Forecasting package.! We first integrated
the heterogeneous data into individual time-series entities using
composite keys of year, station, and disease. Each entity has
hybrid-structured data as shown in Table 1, i.e. static agronomic
variables (vector), meteorological time-series (matrix, a dimension

1 https://github.com/sktime/pytorch-forecasting
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denotes date, the other dimensions indicate weather variables),
and pathological time-series (matrix, a dimension denotes date,
the other dimensions indicate disease metrics), where the date
spans from transplanting to harvest. After configuring historical
and future window sizes, by decomposing meteorological time-
series and pathological time-series, each entity can be decomposed
as multiple training samples.

3 Methodology

3.1 Overview

According to the recent researches on forecasting crop diseases
(Chen et al., 2025; Wang et al., 2024; Chen et al., 2020), we adopted
a four-stage paradigm for constructing and deploying the disease
forecasting model as shown in Figure 2. (1) Problem formulation.
The independent variables (model input X) and forecast targets
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(model output y) are firstly determined by analyzing this forecast
task. (2) Dataset construction. Based on the variables in model’s
input X and output y, by data collection, the dataset D =
{Xi,y)li = 1,---,n} can be constructed according to Section
2. (3) Modeling and optimizing. By investigating the complex
relationships between the independent variables in X and the target
variables in y, a suitable modeling technology is selected to design
a parameterized function fy(-) for representing the relationship
between X and y. Then, by designing the loss function L(-) and
learning algorithm, the model parameter # can be optimized as
0* = argmin Y L(fy(X;), yi). The related contents will be
0 (X y)eD

represented in detail in Sections 3.2 and 3.3. (4) Model deployment
and maintenance. Based on the learned model fy«(-) with the
optimal parameter 6%, for any new observation X', the target can
be predicted as y' = fp+(X'). Especially, when collecting enough
new data, the model fp«(-) can be fine-tuned.

Among the four stages, the problem formulation is the primary
preliminary step, as it dictates the modeling approach and the form
of the model’s inputs and outputs. In this work, we formulated
the forecast task as the time-series model y = f3(X) as shown
by the problem formulation in Figure 2 according to the literature
(Lim et al., 2021). Here, 6 denotes the learnable model parameter.
The model input X = {Xp, XF, Xs} is the hybrid-structured data.
The time-series matrix Xy € R"™*T+D) denotes the historical
observation, where t;, indicates the size of historical time window,
ny is the number of observed variables including the weather
factors, date and disease risk metrics. The time-series matrix Xp €
R™*% denotes the future known data, where Ty indicates the
size of future time window, ng is the number of prior-known
variables such as date and the others. Xg € R denotes the static
covariates, which indicates the configurable prediction conditions,
where n, indicate the number of static variables as shown in Table 1.
The model output y € R"™*7 indicates the multi-target and
multi-horizon predicted result, where 7,, denotes the number of
disease metrics (target variables). For instance, y(j, k) indicates the
predicted value of j-th target variable on the k-th day, where 1 <
jfnmandt—l—lfkgt—i—tf.

3.2 PHTFNet-RPM based forecasting
model

3.2.1 Networks architecture

Based on the analysis on tobacco root disease epidemiology
and collected disease data, we design Deep Neural Networks
(DNN) to model the forecasting model fy(-). Moreover, the
designed DNN should meet the following requirements: (1) It can
be fed hybrid-structured data including continuous time-varying
historical observation Xy, continuous future prior-known variables
Xr and discrete time-invariable (static) variables Xg about field
management information. (2) It can express flexible complexities
by configuring varied model parameters and prediction conditions,
so that it adapts to data-scale and problem complexity, and
adaptively adjusts the forecasting capability in different conditions
of field management. (3) It can provide uncertainty estimate on
predicted results to simulate the reasoning process of human
experts making a fuzzy forecast. The uncertainty is caused by the
possibly inaccurate measurement of independent variables, and
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the complex mapping relation between numerous independent
variables and disease metrics.

Based on the above requirement analysis and comparison
of existing forecasting technologies, we proposed the PHTFNet-
RPM to build the forecasting model according to the temporal
fusion transformer (Lim et al., 2021; Nazir et al., 2023) and the
Bayesian transformers (Sankararaman et al., 2022; Xiao et al., 2024).
Comparing with the previous works, e.g., the CNN-LSTM for
forecasting tobacco diseases (Chen et al., 2025) and the LSTM-
Attention for forecasting the pest incidence in tea gardens (Chen
et al,, 2024), the uncertainty estimate based on Bayesian deep
learning (Sankararaman et al., 2022) is integrated in our model
for robust and reliable prediction. Especially, a Random Period
Mask (RPM) mechanism is designed in the model learning so that
our model better processes the various absences of past observed
disease incidence and disease index. It improves the robustness and
flexible forecasting capability of model because it is possibly that
there are partial disease survey records and sometimes even no
records during the manual collection in the practical applications.

The proposed PHTFNet-RPM in Figure 3 mainly contains five
modules: Condition Configuration (CC), Random Period Mask
(RPM), Feature Extraction and Fusion (FEF), Local Temporal
Feature Exploration (LTFE), Global Temporal Feature Fusion
(GTFF), and Forecasting Decision (FD). All the modules are
sequentially connected and integrated to construct the forecasting
model fy(-), where 0 indicates the learnable parameters in the
whole neural network. The connected arrows between these
modules describe the information flows from model input to
prediction results. In the following parts, the common block in
multiple modules, i.e. Gated Residual Network (GRN), is firstly
described. Then, according to the information flow direction from
model input to model output, each module is then introduced
in details.

3.2.2 Complexity-adaptive GRN

GRN is an embedded learnable neural network block with
flexible and powerful nonlinear expressive capabilities (Lim et al.,
2021). It is deployed in multiple modules to improve the model’s
nonlinear representational capacity as shown by the GRN in
Figure 3. Usually, it is fed two input vectors, i.e., primary vector v,
and auxiliary input v,. As shown by the VSEN in Figure 3, v, and v,
are firstly concatenated to perform a simple yet effective nonlinear
transformation with an Exponential Linear Unit (Clevert et al,
2015). Then, a non-linear Gated Linear Unit is followed to enhance
the feature selection capability for critical features (Clevert et al.,
2015). In addition, a Dropout layer is added to avoid overfitting
and improve its generalization ability (Srivastava et al., 2014). If
the above three transformations are together denoted as a non-
linear function ¢, (), when the residual connection mechanism
is applied, then the output v, of GRN block is described as:

Vo = LN(VP + (pEGD([VP’ val)), (3)

where LN(-) indicates a LayerNorm operation. To sum up, the
nonlinear expressive capability of GRN block is handled by ¢, ().
Its adaptability to complexity is reflected by the residual connection
and the gating mechanism in ¢, (-). For example, when the output
of ¢, (-) approaches a zero vector, the output v, is approximated
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temporal feature exploration; GTFF, global temporal feature fusion; FD, forecasting decision.

to the primary input v,. Depending on the learned parameters
optimized by the data-driven training, the GRN can play different
roles, ranging from simple linear transformations to complex
nonlinear mappings.

3.2.3 Hybrid-structured model input
3.2.3.1 Time-series input with RPM

In practical applications, for past observation, time-series
weather data is easily accessible. However, historically continuous
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records of disease incidence and disease index are notoriously
difficult to acquire, which is caused by two reasons: (1) The manual
investigation of disease statuses is complex and may be subject to
delays or missing data due to investigator negligence. (2) The labor
cost of the investigation is high. In some areas, the disease incidence
and disease index may only be surveyed once every 5 or 10 days.
As a result, past observational data is not available on a daily basis.
Especially, in some planting areas, it is required to forecast disease
risks only using the weather data and management information
under the condition of no past disease data. To enable the model to
make predictions in such scenarios, the training data must simulate
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the scenarios so that the model can learn the corresponding
inference capability. To this end, the RPM is designed to handle
time-series input as shown by the overall architecture in Figure 3.
The process can be described as:

Xy = Xy O M, + My, (4)

where Xy, M, M, € R™X(@+D _ 1f denote A as the mask area for
disease incidences and disease indices in Xy, then M_:(i,j) = 0 for
the index coordinate (i,j) € A, otherwise M;(i,j) = 1. Similarly,
My(i, j) = —1for (i,j) € A, otherwise My(i,j) = 0. In this way, for
Xp, its elements in the mask area A are set as —1. For the mask area
A, it can be generated using two random integers, the start day and
mask period days.

3.2.3.2 CC module for configurable static input

When the model conducts forecast, the static discrete variables
describing field management information, such as location, disease
category and others shown in Table 1, are required and combined
with time-varying variables. These configurable inputs represent
different forecast requirements and planting conditions. They affect
feature extraction of model in different levels. To this end, the
CC module adopts three learnable feature embedding blocks to
encode the discrete input X to obtain three feature vectors ¢,
cm and cj,. They are respectively fused into low-level, medium-
level and high-level feature extraction in the total networks. For
example, ¢; is integrated into the FEF module to combine time-
varying variables to extract low-level features. c,, is used to initialize
the cell state and hidden state of the first LSTM Encoder for better
exploiting local temporal features in medium level. ¢, is fed to the
GTFF to help capture global temporal dependent features related
to the configurable input in high-level semantics. Although the
configurable static input containing field management information
is helpful to performance improvement, there is an additional
cost associated with collecting field management information.
Moreover, the static input is tailored to specific crops and diseases,
and its configuration varies depending on the application. For
instance, when forecasting diseases for other crops, it is necessary
to reselect the relevant field management variables and determine
the appropriate embedding coding through experimentation.

3.2.4 Timestep-wise feature extraction and
fusion using VSFN

The FEF module is primarily responsible for selecting and
fusing multiple variables, and then extracting low-level features
for each time step. This is mainly implemented by the VSEN in
Figure 3. The historical observation Xy shares a VSFN, and the
future data Xp shares the other VSEN, as shown by the overall
architecture in Figure 3. Next, we take the historical observation X
as an example to describe the function of VSFN. Denote x; € R"
indicate multi-variable observation data at the k-th time step, where
xx € X, t — 1 < k < t, t is the forecasting time. Firstly, by
a learnable linear transformation, x; is transformed as a matrix,
which contains ny, vectors [vy,---,vy,,]. Namely, the observed
scalar value of each variable xx(j),j = 1,- -, ny, is lifted as a n,-
dimension vector Vj. Then, the GRN follow it to obtain T/j, which
improves the nonlinear representational capacity. At the same time,
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the feature data [vy,---,vy,] for time-varying variables and the
feature data ¢; for static variables are combined to calculate a ny,-
dimension weight vector [wi,---,wy,,] for selecting and fusing
features of time-varying variables. For the input (x, ¢;) at the k-th

time step, the output of VSFN is finally computed as:

"h
=) ¥ ()
j=1

It will be fed to the k-th LSTM encoder in the followed
LTFE module.

3.2.5 LTFE module for across-timestep local
temporal feature exploitation

The LTFE module aims to exploit useful across-timestep
feature patterns from temporally adjacent low-level features
lotpgys - sy o sequence-to-sequence LSTM
encoding and decoding architecture (Park et al.,, 2018) and the

> Aty ] . The

residual mechanism are adopted to enhance the low-level o from
each time step in the FEF module. Let ¢, (-) denote the LSTM
encoding and decoding function, then the output S at the k-th
time step can be described as:

Bie = LN(et + @5y (Cms [+ -5 0]))s (6)
where LN(-) indicates the LayerNorm operation. The encoded
feature vector c;, of static variables is used to initialize the the cell
state and hidden state of the first LSTM Encoder. Through the
process of state backpropagation, the input gates and forget gates
in the subsequent LSTM units are capable of retaining disease-
relevant information while discarding information unrelated to
the disease. Relying on the flow of information between memory
cells within adjacent LSTM units, ¢, () can explore the useful
feature patterns from the past observation [a;q,,- -, ] before
the k-the time step, e.g. temporally-local weather variations and
modifications of disease statuses.

3.2.6 GTFF module for attention-focused global
temporal feature fusion

The GTFF module is designed to learn the temporally-global
helpful feature patterns from the past observation, e.g. the past
rainfalls, the average temperature, and the variation trends of
weather factors etc. Firstly, GRN is adopted to fuse the input
features B = [B;—¢,,- - - » ﬁt+ff] and the static encoded vector ¢, to
obtain B = [ﬁt,,h, ceey Bt+,f]. Then, an interpretable multi-head
attention block (Lim et al., 2021) is adopted to extract temporally-
global attention-focused features I' as:

1 & - - L
M= Y Pau(BWE, BWG, BWy), (7)
h=1

where I' € R" Y. ®@44(-) indicates a multi-head self-attention
operation (Vaswani et al., 2017). ny is the number of heads, WI}é and
W(h2 are respectively the learnable weights for the keys and queries
in the h-th head. Wy indicates a across-head learnable weight (Lim
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et al,, 2021). Denote I'(t + 1),---,['(t + 77) are the temporally-
global attention-focused features at the forecasting timesteps. They
are combined with Bt+1> cee, BHff to generate the output of GTFF
module according to the following mean:

Yk = LN(Bes1 + ocLu (T (K))), (8)

where k = ¢+ 1,---,t + 77, @cru(-) indicates a standard
GLU operation, LN is a LayerNorm operation. For the k-th
forecasting time step, this mean effectively fuses the temporally-
global attention-focused feature I'(k) and the previous temporally-
local feature fy. Especially, in model learning, the decoder masking
(Li et al., 2019) is adopted to enable that each time step in the

decoding stage only pay attention to the information preceding it.

3.2.7 FD module for multi-horizon and
multi-target prediction

The FD module combines the sequence-to-sequence decoded
features and the temporally-global self-attention focused features to
conduct multi-horizon and multi-target prediction. For the future
k-th time step, k € {t + 1,---,t + tf}, the final prediction
feature vector F and the predicted values of target variables are
respectively calculated as:

Fr = LN( B + 966 (vk) )s )

Yk = WiFi + by. (10)

Here, ¢Gg(-) denotes the GRN block and the gating layer, and
LN(-) indicate the normalization layer in the network as shown by
the overall architecture in Figure 3. The predicted disease metric
yx € R?is a 2-dimension vector containing disease incidence
and disease index. Wy and by are learnable parameters. Especially,
when the multi-quantile regression loss (Cai, 2002) is adopted to
train the model for evaluating the confidence interval of predicted
disease metric, multiple outputs yy, for different quantiles g €
Q = {0.1,0.5,0.9} are required, which will be introduced in Section
3.3.2.1. Correspondingly, multiple sets of parameters {Wy g, by 4}
will be learned. In this way, multi-horizon and multi-target
predictions at different quantiles, yrq, = WigFrq + brg k =
t+1,---,t+ 17, are simultaneously obtained.

In summary, the DDN-based fy(-) consists of multiple modules
and each module contains a large number of learnable parameters.
The symbol 0 represents all learnable parameters in the networks,
which can be optimized by a data-driven learning mean.

3.3 Model learning and inference

In the real-world systems, besides the prediction performance,
practitioners are also concerned about confidence and robustness of
predictions because unreliable predictions may result in incorrect
management decisions causing economic losses. The unreliable
predictions primarily stem from data uncertainty and model
uncertainty. To estimate the reliability of prediction, considering
the computation cost, the predicted quantile (credible) interval is
used to present the uncertainty of a predicted result. The interval
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can be easily implemented by augmenting the network outputs
at multiple quantiles and supervising the learning process using
the quantile regression loss (Koenker, 1994; Cai, 2002; Lim et al,,
2021). The uncertainty (reliability) estimate of model is mainly
concerned by researchers for consistently improving the forecasting
model. The approximate variational inference based on Dropout
in Bayesian deep learning (Kendall and Gal, 2017; Sankararaman
et al, 2022) is adopted to evaluate it in model learning and
inference. In the following parts, they will be discussed in detail.

3.3.1 Model learning

It is a regression task to predict the disease incidence
and disease index. To optimize the parameter 6 in the model
fo(+), a loss function supporting regression task is required to
implement data-driven training process using the dataset D =
{(Xiydli = 1,---
model to simultaneously output predictions at different quantiles

,n}. The quantile regression loss allows the

and thus generate probabilistic forecasting in low computation cost.
Formally, by jointly minimizing the quantile losses, the optimal
parameters 6* is solved by training the parameterized network
using D:

0* = argmin £(D, fp(-)), (11)
0

D, fo(-) =

‘L'f n
mz Z Z ZLq(yQ(% k.j), yi(g, k. ))),

q€Q (X;,yi)eD k=1 j=1

(12)

(13)

Lg(x1, x2) = max(q(xz — x1), (1 — q)(x1 — x2)),

where Q = {0.1,0.5,0.9}, £(-, -) indicates the total loss, and Lq(-, 4)
is the quantile regression loss function (Cai, 2002). y; = fp(X;) is
the predict result for X;. y/(g, k, j) denotes the g-quantile prediction
for the j-th target variable on the future ¢t + k day. yi(q, k, ) is its
corresponding ground-truth.

3.3.2 Model inference and performance
evaluation

3.3.2.1 Probatilistic predictions

Let fp«(-) indicates the learned network model disabling the
Dropout layers, for a test sample X, the prediction y' = fy=(X)
is a three-dimensional matrix y € R"™> %™ It indicates the
predicted values of n,, target variables in the future 7y days for
ng quantiles. For notational convenience, by omitting k and j,
we directly denote (g, k,j) as y,, which indicates the g-quantile
prediction value of the j-th target variable in the future k-th
day. Namely, the values y;,, s and y4 individually indicate
the predicted values at the quantiles of 0.1, 0.5 and 0.9. The
value y; - indicates the point prediction, which is approximately
equivalent to the prediction of model driven by the Mean Absolute
Error (MAE) loss (Cai, 2002). The interval [yg,,5,] can be
thought as the confidence interval [yr, yu] as shown by the overall
architecture in Figure 3. If the interval is large, the uncertainty of
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the point prediction yj 5 is high and the prediction result is with
low reliability.

3.3.2.2 Performance metrics

For forecasting the diseases, it is important to correctly predict
the increasing or decreasing trend of disease progression and point-
wise anomalies are less consequential. On the other hand, the low
outlier of prediction is also significant because the negative impact
of underestimating the disease progression is far greater than
that of overestimating it. Based on the above analysis, the robust
and outlier-insensitive Mean Absolute Error (MAE) is adopted to
evaluate the model performance on Dy using the g = 0.5 quantile
output (point prediction):

nr ¥ Nm

MAE= —— 3 3 S gk - gkl (4)

nr T n
TSm0 =1 =1

For the performance on the low outlier of prediction, the g-risk
at g = 0.1 is adopted:

23" Lyi(a ko) (g ko)

q-Risk = (15)

nr
AN )]
i=1

Here, nt is the number of samples in Dy yi(q, k, ), yi(q, k. §))
and Lq(~, -) are same to Equations 12, 13. When fixing k or j, the
MAE and g-Risk on a certain day or for a certain disease metric can
also be evaluated. For notational convenience, the g-Risk at ¢ = 0.1
is denoted as P10 in the following experiment results.

3.3.2.3 Reliability of model

The Monte Carlo Dropout-based Bayesian inference (Xiao
et al., 2024) is used to estimate the uncertainty of model by the
Dropout layers as shown by the overall architecture in Figure 3.
Based on the solved model fy«(-), the Dropout operations are
repeatedly conducted for n, times of sampling parameters from the
distribution of model parameter 6, then the n, models, denoted
asfgl*(-), e ,fg;«r(~), are obtained. Let X, - - -
Dyest, the model uncertainty Var(y) for the learned model y =
fo+(X) is defined:

, X is a subset from

1 N 1 ny 5 1 ny .
Var(y) = = Z(ﬁ D o () — P Y for X, (16)
i=1 j=1 j=1

The previous researches (Kendall and Gal, 2017) proved that
the uncertainty is medium when Var(y) falls in [0.01,0.1]. This
shows that the model is reliable for such samples because the tested
samples and training samples have the similar distribution. When
Var(y) is higher than 0.1, it means that the input samples are
unusual and the model is unreliable. It is important to estimate the
model uncertainty and reliability when the model is new deployed
or when the model is updated by new training data.

4 Experiment analysis

In this part, the experiment settings are firstly described in
detail. Then, comparative experiments between different methods

Frontiersin Big Data

10.3389/fdata.2025.1705587

TABLE 2 Configuration of model hyperparameters and settings of
hyperparameters in training process.

Hyperparameter  Optimal Description
value

n,- state size 60 Hidden state size in networks.

T4- Max history days 10 Sequence-to-sequence encoding
length.

7¢- Max forecast days 3 Sequence-to-sequence decoding
length.

p-Dropout rate 0.3 In the Dropout layers.

ny-Number of heads 4 Self-attention in Equation 7.

Batch size 64 Number of samples input in an
Epoch.

Learning rate 0.001 A parameter of optimizer.

Max gradient norm 0.01 Avoid exploding gradients in
training.

Optimizer AdamOptimizer | Algorithm of updating
parameters.

The top six rows are model hyperparameters. The others are hyperparameters for training.

are conducted to verify the proposed forecasting method by
evaluating the performances of MAE and P10 metrics. Further, we
conduct an ablation study to analyze the modules in the model
fo(-) and the independent variables in model input so that their
respective contributions to forecasting accuracy are demonstrated.

4.1 Experiment settings

4.1.1 Data settings

During data preparation, for two discrete variables of survey
year and sampling date (time index), considering their continuous
variation, we converted them to real-valued representations by the
min-max normalization. For the other discrete variables in Table 1,
we took them as categorical variables. For the continuous variables
except for target variables, the z-score normalization was applied
across all time-series entities. After the above data preprocessing,
the collected dataset is randomly divided into three groups: training
set Dyrain for model learning, validation set D,,; for hyperparameter
tuning and test set Dy for performance evaluation according to
the ratio of (7:1:2).

4.1.2 Model configuration and training settings
To better match the problem’s complexity, several key
hyperparameters of model fy(-) must be determined, including
the dimension of low-level feature encoding, the encoder/decoder
lengths in the sequence-to-sequence architecture, the hidden state
size, and the Dropout rate. Moreover, in the process of training
fo(-), to achieve the optimal fy«(-), we need to set the other
hyperparameters, e.g. the Optimizer, the learning rate, the batch
size etc. This work adopted the random search method to set
the hyperparameters’ values by evaluating performances on D,.
The optimal settings of hyperparameters are shown in Table 2.
For the other compared methods, the related hyperparemeters are
set according to the corresponding literatures. Pytorch forecasting
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package (see text footnote 1) is adopted to design the model
and conduct experimental analysis. The models are trained and
evaluated on the GPU of Nvidia RTX 4090.

4.2 Comparative experiments

To validate the proposed forecast method, we compare ours
with the previous popular approaches for forecasting crop disease
risks. The compared models consist of two categories: the canonical
models and the NN-based models. For the canonical models, we
mainly consider two baselines: the Linear Regression (LR) and
the kernelized non-linear Support Vector Regression (SVR). LR
was even used to predict the risks of rust Cercospora and tobacco
Caterpillar (Patel et al., 2020). SVR is popular in forecasting disease
risks (Fenu and Malloci, 2021), e.g. forecasting wildfire disease in
Caietal. (2019). For the NN-based models, Multi-Layer Perceptron
(MLP) (Tammina et al., 2024), CNN-LSTM (Wang et al., 2024;
Chen et al., 2025), and LSTM-Attention (Chen et al., 2024) are
compared. More details are described as follows:

LR: all available information at each time-step and static
management information were concatenated as one total
vector as the input of the linear regression with L
regularization. Multi-quantile regression loss was used to drive
the model learning. For each horizon/quantile output, an
individual set of parameters were learned (Patel et al., 2020).
SVR: the above concatenated vector serves as the SVR’s input.
The Radial Basis Function (RBF) kernel was employed to
enhance the nonlinear modeling capability (Fenu and Malloci,
2021).

MLP: a two-layered neural network with the ReLU units was
constructed to predict multi-quantile outputs in the future
time-steps (Tammina et al., 2024). Its input was same to the
above setting in LR and SVR.

CNN-LSTM: according to the network architectures for
forecasting cucumber downy mildew disease (Wang et al.,
2024) and tobacco diseases (Chen et al., 2025), a CNN is used
to excavate the features between adjacent time-steps for single
variable and the integrated features across multiple variables.
Then a LSTM layer is stacked to further develop the useful
features across time-steps.

LSTM-attention: according to the time-series forecasting
model for insect pests in tea gardens (Chen et al., 2024),
attention blocks inspired by the self-attention mechanism
in the Transformer network are embedded between LSTM
encoding and encoding blocks to distill the long-distance
temporal dependences, which is helpful to capture the useful
features on specific time-steps.

In this experiment, we simulated the real-world application
scenarios where recent 5-day past observations of disease metrics
were masked by RPM in model learning and inference. To achieve
the robust evaluation of performances, splitting Dygin, Dygr and
Dies from the original D were repeatedly conducted multiple times,
five times of evaluations on them were averaged to report the
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final MAE and P10. For fair comparison, for other approaches,
the multi-quantile regression loss was also used to train them. The
optimal hyper-parameters for different models are experimentally
determined on D, ;.

Table 3 shows the forecast performances (MAE and P10) of
disease incidence and disease index for two diseases. Obviously,
our model significantly outperforms the other models. For instance,
in forecasting the disease incidence of black shank, for the
comprehensive performance metrics of Avg. MAE and Avg.
P10, our model achieves a 16.43% reduction on MAE and a
14.97% reduction on P10 g-risk compared to the baseline LR
model. Compared to the suboptimal model (LSTM-Attention),
our model respectively reduces MAE by 5.93% and P10 by
4.69%. In forecasting the disease index of black shank, compared
to the LR and LSTM-Attention models, 15.94% reduction and
4.79% reduction on Avg. MAE are individually achieved, and
14.56% reduction and 3.35% reduction on Avg. P10 are obtained
respectively. For the black root rot, the similar performance
improvements are achieved. In summary, all contrastive results
demonstrate that our model achieves significantly higher accuracy
in predicting both disease incidence and disease index for the
upcoming 3-day period.

By further contrastive analysis on the MAE and P10, we
systematically examine the underlying factors contributing to
the divergent prediction performances among models in Table 3.
Firstly, the LR model is the simple linear model and it achieves
the lowest prediction performance because the relation between
the growing conditions of tobacco plants and the disease severity
is intricately non-linear. It is difficult for a linear model to
accurately depict such relation. Subsequently, the second-tier
models comprise SVR and MLP, which improve the performance
by about 5% compared to the LR. The improvement mainly
comes from their non-linear expressive capability. However, the
improvements are limited because the variations across time-
steps cannot be effectively modeled in them. The remaining
comparable models using complex hybrid architectures, i.e. CNN-
LSTM, LSTM-Attention and ours, fall in the time-series forecast
models. Compared to the CNN-LSTM and LSTM-Attention, our
performance improvement mainly comes from multiple factors: (1)
Low-level adaptive variable selection and fusion; (2) Middle and
high-level feature representations including short and long-range
temporal dependency modeling; (3) multi-level fusion of static and
time-series variables; (4) Random Period Mask in training for better
addressing data missing of disease records, which will be further
discussed in the last Section.

To delve deeper, we compare ours with CNN-LSTM and LSTM-
Attention to analyze the model capability and robustness across
prediction horizons, disease categories, different forecast targets
by multi-perspective investigation of their results in Table 3. By
comparing MAEs or P10s along the 1-, 2-, and 3-day ahead
predictions for each model, the accuracy degradation for horizon-
dependent prediction is available for all the models. But the
degradation for ours is much slower than the other two models.
For example, for the MAE of predicted disease incidence for
black shank, by comparing 3- and 1-day ahead predictions, the
degradations of 11.9% for ours and 18.8% for LSTM-Attention
are individually obtained. The lower MAE or P10 g-risk together
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TABLE 3 Prediction performances (MAEs and P10s) of disease incidence (%) and disease index (%) for different forecast methods on two diseases.

Diseases Methods 1-day 2-day 3-day Avg. 1-day 2-day 3-day Avg.
ahead ahead ahead MAE ahead ahead ahead 0]
MAE MAE MAE 0] P10 0]

Prediction performances of disease incidence
Black shank LR 0.1056 0.1114 0.1243 0.1138 0.0423 0.0487 0.0594 0.0501
SVR 0.0997 0.1041 0.1166 0.1068 0.0401 0.0462 0.0564 0.0476
MLP 0.1005 0.1058 0.1193 0.1085 0.0401 0.0466 0.0569 0.0479
CNN-LSTM 0.0954 0.0998 0.1118 0.1023 0.0378 0.0442 0.0537 0.0452
LSTM-Attention 0.0939 0.0979 0.1116 0.1011 0.0374 0.0440 0.0525 0.0447
PHTENet-RPM 0.0913 0.0917 0.1022 0.0951 0.0361 0.0420 0.0496 0.0426
Black root rot LR 0.0873 0.0965 0.1047 0.0962 0.0374 0.0431 0.0509 0.0438
SVR 0.0821 0.0897 0.0978 0.0899 0.0353 0.0407 0.0482 0.0414
MLP 0.0827 0.0913 0.1001 0.0914 0.0353 0.0411 0.0486 0.0416
CNN-LSTM 0.0790 0.0867 0.0943 0.0867 0.0335 0.0392 0.0461 0.0396
LSTM-Attention 0.0779 0.0851 0.0943 0.0858 0.0332 0.0390 0.0452 0.0391
PHTFNet-RPM 0.0761 0.0803 0.0870 0.0811 0.0322 0.0375 0.0430 0.0375

Prediction performances of disease index

Black shank LR 0.0764 0.0813 0.0908 0.0828 0.0316 0.0362 0.0435 0.0371
SVR 0.0718 0.0756 0.0848 0.0774 0.0298 0.0342 0.0412 0.0351
MLP 0.0722 0.0767 0.0867 0.0785 0.0298 0.0344 0.0414 0.0352
CNN-LSTM 0.0688 0.0727 0.0815 0.0743 0.0282 0.0328 0.0392 0.0334
LSTM-Attention 0.0675 0.0709 0.0811 0.0731 0.0278 0.0325 0.0382 0.0328
PHTFNet-RPM 0.0663 0.0673 0.0751 0.0696 0.0271 0.0314 0.0365 0.0317
Black root rot LR 0.0373 0.0392 0.0445 0.0403 0.0157 0.0174 0.0216 0.0182
SVR 0.0348 0.0361 0.0412 0.0374 0.0147 0.0163 0.0203 0.0171
MLP 0.0353 0.0371 0.0426 0.0383 0.0148 0.0166 0.0206 0.0173
CNN-LSTM 0.0337 0.0352 0.0405 0.0363 0.0141 0.0158 0.0195 0.0165
LSTM-Attention 0.0333 0.0346 0.0401 0.0360 0.0139 0.0159 0.0192 0.0163
PHTFNet-RPM 0.0328 0.0330 0.0374 0.0344 0.0136 0.0153 0.0184 0.0158

The smaller the value, the better. The Avg. MAE and Avg. P10 mean that the performance is evaluated across all forecasting time-steps. The MAEs are small because the disease incidences are

low in most years. Bold values indicate the best value across different models.

with the slower degradation along forecast horizon proves the
superior modeling capability of fy+(-). Namely, ours can extract
effective time-step-wise features from daily weather factors and
planting management information, better model the temporal
dependent relations between time steps, including short-range and
long-range ones.

Finally, we discuss the model robustness and reliability by
quantizing the model uncertainty and analyzing the g-risk P10.
To estimate the model uncertainty, 20% of samples in Dy
are randomly selected and Var(y) is computed according to
Equation 16. According to the previous researches (Kendall and
Gal, 2017), the evaluated Var(y) = 0.028 shows the uncertainty
mainly comes from the aleatoric uncertainty (data noises), rather
than the epistemic uncertainty (underperforming model). This
validates the reliability of our model. In addition, for a test
sample X, when evaluating its prediction target y' at a time
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step, a confidence interval [y;,,y;,] can be obtained at the
same time, which means P(y,; < y =< o) 0.8
for the ground truth y. Both the predicted confidence interval
(01> 0] and the relative position of y' in the interval exhibit
the reliability of predicted results. The narrower the predicted

interval and the closer the forecast value is to the midpoint of
the interval, the more reliable the predicted result. Conversely,
wider intervals and values farther from the center indicate lower
reliability. This allows agronomists to make informed management
decisions based on this predictive data. Especially, by investigating
the results of g-risk P10 (g 0.1) in Table 3, our model
achieves the lowest g-risk compared to the other models. This

shows that our model can effectively control the lower tail
risk. In summary, the above experimental results verify that
our model is reliable when deploying it to forecast the tobacco
root diseases.
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FIGURE 4
Analysis on predictive trends of the disease incidences and disease indices at the monitoring location (Yaoan). The horizontal axis represents the
date. GT, ground truth; PV, predicted value; UB, upper bound, predicted g-quantile with g = 0.9; LB, lower bound, predicted q-quantile with g = 0.1.

4.3 Model analysis and discussion

In this part, we firstly conduct visualization analysis, for
instance, executing rolling prediction and plotting the long-
range predictive results for visual inspection of prediction
efficacy and investigating whether accurately predict the increasing
or decreasing trends of disease progression. Then, ablation
experiments are designed to analyze the roles of key modules in
the network model fy(-) or contributions of different observed
variables. Finally, temporal feature patterns are inspected to discuss
what historical events or information contribute more to accurately
forecasting different diseases.

4.3.1 Visualization of predictive disease
progression trend

In forecasting tobacco diseases, it is very difficult to accurately
predict daily disease incidence or disease index in the future
days due to the complicated disease progression caused by the
varying growth conditions and manual managements. From the
viewpoint of disease management, monitoring disease severity
progression trends (increase/decrease) demonstrates greater
clinical significance compared to daily disease index tracking.
Therefore, we design an experiment to investigate the model’s
capability in predicting the progression trend of diseases.

In this experiment, for each disease, we randomly select a time-
series entity in a monitoring location, which contains daily weather
data, disease records (disease incidence and disease index) and
management information in the total disease progression period.
Then, the model fy«(-) is used to conduct rolling prediction and
generate the total predictive progression trend. The predictive

process proceeds iteratively as follows: Observations from the
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start date (e.g. May 10) to May 19 are used to predict the target
value on May 20; subsequently, observations from May 11 to
May 20 predict the target value on May 21. This sliding-window
forecasting scheme is executed iteratively until all target values are
generated, thereby constructing a complete predictive trend. The
settings of model learning and inference are same to the previous
comparative experiments.

To better inspect the model prediction capability in predicting
disease progression trend, the multi-quantile outputs are conducted
to predict the target value y;. together with the upper limit
Yoo and the lower limit y, for better inspecting whether the
predictive interval covers the ground truth. Figure 4 shows the
rolling predictive trends (Left-disease incidences, Right-disease
indices) for black shank in 2022 and black root rot in 2017 at Yaoan.
The blue and red solid lines respectively denote the ground truths
y and the predictive values y; 5. The upper and lower dashed lines
individually indicate the predictive y; 4 and y; . The grass green
area indicates the predictive confidence interval.

Firstly, by inspecting the incidences of two diseases on the left
in Figure 4, the predictive target values (red solid lines) lightly
oscillate around the ground truth values (blue solid lines). This
indicates that our model can predict the disease incidences with
relatively small errors in most cases. Moreover, the total variation
(increase or decrease) trends of red solid lines are similar to the
blue solid lines. This proves that our model can predict the overall
disease progression trend. Especially, the predictive confidence
interval, i.e. the grass green area, most covers the ground truth
(blue solid lines) along the time-step. It can provides users with
the reliable support information of disease progression even if the
point prediction errors occur. Similar conclusions can be drawn
on the disease indices on the right in Figure 4. Overall, these
results demonstrate our model’s fundamental capabilities of trend
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TABLE 4 Prediction performance (Avg. MAE ) of disease incidence (%) for two diseases in the different training and test configurations.

Training setting Disease category No mask 1-day mask  3-day mask 5-day mask  10-day mask
Without RPM Black shank 0.0906 0.0964 0.1047 0.1196 0.1653

Black root rot 0.0771 0.0827 0.0900 0.1027 0.1423
With RPM Black shank 0.0903 0.0912 0.0929 0.0951 0.1127

Black root rot 0.0766 0.0774 0.0789 0.0811 0.0959

The smaller the value, the higher the prediction accuracy. The test setting “No mask” indicates full past observation is available. In the test setting “10-day mask,” it means that only weather

factors and management information (no past observation of disease metrics) are used for forecasting.

prediction and reliability estimate (predictive confidence interval),
which is enough for management of diseases.

4.3.2 Analysis on independent variable in model
input

In this part, in order to provide granular insights into our
prediction model, we designed controlled ablation experiments
to investigate important determinants supporting the model’s
prediction efficacy from the following perspectives: independent
variables, embedded core modules, and critical training steps.

4.3.2.1 Contribution of historical observations of target
variables

The past observations are crucial to forecast. In our forecast
model, the historical records of weather variables are easily
accessible. However, the past observations of target variables, i.e.
the disease incidence and the disease index, involve high acquisition
costs. In practice, the records of disease metrics may be non-
existent or collected at sparse intervals (e.g., 5-day sampling
frequency). In our model, a RPM module was designed to simulate
and handle this case. In order to verify its roles, we designed an
ablation study as follows.

In this investigation, the different experimental settings,
ie., training and test configurations, are combined to conduct
experiments to report results. The training configurations include
two scenarios: without RPM and with RPM. When the RPM is
disabled (without RPM), all observations of disease incidence and
disease index in the past time window are available for each sample.
When enabling the RPM (with RPM), the observations in the
lookback period (e.g., 1-, 3-, 5-, or 10-day relative to the current
date) are randomly masked for each sample. In the training process,
a model was optimized using the samples with all past observations
of disease metrics, and then the model was fine-tuned by the
samples with the randomly-masked past observations. In the test,
there are five configurations (rightmost 5 columns in Table 4): full
past disease observations (no mask) are available or recent several-
day observations are masked (unavailable) for each test sample.
It is noted that past observations of weather variables are always
available and only past observations of disease incidence and index
are randomly masked.

Table 4 shows the comparison MAE results of disease
incidences for two diseases in different experimental settings.
Firstly, by inspection of results in the setting of “without RPM”,
we find that the prediction performance in test degrades sharply
as the absence of past observations increases when RPM is
disabled during training. For instance, for the black shank, the
MAE increases from 0.0906 to 0.1653, with 82.47% degradation.
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This indicates that the model learned in the setting of “without
RPM” is non-robust to the absence of past observations of disease
metrics. When deployed in real-world applications, the absence
of partial historical observations of diseases may lead to the
drastically-degraded prediction accuracy. The primary cause of
this phenomenon is analyzed as follows: During training, when
full historical observations of disease incidences are available,
the model becomes overly reliant on past disease incidence
values (especially for the recent observations) to predict future
disease incidences. However, when historical values of disease
incidence are missing in test, this reliance will lead to significant
prediction bias.

When the RPM is adopted during training, the above
performance degradation caused by the absence of historical
disease metrics is significantly alleviated. For instance, for black
shank, the 24.83% degradation for “with RPM” is far lower the
82.47% degradation for “without RPM”. This shows the model
become robust to missing past observations of disease incidence.
This improvement can be explained as follows: The RPM-enabled
training exposes the model to diverse samples missing different-
period observations of disease incidence. Through this process,
the model learns to leverage complete observations of weather
variables and past partial observations of disease incidence (even
no observations) to predict future disease incidence. In this process,
the informative features in the past observations of weather
variables will be fully explored and leveraged, and thus the model’s
capability and robustness are enhanced.

In practical applications, the latest 5-day disease records are
frequently unavailable in forecasting. In this case (corresponding to
“5-day Mask”), for two diseases, the model using RPM individually
achieves 20.48% and 21.03% lower MAE comparing with one
without RPM. Especially, even if no historical disease records are
available (corresponding to “10-day Mask”), it can only leverage
the time-varying weather data and the static management variables
to generate relatively reliable forecasting results, e.g., the MAEs of
0.1127 and 0.0959. In summary, these results prove that the RPM
enable model learning to explore helpful information from growth
conditions and it improves the robustness to the absence of disease
records in forecasting.

4.3.2.2 Roles of condition-configurable management
factors

In our forecast model, besides time-varying independent
variables, the static covariates representing cultivation management
information are also significant factors for forecast. Among these
static covariates, the disease category, survey year and location
are mandatory variables. The others, such as variety, rotation
crops, seeding methods, management level and historical disease
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level in Table 1, are optional (condition-configurable) variables.
In this experiment, we conduct an ablation study to analyse the
individual contribution of five optional covariates to prediction
accuracy. For simplicity, we directly evaluated their contributions
by comparing MAEs in some specific test configurations. The
baseline configuration excludes all optional covariates. To highlight
the contributions of management factors, for the time-varying
variables, only the weather data is adopted.

The results in Figure 5 demonstrate the individual contribution
of each optional covariate for two diseases. Two largest MAE
reductions relative to the baseline are individually achieved
by the management level or the historical disease level. This
demonstrates their
forecast performance. Through similar comparative analysis, we

substantial contributions to enhancing
identified that the variety observably enhances the prediction
accuracy for black shank, but shows limited utility for black
root rot. This primarily stems from that our model learns
the knowledge that disease-resistant varieties suppress black
shank to some extent. Conversely, both seedlings and rotation
crops demonstrated a tiny contribution for two diseases. This
is mainly because there remains substantial uncertainty in
their association with disease risks, making it challenging for
models to extract statistically significant patterns from the
data. Finally, two right red bars show that more informative
features can be explored for two diseases when integrating all
optional covariates.

4.3.2.3 Cross-temporal analysis on weather factors

Besides cultivation management, weather conditions serve
as deterministic factors in both the initiation and exacerbation
of disease epidemics. In this experiment, we analyze how the
model utilize historical observations of weather variables to predict
disease risk and progression trends, including initial outbreak,
exacerbation and mitigation. To this end, a sample-wise inverse
inference and analysis approach was conducted to determine which
weather variables and what cross-temporal variations principally
contribute to the prediction result. Especially, to highlight the
contributions of weather variables to prediction results, in this
experiment, observations of disease metrics were excluded; only
weather data were used for forecasting.

The interpretable feature extraction in our model is employed
to implement the inverse inference and analysis approach.

Frontiersin Big Data

The operational procedures are described as follows: (1) Some
representative samples characterizing the initial outbreak,
exacerbation, and mitigation phases of a disease were selected.
(2) An sample was fed into the model to conduct prediction and
evaluate what contribute to the predicted result by examining
the feature derivation mechanism. Firstly, in the GTFF module,
according to the method quantizing the importance of time-step
(Lim et al., 2021), we evaluated the attention weights in Equation 7
to compute a time-step-wise weight ;. A 10-dimensional vector
[ag,- -+ ,a10] was obtained for past 10 days. Then, in each time-
step, a 6-dimensional weight vector [wi,---,ws] for weather
variables can be extracted from the model as shown by the VSEN
in Figure 3. Finally, by combining two kinds of weight vectors,
we can obtain a weight matrix M € R®*!0 cross the weather
dimension and temporal dimension. After normalization, its
heatmap was employed to express the cross-temporal importance
of weather variables.

Figure 6 presents analytical results under three characteristic
scenarios: initial disease outbreak, disease exacerbation and disease
mitigation for black shank. As shown by the left chart in
Figure 6, the multi-day rainfall around May 25th, the following
conditions such as high temperature and high humidity, and the
bad ventilating are the main inducing factors for the occurrence
of black shank. Similarly, we can find that the high daily-
average temperature and the suitable humidity contribute much
to the disease exacerbation as shown by the middle chart in
Figure 6. However, after analyzing more than 20 samples with
the decreasing disease incidences, we did not find the common
statistical characteristics of weather variables for disease mitigation.
Only a few samples prove that the multi-day low-humidity and
long sunshine duration suppress the pathogenic bacteria, as shown
by the right chart in Figure 6. The main reason is because the
disease mitigation more relies on the manual management control,
e.g., spaying farm chemicals. The interaction between pathogen
dissemination and pesticide suppression is an intricate and highly
uncertain process.

5 Discussion

The forecast model’s capability and reliability level mainly
depends on the model complexity and input data quality.
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Analysis on feature patterns of time-series weather variables in predicting the disease incidence of black shank at Lufeng in 2004. GT-Ground Truth for
disease incidence (blue solid line); PV-Predicted Values (red solid line). For the heatmap, darker red indicates that the historical observation of variable
has a greater contribution to disease development events (disease outbreak, disease exacerbation and disease mitigation) in the light purple regions.
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In disease management, the three-component system of host
susceptibility, pathogen pressure and environmental favorability
governs infection risks as shown in Figure 7. To accurately forecast
disease risks, we should model the relation between disease
propagation and the independent variables in each component.
Meanwhile, the model should be able to characterize the interaction
between three components. Next, we will discuss our model in
the context of disease triangle framework (Scholthof, 2007), from
the multiple aspects, i.e., model input, model complexity and
capability, and computational cost.

Firstly, the flexible and hybrid-structure model input X

{Xm, Xr, Xs} integrates multi-aspect factors of pathogen, host
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and environment as show in Figure 7. Our data-driven time-
series forecasting model well describes the dynamic characteristics
of independent variables in three components and learn how
different factors affect disease progress. When more helpful
variables are measured and added in the model input, the
forecasting accuracy can be further improved. Moreover, our
PHFTNet-RPM has scalable model complexity and capability.
Relying on the condition-configurable input and the model’s
inner modules with adaptive expressive-capability, the model
can dynamically adjust prediction functionality in response to
diverse and complex inputs. Especially, when the dimension
of model input and the data scale increase, the models
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capacity can be scaled via hyperparameter tuning, for example,
enhancing the hidden state size n,. However, incorporating
field management variables into the model or enhancing model
complexity through parameter tuning will inevitably lead to
increased computational costs.

In comparison with the existing disease forecasting
methods (Wang et al., 2024; Chen et al.,, 2024, 2025), the key
improvements of our method are summarized as follows: (1)
Field management variables, key factors in disease development,
are integrated to improve feature learning in the forecasting
model. (2) The RPM module is tailored to handle incomplete
or delayed disease data. It effectively prevents performance
degradation during testing when disease data is missing.
(3) A well-designed PHTFNet-RPM can effectively integrate
heterogeneous inputs and learn cross-variable, cross-temporal
(4) The
incorporated in the model. It not only enhances the model’s

feature representations. uncertainty estimate is
robustness but also helps agronomists make scientifically-informed

management decisions.

6 Conclusion

In conclusion, this paper proposed a solution for forecasting
risks of tobacco root diseases such as black shank and black
root rot. The extensive experiments prove this solution is
effective and reliable. The core of solution relies on the
proposed PHTENet-RPM forecast model based on deep
neural networks. The carefully-designed internal modules
and scalable network architecture endow the model with a
flexible and powerful representational capability. Through
time-series feature learning, it can acquire knowledge from
training data such as historical weather records, disease
observations, and field management information, achieving
accurate prediction of disease risk trends. Moreover, thanks
to its flexible hybrid-structured input and adaptive model
expressiveness, users can configure the prediction model according
to the availability of field management data and historical disease
adaptive
forecasting. In fact, our model can even achieve relatively

observations, allowing for condition-configurable
accurate disease trend predictions based solely on historical
weather data.

Furthermore, to enhance the practicality of the model, the
uncertainty estimation based on probatilistic prediction and
Bayesian learning theories is introduced into both model design
and training. It allows for direct evaluation of confidence intervals
in predictions, thereby improving the trustworthiness of prediction
results. Moreover, during real-world deployment and application,
the reliability of model can be assessed by randomly selecting
samples from specific scenarios, which helps improve its robustness
across various real-world conditions. Specifically, our disease
forecasting approach is based on a data-driven learning model
with scalable representational capability. If relevant training data
is available, it can be extended not only to forecast other
tobacco diseases, but even to predict diseases for other crops
as well.
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In the future, we will continue research efforts focusing on
improving the accuracy of disease forecasting and expanding
the application scenarios of the model: (1) Integrate future
weather forecast data into the models input to improve prediction
accuracy by providing more available helpful information.
(2) Deploy the model in real-world settings for testing and
evaluation, and collect more training data to fine-tune the
model with newly-acquired datasets, continuously enhancing
Gather detailed
environmental and management data from modern tobacco

its reliability and practicality. (3) more
farms, e.g. time-continuous water-fertilizer status and pesticide
usage logs in tobacco field growth stage, and incorporate
them into the model input and train the model, enabling it
to learn forecasting knowledge tailored for the small-scale,
high-reliability scenarios.
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