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M-PSGP: a momentum-based
proximal scaled gradient
projection algorithm for
nonsmooth optimization with
application to image deblurring

Kexin Ning, Qingguo Lü* and Xiaofeng Liao*

College of Computer Science, Chongqing University, Chongqing, China

In this study, we focus on investigating a nonsmooth convex optimization
problem involving the l1-norm under a non-negative constraint, with the
goal of developing an inverse-problem solver for image deblurring. Research
focused on solving this problem has garnered extensive attention and has
had a significant impact on the field of image processing. However, existing
optimization algorithms often suffer from overfitting and slow convergence,
particularly when working with ill-conditioned data or noise. To address
these challenges, we propose a momentum-based proximal scaled gradient
projection (M-PSGP) algorithm. The M-PSGP algorithm, which is based on the
proximal operator and scaled gradient projection (SGP) algorithm, integrates an
improved Barzilai-Borwein-like step-size selection rule and a unified momentum
acceleration framework to achieve a balance between performance optimization
and convergence rate. Numerical experiments demonstrate the superiority of
the M-PSGP algorithm over several seminal algorithms in image deblurring tasks,
highlighting the significance of our improved step-size strategy and momentum-
acceleration framework in enhancing convergence properties.

KEYWORDS

momentum acceleration, adaptive step-size, Barzilai–Borwein rules, proximal gradient
descent, nonsmooth constrained optimization

1 Introduction

In the field of image deblurring, the solution of inverse problems can usually be
attributed to the solution of constrained optimization problems; thus, the development
of optimization solvers for inverse problems with constraints has been a subject of intense
research interest. Significantly, the constrained optimization problems arising from image
restoration tasks, i.e., denoising, inpainting, and deblurring, can be defined as follows
(Bonettini et al., 2008):

min f (x), s.t. x ∈ S, (1)

where f (x) is a convex function measuring the divergence between the restored and
measured data. Due to the ill-posedness of the image restoration problem, a composite
regularized function, given by the sum of a fit-to-data function and a penalty function,
can be considered to achieve a trade-off between data fidelity and iteration convergence
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(Tang et al., 2023). Due to the sparsity of image issues, the penalty
term generally uses a nonsmooth function, i.e., the l1-norm; then,
the regularized optimization problem can be formed as (Malitsky
and Mishchenko, 2024):

min f (x) + g(x), s.t. x ∈ S, (2)

where f (x) is the discrepancy term, which could be smooth, and
g(x) is the nonsmooth penalty term. To address this regularized
and nonsmooth optimization problem, the proximal gradient
method (PGM) is regarded as a robust and efficient approach.
PGM is particularly effective in large-scale and high-dimensional
composite optimization problems, with wide applications in signal
processing (Wang, 2025) and image restoration (Liu et al., 2019).
To address the composite optimization problem (Equation 2), the
PGM combines gradient descent with a proximal operator on the
penalty term, as shown as follows (Parikh and Boyd, 2014):

yk = proxαkg(xk − αk∇f (xk)),

where αk > 0 is the step size for gradient descent, and the proximal
operator for the penalty function g is defined as follows:

proxαkg(x) = arg min
z∈RN

αkg(z) + 1
2
||x − z||2.

By invoking the proximal operator, the PGM effectively manages
non-smooth components and promotes sparse solutions, thus
outperforming traditional gradient-based techniques in non-
smooth optimization contexts (Aravkin et al., 2022). Classically,
the two-step iterative shrinkage thresholding (TwIST) algorithm
extends the PGM by introducing a momentum term that relies
on the two previous iterations, leading to faster convergence
rates for ill-conditioned problems (Bioucas-Dias and Figueiredo,
2007). Thereafter, the fast iterative shrinkage thresholding
(FISTA) algorithm was proposed, which improves the PGM by
incorporating the Nesterov momentum term and an adaptive
step size, thereby accelerating the global convergence rate
(Beck and Teboulle, 2009). Moreover, optimization problems in
practical applications are often constrained by domain-specific
requirements, which motivate the development of the gradient
projection method (GPM) to address constrained optimization
problems (Zhou et al., 2025). For solving Equation 1, the GPM
combines gradient descent with a projection operator, leading to
the following iteration:

yk = �S(xk − αk∇f (xk)),

in which the projection operator of a vector x ∈ R
N onto the region

set S is defined as follows:

�S(x) = arg min
z∈S

1
2
||x − z||2.

The projection operation can achieve minimal computational
expense while restricting the iterative vector onto the feasible set
S. This is evident in the specific case of problem (Equation 2),
i.e., lasso regression and ridge regression, where projection can
be computed in linear time (Maroni et al., 2025). Consequently,

the GPM and its improvements stand as credible schemes to
address image deblurring tasks, thanks to their low per-iteration
computational overhead (Chen et al., 2025).

Through an optimized fusion of PGM and GPM, a scaled
gradient projection (SGP) algorithm was proposed to address the
constrained composite problem (Equation 2) (Bonettini and Prato,
2015). The SGP algorithm introduces a scaling matrix Dk during
the proximal gradient descent; that is,

yk = �S,Dk

[
prox

D−1
k

αkg (xk − αkDk∇f (xk))
]

. (3)

Compared with the FISTA algorithm, SGP demonstrates superior
convergence rates and enhances deblurring performance. Recently,
aiming to accelerate the solution of the composite optimization
method, an optimal accelerated composite optimization (OptISTA)
algorithm to solve Equation 2 was developed, which improves
FISTA by optimizing the step size via a double-function method
and theoretically establishes an exact matching lower bound for
composite optimization problems (Jang et al., 2025). Afterwards,
the improved OptISTA (IOptISTA) algorithm was proposed, which
incorporates a weighting matrix technique and achieves superior
numerical performance in image deblurring tasks (Wang et al.,
2025).

To accelerate convergence during optimization, the Barzilai-
Borwein rules, which serve as adaptive step-size strategies that
determine step sizes without relying on online searches, have
been widely investigated and improved (He et al., 2023). Serving
as an effective and seminal step-size selection strategy, the
Barzilai-Borwein (BB) step-size selection rules have garnered
significant attention, which approximate the Hessian matrix
inverse in a quasi-Newton manner, providing a step size that
can adaptively adjust to the descent direction of the problem,
which leads to faster convergence rates (Barzilai and Borwein,
1988). Recently, in the context of l1-regularized problems, a novel
step-size selection rule within the proximal gradient framework
was proposed, which achieves acceleration by preemptively
identifying the optimal redundant components using the spectral
properties of the BB step size (Crisci et al., 2024). Beyond
step-size improvement, momentum methods provide additional
convergence acceleration (Zhang et al., 2023). Classically, the
Heavy-Ball (HB) algorithm leverages momentum from past
gradients to amplify descent directions, thereby improving
convergence rates in ill-conditioned optimization landscapes
(Polyak, 1964). Afterwards, Nesterov proposed an Accelerated
Gradient (NAG) algorithm, which achieves faster convergence by
calculating the gradient at an extrapolated future position based on
current momentum (Nesterov, 1983). Building upon foundational
momentum techniques, a series of momentum frameworks has
been developed to achieve enhanced convergence properties. In
Yang et al. (2016), a unified framework was developed to implement
a range of momentum acceleration variants by altering related
parameters. Recently, another unified paradigm was proposed,
which features two momentum-based algorithm variants for
decentralized stochastic gradient descent (Du et al., 2024).

Motivated by the effectiveness of the SGP algorithm in
combining PGM and GPM and inspired by acceleration strategies
involving step-size rules and momentum techniques, we focus on
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developing a solver for the constrained l1-regularized optimization
problem, aiming to accelerate convergence while preserving
optimization performance in image deblurring.

The main contributions in this study are summarized below.
We propose a momentum-based proximal scaled gradient

projection (M-PSGP) algorithm that combines the procedure of
the SGP algorithm with a unified momentum framework (UM).
Numerical experiments demonstrate the effectiveness of UM in
stabilizing and accelerating the convergence rate of our algorithm.

• We design a new step-size selection rule BB2∗ and apply it
in the M-PSGP algorithm. The BB2∗ rule can be regarded as an
enhancement of the BB-like step-size rule proposed by Crisci et al.
(2024). By combining it with UM, a dual acceleration effect could
be achieved. Numerical experiments illustrate the superiority of
BB2∗ by comparing it with other rules in terms of accelerating the
convergence rate.

• Compared with other seminal proximal gradient projection
algorithms, the M-PSGP algorithm can accelerate the convergence
rate of l1-regularized optimization problems. Meanwhile, the
M-PSGP algorithm can achieve better performance in image
deblurring tasks, particularly when applied to images generated by
convolving a Gaussian blur with originally astronomical or medical
images and adding Gaussian white noise.

Organization: In Section 2, we describe the constrained
l1-regularized optimization problem by presenting the image
formation and the principle of image deblurring. In Section 3,
we present the SGP algorithm in detail and propose the M-PSGP
algorithm. In Section 4, we perform a convergence analysis for
the M-PSGP algorithm. In Section 5, we conduct a series of
comparative experiments and demonstrate the effectiveness of the
M-PSGP algorithm. In Section 6, our final remarks and future work
are given.

Notation: Throughout the article, x = (x1, · · · , xN )T ∈ R
N is a

vector stacked from the two-dimensional original image X ∈ R
N ,

N = n × n. Similarly, the vector y = (y1, · · · , yN )T ∈ R
N is

stacked from the observed image Y ∈ R
N , and the vector b =

(b1, · · · , bN )T ∈ R
N is stacked from the background additive noise

B ∈ R
N . A ∈ R

N×N is a given matrix modeling the blur effect.
The symbol λ is a regularization coefficient. The symbol ‖x‖1 =∑N

i=1|xi| is the l1-norm of x. ‖x‖ denotes the standard Euclidean
norm for x, ‖x‖D =

√
xTDx indicates the D-norm, where D is

a symmetric positive definite matrix. ∇f (x) is the gradient of the
continuous function f at x, and ∂g(x) is the subdifferential of the
semicontinuous function g at x.

2 Problem description

2.1 Image formation and deblurring
modeling

In this work, we note that the image blur is caused by out-of-
focus blur during detection. Under the assumption that the blur
is uniform across the original image, the blurring process can be
modeled as a convolution process:

Y = A ⊗ X + B,

, where A is the blur kernel, Y is the blurred image, X is the original
image, and B represents background additive noise.

The goal of image deblurring is to recover the original image
X from the observed Y . Due to the extreme ill-conditioning of
A, the original image cannot be directly obtained through matrix
operations. Hence, we employ the Bayesian approach, which uses
prior information about the original object, to model the solution
process of this inverse problem. The Bayes formula provides the
conditional probability of xi given the value yi:

PX(xi|yi) = PY (yi|xi)PX(xi)
PY (yi)

.

Assume that the blur kernel A and the background noise B follow
Gaussian distributions; then, the distribution of blurred pixel values
yi is given by the following:

yi ∼ N(Axi + bi, σ 2),

where σ is the standard deviation of B. Then, the likelihood is
estimated as follows:

PY (y|x) =
N∏

i=1

PY (yi|xi) =
N∏

i=1

1√
2πσ 2

exp
(
− (yi − (Axi + bi))2

2σ 2

)
.

(4)
Assume that X is a Gibbs random field with a distribution:

PX(x) =
N∏

i=1

PX(xi) =
N∏

i=1

1
Z

exp
(−λg(xi)

)
,

where Z is a normalization constant, and g(x) is a given function,
usually called the penalization function. By taking the negative
logarithm of PY (yi|xi)PX(xi) and considering the maximum
estimation of the posterior probability distribution, the image
deblurring can be modeled as an optimization problem of the form:

min F(x) = f (x) + λg(x), (5)

in which f (x) is the simplified negative logarithm of Equation 4
defined as follows:

f (x) =
N∑

i=1

(
yi − (Axi + bi)

)2 . (6)

2.2 Problem formulation

Let S ⊆ R
N be a closed convex set. For arbitrary x ∈ S,

f (x) : S → R is a convex, continuously differentiable function and
g(x) : S → R is a convex and lower semicontinuous function.
Following Equation 5, we consider the constrained optimization
problem as follows:

min F(x) = 1
2
||Ax − y||2 + λ||x||1,

s.t. x ≥ 0,
(7)

in which, under the assumption that the blur kernel and
background noise follow Gaussian distributions, following
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estimation (Equation 4) and its simplified negative logarithm
(Equation 6), we let f (x) be a least squares function and choose the
l1-norm to serve as g(x). Under these conditions, F(x) is convex
and the gradient ∇f (x) = A�(Ax − b), which implies that for any
x, y ∈ S:

∥∥∇f (x) − ∇f (y)
∥∥

2 =
∥∥∥ATA

∥∥∥
2

∥∥x − y
∥∥

2 . (8)

Thus, ∇f (x) is L-Lipschitz continuous with L = ‖A�A‖2.
In the following, we will provide some related definitions and

basic properties.

Definition 1 (Stationary point). Given a closed convex set S ⊆ R
N

and a proper, convex function F : S → R, a point x∗ ∈ S is the
stationary point of F if 0 ∈ ∂F(x∗).

Below, the definition of subdifferential for a general function is
provided.

Definition 2 (Limiting subdifferential). Given a closed convex set
S ⊆ R

N and a convex and lower semicontinuous function g : S →
R, the limiting subdifferential at a point x ∈ S is:

∂g(x) =
{

w ∈ S : ∀z ∈ S, g(z) ≥ g(x) + (z − x)Tw
}

.

In the situation, the subdifferential of g(x) = λ‖x‖1 can be
computed by:

∂(λ‖x‖1) =
{

λsign(x), if x �= 0,
[−λ, λ] , if x = 0.

In our study, the proximal operator is applied based on the
definition 3.

Definition 3 (Proximal operator). Given a closed convex
set S ⊆ R

N and a threshold L > 1, let DL ={
D ∈ RN×N | D > 0, ‖D‖ ≤ L,

∥∥D−1
∥∥ ≤ L

}
, the proximal operator

proxD
αg :S → R

N associated with a non-negative parameter α is
defined as:

proxD−1

αg (x) = arg min
z∈S

[
αg(z) + 1

2
‖x − z‖D

]
. (9)

The Lipschitz continuity property of the operator (Equation 9) is
stated in Lemma 1:

Lemma 1. (Bauschke and Combettes, 2017) If g : S → R is
convex, proper and lower semicontinuous, for any x, y ∈ S, it
satisfies:

‖proxD−1

αg (x) − proxD−1

αg (y)‖ ≤ ‖x − y‖D.

Definition 4 (Projection operator). Given a closed convex
set S ⊆ R

N and a threshold L > 1, let DL ={
D ∈ RN×N | D > 0, ‖D‖ ≤ L,

∥∥D−1
∥∥ ≤ L

}
, the projection

operator �S,D :S → R
N is defined as follows:

�S,D = arg min
z∈S

1
2
||x − z||2D. (10)

The Lipschitz continuity property of the operator (Equation 10) is
stated as Lemma 2:

Lemma 2. (Bonettini et al., 2008) If D ∈ DL and x, y ∈ S, then:

(i)
∥∥�S,D(x) − �S,D(y)

∥∥ ≤ L2 ∥∥x − y
∥∥

(ii)
〈
�S,D(x) − x, �S,D(x) − y

〉 ≤ 0.

Naturally, corresponding to the progress of gradient descent, the
stationary point can be confirmed by the iterative value, as in
Lemma 3:

Lemma 3. (Bonettini and Prato, 2015) A vector x∗ ∈ S is a
stationary point of Equation 7 if and only if

x∗ = �S
[

proxD−1

αλ||·||1 (x∗ − αD∇f (x∗))
]

.

3 Methods

3.1 The SGP algorithm

The SGP algorithm (Bonettini and Prato, 2015) combines the
scaled gradient descent method (Equation 3) with a line search
procedure, resulting in the following iteration:

yk = �S,Dk

[
prox

D−1
k

αkg (xk − αkDk∇f (xk))
]

, (11)

xk+1 = xk + λkdk. (12)

It employs a symmetric positive definite matrix Dk in front of
∇f (xk) during the process of gradient descent, and the entries dk

i
in Dk = diag(dk

1, dk
2, · · · , dk

N ) are defined as:

dk
i = min

{
L, max

{
1
L

, xk
i

}}
, (13)

where L is an appropriate threshold, customarily chosen as the
Lipschitz constant of the objective function. Based on the BB rules,
αk is confirmed as follows:

αBB1
k = sT

k−1D−1
k D−1

k sk−1

sT
k−1D−1

k zk−1
, (14)

αBB2
k = sT

k−1Dkzk−1

zT
k−1DkDkzk−1

, (15)

, where sk−1 = xk − xk−1 and zk−1 = ∇f (xk) − ∇f (xk−1). Further,
the step-size αk in Equation 12 is adaptively alternated based on
αBB1

k or αBB2
k .

Specifically, if the iterate yk obtained from the projection is
identical to the current iterate xk, then xk is recognized as a
stationary point. If yk �= xk, a descent direction is defined as
dk = yk − xk, and it is incorporated into the update procedure
specified in Equation 12, where λk is the step-size for the descent
iteration.
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3.2 The proposed M-PSGP algorithm:
momentum-based proximal scaled
gradient projection algorithm

The update direction of PGM is solely determined by the
negative gradient of the continuous part of the objective function,
which could lead to oscillations during the iteration. The SGP
invokes the scaled matrix Dk before the negative gradient, which
enhances the descent step size but also raises the oscillations. To
address such circumstances, momentum methods can mitigate
oscillations by incorporating a velocity term that averages past
gradients, thereby leveraging inertia to stabilize direction in the
face of perturbations (Xie et al., 2025). Moreover, by leveraging
historical gradient information, the momentum method could
maintain large updates even in low-curvature areas, indicating the
acceleration effect on the convergence rate (Loizou and Richtárik,
2020).

Considering the effects of acceleration and stability on
momentum methods, we integrate a unified momentum
framework, UM (Yang et al., 2016), within SGP, resulting in
the M-PSGP algorithm for the problem (Equation 7). Setting
α > 0, β ∈ [0, 1], and s ≥ 0, the update process of UM is described
as follows:

UM :

⎧⎪⎨
⎪⎩

yk = xk − α∇f (xk),
ys

k = xk − sα∇f (xk),
xk+1 = yk + η(ys

k − ys
k−1).

(16)

• When s = 0, the update is reduced to the HB method:

xk+1 = xk − α∇f (xk) + η(xk − xk−1). (17)

• When s = 1, the update is exactly the form of the NAG
method: {

yk = xk−1 − α∇f (xk−1),
xk+1 = yk + η(yk − yk−1),

(18)

• When s = 1
1−η

, the update of xk+1 is essentially a gradient
method (GM) to achieve acceleration:

xk+1 = xk −
α

1 − η
(∇f (xk) −∇f (xk−1)) + η(xk − xk−1), (19)

By incorporating the UM (Equation 16) into the procedure
(Equations 11, 12), the M-PSGP algorithm is delineated in
Algorithm 1. For clarity, we also provide the exact flow diagram of
Algorithm 1 in Figure 1.

As illustrated in Figure 1, beyond parameter initialization,
the algorithm primarily consists of four key computational
phases, including proximal gradient descent and projection,
momentum acceleration, determining the descent direction, and
the backtracking loop. In the proximal gradient descent and
projection step, the M-PSGP computes a gradient descent step
on the smooth component f (x), then applies the proximal
operator to account for the non-smooth regularizer g(x) in line
6. Subsequently, line 7 applies the projection operator to ensure
constraint satisfaction. In the momentum acceleration step, the
M-PSGP first computes the next intermediate position mk, as
shown in line 10. The calculation of momentum vk is defined as

1: Require: x0 ∈ S, β, θ, η ∈ (0,1), 0 < αmin < αmax, s,
a fixed constant L and a positive integer M.

2: Set k = 1.
3: While k = 1,2,3... do:
4: Choose αk ∈ [αmin,αmax] , Dk ∈ DL.
5: Proximal Gradient Descent and Projection:

6: pk = prox
D−1k
αkg(xk − αkDk∇f(xk))

7: ykp = �S,D(pk)
8: if ykp = xk then stop; xk is a stationary point;
9: Momentum Acceleration:
10: mk = xk − sαkDk∇f(xk)
11: vk = �S,Dk

[
prox

D−1k
αkg(mk − mk−1)

]
12: yk = ykp + ηvk
13: Determine Descent direction:
14: dk = yk − xk
15: Set:
16: wk = 1, fmax = max0≤j≤min(k,M−1)f(xk−j)
17: Backtracking Loop:
18: Compute the non-negative integer wk until:
19: f(xk + βwkdk) ≤ fmax + θβwk∇f(xk)Tdk
20: Compute:
21: xk+1 = xk + βwkdk

Algorithm 1. M-PSGP.

mk − mk−1, and to satisfy the non-negative constraint, it should be
projected as in line 11. The value vk captures the change between
successive intermediate positions during the optimization process.
Thus, in line 12, the M-PSGP incorporates information about the
past gradients into the update step, which helps accelerate and
stabilize convergence toward the stationary point. Here, η is a
hyperparameter that modulates the effect of momentum on the
update direction. Subsequently, the descent direction is formally
defined as the vector difference between the current iterate and
the momentum-corrected candidate point in line 14. Finally, a
backtracking line search loop in line 19 is executed to find
an appropriate step size along this direction, which recalls the
generalized non-monotone Armijo-type line search proposed by
Zhang (2010).

In Figure 2, we present a schematic diagram of a single
iteration for both the M-PSGP and SGP algorithms. To provide
a more intuitive explanation, we present Table 1, which specifies
the definitions of all nodes and vectors, along with their
correspondences to the key steps of Algorithm 1. Based on the
explanations provided in Table 1, we can conclude from Figure 2
that, under identical initial conditions, the E node (obtained by
the M-PSGP algorithm) moves closer to the stationary point
of F(x) after one iteration than the F node (obtained by the
SGP algorithm). This observation further verifies, from a vector
operation perspective, the acceleration effect of the M-PSGP
algorithm. Additionally, it should be noted that, for the sake of
clarity and conciseness, we have omitted explicit emphasis on
projection operations, as all vectors are assumed to be constrained
within the feasible domain by default. Likewise, nodes C and vector
M3 are also presented as the results obtained after applying the
proximal operator.
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FIGURE 1

The flow diagram of the Algorithm 1.

3.3 The improved step-size selection rule

In Algorithm 1, line 6 shows the proximal scaled gradient
descent process under projection. Denote tk = αkDk, which
governs descent distance and affects the convergence rate during
the solving process. In M-PSGP, we are committed to enhancing the
selection strategy for the descent parameter tk. The confirmation of
Dk in M-PSGP corresponds to the rule (Equation 13) in SGP, which
implies that an innovative tk is contingent on a novel αk strategy.
In M-PSGP, tailored to the l1-regularized problem (Equation 7), we
propose a step-size rule BB2∗ and a related SS∗ rule to determine
αk, meanwhile, the descent parameter tk is modified. As mentioned
by Crisci et al. (2024), we consider the following partition of the
index set during the iteration:

Jk = {i : xk
i = 0 ∧−∇f (xk

i ) ∈ ∂(λ‖·‖1)(xk
i )}

= {i : xk
i = 0 ∧−∇f (xk

i ) ∈ [−λ, λ]},
Ik = {1, 2, 3, . . . , n} \ Jk,

where i denotes the index of the zero component in xk. By invoking
this partition in Algorithm 1, the iteration is carried out:

xk+1
i =

{
0, i ∈ Jk,

xk
i − βwkαk[∇f (xk

i ) + sign(tk) · λ], i ∈ Ik,

in which tk = xk − αkDk∇f (xk). Naturally, the vector sk can be
separated as:

sk =
[

sJk
sIk

]
=

[
0

−βwkαk[∇f (xk
i ) + sign(tk) · λ]

]
, (20)

and the difference between the corresponding gradients zk can be
reformulated as:

zk =
[

zJk
zIk

]
=

[
AJkIk

sIk
AIkIk

sIk

]
. (21)
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FIGURE 2

Iteration process of M-PSGP (accelerated by NAG) and SGP
Algorithms. Nodes and vectors are noted in Table 1.

TABLE 1 Notation of nodes and vectors in Figure 2.

Type Label Meaning

Node A xk−1

B xk

C ykp Within line 7 of Algorithm 1

D yk Within line 12 of Algorithm 1

E xk+1 the (k + 1)-th iteration value of
M-PSGP

F x̃k+1 the (k + 1)-th iteration value of
SGP

G x� The stationary point of F(x)

Vector V1 αk−1Dk−1∇f (xk−1)

V2 ∇f (xk)

V3 αkDk∇f (xk)

V4 α̃kDk∇f (xk)

V5 xk − αkDk∇f (xk) Gradient descent within line 6 of
Algorithm 1

V6 xk − α̃kDk∇f (xk)

M1 V3 − V1

M2 xk − xk−1

M3 M1 + M2 Equivalent to vk within line 11 of
Algorithm 1

M4 ykp + M3 Equivalent to point D, which is yk

Applying Equations 20, 21 to the BB rules (Equation 14) and
(Equation 15), we can obtain the following:

αBB1
k =

sT
Ik−1

D−1
k D−1

k sIk−1

sT
Ik−1

D−1
k zIk−1

, (22)

αBB2
k =

sT
Ik−1

DkzIk−1

zT
Ik−1

DkDkzIk−1
+ zT

Jk−1
DkDkzJk−1

. (23)

Inspired by the BB2-like rule for box-constrained problems
proposed by Crisci et al. (2019), we develop a new variant, which

is termed the BB2∗ rule, as follows:

αBB2∗
k =

sT
Ik−1

DkzIk−1

zT
Ik−1

DkDkzIk−1

. (24)

Intuitively, the optimization process is accelerated by
preemptively eliminating the optimal zero components, as the
reciprocal of 1/αk only depends on non-zero components. By
excluding these zero components, the step-size calculation can
focus on the active subspace, thereby improving the accuracy
of curvature estimation, reducing redundant projections, and
ultimately enhancing convergence efficiency. Furthermore,
motivated by the SGP algorithm, which alternatively chooses αk
to balance convergence acceleration with algorithmic robustness,
we determine αk by switching between αBB2∗

k and αBB1
k adaptively.

Thereafter, the comprehensive step-size selection rule, which we
termed the SS∗ rule, is defined as follows:

αk =

⎧⎪⎨
⎪⎩

αBB1
k , if αBB1

k
αBB2∗

k
< τ ,

αBB2∗
k , if αBB1

k
αBB2∗

k
≥ τ ,

(25)

where τ is the threshold determining the translation.
It is remarked that, since we propose a larger step-size rule BB2∗

(Equation 24) than BB2 (Equation 15), it is possible that the ykp

after gradient descent and projection yields an opposite increase. In
this situation, a monotone line search, which enforces the sequence
f (xk) to be strictly decreasing, might lead to multiple computation
loops during backtracking. That results in a dissipation of the
acceleration effect achieved by our BB2∗ rule. Thus, equipping a
non-monotone line search procedure is significant for the M-PSGP
algorithm to adapt to the inherent non-monotonic nature of our
step-size rules.

4 Computational complexity analysis
and convergence analysis

In this section, we will focus on the computational complexity
analysis and convergence analysis for the M-PSGP algorithm.

4.1 Computational complexity analysis

In our image deblurring problem, the dimension of the
optimization variable is n = N = 65, 536 for 256×256 images. The
point spread function (PSF) matrix A is typically a block circulant
matrix with circulant blocks (BCCB). For such structured matrices,
the matrix-vector product Ax can be computed with O(n log n)
complexity by employing the fast Fourier transform (FFT) (Davis,
1979). Thus, the computational cost of major operations in one
iteration of our M-PSGP algorithm is analyzed as follows:

• Gradient computation (T∇ ): Computing ∇f (xk) = A�(Axk −
y) requires two FFT-based operations, yielding O(n log n)
complexity.

• Function evaluation (Tf ): Evaluating f (xk) = 1
2‖Axk−y‖2 also

requires FFT operations, with O(n log n) complexity.
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FIGURE 3

Test examples. The first row displays the original images, the second row displays the deblurred images with σ 2 = 5, the third row displays the
deblurred images with σ 2 = 10. The test images are sequentially labeled as: (A) NGC7027; (B) SATELLITE; (C) CHAOS; (D) OASIS; (E) CAMERAMAN; (F)
HOUSE; (G) FISHSTAR; (H) PARROT.

TABLE 2 Performance comparison of different step-size rules under various noise levels (σ 2 = 5 and σ 2 = 10).

Kernel Image BB1 BB2 SS BB2∗(proposed) SS∗(proposed)

σ 2 = 5 NGC7027 39.5780/0.9634 39.5803/0.9636 39.5579/0.9634 39.8836/0.9666 39.9833/0.9667

SATELLITE 33.6064/0.9757 33.5219/0.9755 33.6351/0.9756 32.3182/0.9683 33.9139/0.9779

CHAOS 28.4492/0.8815 28.5246/0.8827 28.5318/0.8838 28.8542/0.8891 29.1115/0.8895

OASIS 25.7603/0.7782 25.7585/0.7789 25.7785/0.7797 26.1355/0.7995 26.2549/0.7944

CAMERAMAN 26.7746/0.8681 26.7028/0.8577 26.8309/0.8716 26.7797/0.8703 26.8613/0.8724

HOUSE 29.6711/0.8774 29.8932/0.9007 30.0078/0.9092 29.9713/0.9063 30.0477/0.9092

FISHSTAR 27.0041/0.8665 27.1139/0.8797 27.3877/0.8884 27.2619/0.8873 27.4539/0.8898

PARROT 26.8160/0.8595 26.9666/0.8644 27.2669/0.8859 27.3357/0.8905 27.5730/0.8973

AVERAGE 29.7075/0.8838 29.7577/0.8879 29.8746/0.8944 29.8175/0.8972 30.1499/0.8996

σ 2 = 10 NGC7027 35.9593/0.9334 35.8644/0.9335 36.0525/0.9331 35.9286/0.9362 36.4075/0.9384

SATELLITE 28.4599/0.9369 28.5127/0.9378 29.2375/0.9435 27.1484/0.9246 29.8386/0.9492

CHAOS 24.5731/0.7908 24.5733/0.7917 24.5444/0.7899 24.5858/0.7919 25.0174/0.8045

OASIS 22.5697/0.6574 22.5661/0.6566 22.5823/0.6572 22.3894/0.6547 23.1401/0.6831

CAMERAMAN 24.1789/0.7862 24.1274/0.7836 24.4084/0.8006 24.2899/0.7987 24.4311/0.8011

HOUSE 27.1311/0.8328 27.1667/0.8411 27.2124/0.8541 27.2322/0.8545 27.2617/0.8566

FISHSTAR 24.5393/0.7998 24.5570/0.8001 24.7344/0.8026 24.6588/0.8003 24.7516/0.8019

PARROT 23.9755/0.8067 24.1777/0.8198 24.3802/0.8223 24.2395/0.8211 24.3888/0.8221

AVERAGE 26.4234/0.8180 26.4432/0.8205 26.6440/0.8254 26.3091/0.8228 26.9046/0.8318

Values indicate PSNR (dB)/SSIM metrics. Bold values represent the best performance metric in each row.

• BB step-size computation (TBB): Calculating αk involves
vector differences and inner products, requiring O(n)
operations.

• Diagonal scaling (TD): Applying the diagonal scaling matrix
Dk to vectors is an element-wise operation with O(n)
complexity.

• Proximal/projection operations (Tproj): Both the proximal
operator for the 
1-norm and the projection onto the non-
negative orthant are element-wise operations with O(n)
complexity.

• Backtracking evaluations (Nbt): The average number of
function evaluations during backtracking line search.
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FIGURE 4

Comparison of different step-size rules in terms of the average negative logarithm of RRE: (A) σ 2 = 5; (B) σ 2 = 10.

TABLE 3 Performance comparison between SGP* and M-PSGP accelerated variants under different noise levels (σ 2 = 5 and σ 2 = 10).

Kernel Image SGP∗ M-PSGP accelerated by

Equation 17 Equation 18 Equation 19

σ 2 = 5 NGC7027 39.9833/0.9666 40.7471/0.9695 40.8651/0.9699 40.6911/0.9694

SATELLITE 33.9139/0.9779 34.2553/0.9779 34.3848/0.9783 34.3649/0.9783

CHAOS 29.1115/0.8895 29.3828/0.8952 29.8529/0.9041 29.3901/0.8974

OASIS 26.2549/0.7944 26.5816/0.8141 26.8532/0.8192 26.5982/0.8142

CAMERAMAN 26.8613/0.8724 26.8762/0.8737 27.0218/0.8776 26.9117/0.8759

HOUSE 30.0477/0.9092 29.6217/0.9013 30.0248/0.9054 30.0971/0.9107

FISHSTAR 27.4539/0.8898 27.4828/0.8932 27.5456/0.8960 27.4743/0.8927

PARROT 27.5730/0.8973 27.5137/0.8897 27.6549/0.8922 27.6753/0.9079

AVERAGE 30.1499/0.8996 30.3077/0.9018 30.5003/0.9053 30.4003/0.9058

σ 2 = 10 NGC7027 36.4075/0.9384 37.6049/0.9498 37.9150/0.9524 37.5544/0.9493

SATELLITE 29.8386/0.9492 30.1958/0.9429 31.0540/0.9553 30.4011/0.9471

CHAOS 25.0174/0.8045 26.3179/0.8388 26.5665/0.8484 26.2568/0.8371

OASIS 23.1401/0.6831 24.3091/0.7237 24.3651/0.7297 24.3245/0.7251

CAMERAMAN 24.4311/0.8011 24.4412/0.8010 24.4501/0.8013 24.4497/0.8011

HOUSE 27.2617/0.8566 27.2637/0.8473 27.2783/0.8573 27.2668/0.8566

FISHSTAR 24.7516/0.8019 24.7716/0.7994 24.8385/0.8022 24.7722/0.8007

PARROT 24.3888/0.8211 24.3907/0.8219 24.3952/0.8223 24.3933/0.8220

AVERAGE 26.9046/0.8318 27.4119/0.8406 27.5996/0.8459 27.4356/0.8426

Values represent PSNR(dB)/SSIM metrics. Bold values represent the best performance metric in each row.

• Proximal calls (Cprox): The number of proximal/projection
calls per iteration (typically Cprox = 2 in M-PSGP).

The overall per-iteration computational complexity can be
expressed as follows:

Titer = T∇ + TBB + TD + CproxTproj + NbtTf +O(n) (26)

Substituting the respective complexities:

Titer = O(n log n) +O(n) +O(n) +O(n) +O(n log n) +O(n)

= O(n log n) (27)

Therefore, the per-iteration time complexity of the proposed
M-PSGP algorithm is:

Titer = O(n log n) (28)

The O(n log n) term dominates due to the FFT-based gradient
and function evaluations, while all other operations maintain
linear O(n) complexity. This complexity is significantly more
efficient than the O(n2) complexity required by direct matrix
operations, making our algorithm suitable for high-dimensional
image processing problems.
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FIGURE 5

Comparison between SGP* and M-PSGP accelerated variants in terms of the average negative logarithm of RRE: (A) σ 2 = 5; (B) σ 2 = 10.

FIGURE 6

Sensitivity and optimal choice of η for M-PSGP accelerated variants: (A) s = 0; (B) s = 1; (C) s = 1/(1 − η).

4.2 Convergence analysis

In this section, we will focus on the convergence analysis for the
M-PSGP algorithm. The main convergence guarantee of M-PSGP
in the case of heavy-ball momentum acceleration is presented in
Theorem 1, and its proof is based on a series of basic properties
that we state in the following lemmas.

Lemma 4. Assume that yk �= xk, then, the dk = yk − xk is a strict
descent direction for the function f at xk, that is, ∇f (xk)Tdk < 0.

Proof. The proof of this lemma is detailed in Appendix A.

Lemma 5. Define ek = mk − xk, where mk = xk − sαkDk∇f (xk), it
has:

‖ek‖ ≤ sαmaxLG, (29)

for ‖Dk‖ ≤ L, αk ∈ [αmin, αmax] and G = maxx∈S
∥∥∇f (x)

∥∥.

Proof. The proof of this lemma is detailed in Appendix B.

Lemma 6. Consider a Lyapunov function �k = F(x) + ρ
2αk

‖ek‖2,
where F(x) is constructed as Equation 7 and ‖ek‖ is defined as (29).
There exist constants σ , ρ > 0 such that:

�k+1 ≤ �k − σβwk
∣∣∣∇f (xk)Tdk

∣∣∣ , k = 1, 2, . . .

Proof. The proof of this lemma is detailed in Appendix C.

Lemma 7. Let β ∈ (0, 1) and θ ∈ (0, 1) be fixed constants. For any
iteration k, the nonmonotone backtracking line search terminates
in a finite number of trials; that is, there exists wk > 0 such that the
following inequality holds:

f (xk + βwk dk) ≤ fmax + θβwk∇f (xk)Tdk,

where fmax = max0≤j≤min(k,M−1)f (xk−j).

Proof. The proof of this lemma is detailed in Appendix D.
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TABLE 4 Performance comparison of different deblurring algorithms under various noise levels (σ 2 = 5 and σ 2 = 10).

Kernel Image TWIST FISTA SGP OptISTA IOptISTA M-PSGP(proposed)

σ 2 = 5 NCC7027 37.5447/0.9509 39.0224/0.9535 39.5579/0.9635 39.6975/0.9674 39.7114/0.9675 40.8651/0.9699

22.8753/200 23.6571/200 24.1953/176 23.3126/200 23.2349/189 23.2139/167

SATELLITE 28.1473/0.8976 30.7777/0.9076 33.6350/0.9756 33.8119/0.9696 33.8430/0.9707 34.3848/0.9783

19.5327/200 17.3891/200 15.2328/161 16.6894/200 13.9163/175 13.3951/148

CHAOS 25.8712/0.7922 27.5537/0.8005 28.5318/0.8813 28.8154/0.8804 29.0347/0.8828 29.8529/0.9041

29.5632/200 27.6831/200 29.3262/200 28.2222/200 28.2871/200 26.3988/141

OASIS 24.2528/0.7117 24.9531/0.7138 25.7785/0.7797 25.8660/0.7714 25.9432/0.7736 26.8532/0.8192

31.9157/200 28.3624/200 27.4646/200 26.8934/200 27.3651/200 26.9111/200

Cameraman 25.6017/0.8469 25.7443/0.8475 26.8309/0.8716 26.8351/0.8787 27.1974/0.8779 27.0218/0.8776

34.3028/200 32.9612/200 31.9408/200 33.7145/200 31.9979/200 32.7244/200

House 29.6338/0.8949 29.9337/0.8949 30.0078/0.9092 30.0529/0.9089 30.0771/0.9092 30.0971/0.9107

41.3221/200 37.7947/200 38.4411/200 38.2826/186 33.6389/169 21.2737/133

Fishstar 26.7017/0.8447 26.7476/0.8589 27.3877/0.8884 27.3610/0.8835 27.6281/0.8555 27.5456/0.8960

37.6243/200 35.3721/200 20.0208/107 34.7623/200 33.6731/200 10.5272/63

Parrot 25.7248/0.8767 26.4034/0.8782 27.2669/0.8859 27.5565/0.9046 27.6496/0.9068 27.6753/0.9079

37.6236/200 35.3711/200 20.0290/107 34.7622/200 33.6775/200 10.5209/63

Average 27.9347/0.8520 28.8920/0.8569 29.8746/0.8944 29.9995/0.8956 30.1356/0.8930 30.5369/0.9079

31.84/200 29.8200/200 25.8300/169 29.5819/88 28.2200/192 20.2502/139

σ 2 = 10 NCC7027 33.8812/0.9037 35.2076/0.9101 36.0525/0.9330 35.8559/0.9279 36.2379/0.9286 37.9150/0.9524

19.9156/200 20.0935/200 16.3111/135 18.9412/187 17.8764/200 13.4333/127

SATELLITE 25.2859/0.8261 26.0682/0.8248 29.2375/0.9435 29.5298/0.9414 29.8351/0.9433 31.0540/0.9553

23.0627/200 21.3631/200 17.3982/183 18.9888/200 16.4399/154 16.0073/148

CHAOS 22.8515/0.6288 23.3274/0.6434 24.5444/0.7899 24.7078/0.7876 24.8516/0.7946 26.5665/0.8484

26.5537/198 27.5318/185 28.8154/192 28.0347/190 28.0712/195 26.8712/195

OASIS 20.9931/0.5423 21.6196/0.5688 22.5824/0.6573 22.6105/0.6839 22.7438/0.6953 24.3651/0.7297

25.2528/200 20.9531/117 16.7785/88 20.8660/125 20.7432/122 12.8532/49

Cameraman 23.9589/0.7946 24.0975/0.7866 24.4084/0.8006 24.4903/0.8121 24.7036/0.8224 24.4501/0.8013

14.0721/89 9.8957/30 20.9984/146 26.7152/181 23.9727/179 18.7213/66

House 27.0941/0.8446 27.2009/0.8530 27.2124/0.8541 27.3413/0.8492 27.3900/0.8512 27.2783/0.8573

20.1911/200 18.2147/200 20.4413/121 18.0324/186 23.6301/147 8.4733/27

Fishstar 24.5846/0.7616 24.6578/0.7784 24.7344/0.8026 25.2344/0.8127 25.2718/0.8236 24.8385/0.8022

33.9719/200 34.7324/200 11.5346/63 21.7623/146 15.6743/111 7.3867/41

Parrot 23.6300/0.8137 23.8572/0.8148 24.3802/0.8223 24.0451/0.8129 24.1471/0.8153 24.3952/0.8223

40.2161/200 36.9713/200 22.4794/87 36.3971/200 32.1775/200 7.9909/44

Average 25.2849/0.7644 25.7545/0.7725 26.6440/0.8254 26.7269/0.8285 26.8976/0.8343 27.6078/0.8461

25.4/186 23.7195/167 19.3446/127 23.7171/156 22.3262/164 13.9672/87

Values indicate PSNR(dB)/SSIM/RUN-TIME(s) metrics. Bold values represent the best performance metric in each row.

Theorem 1. Consider the composite convex minimization
problem (Equation 7) and suppose the sequence {xk} is generated
by the M-PSGP algorithm under the assumption that the level set
{x : F(x) ≤ F(x0)} is bounded. Then the sequence {xk} converges to
a stationary point x∗ of F over S = {x : x ≥ 0}, i.e.,

lim
k→∞

xk = x∗.

Proof. The proof of this theorem is detailed in Appendix E.

5 Results

In this section, we conduct simulation experiments to confirm
the superiority of the M-PSGP algorithm in solving l1-regularized
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FIGURE 7

Comparison of TwIST, FISTA, SGP, OptISTA, IoptISTA and M-PSGP in terms of the average negative logarithm of RRE: (A) σ 2 = 5; (B) σ 2 = 10.

optimization problems, with a focus on its application to image
deblurring. All algorithms are implemented in Python 3.8.10, and
the experiments are conducted on a computer equipped with a 12th
Gen Intel(R) Core(TM) processor at 2.30 GHz.

First, we compare the performance of different BB-like step-size
rules within the framework of the SGP algorithm, demonstrating
the superiority of SS∗ rules in accelerating the convergence rate and
enhancing deblurring effectiveness. For the sake of convenience
in notation, we name the method that incorporates SS∗ into SGP
as the SGP* algorithm. Then, we combine the unified momentum
framework UM with the SGP* algorithm, which serves as the M-
PSGP algorithm. The comparison between the SGP* and M-PSGP
demonstrates the notable advantage of momentum acceleration.
Moreover, we compare M-PSGP with other seminal methods and
present its excellence.

5.1 Experiment settings and performance
measures

All of the algorithms are tested on problem (Equation 7).
The test examples are generated by convolving the original 256
× 256 images with the Gaussian kernels of different noise levels
(σ 2 = 5 and σ 2 = 10; higher σ values result in stronger
blurring effects), followed by additive white noise with a Gaussian
distribution (σ 2 = 0.01). To ensure an objective and consistent
evaluation of the proposed M-PSGP algorithm and its comparison
with the baseline SGP method, we adopted the test examples used
in Bonettini and Prato (2015); Federica et al. (2015) and selected
two representative CT images. Furthermore, to comprehensively
evaluate the generalization capability and robustness of the M-
PSGP algorithm, we also selected four images of different types
from the standard image processing benchmark dataset Set12
proposed by Zhang et al. (2017) as supplementary test examples.
The complete set of selected test examples is presented in Figure 3.

To evaluate and compare the effectiveness of different
algorithms, we measure the number of convergence iterations

(ITER), the corresponding runtime (TIME) to achieve
convergence, relative reconstruction error (RRE) (Bonettini
et al., 2008), peak signal-to-noise ratio (PSNR) (Liao et al., 2025),
and structural similarity (SSIM) (Liao et al., 2024). These indicators
are defined as follows:

RRE =
∥∥x̂ − x

∥∥
‖x‖ ,

PSNR = 10log10
2552 × M × N∑M

m=1
∑N

n=1(xm,n − x̂m,n)2
,

SSIM = (2μxμx̂ + c1)(2σxx̂ + c2)
(μ2

x + μ2
x̂ + c1)(σ 2

x + σ 2
x̂ + c2)

,

where x is the original image and x̂ is the deblurred image, M and
N denote the sizes along the two dimensions of the image. μx and
μx̂ are the pixel-wise averages, σx and σx̂ are the variances of x and
x̂, σxx̂ is the covariance between x and x̂, and c1 and c2 are stability
constants.

In all simulations, we set the maximum number of iterations
as 200, αmin = 10−10, αmax = 105, and α0 = 1.3. The step size
threshold τ is set as 0.15. In the backtracking loop step, the line
search parameters are θ = 10−4, β = 0.95. The initial iteration

value x0 is set as follows: x0
i =

∑N
i=1 yi
N (i = 1, 2, 3, · · · , N),, where y

are the observed values.

5.2 Comparison of step-size rules in SGP

In this subsection, we inspect the performance in practical
implementations of those different step-size rules:

• BB1: αk = αBB1
k , where αBB1

k is defined as the rule (Equation
14).

• BB2: αk = αBB2
k , where αBB2

k is defined as the rule (Equation
15).

• SS: αk is defined following the SS algorithm proposed by
Bonettini and Prato (2015).

• BB2∗: αk is defined following the rule (Equation 24).
• SS∗: αk is defined following the rule (Equation 25).
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FIGURE 8

Visual reconstructed results from blurred test images (σ 2 = 5). The images shown from left to right are (A) blurred images; (B) TWIST-deblurred
images; (C) FISTA-deblurred images; (D) SGP-deblurred images; (E) OptISTA-deblurred images; (F) IoptISTA-deblurred images; (G)
M-PSGP-deblurred images.

Here, the BB2∗ and SS∗ are our proposed rules. To adhere to
the principle of a single variable, thereby enhancing the referential

value of the experimental outcomes, we uniformly implement these
rules in the SGP algorithm.
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The numerical results are reported in Table 2 and Figure 4.
Table 2 shows that for all test images, SS∗ could achieve
the highest PSNR and SSIM on all test images, indicating
the best optimization effect and the highest quality of the
reconstructed images. As shown in the curve in Figure 4, it
can be concluded that SS∗ and BB2∗ require fewer iterations to
achieve the same effect compared to other rules at the preliminary
iteration stage, which means that the SS∗ and BB2∗ rules can
improve the convergence rate more than other rules. Across the
comprehensive optimization stages, SS∗ achieves the lowest RRE
(the highest negative logarithm of RRE), demonstrating the dual
advantages of SS∗ in accelerating convergence while enhancing
optimization accuracy. Indeed, the SGP algorithm employing the
SS* method is equivalent to the M-PSGP algorithm operating
without its momentum acceleration, which can be denoted as the
SGP* algorithm.

5.3 Comparison between SGP* and
M-PSGP

Aiming to study the acceleration and stability effects of the
unified momentum framework UM (Equation 16), we compare
the M-PSGP algorithm with the SGP∗ algorithm (M-PSGP
without its momentum acceleration) in this subsection. Table 3
presents the numerical performance of SGP∗ and M-PSGP variants
(accelerated by HB, NAG, and GM). The results demonstrate
that all M-PSGP variants can produce more efficient results than
SGP∗. From Figure 5, we can observe that the M-PSGP variants
consistently outperform SGP∗ in convergence speed across noise
levels, achieving faster RRE reduction and earlier stabilization.
Furthermore, as shown in Equation 16, the selection of parameter
η must satisfy the range required for the convergence of the
algorithms, and then within this range, values that yield higher
performance metrics are chosen. To demonstrate the sensitivity
of η, using the NGC7027 case with a blur level of σ 2 = 5 as
an example, we investigated the performance of three accelerated
variants (HB: s = 0, NAG: s = 1, and GM: s = 1/1 − η) under
different values of the parameter η. Using the NGC7027 case with
a blur level of σ 2 = 5 as an example. The experimental results are
presented in Figure 6.

5.4 Comparison of M-PSGP with other
algorithms

In this subsection, we present the comparison of the M-PSGP
algorithm with other algorithms, including TwIST (Bioucas-Dias
and Figueiredo, 2007), FISTA (Beck and Teboulle, 2009), SGP
(Bonettini and Prato, 2015), OptISTA (Jang et al., 2025), and
IOptISTA (Wang et al., 2025). Table 4 presents the performance
metrics of M-PSGP and other seminal algorithms, from which
we can conclude that M-PSGP achieves the highest PSNR and
SSIM, among others. On 12 out of the 16 test examples, the M-
PSGP algorithm achieved satisfactory deblurring performance in
less time, which is attributed to its requiring fewer iterations to
converge. On the remaining four test images, M-PSGP achieved
better deblurring performance under the same iteration limit, albeit

at the expense of a longer total runtime. In Figure 7, based on the
average variations in curvature depicted, we further substantiate
that the M-PSGP algorithm can accelerate convergence during the
optimization process more than others. In Figure 8, we present a
magnified view of the deblurring effects on test images under the
Gaussian noise level σ 2 = 5, which allows for a visual assessment
of the M-PSGP and other algorithms. The magnified details
demonstrate the superior capabilities of the M-PSGP algorithm
in enhancing the overall effect of image deblurring, as well as in
preserving and clarifying edges.

6 Conclusion and discussion

In this study, we propose the M-PSGP algorithm and
demonstrate its significant improvement in optimizing l1-
regularized problems, with applications to image deblurring.
The integration of the improved step-size rule BB2∗ and the
unified momentum framework UM has led to accelerated
convergence rates and improved performance in image deblurring
tasks. Numerical experiments have demonstrated that the
M-PSGP algorithm outperforms existing proximal gradient
projection algorithms, TwIST, FISTA, SGP, OptISTA, and
IOptISTA. The M-PSGP algorithm has presented a credible
alternative to conventional techniques in image deblurring
and has demonstrated potential applications in other domains,
where l1-regularized optimization problems are prevalent. In
the future, we will endeavor to apply the M-PSGP algorithm
to other optimization problems, such as ridge regression and
non-convex optimization, thereby enhancing its applicability to a
broader range of signal processing tasks. Furthermore, with the
potential to provide novel perspectives for tackling large-scale
optimization problems, the application of the M-PSGP algorithm
to parameter training in machine learning is also a significant
research topic.

While this study presents a promising optimization framework,
its practical deployment may face certain limitations that warrant
further discussion. First, the performance of the method depends
on the selection of several hyperparameters (e.g., η). Although the
algorithm incorporates adaptive mechanisms, its sensitivity to these
settings may present challenges in practical applications, where
parameter tuning is limited or robustness is essential. Second, the
convergence analysis and numerical experiments are conducted
under standard assumptions. The method’s performance in non-
Gaussian or heavy-tailed noise environments remains an open
question. Such conditions are common in real-world data (e.g.,
sensor data), and the robustness of momentum acceleration
and line search strategies in these settings warrants further
investigation. Acknowledging these aspects would provide a more
comprehensive view of the method’s operational scope and guide
future research toward enhancing its practical robustness and
applicability.
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